PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1352392)

Clipboard (0)
None

Related Articles

1.  Association of the 103I MC4R allele with decreased body mass in 7937 participants of two population based surveys 
Journal of Medical Genetics  2005;42(4):e21.
Background: The melanocortin-4-receptor gene (MC4R) is part of the melanocortinergic pathway that controls energy homeostasis. In a recent meta-analysis, the MC4R V103I (rs2229616) polymorphism was shown to be associated with body weight regulation. Although no functional differences between the isoleucine comprising receptor and the wild type receptor have been detected as yet, this meta-analysis of 14 case–control studies reported a mild negative association with obesity (odds ratio (OR) 0.69, p = 0.03). However, evidence in a large population based study in a homogeneous population and a significant estimate of the change in quantitative measures of obesity is still lacking.
Methods: We analysed the data of two surveys of a white population with the same high quality study protocol, giving a total of 7937 participants.
Results: By linear regression, we found a significant decrease of 0.52 body mass index (BMI) units (95% confidence interval (CI) –0.02 to –1.03, p = 0.043) for carriers of the heterozygote rs2229616G/A genotype, which was observed in 3.7% of the participants. Logistic regression yielded a significantly negative association of the MC4R variant with "above average weight" (BMI ⩾ median BMI) yielding an OR of 0.75 (95% CI 0.59 to 0.95 p = 0.017). We obtained similar results comparing obese (BMI ⩾30 kg/m2, World Health Organization results for 1997) with non-obese (BMI <30 kg/m2) participants. The results were found for both sexes and each survey separately, and did not depend on the modelling of age, sex, or survey effects.
Conclusions: Our study confirms previous findings of a meta-analysis that the relatively infrequent G/A genotype of the V103I MC4R polymorphism is negatively associated with above average weight and obesity in population based original data of 7937 participants, and extends previous findings by showing for the first time a significantly lower BMI in individuals carrying the infrequent allele of this MC4R variant.
doi:10.1136/jmg.2004.027011
PMCID: PMC1736034  PMID: 15805150
2.  Causal Relationship between Obesity and Vitamin D Status: Bi-Directional Mendelian Randomization Analysis of Multiple Cohorts 
PLoS Medicine  2013;10(2):e1001383.
A mendelian randomization study based on data from multiple cohorts conducted by Karani Santhanakrishnan Vimaleswaran and colleagues re-examines the causal nature of the relationship between vitamin D levels and obesity.
Background
Obesity is associated with vitamin D deficiency, and both are areas of active public health concern. We explored the causality and direction of the relationship between body mass index (BMI) and 25-hydroxyvitamin D [25(OH)D] using genetic markers as instrumental variables (IVs) in bi-directional Mendelian randomization (MR) analysis.
Methods and Findings
We used information from 21 adult cohorts (up to 42,024 participants) with 12 BMI-related SNPs (combined in an allelic score) to produce an instrument for BMI and four SNPs associated with 25(OH)D (combined in two allelic scores, separately for genes encoding its synthesis or metabolism) as an instrument for vitamin D. Regression estimates for the IVs (allele scores) were generated within-study and pooled by meta-analysis to generate summary effects.
Associations between vitamin D scores and BMI were confirmed in the Genetic Investigation of Anthropometric Traits (GIANT) consortium (n = 123,864). Each 1 kg/m2 higher BMI was associated with 1.15% lower 25(OH)D (p = 6.52×10−27). The BMI allele score was associated both with BMI (p = 6.30×10−62) and 25(OH)D (−0.06% [95% CI −0.10 to −0.02], p = 0.004) in the cohorts that underwent meta-analysis. The two vitamin D allele scores were strongly associated with 25(OH)D (p≤8.07×10−57 for both scores) but not with BMI (synthesis score, p = 0.88; metabolism score, p = 0.08) in the meta-analysis. A 10% higher genetically instrumented BMI was associated with 4.2% lower 25(OH)D concentrations (IV ratio: −4.2 [95% CI −7.1 to −1.3], p = 0.005). No association was seen for genetically instrumented 25(OH)D with BMI, a finding that was confirmed using data from the GIANT consortium (p≥0.57 for both vitamin D scores).
