Search tips
Search criteria

Results 1-25 (1326671)

Clipboard (0)

Related Articles

1.  Molecular identity of axonal sodium channels in human cortical pyramidal cells 
Studies in rodents revealed that selective accumulation of Na+ channel subtypes at the axon initial segment (AIS) determines action potential (AP) initiation and backpropagation in cortical pyramidal cells (PCs); however, in human cortex, the molecular identity of Na+ channels distributed at PC axons, including the AIS and the nodes of Ranvier, remains unclear. We performed immunostaining experiments in human cortical tissues removed surgically to cure brain diseases. We found strong immunosignals of Na+ channels and two channel subtypes, NaV1.2 and NaV1.6, at the AIS of human cortical PCs. Although both channel subtypes were expressed along the entire AIS, the peak immunosignals of NaV1.2 and NaV1.6 were found at proximal and distal AIS regions, respectively. Surprisingly, in addition to the presence of NaV1.6 at the nodes of Ranvier, NaV1.2 was also found in a subpopulation of nodes in the adult human cortex, different from the absence of NaV1.2 in myelinated axons in rodents. NaV1.1 immunosignals were not detected at either the AIS or the nodes of Ranvier of PCs; however, they were expressed at interneuron axons with different distribution patterns. Further experiments revealed that parvalbumin-positive GABAergic axon cartridges selectively innervated distal AIS regions with relatively high immunosignals of NaV1.6 but not the proximal NaV1.2-enriched compartments, suggesting an important role of axo-axonic cells in regulating AP initiation in human PCs. Together, our results show that both NaV1.2 and NaV1.6 (but not NaV1.1) channel subtypes are expressed at the AIS and the nodes of Ranvier in adult human cortical PCs, suggesting that these channel subtypes control neuronal excitability and signal conduction in PC axons.
PMCID: PMC4172021  PMID: 25294986
axon initial segment; human cortex; node of Ranvier; sodium channel subtype; parvalbumin; chandelier cell; pyramidal cell
2.  Action Potential Initiation in Neocortical Inhibitory Interneurons 
PLoS Biology  2014;12(9):e1001944.
Sodium channels add variety to inhibitory interneurons Different populations of inhibitory interneurons in the cerebral cortex express distinct subtypes of sodium channels, resulting in diverse action potential thresholds and network excitability.
Action potential (AP) generation in inhibitory interneurons is critical for cortical excitation-inhibition balance and information processing. However, it remains unclear what determines AP initiation in different interneurons. We focused on two predominant interneuron types in neocortex: parvalbumin (PV)- and somatostatin (SST)-expressing neurons. Patch-clamp recording from mouse prefrontal cortical slices showed that axonal but not somatic Na+ channels exhibit different voltage-dependent properties. The minimal activation voltage of axonal channels in SST was substantially higher (∼7 mV) than in PV cells, consistent with differences in AP thresholds. A more mixed distribution of high- and low-threshold channel subtypes at the axon initial segment (AIS) of SST cells may lead to these differences. Surprisingly, NaV1.2 was found accumulated at AIS of SST but not PV cells; reducing NaV1.2-mediated currents in interneurons promoted recurrent network activity. Together, our results reveal the molecular identity of axonal Na+ channels in interneurons and their contribution to AP generation and regulation of network activity.
Author Summary
Inhibitory interneurons in the cerebral cortex are diverse in many respects. Here, we examine whether this diversity extends to the composition of ion channels along the axon, which might determine the neurons' excitability. We performed patch-clamp recordings from cortical interneuron axons in brain slices obtained from two transgenic mouse lines. In each mouse line, distinct populations of inhibitory interneurons—those that express parvalbumin (PV) or those that express somatostatin (SST)—were labeled with green fluorescent protein to allow visualization. We show that action potentials initiate at the axon initial segment (a specialized region of the axon closest to the cell body) in both cell types, but SST neurons have a higher action potential threshold than PV neurons because their sodium channels require a greater degree of depolarization to be fully activated. At the molecular level, we found that the population of sodium channels in SST neurons requires a larger depolarization because it has a more mixed composition of high- and low-threshold sodium channel subtypes. In summary, this study reveals diversity in the molecular identity and voltage dependence of sodium channels that are responsible for initiating action potentials in different populations of interneurons. In addition, the presence of a particular subtype of sodium channel—NaV1.2—in inhibitory interneurons might explain why loss-of-function mutations in this channel result in epilepsy.
PMCID: PMC4159120  PMID: 25203314
3.  Characterization of the axon initial segment (AIS) of motor neurons and identification of a para-AIS and a juxtapara-AIS, organized by protein 4.1B 
BMC Biology  2011;9:66.
The axon initial segment (AIS) plays a crucial role: it is the site where neurons initiate their electrical outputs. Its composition in terms of voltage-gated sodium (Nav) and voltage-gated potassium (Kv) channels, as well as its length and localization determine the neuron's spiking properties. Some neurons are able to modulate their AIS length or distance from the soma in order to adapt their excitability properties to their activity level. It is therefore crucial to characterize all these parameters and determine where the myelin sheath begins in order to assess a neuron's excitability properties and ability to display such plasticity mechanisms. If the myelin sheath starts immediately after the AIS, another question then arises as to how would the axon be organized at its first myelin attachment site; since AISs are different from nodes of Ranvier, would this particular axonal region resemble a hemi-node of Ranvier?