Conclusions
On the basis of a bi-directional genetic approach that limits confounding, our study suggests that a higher BMI leads to lower 25(OH)D, while any effects of lower 25(OH)D increasing BMI are likely to be small. Population level interventions to reduce BMI are expected to decrease the prevalence of vitamin D deficiency.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Obesity—having an unhealthy amount of body fat—is increasing worldwide. In the US, for example, a third of the adult population is now obese. Obesity is defined as having a body mass index (BMI, an indicator of body fat calculated by dividing a person's weight in kilograms by their height in meters squared) of more than 30.0 kg/m2. Although there is a genetic contribution to obesity, people generally become obese by consuming food and drink that contains more energy than they need for their daily activities. Thus, obesity can be prevented by having a healthy diet and exercising regularly. Compared to people with a healthy weight, obese individuals have an increased risk of developing diabetes, heart disease and stroke, and tend to die younger. They also have a higher risk of vitamin D deficiency, another increasingly common public health concern. Vitamin D, which is essential for healthy bones as well as other functions, is made in the skin after exposure to sunlight but can also be obtained through the diet and through supplements.
Why Was This Study Done?
Observational studies cannot prove that obesity causes vitamin D deficiency because obese individuals may share other characteristics that reduce their circulating 25-hydroxy vitamin D [25(OH)D] levels (referred to as confounding). Moreover, observational studies cannot indicate whether the larger vitamin D storage capacity of obese individuals (vitamin D is stored in fatty tissues) lowers their 25(OH)D levels or whether 25(OH)D levels influence fat accumulation (reverse causation). If obesity causes vitamin D deficiency, monitoring and treating vitamin D deficiency might alleviate some of the adverse health effects of obesity. Conversely, if low vitamin D levels cause obesity, encouraging people to take vitamin D supplements might help to control the obesity epidemic. Here, the researchers use bi-directional “Mendelian randomization” to examine the direction and causality of the relationship between BMI and 25(OH)D. In Mendelian randomization, causality is inferred from associations between genetic variants that mimic the influence of a modifiable environmental exposure and the outcome of interest. Because gene variants do not change over time and are inherited randomly, they are not prone to confounding and are free from reverse causation. Thus, if a lower vitamin D status leads to obesity, genetic variants associated with lower 25(OH)D concentrations should be associated with higher BMI, and if obesity leads to a lower vitamin D status, then genetic variants associated with higher BMI should be associated with lower 25(OH)D concentrations.
What Did the Researchers Do and Find?
The researchers created a “BMI allele score” based on 12 BMI-related gene variants and two “25(OH)D allele scores,” which are based on gene variants that affect either 25(OH)D synthesis or breakdown. Using information on up to 42,024 participants from 21 studies, the researchers showed that the BMI allele score was associated with both BMI and with 25(OH)D levels among the study participants. Based on this information, they calculated that each 10% increase in BMI will lead to a 4.2% decrease in 25(OH)D concentrations. By contrast, although both 25(OH)D allele scores were strongly associated with 25(OH)D levels, neither score was associated with BMI. This lack of an association between 25(OH)D allele scores and obesity was confirmed using data from more than 100,000 individuals involved in 46 studies that has been collected by the GIANT (Genetic Investigation of Anthropometric Traits) consortium.
What Do These Findings Mean?
These findings suggest that a higher BMI leads to a lower vitamin D status whereas any effects of low vitamin D status on BMI are likely to be small. That is, these findings provide evidence for obesity as a causal factor in the development of vitamin D deficiency but not for vitamin D deficiency as a causal factor in the development of obesity. These findings suggest that population-level interventions to reduce obesity should lead to a reduction in the prevalence of vitamin D deficiency and highlight the importance of monitoring and treating vitamin D deficiency as a means of alleviating the adverse influences of obesity on health.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001383.
The US Centers for Disease Control and Prevention provides information on all aspects of overweight and obesity (in English and Spanish); a data brief provides information about the vitamin D status of the US population
The World Health Organization provides information on obesity (in several languages)
The UK National Health Service Choices website provides detailed information about obesity and a link to a personal story about losing weight; it also provides information about vitamin D
The International Obesity Taskforce provides information about the global obesity epidemic
The US Department of Agriculture's ChooseMyPlate.gov website provides a personal healthy eating plan; the Weight-control Information Network is an information service provided for the general public and health professionals by the US National Institute of Diabetes and Digestive and Kidney Diseases (in English and Spanish)
The US Office of Dietary Supplements provides information about vitamin D (in English and Spanish)
MedlinePlus has links to further information about obesity and about vitamin D (in English and Spanish)
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
Overview and details of the collaborative large-scale genetic association study (D-CarDia) provide information about vitamin D and the risk of cardiovascular disease, diabetes and related traits
doi:10.1371/journal.pmed.1001383
PMCID: PMC3564800  PMID: 23393431
3.  Two New Loci for Body-Weight Regulation Identified in a Joint Analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups 
PLoS Genetics  2010;6(4):e1000916.
Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85×10−8 in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84×10−7), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at ∼1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between children and adults.
Author Summary
Genome-wide association studies (GWAS) have successfully contributed to the detection of genetic variants involved in body-weight regulation. We jointly analysed two GWAS for early-onset extreme obesity in 2,258 individuals of European origin and followed-up the findings in 3,141 individuals. Evidence for association of markers in two new genetic loci was shown (SDCCAG8 on chromosome 1q43–q44 and between TNKS/MSRA on chromosome 8p23.1). We also re-identified variants in or near FTO, MC4R, and TMEM18 to be associated with extreme obesity. In addition, we assessed the effect of the markers in 31,182 obese, lean, normal weight, and unselected individuals from population-based samples and showed that the variants near FTO, MC4R, TMEM18, and SDCCAG8 were consistently associated with obesity. For variants of TNKS/MSRA, the obesity association was limited to children and adolescents. In summary, we detected two new obesity loci and confirmed that the currently known major common variants related to obesity overlap to a substantial degree between children and adults.
doi:10.1371/journal.pgen.1000916
PMCID: PMC2858696  PMID: 20421936
4.  Physical Activity Attenuates the Influence of FTO Variants on Obesity Risk: A Meta-Analysis of 218,166 Adults and 19,268 Children 
Kilpeläinen, Tuomas O. | Qi, Lu | Brage, Soren | Sharp, Stephen J. | Sonestedt, Emily | Demerath, Ellen | Ahmad, Tariq | Mora, Samia | Kaakinen, Marika | Sandholt, Camilla Helene | Holzapfel, Christina | Autenrieth, Christine S. | Hyppönen, Elina | Cauchi, Stéphane | He, Meian | Kutalik, Zoltan | Kumari, Meena | Stančáková, Alena | Meidtner, Karina | Balkau, Beverley | Tan, Jonathan T. | Mangino, Massimo | Timpson, Nicholas J. | Song, Yiqing | Zillikens, M. Carola | Jablonski, Kathleen A. | Garcia, Melissa E. | Johansson, Stefan | Bragg-Gresham, Jennifer L. | Wu, Ying | van Vliet-Ostaptchouk, Jana V. | Onland-Moret, N. Charlotte | Zimmermann, Esther | Rivera, Natalia V. | Tanaka, Toshiko | Stringham, Heather M. | Silbernagel, Günther | Kanoni, Stavroula | Feitosa, Mary F. | Snitker, Soren | Ruiz, Jonatan R. | Metter, Jeffery | Larrad, Maria Teresa Martinez | Atalay, Mustafa | Hakanen, Maarit | Amin, Najaf | Cavalcanti-Proença, Christine | Grøntved, Anders | Hallmans, Göran | Jansson, John-Olov | Kuusisto, Johanna | Kähönen, Mika | Lutsey, Pamela L. | Nolan, John J. | Palla, Luigi | Pedersen, Oluf | Pérusse, Louis | Renström, Frida | Scott, Robert A. | Shungin, Dmitry | Sovio, Ulla | Tammelin, Tuija H. | Rönnemaa, Tapani | Lakka, Timo A. | Uusitupa, Matti | Rios, Manuel Serrano | Ferrucci, Luigi | Bouchard, Claude | Meirhaeghe, Aline | Fu, Mao | Walker, Mark | Borecki, Ingrid B. | Dedoussis, George V. | Fritsche, Andreas | Ohlsson, Claes | Boehnke, Michael | Bandinelli, Stefania | van Duijn, Cornelia M. | Ebrahim, Shah | Lawlor, Debbie A. | Gudnason, Vilmundur | Harris, Tamara B. | Sørensen, Thorkild I. A. | Mohlke, Karen L. | Hofman, Albert | Uitterlinden, André G. | Tuomilehto, Jaakko | Lehtimäki, Terho | Raitakari, Olli | Isomaa, Bo | Njølstad, Pål R. | Florez, Jose C. | Liu, Simin | Ness, Andy | Spector, Timothy D. | Tai, E. Shyong | Froguel, Philippe | Boeing, Heiner | Laakso, Markku | Marmot, Michael | Bergmann, Sven | Power, Chris | Khaw, Kay-Tee | Chasman, Daniel | Ridker, Paul | Hansen, Torben | Monda, Keri L. | Illig, Thomas | Järvelin, Marjo-Riitta | Wareham, Nicholas J. | Hu, Frank B. | Groop, Leif C. | Orho-Melander, Marju | Ekelund, Ulf | Franks, Paul W. | Loos, Ruth J. F.