We have characterized the AIS of mouse somatic motor neurons. In addition to constant determinants of excitability properties, we found heterogeneities, in terms of AIS localization and Nav composition. We also identified in all α motor neurons a hemi-node-type organization, with a contactin-associated protein (Caspr)+ paranode-type, as well as a Caspr2+ and Kv1+ juxtaparanode-type compartment, referred to as a para-AIS and a juxtapara (JXP)-AIS, adjacent to the AIS, where the myelin sheath begins. We found that Kv1 channels appear in the AIS, para-AIS and JXP-AIS concomitantly with myelination and are progressively excluded from the para-AIS. Their expression in the AIS and JXP-AIS is independent from transient axonal glycoprotein-1 (TAG-1)/Caspr2, in contrast to juxtaparanodes, and independent from PSD-93. Data from mice lacking the cytoskeletal linker protein 4.1B show that this protein is necessary to form the Caspr+ para-AIS barrier, ensuring the compartmentalization of Kv1 channels and the segregation of the AIS, para-AIS and JXP-AIS.
α Motor neurons have heterogeneous AISs, which underlie different spiking properties. However, they all have a para-AIS and a JXP-AIS contiguous to their AIS, where the myelin sheath begins, which might limit some AIS plasticity. Protein 4.1B plays a key role in ensuring the proper molecular compartmentalization of this hemi-node-type region.
PMCID: PMC3198992  PMID: 21958379
4.  Human Nav1.6 Channels Generate Larger Resurgent Currents than Human Nav1.1 Channels, but the Navβ4 Peptide Does Not Protect Either Isoform from Use-Dependent Reduction 
PLoS ONE  2015;10(7):e0133485.
Voltage-gated sodium channels are responsible for the initiation and propagation of action potentials (APs). Two brain isoforms, Nav1.1 and Nav1.6, have very distinct cellular and subcellular expression. Specifically, Nav1.1 is predominantly expressed in the soma and proximal axon initial segment of fast-spiking GABAergic neurons, while Nav1.6 is found at the distal axon initial segment and nodes of Ranvier of both fast-spiking GABAergic and excitatory neurons. Interestingly, an auxiliary voltage-gated sodium channel subunit, Navβ4, is also enriched in the axon initial segment of fast-spiking GABAergic neurons. The C-terminal tail of Navβ4 is thought to mediate resurgent sodium current, an atypical current that occurs immediately following the action potential and is predicted to enhance excitability. To better understand the contribution of Nav1.1, Nav1.6 and Navβ4 to high frequency firing, we compared the properties of these two channel isoforms in the presence and absence of a peptide corresponding to part of the C-terminal tail of Navβ4. We used whole-cell patch clamp recordings to examine the biophysical properties of these two channel isoforms in HEK293T cells and found several differences between human Nav1.1 and Nav1.6 currents. Nav1.1 channels exhibited slower closed-state inactivation but faster open-state inactivation than Nav1.6 channels. We also observed a greater propensity of Nav1.6 to generate resurgent currents, most likely due to its slower kinetics of open-state inactivation, compared to Nav1.1. These two isoforms also showed differential responses to slow and fast AP waveforms, which were altered by the Navβ4 peptide. Although the Navβ4 peptide substantially increased the rate of recovery from apparent inactivation, Navβ4 peptide did not protect either channel isoform from undergoing use-dependent reduction with 10 Hz step-pulse stimulation or trains of slow or fast AP waveforms. Overall, these two channels have distinct biophysical properties that may differentially contribute to regulating neuronal excitability.
PMCID: PMC4504674  PMID: 26182346
5.  FGF14 Localization and Organization of the Axon Initial Segment 
The axon initial segment (AIS) is highly enriched in the structural proteins ankyrin G and βIV-spectrin, the pore-forming (α) subunits of voltage-gated sodium (Nav) channels, and functional Nav channels, and is critical for the initiation of action potentials. We previously reported that FGF14, a member of the intracellular FGF (iFGF) sub-family, is expressed in cerebellar Purkinje neurons and that the targeted inactivation of Fgf14 in mice (Fgf14−/−) results in markedly reduced Purkinje neuron excitability. Here, we demonstrate that FGF14 immunoreactivity is high in the AIS of Purkinje neurons and is distributed in a decreasing, proximal to distal, gradient. This pattern is evident early in the postnatal development of Purkinje neurons and is also observed in many other types of central neurons. In ( Scn8amed) mice, which are deficient in expression of the Nav1.6 α subunit, FGF14 immunoreactivity is markedly increased and expanded in the Purkinje neuron AIS, in parallel with increased expression of the Nav1.1 (Scn1a) α subunit and expanded expression of βIV-spectrin. Although Nav1.1, FGF14, and βIV-spectrin are affected, ankyrin G immunoreactivity at the AIS of Scn8amed and wild type (WT) Purkinje neurons was not significantly different. In Fgf14−/− Purkinje neurons, βIV-spectrin and ankyrin G immunoreactivity at the AIS were also similar to WT Purkinje neurons, although both the Nav1.1 and Nav1.6 α subunits are modestly, but significantly (P<0.005), reduced within sub-domains of the AIS, changes that may contribute to the reduced excitability of Fgf14−/− Purkinje neurons.
PMCID: PMC3791165  PMID: 23891806
Purkinje neuron; axon initial segment; AIS; iFGF; FGF14; voltage-gated sodium channel; Nav1.1; Scn1a; Nav1.6; Scn8a; ankyrin G; βIV-spectrin
6.  Biophysical properties of Nav1.8/Nav1.2 chimeras and inhibition by µO-conotoxin MrVIB 
British Journal of Pharmacology  2012;166(7):2148-2160.
Voltage-gated sodium channels are expressed primarily in excitable cells and play a pivotal role in the initiation and propagation of action potentials. Nine subtypes of the pore-forming α-subunit have been identified, each with a distinct tissue distribution, biophysical properties and sensitivity to tetrodotoxin (TTX). Nav1.8, a TTX-resistant (TTX-R) subtype, is selectively expressed in sensory neurons and plays a pathophysiological role in neuropathic pain. In comparison with TTX-sensitive (TTX-S) Navα-subtypes in neurons, Nav1.8 is most strongly inhibited by the µO-conotoxin MrVIB from Conus marmoreus. To determine which domain confers Nav1.8 α-subunit its biophysical properties and MrVIB binding, we constructed various chimeric channels incorporating sequence from Nav1.8 and the TTX-S Nav1.2 using a domain exchange strategy.