PLoS Medicine  2011;8(11):e1001116.
Ruth Loos and colleagues report findings from a meta-analysis of multiple studies examining the extent to which physical activity attenuates effects of a specific gene variant, FTO, on obesity in adults and children. They report a fairly substantial attenuation by physical activity on the effects of this genetic variant on the risk of obesity in adults.
Background
The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166) and nine studies of children and adolescents (n = 19,268).
Methods and Findings
All studies identified to have data on the FTO rs9939609 variant (or any proxy [r2>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A−) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20–1.26), but PA attenuated this effect (pinteraction  = 0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio  = 1.22/allele, 95% CI 1.19–1.25) than in the inactive group (odds ratio  = 1.30/allele, 95% CI 1.24–1.36). No such interaction was found in children and adolescents.
Conclusions
The association of the FTO risk allele with the odds of obesity is attenuated by 27% in physically active adults, highlighting the importance of PA in particular in those genetically predisposed to obesity.
Please see later in the article for the Editors' Summary
Editors’ Summary
Background
Two in three Americans are overweight, of whom half are obese, and the trend towards increasing obesity is now seen across developed and developing countries. There has long been interest in understanding the impact of genes and environment when it comes to apportioning responsibility for obesity. Carrying a change in the FTO gene is common (found in three-quarters of Europeans and North Americans) and is associated with a 20%–30% increased risk of obesity. Some overweight or obese individuals may feel that the dice are loaded and there is little point in fighting the fat; it has been reported that those made aware of their genetic susceptibility to obesity may still choose a poor diet. A similar fatalism may occur when overweight and obese people consider physical activity. But disentangling the influence of physical activity on those genetically susceptible to obesity from other factors that might impact weight is not straightforward, as it requires large sample sizes, could be subject to publication bias, and may rely on less than ideal self-reporting methods.
Why Was This Study Done?
The public health ramifications of understanding the interaction between genetic susceptibility to obesity and physical activity are considerable. Tackling the rising prevalence of obesity will inevitably include interventions principally aimed at changing dietary intake and/or increasing physical activity, but the evidence for these with regards to those genetically susceptible has been lacking to date. The authors of this paper set out to explore the interaction between the commonest genetic susceptibility trait and physical activity using a rigorous meta-analysis of a large number of studies.
What Did the Researchers Do and Find?
The authors were concerned that a meta-analysis of published studies would be limited both by the data available to them and by possible bias. Instead of this more widely used approach, they took the literature search as their starting point, identified other studies through their collaborators’ network, and then undertook a meta-analysis of all available studies using a new and standardized analysis plan. This entailed an extremely large number of authors mining their data afresh to extract the relevant data points to enable such a meta-analysis. Physical activity was identified in the original studies in many different ways, including by self-report or by using an external measure of activity or heart rate. In order to perform the meta-analysis, participants were labeled as physically active or inactive in each study. For studies that had used a continuous scale, the authors decided that the bottom 20% of the participants were inactive (10% for children and adolescents). Using data from over 218,000 adults, the authors found that carrying a copy of the susceptibility gene increased the odds of obesity by 1.23-fold. But the size of this influence was 27% less in the genetically susceptible adults who were physically active (1.22-fold) compared to those who were physically inactive (1.30-fold). In a smaller study of about 19,000 children, no such effect of physical activity was seen.
What Do these Findings Mean?
This study demonstrates that people who carry the susceptibility gene for obesity can benefit from physical activity. This should inform health care professionals and the wider public that the view of genetically determined obesity not being amenable to exercise is incorrect and should be challenged. Dissemination, implementation, and ensuring uptake of effective physical activity programs remains a challenge and deserves further consideration. That the researchers treated “physically active” as a yes/no category, and how they categorized individuals, could be criticized, but this was done for pragmatic reasons, as a variety of means of assessing physical activity were used across the studies. It is unlikely that the findings would have changed if the authors had used a different method of defining physically active. Most of the studies included in the meta-analysis looked at one time point only; information about the influence of physical activity on weight changes over time in genetically susceptible individuals is only beginning to emerge.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001116.
This study is further discussed in a PLoS Medicine Perspective by Lennert Veerman
The US Centers for Disease Control and Prevention provides obesity-related statistics, details of prevention programs, and an overview on public health strategy in the United States
A more worldwide view is given by the World Health Organization
The UK National Health Service website gives information on physical activity guidelines for different age groups, while similar information can also be found from US sources
doi:10.1371/journal.pmed.1001116
PMCID: PMC3206047  PMID: 22069379
5.  Lack of Support for the Association between GAD2 Polymorphisms and Severe Human Obesity 
PLoS Biology  2005;3(9):e315.
The demonstration of association between common genetic variants and chronic human diseases such as obesity could have profound implications for the prediction, prevention, and treatment of these conditions. Unequivocal proof of such an association, however, requires independent replication of initial positive findings. Recently, three (−243 A>G, +61450 C>A, and +83897 T>A) single nucleotide polymorphisms (SNPs) within glutamate decarboxylase 2 (GAD2) were found to be associated with class III obesity (body mass index > 40 kg/m2). The association was observed among 188 families (612 individuals) segregating the condition, and a case-control study of 575 cases and 646 lean controls. Functional data supporting a pathophysiological role for one of the SNPs (−243 A>G) were also presented. The gene GAD2 encodes the 65-kDa subunit of glutamic acid decarboxylase—GAD65. In the present study, we attempted to replicate this association in larger groups of individuals, and to extend the functional studies of the −243 A>G SNP. Among 2,359 individuals comprising 693 German nuclear families with severe, early-onset obesity, we found no evidence for a relationship between the three GAD2 SNPs and obesity, whether SNPs were studied individually or as haplotypes. In two independent case-control studies (a total of 680 class III obesity cases and 1,186 lean controls), there was no significant relationship between the −243 A>G SNP and obesity (OR = 0.99, 95% CI 0.83–1.18, p = 0.89) in the pooled sample. These negative findings were recapitulated in a meta-analysis, incorporating all published data for the association between the −243G allele and class III obesity, which yielded an OR of 1.11 (95% CI 0.90–1.36, p = 0.28) in a total sample of 1,252 class III obese cases and 1,800 lean controls. Moreover, analysis of common haplotypes encompassing the GAD2 locus revealed no association with severe obesity in families with the condition. We also obtained functional data for the −243 A>G SNP that does not support a pathophysiological role for this variant in obesity. Potential confounding variables in association studies involving common variants and complex diseases (low power to detect modest genetic effects, overinterpretation of marginal data, population stratification, and biological plausibility) are also discussed in the context of GAD2 and severe obesity.
A large genetic study involving multiple populations is not able to replicate previous findings linking variation in the GAD2 gene to susceptibility to obesity.
doi:10.1371/journal.pbio.0030315
PMCID: PMC1193520  PMID: 16122350
6.  Genome wide association study identifies KCNMA1 contributing to human obesity 
BMC Medical Genomics  2011;4:51.
Background
Recent genome-wide association (GWA) analyses have identified common single nucleotide polymorphisms (SNPs) that are associated with obesity. However, the reported genetic variation in obesity explains only a minor fraction of the total genetic variation expected to be present in the population. Thus many genetic variants controlling obesity remain to be identified. The aim of this study was to use GWA followed by multiple stepwise validations to identify additional genes associated with obesity.