Wild-type and chimeric Nav channels were expressed in Xenopus oocytes, and depolarization-activated Na+ currents were recorded using the two-electrode voltage clamp technique.
MrVIB (1 µM) reduced Nav1.2 current amplitude to 69 ± 12%, whereas Nav1.8 current was reduced to 31 ± 3%, confirming that MrVIB has a binding preference for Nav1.8. A similar reduction in Na+ current amplitude was observed when MrVIB was applied to chimeras containing the region extending from S6 segment of domain I through the S5-S6 linker of domain II of Nav1.8. In contrast, MrVIB had only a small effect on Na+ current for chimeras containing the corresponding region of Nav1.2.
Taken together, these results suggest that domain II of Nav1.8 is an important determinant of MrVIB affinity, highlighting a region of the α-subunit that may allow further nociceptor-specific ligand targeting.
PMCID: PMC3402778  PMID: 22452751
electrophysiology; heterologous expression; Xenopus oocytes; chimera; µO-conotoxin MrVIB; tetrodotoxin; voltage-gated sodium channels; Nav1.2; Nav1.8
7.  Developmental Expression of Kv Potassium Channels at the Axon Initial Segment of Cultured Hippocampal Neurons 
PLoS ONE  2012;7(10):e48557.
Axonal outgrowth and the formation of the axon initial segment (AIS) are early events in the acquisition of neuronal polarity. The AIS is characterized by a high concentration of voltage-dependent sodium and potassium channels. However, the specific ion channel subunits present and their precise localization in this axonal subdomain vary both during development and among the types of neurons, probably determining their firing characteristics in response to stimulation. Here, we characterize the developmental expression of different subfamilies of voltage-gated potassium channels in the AISs of cultured mouse hippocampal neurons, including subunits Kv1.2, Kv2.2 and Kv7.2. In contrast to the early appearance of voltage-gated sodium channels and the Kv7.2 subunit at the AIS, Kv1.2 and Kv2.2 subunits were tethered at the AIS only after 10 days in vitro. Interestingly, we observed different patterns of Kv1.2 and Kv2.2 subunit expression, with each confined to distinct neuronal populations. The accumulation of Kv1.2 and Kv2.2 subunits at the AIS was dependent on ankyrin G tethering, it was not affected by disruption of the actin cytoskeleton and it was resistant to detergent extraction, as described previously for other AIS proteins. This distribution of potassium channels in the AIS further emphasizes the heterogeneity of this structure in different neuronal populations, as proposed previously, and suggests corresponding differences in action potential regulation.
PMCID: PMC3485302  PMID: 23119056
8.  Molecular Identity of Dendritic Voltage-Gated Sodium Channels 
Science (New York, N.Y.)  2010;328(5980):906-909.
Active invasion of the dendritic tree by action potentials (APs) generated in the axon is essential for associative synaptic plasticity and neuronal ensemble formation. In cortical pyramidal cells (PCs) this AP backpropagation is supported by dendritic voltage-gated Na+ channels (Nav), whose molecular identity is unknown. Using a highly sensitive electron microscopic immunogold technique, we reveal the presence of the Nav1.6 subunit in hippocampal CA1 PC proximal and distal dendrites. Here the subunit density is lower by a factor of 35 to 80 than that found in axon initial segments. A gradual decrease in Nav1.6 density along the proximodistal axis of the dendritic tree was also detected without any labeling in dendritic spines. Our results reveal the characteristic subcellular distribution of the Nav1.6 subunit, identifying this molecule as a key substrate enabling dendritic excitability.
PMCID: PMC3546315  PMID: 20466935
9.  Distinct axo-somato-dendritic distributions of three potassium channels in CA1 hippocampal pyramidal cells 
The European Journal of Neuroscience  2014;39(11):1771-1783.
Potassium channels comprise the most diverse family of ion channels and play critical roles in a large variety of physiological and pathological processes. In addition to their molecular diversity, variations in their distributions and densities on the axo-somato-dendritic surface of neurons are key parameters in determining their functional impact. Despite extensive electrophysiological and anatomical investigations, the exact location and densities of most K+ channels in small subcellular compartments are still unknown. Here we aimed at providing a quantitative surface map of two delayed-rectifier (Kv1.1 and Kv2.1) and one G-protein-gated inwardly rectifying (Kir3.2) K+ channel subunits on hippocampal CA1 pyramidal cells (PCs). Freeze-fracture replica immunogold labelling was employed to determine the relative densities of these K+ channel subunits in 18 axo-somato-dendritic compartments. Significant densities of the Kv1.1 subunit were detected on axon initial segments (AISs) and axon terminals, with an approximately eight-fold lower density in the latter compartment. The Kv2.1 subunit was found in somatic, proximal dendritic and AIS plasma membranes at approximately the same densities. This subunit has a non-uniform plasma membrane distribution; Kv2.1 clusters are frequently adjacent to, but never overlap with, GABAergic synapses. A quasi-linear increase in the Kir3.2 subunit density along the dendrites of PCs was detected, showing no significant difference between apical dendritic shafts, oblique dendrites or dendritic spines at the same distance from the soma. Our results demonstrate that each subunit has a unique cell-surface distribution pattern, and predict their differential involvement in synaptic integration and output generation at distinct subcellular compartments.
PMCID: PMC4150533  PMID: 24606584
confocal microscopy; electron microscopy; immunohistochemistry; ion channels
10.  Reduced expression and activation of voltage-gated sodium channels contributes to blunted baroreflex sensitivity in heart failure rats 
Journal of neuroscience research  2010;88(15):3337-3349.
Voltage-gated sodium (Nav) channels are responsible for initiation and propagation of action potential in the neurons. To explore the mechanisms for chronic heart failure (CHF)-induced baroreflex dysfunction, we measured the expression and current density of Nav channel subunits (Nav1.7, Nav1.8, and Nav1.9) in the aortic baroreceptor neurons and investigated the role of Nav channels on aortic baroreceptor neuron excitability and baroreflex sensitivity in sham and CHF rats. CHF was induced by left coronary artery ligation. The development of CHF (6–8 weeks after the coronary ligation) was confirmed by hemodynamic and morphological characteristics. Immunofluorescent data indicated that Nav1.7 was expressed in A-type (myelinated) and C-type (unmyelinated) nodose neurons but Nav1.8 and Nav1.9 were expressed only in C-type nodose neurons. Real-time RT-PCR and western blot data showed that CHF reduced mRNA and protein expression levels of Nav channels in nodose neurons. In addition, using the whole cell patch-clamp technique, we found that Nav current density and cell excitability of the aortic baroreceptor neurons were lower in CHF rats than that in sham rats. Aortic baroreflex sensitivity was blunted in anesthetized CHF rats, compared with that in sham rats. Furthermore, Nav channel activator (rATX II, 100 nM) significantly enhanced Nav current density and cell excitability of aortic baroreceptor neurons and improved aortic baroreflex sensitivity in CHF rats. These results suggest that reduced expression and activation of the Nav channels is involved in the attenuation of baroreceptor neuron excitability, which subsequently contributes to the impairment of baroreflex in CHF state.
PMCID: PMC2953570  PMID: 20857502
Aortic baroreceptor neuron; Baroreflex; Heart failure; Sodium channel
11.  Heteromeric Kv7.2/7.3 Channels Differentially Regulate Action Potential Initiation and Conduction in Neocortical Myelinated Axons 
The Journal of Neuroscience  2014;34(10):3719-3732.
Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of Kv7 potassium channels and voltage-gated sodium (Nav) channels in the axonal initial segment and nodes of Ranvier. The local biophysical properties of these Kv7 channels and the functional impact of colocalization with Nav channels remain poorly understood. Here, we quantitatively examined Kv7 channels in myelinated axons of rat neocortical pyramidal neurons using high-resolution confocal imaging and patch-clamp recording. Kv7.2 and 7.3 immunoreactivity steeply increased within the distal two-thirds of the axon initial segment and was mirrored by the conductance density estimates, which increased from ∼12 (proximal) to 150 pS μm−2 (distal). The axonal initial segment and nodal M-currents were similar in voltage dependence and kinetics, carried by Kv7.2/7.3 heterotetramers, 4% activated at the resting membrane potential and rapidly activated with single-exponential time constants (∼15 ms at 28 mV). Experiments and computational modeling showed that while somatodendritic Kv7 channels are strongly activated by the backpropagating action potential to attenuate the afterdepolarization and repetitive firing, axonal Kv7 channels are minimally recruited by the forward-propagating action potential. Instead, in nodal domains Kv7.2/7.3 channels were found to increase Nav channel availability and action potential amplitude by stabilizing the resting membrane potential. Thus, Kv7 clustering near axonal Nav channels serves specific and context-dependent roles, both restraining initiation and enhancing conduction of the action potential.
PMCID: PMC3942587  PMID: 24599470
axon; excitability; Kv7
12.  Functional up-regulation of Nav1.8 sodium channel in Aβ afferent fibers subjected to chronic peripheral inflammation 
Functional alterations in the properties of Aβ afferent fibers may account for the increased pain sensitivity observed under peripheral chronic inflammation. Among the voltage-gated sodium channels involved in the pathophysiology of pain, Nav1.8 has been shown to participate in the peripheral sensitization of nociceptors. However, to date, there is no evidence for a role of Nav1.8 in controlling Aβ-fiber excitability following persistent inflammation.
Distribution and expression of Nav1.8 in dorsal root ganglia and sciatic nerves were qualitatively or quantitatively assessed by immunohistochemical staining and by real time-polymerase chain reaction at different time points following complete Freund’s adjuvant (CFA) administration. Using a whole-cell patch-clamp configuration, we further determined both total INa and TTX-R Nav1.8 currents in large-soma dorsal root ganglia (DRG) neurons isolated from sham or CFA-treated rats. Finally, we analyzed the effects of ambroxol, a Nav1.8-preferring blocker on the electrophysiological properties of Nav1.8 currents and on the mechanical sensitivity and inflammation of the hind paw in CFA-treated rats.
Our findings revealed that Nav1.8 is up-regulated in NF200-positive large sensory neurons and is subsequently anterogradely transported from the DRG cell bodies along the axons toward the periphery after CFA-induced inflammation. We also demonstrated that both total INa and Nav1.8 peak current densities are enhanced in inflamed large myelinated Aβ-fiber neurons. Persistent inflammation leading to nociception also induced time-dependent changes in Aβ-fiber neuron excitability by shifting the voltage-dependent activation of Nav1.8 in the hyperpolarizing direction, thus decreasing the current threshold for triggering action potentials. Finally, we found that ambroxol significantly reduces the potentiation of Nav1.8 currents in Aβ-fiber neurons observed following intraplantar CFA injection and concomitantly blocks CFA-induced mechanical allodynia, suggesting that Nav1.8 regulation in Aβ-fibers contributes to inflammatory pain.
Collectively, these findings support a key role for Nav1.8 in controlling the excitability of Aβ-fibers and its potential contribution to the development of mechanical allodynia under persistent inflammation.
PMCID: PMC4007624  PMID: 24606981
Aβ-fibers; Allodynia; Complete Freund’s adjuvant; Electrophysiology; Sodium channel blocker
13.  Nav1.1 haploinsufficiency in excitatory neurons ameliorates seizure-associated sudden death in a mouse model of Dravet syndrome 
Human Molecular Genetics  2013;22(23):4784-4804.
Dravet syndrome is a severe epileptic encephalopathy mainly caused by heterozygous mutations in the SCN1A gene encoding a voltage-gated sodium channel Nav1.1. We previously reported dense localization of Nav1.1 in parvalbumin (PV)-positive inhibitory interneurons in mice and abnormal firing of those neurons in Nav1.1-deficient mice. In the present study, we investigated the physiologic consequence of selective Nav1.1 deletion in mouse global inhibitory neurons, forebrain excitatory neurons or PV cells, using vesicular GABA transporter (VGAT)-Cre, empty spiracles homolog 1 (Emx1)-Cre or PV-Cre recombinase drivers. We show that selective Nav1.1 deletion using VGAT-Cre causes epileptic seizures and premature death that are unexpectedly more severe than those observed in constitutive Nav1.1-deficient mice. Nav1.1 deletion using Emx1-Cre does not cause any noticeable abnormalities in mice; however, the severe lethality observed with VGAT-Cre-driven Nav1.1 deletion is rescued by additional Nav1.1 deletion using Emx1-Cre. In addition to predominant expression in PV interneurons, we detected Nav1.1 in subpopulations of excitatory neurons, including entorhino-hippocampal projection neurons, a subpopulation of neocortical layer V excitatory neurons, and thalamo-cortical projection neurons. We further show that even minimal selective Nav1.1 deletion, using PV-Cre, is sufficient to cause spontaneous epileptic seizures and ataxia in mice. Overall, our results indicate that functional impairment of PV inhibitory neurons with Nav1.1 haploinsufficiency contributes to the epileptic pathology of Dravet syndrome, and show for the first time that Nav1.1 haploinsufficiency in excitatory neurons has an ameliorating effect on the pathology.
PMCID: PMC3820136  PMID: 23922229
14.  Physiological and genetic analysis of multiple sodium channel variants in a model of genetic absence epilepsy 
Neurobiology of disease  2014;67:180-190.
In excitatory neurons, SCN2A (NaV1.2) and SCN8A (NaV1.6) sodium channels are enriched at the axon initial segment. NaV1.6 is implicated in several mouse models of absence epilepsy, including a missense mutation identified in a chemical mutagenesis screen (Scn8aV929F). Here, we confirmed the prior suggestion that Scn8aV929F exhibits a striking genetic background-dependent difference in phenotypic severity, observing that spike-wave discharge (SWD) incidence and severity are significantly diminished when Scn8aV929F is fully placed onto the C57BL/6J strain compared with C3H. Examination of sequence differences in NaV subunits between these two inbred strains suggested NaV1.2V752F as a potential source of this modifier effect. Recognising that the spatial co-localisation of the NaV channels at the axon initial segment (AIS) provides a plausible mechanism for functional interaction, we tested this idea by undertaking biophysical characterisation of the variant NaV channels and by computer modelling. NaV1.2V752F functional analysis revealed an overall gain-of-function and for NaV1.6V929F revealed an overall loss-of-function. A biophysically realistic computer model was used to test the idea that interaction between these variant channels at the AIS contributes to the strain background effect. Surprisingly this modelling showed that neuronal excitability is dominated by the properties of NaV1.2V752F due to “functional silencing” of NaV1.6V929F suggesting that these variants do not directly interact. Consequent genetic mapping of the major strain modifier to Chr 7, and not Chr 2 where Scn2a maps, supported this biophysical prediction. While a NaV1.6V929F loss of function clearly underlies absence seizures in this mouse model, the strain background effect is apparently not due to an otherwise tempting Scn2a variant, highlighting the value of combining physiology and genetics to inform and direct each other when interrogating genetic complex traits such as absence epilepsy.
PMCID: PMC4298829  PMID: 24657915
Absence seizures; genetic epilepsy; sodium channels; murine AE; computational analysis
15.  Axonal sodium channel distribution shapes the depolarized action potential threshold of dentate granule neurons 
Hippocampus  2010;20(4):558-571.
Intrinsic excitability is a key feature dictating neuronal response to synaptic input. Here we investigate the recent observation that dentate granule neurons exhibit a more depolarized voltage threshold for action potential initiation than CA3 pyramidal neurons. We find no evidence that tonic GABA currents, leak or voltage-gated potassium conductances, or the expression of sodium channel isoform differences can explain this depolarized threshold. Axonal initial segment voltage-gated sodium channels, which are dominated by the NaV1.6 isoform in both cell types, distribute more proximally and exhibit lower overall density in granule neurons than in CA3 neurons. To test possible contributions of sodium channel distributions to voltage threshold and to test whether morphological differences participate, we performed simulations of dentate granule neurons and of CA3 pyramidal neurons. These simulations revealed that cell morphology and sodium channel distribution combine to yield the characteristic granule neuron action potential upswing and voltage threshold. Proximal axon sodium channel distribution strongly contributes to the higher voltage threshold of dentate granule neurons for two reasons. First, action potential initiation closer to the somatodendritic current sink causes the threshold of the initiating axon compartment to rise. Second, the proximity of the action potential initiation site to the recording site causes somatic recordings to more faithfully reflect the depolarized threshold of the axon than in cells like CA3 neurons, with distally initiating action potentials. Our results suggest that the proximal location of axon sodium channel in dentate granule neurons contributes to the intrinsic excitability differences between DG and CA3 neurons and may participate in the low-pass filtering function of dentate granule neurons.
PMCID: PMC2975957  PMID: 19603521
seizures; hippocampus; excitability; potassium channel; principal cell
16.  Which elements of the mammalian central nervous system are excited by low current stimulation with microelectrodes? 
Neuroscience  2010;170(2-2):399-407.
Low current cortex stimulation produces a sparse and distributed set of activated cells often with distances of several hundred micrometers between cell bodies and the microelectrode. A modeling study based on recently measured densities of high threshold sodium channels Nav1.2 in dendrites and soma and low threshold sodium channels Nav1.6 in the axon shall identify spike initiation sites including a discussion on dendritic spikes. Varying excitability along the neural axis has been observed while studying different electrode positions and configurations. Although the axon initial segment (AIS) and nodes of Ranvier are most excitable, many thin axons and dendrites which are likely to be close to the electrode in the densely packed cortical regions are also proper candidates for spike initiation sites. Cathodic threshold ratio for thin axons and dendrites is about 1:3, whereas 0.2 μm diameter axons passing the electrode tip in 10 μm distance can be activated by 100 μs pulses with 2.6 μA. Direct cathodic excitation of dendrites requires a minimum electrode-fiber distance, which increases with dendrite diameter. Therefore thin dendrites can profit from the stronger electrical field close to the electrode but low current stimulation cannot activate large diameter dendrites, contrary to the inverse recruitment order known from peripheral nerve stimulation. When local depolarization fails to generate a dendritic spike, stimulation is possible via intracellular current flow that initiates an action potential, for example 200 μm distant in the low threshold AIS or in certain cases at the distal dendrite ending. Beside these exceptions, spike initiation site for cathodic low current stimulation appears rather close to the electrode.
PMCID: PMC2954315  PMID: 20659531
microstimulation; sodium channels; pyramidal cells; activating function; cortex stimulation; compartment model; AIS, axon initial segment
17.  Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act 
Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (NaV) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density and gating of NaV currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment (AIS) and NaV channels are distributed in multiple dendrites, selective reduction of NaV channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic NaV current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when NaV currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold NaV current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic NaV channels. More generally, we conclude that the somatodendritic distribution of NaV channels is a major determinant of repetitive spiking frequency.
PMCID: PMC3494994  PMID: 23077037
18.  Increased peripheral nerve excitability and local NaV1.8 mRNA up-regulation in painful neuropathy 
Molecular Pain  2009;5:14.
Neuropathic pain caused by peripheral nerve injury is a chronic disorder that represents a significant clinical challenge because the pathological mechanisms have not been fully elucidated. Several studies have suggested the involvement of various sodium channels, including tetrodotoxin-resistant NaV1.8, in affected dorsal root ganglion (DRG) neurons. We have hypothesized that altered local expression of NaV1.8 in the peripheral axons of DRG neurons could facilitate nociceptive signal generation and propagation after neuropathic injury.
After unilateral sciatic nerve entrapment injury in rats, compound action potential amplitudes were increased in both myelinated and unmyelinated fibers of the ipsilateral sciatic nerve. Tetrodotoxin resistance of both fiber populations and sciatic nerve NaV1.8 immunoreactivity were also increased. Further analysis of NaV1.8 distribution revealed that immunoreactivity and mRNA levels were decreased and unaffected, respectively, in the ipsilateral L4 and L5 DRG; however sciatic nerve NaV1.8 mRNA showed nearly an 11-fold ipsilateral increase. Nav1.8 mRNA observed in the sciatic nerve was likely of axonal origin since it was not detected in non-neuronal cells cultured from nerve tissue. Absence of changes in NaV1.8 mRNA polyadenylation suggests that increased mRNA stability was not responsible for the selective peripheral mRNA increase. Furthermore, mRNA levels of NaV1.3, NaV1.5, NaV1.6, NaV1.7, and NaV1.9 were not significantly different between ipsilateral and contralateral nerves. We therefore propose that selective NaV1.8 mRNA axonal transport and local up-regulation could contribute to the hyperexcitability of peripheral nerves in some neuropathic pain states.
Cuff entrapment injury resulted in significantly elevated axonal excitability and increased NaV1.8 immunoreactivity in rat sciatic nerves. The concomitant axonal accumulation of NaV1.8 mRNA may play a role in the pathogenesis of this model of neuropathic pain.
PMCID: PMC2667430  PMID: 19320998
19.  Role of hippocampal sodium channel Nav1.6 in kindling epileptogenesis 
Epilepsia  2008;50(1):44-55.
Central nervous system plasticity is essential for normal function, but can also reinforce abnormal network behavior, leading to epilepsy and other disorders. The role of altered ion channel expression in abnormal plasticity has not been thoroughly investigated. Nav1.6 is the most abundantly expressed sodium channel in the nervous system. Because of its distribution in the cell body and axon initial segment, Nav1.6 is crucial for action potential generation. The goal of the present study was to investigate the possible role of changes in Nav1.6 expression in abnormal, activity-dependent plasticity of hippocampal circuits.
We studied kindling, a form of abnormal activity-dependent facilitation. We investigated: 1. sodium channel protein expression by immunocytochemistry and sodium channel mRNA by in situ hybridization, 2. sodium current by patch clamp recordings, and 3. rate of kindling by analysis of seizure behavior. The initiation, development, and expression of kindling in wild type mice were compared to Nav1.6 +/− medtg mice, which have reduced expression of Nav1.6.
We found that kindling was associated with increased expression of Nav1.6 protein and mRNA, which occurred selectively in hippocampal CA3 neurons. Hippocampal CA3 neurons also showed increased persistent sodium current in kindled animals compared to sham-kindled controls. Conversely, Nav1.6 +/− medtg mice resisted the initiation and development of kindling.
These findings suggest an important mechanism for enhanced excitability, in which Nav1.6 may participate in a self-reinforcing cycle of activity-dependent facilitation in the hippocampus. This mechanism could contribute to both normal hippocampal function, and to epilepsy and other common nervous system disorders.
PMCID: PMC3741044  PMID: 18637833
epilepsy; kindling; hippocampus; persistent sodium current; LTP
20.  Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn 
Molecular Pain  2012;8:82.
Sodium channel Nav1.7 has emerged as a target of considerable interest in pain research, since loss-of-function mutations in SCN9A, the gene that encodes Nav1.7, are associated with a syndrome of congenital insensitivity to pain, gain-of-function mutations are linked to the debiliting chronic pain conditions erythromelalgia and paroxysmal extreme pain disorder, and upregulated expression of Nav1.7 accompanies pain in diabetes and inflammation. Since Nav1.7 has been implicated as playing a critical role in pain pathways, we examined by immunocytochemical methods the expression and distribution of Nav1.7 in rat dorsal root ganglia neurons, from peripheral terminals in the skin to central terminals in the spinal cord dorsal horn.
Nav1.7 is robustly expressed within the somata of peptidergic and non-peptidergic DRG neurons, and along the peripherally- and centrally-directed C-fibers of these cells. Nav1.7 is also expressed at nodes of Ranvier in a subpopulation of Aδ-fibers within sciatic nerve and dorsal root. The peripheral terminals of DRG neurons within skin, intraepidermal nerve fibers (IENF), exhibit robust Nav1.7 immunolabeling. The central projections of DRG neurons in the superficial lamina of spinal cord dorsal horn also display Nav1.7 immunoreactivity which extends to presynaptic terminals.
The expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to preterminal central branches and terminals in the dorsal horn. These data support a major contribution for Nav1.7 in pain pathways, including action potential electrogenesis, conduction along axonal trunks and depolarization/invasion of presynaptic axons. The findings presented here may be important for pharmaceutical development, where target engagement in the right compartment is essential.
PMCID: PMC3517774  PMID: 23134641
Dorsal root ganglia; Dorsal horn; Intraepidermal nerve fiber; Pain pathway; Sodium channel; Spinal cord
21.  Where is the spike generator of the cochlear nerve? Voltage-gated sodium channels in the mouse cochlea. 
The origin of the action potential in the cochlea has been a long-standing puzzle. Since voltage-dependent Na+ (Nav) channels are essential for action potential generation, we investigated the detailed distribution of Nav1.6 and Nav1.2 in the cochlear ganglion, cochlear nerve, and organ of Corti, including the Type I and Type II ganglion cells. In most Type I ganglion cells, Nav1.6 was present at the first nodes flanking the myelinated bipolar cell body and at subsequent nodes of Ranvier. In the other ganglion cells, including Type II, Nav1.6 clustered in the initial segments of both of the axons that flank the unmyelinated bipolar ganglion cell bodies. In the organ of Corti, Nav1.6 was localized in the short segments of the afferent axons and their sensory endings beneath each inner hair cell. Surprisingly, the outer spiral fibers and their sensory endings were well labeled beneath the outer hair cells over their entire trajectory. In contrast, Nav1.2 in the organ of Corti was localized to the unmyelinated efferent axons and their endings on the inner and outer hair cells. We present a computational model illustrating the potential role of the Nav channel distribution described here. In the deaf mutant quivering mouse, the localization of Nav1.6 was disrupted in the sensory epithelium and ganglion. Taken together, these results suggest that distinct Nav channels generate and regenerate action potentials at multiple sites along the cochlear ganglion cells and nerve fibers, including the afferent endings, ganglionic initial segments, and nodes of Ranvier.
PMCID: PMC1378182  PMID: 16033895
Axon initial segment; Nav1.6; Nav1.2; Spiral ganglion; Cochlear nucleus; Hair cells; Quivering mutation; Computational model
22.  An ankyrinG-binding motif is necessary and sufficient for targeting Nav1.6 sodium channels to axon initial segments and nodes of Ranvier 
Neurons are highly polarized cells with functionally distinct axonal and somatodendritic compartments. Voltage-gated sodium channels Nav1.2 and Nav1.6 are highly enriched at axon initial segments (AIS) and nodes of Ranvier, where they are necessary for generation and propagation of action potentials. Previous studies using reporter proteins in unmyelinated cultured neurons suggest that an ankyrinG-binding motif within intracellular loop 2 (L2) of sodium channels is sufficient for targeting these channels to the AIS, but mechanisms of channel targeting to nodes remain poorly understood. Using a CD4-Nav1.2/L2 reporter protein in rat dorsal root ganglion neuron-Schwann cell myelinating co-cultures, we show that the ankyrinG-binding motif is sufficient for protein targeting to nodes of Ranvier. However, reporter proteins cannot capture the complexity of full-length channels. To determine how native, full-length sodium channels are clustered in axons, and to show the feasibility of studying these channels in vivo, we constructed fluorescently-tagged and functional mouse Nav1.6 channels for in vivo analysis using in utero brain electroporation. We show here that wild-type tagged-Nav1.6 channels are efficiently clustered at nodes and AIS in vivo. Furthermore, we show that mutation of a single invariant glutamic acid residue (E1100) within the ankyrinG-binding motif blocked Nav1.6 targeting in neurons both in vitro and in vivo. Additionally, we show that caseine kinase phosphorylation sites within this motif, while not essential for targeting, can modulate clustering at the AIS. Thus, the ankyrinG- binding motif is both necessary and sufficient for the clustering of sodium channels at nodes of Ranvier and the AIS.
PMCID: PMC3413458  PMID: 22623668
Ion Channel; Axon Initial Segment; Nodes of Ranvier; cytoskeleton; in utero electroporation
23.  Localization of Sodium Channel Subtypes in Mouse Ventricular Myocytes Using Quantitative Immunocytochemistry 
Journal of molecular and cellular cardiology  2013;64:10.1016/j.yjmcc.2013.08.004.
Voltage-gated sodium channels are responsible for the rising phase of the action potential in cardiac muscle. Previously, both TTX-sensitive neuronal sodium channels (NaV1.1, NaV1.2, NaV1.3, NaV1.4 and NaV1.6) and the TTX-resistant cardiac sodium channel (NaV1.5) have been detected in cardiac myocytes, but relative levels of protein expression of the isoforms were not determined. Using a quantitative approach, we analyzed z-series of confocal microscopy images from individual mouse myocytes stained with either anti-NaV1.1, anti-NaV1.2, anti-NaV1.3, anti-NaV1.4, anti-NaV1.5, or anti-NaV1.6 antibodies and calculated the relative intensity of staining for these sodium channel isoforms. Our results indicate that the TTX-sensitive channels represented approximately 23% of the total channels, whereas the TTX-resistant NaV1.5 channel represented 77% of the total channel staining in mouse ventricular myocytes. These ratios are consistent with previous electrophysiological studies in mouse ventricular myocytes. NaV1.5 was located at the cell surface, with high density at the intercalated disc, but was absent from the transverse (t)-tubular system, suggesting that these channels support surface conduction and inter-myocyte transmission. Low-level cell surface staining of NaV1.4 and NaV1.6 channels suggest a minor role in surface excitation and conduction. Conversely, NaV1.1 and NaV1.3 channels are localized to the t-tubules and are likely to support t-tubular transmission of the action potential to the myocyte interior. This quantitative immunocytochemical approach for assessing sodium channel density and localization provides a more precise view of the relative importance and possible roles of these individual sodium channel protein isoforms in mouse ventricular myocytes and may be applicable to other species and cardiac tissue types.
PMCID: PMC3851329  PMID: 23982034
24.  Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments 
The Journal of Cell Biology  2001;155(5):739-746.
The axon initial segment is an excitable membrane highly enriched in voltage-gated sodium channels that integrates neuronal inputs and initiates action potentials. This study identifies Nav1.6 as the voltage-gated sodium channel isoform at mature Purkinje neuron initial segments and reports an essential role for ankyrin-G in coordinating the physiological assembly of Nav1.6, βIV spectrin, and the L1 cell adhesion molecules (L1 CAMs) neurofascin and NrCAM at initial segments of cerebellar Purkinje neurons. Ankyrin-G and βIV spectrin appear at axon initial segments by postnatal day 2, whereas L1 CAMs and Nav1.6 are not fully assembled at continuous high density along axon initial segments until postnatal day 9. L1 CAMs and Nav1.6 therefore do not initiate protein assembly at initial segments. βIV spectrin, Nav1.6, and L1 CAMs are not clustered in adult Purkinje neuron initial segments of mice lacking cerebellar ankyrin-G. These results support the conclusion that ankyrin-G coordinates the physiological assembly of a protein complex containing transmembrane adhesion molecules, voltage-gated sodium channels, and the spectrin membrane skeleton at axon initial segments.
PMCID: PMC2150881  PMID: 11724816
βIV spectrin; sodium channel Nav1.6; neurofascin; NrCAM; axon hillock
25.  PKC–NF-κB are involved in CCL2-induced Nav1.8 expression and channel function in dorsal root ganglion neurons 
Bioscience Reports  2014;34(3):e00111.
CCL2 [chemokine (C–C motif) ligand 2] contributes to the inflammation-induced neuropathic pain through activating VGSC (voltage-gated sodium channel)-mediated nerve impulse conduction, but the underlying mechanism is currently unknown. Our study aimed to investigate whether PKC (protein kinase C)–NF-κB (nuclear factor κB) is involved in CCL2-induced regulation of voltage-gated sodium Nav1.8 currents and expression. DRG (dorsal root ganglion) neurons were prepared from adult male Sprague–Dawley rats and incubated with various concentration of CCL2 for 24 h. Whole-cell patch-clamps were performed to record the Nav1.8 currents in response to the induction by CCL2. After being pretreated with 5 and10 nM CCL2 for 16 h, CCR2 [chemokine (C–C motif) receptor 2] and Nav1.8 expression significantly increased and the peak currents of Nav1.8 elevated from the baseline 46.53±4.53 pA/pF to 64.28±3.12 pA/pF following 10 nM CCL2 (P<0.05). Compared with the control, significant change in Nav1.8 current density was observed when the CCR2 inhibitor INCB3344 (10 nM) was applied. Furthermore, inhibition of PKC by AEB071 significantly eliminated CCL2-induced elevated Nav1.8 currents. In vitro PKC kinase assays and autoradiograms suggested that Nav1.8 within DRG neurons was a substrate of PKC and direct phosphorylation of the Nav1.8 channel by PKC regulates its function in these neurons. Moreover, p65 expression was significantly higher in CCL2-induced neurons (P<0.05), and was reversed by treatment with INCB3344 and AEB071. PKC–NF-κB are involved in CCL2-induced elevation of Nav1.8 current density by promoting the phosphorylation of Nav1.8 and its expression.
Cytokine CCL2 is responsible for promoting voltage-gated sodium Nav1.8 current density and expression, which mediates nerve impulse conduction and induces inflammatory nociception. PKC phosphorylates Nav1.8 to increase its current density and PKC–NF-κB are involved in inducing the up-regulation of Nav1.8.
PMCID: PMC4062041  PMID: 24724624
CCL2; CCR2; dorsal root ganglion (DRG); Nav1.8; nociception; PKC; CCL2, chemokine (C–C motif) ligand 2; CCR2, chemokine (C–C motif) receptor 2; DRG, dorsal root ganglion; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; NF-κB, nuclear factor κB; PKC, protein kinase C; TEA-Cl, tetraethylammonium-Cl; TRPV1, transient receptor potential vanilloid 1; TTX-R, tetrodotoxin-resistant; VGSC, voltage-gated sodium channel

Results 1-25 (1326671)