Methods
We performed a GWA analysis in 164 morbidly obese subjects (BMI:body mass index > 40 kg/m2) and 163 Swedish subjects (> 45 years) who had always been lean. The 700 SNPs displaying the strongest association with obesity in the GWA were analyzed in a second cohort comprising 460 morbidly obese subjects and 247 consistently lean Swedish adults. 23 SNPs remained significantly associated with obesity (nominal P< 0.05) and were in a step-wise manner followed up in five additional cohorts from Sweden, France, and Germany together comprising 4214 obese and 5417 lean or population-based control individuals. Three samples, n = 4133, were used to investigate the population-based associations with BMI. Gene expression in abdominal subcutaneous adipose tissue in relation to obesity was investigated for14 adults.
Results
Potassium channel, calcium activated, large conductance, subfamily M, alpha member (KCNMA1) rs2116830*G and BDNF rs988712*G were associated with obesity in five of six investigated case-control cohorts. In meta-analysis of 4838 obese and 5827 control subjects we obtained genome-wide significant allelic association with obesity for KCNMA1 rs2116830*G with P = 2.82 × 10-10 and an odds ratio (OR) based on cases vs controls of 1.26 [95% C.I. 1.12-1.41] and for BDNF rs988712*G with P = 5.2 × 10-17and an OR of 1.36 [95% C.I. 1.20-1.55]. KCNMA1 rs2116830*G was not associated with BMI in the population-based samples. Adipose tissue (P = 0.0001) and fat cell (P = 0.04) expression of KCNMA1 was increased in obesity.
Conclusions
We have identified KCNMA1 as a new susceptibility locus for obesity, and confirmed the association of the BDNF locus at the genome-wide significant level.
doi:10.1186/1755-8794-4-51
PMCID: PMC3148553  PMID: 21708048
7.  Genetic Polymorphisms and Weight Loss in Obesity: A Randomised Trial of Hypo-Energetic High- versus Low-Fat Diets  
PLoS Clinical Trials  2006;1(2):e12.
Objectives:
To study if genes with common single nucleotide polymorphisms (SNPs) associated with obesity-related phenotypes influence weight loss (WL) in obese individuals treated by a hypo-energetic low-fat or high-fat diet.
Design:
Randomised, parallel, two-arm, open-label multi-centre trial.
Setting:
Eight clinical centres in seven European countries.
Participants:
771 obese adult individuals.
Interventions:
10-wk dietary intervention to hypo-energetic (−600 kcal/d) diets with a targeted fat energy of 20%–25% or 40%–45%, completed in 648 participants.
Outcome Measures:
WL during the 10 wk in relation to genotypes of 42 SNPs in 26 candidate genes, probably associated with hypothalamic regulation of appetite, efficiency of energy expenditure, regulation of adipocyte differentiation and function, lipid and glucose metabolism, or production of adipocytokines, determined in 642 participants.
Results:
Compared with the noncarriers of each of the SNPs, and after adjusting for gender, age, baseline weight and centre, heterozygotes showed WL differences that ranged from −0.6 to 0.8 kg, and homozygotes, from −0.7 to 3.1 kg. Genotype-dependent additional WL on low-fat diet ranged from 1.9 to −1.6 kg in heterozygotes, and from 3.8 kg to −2.1 kg in homozygotes relative to the noncarriers. Considering the multiple testing conducted, none of the associations was statistically significant.
Conclusions:
Polymorphisms in a panel of obesity-related candidate genes play a minor role, if any, in modulating weight changes induced by a moderate hypo-energetic low-fat or high-fat diet.
Editorial Commentary
Background: Obesity is an important cause of death and disease, particularly in the developed world. It is understood that both environmental and genetic factors contribute towards obesity. Numerous studies have associated particular gene variants with a tendency towards obesity, but it is not known whether such gene variants affect the degree to which obese individuals will lose weight when dieting.
What this trial shows: As part of a randomised trial, 771 participants were assigned to one of two different low-energy diets for 10 weeks: one low in fat or one high in fat. The researchers then did a genetic analysis of 642 participants completing the intervention, to find out whether any of 42 distinct genetic variations in 26 genes were associated with weight loss in the trial. The genetic variants were chosen for study as they were known or already thought to be associated with appetite regulation or various aspects of metabolism and fat tissue development and function. The investigators found that none of the genetic variants studied had a significant association with weight loss in the trial. It was also seen that the majority of genetic variants were not associated with efficacy of one dietary intervention over another.
Strengths and limitations: Although a large number of participants was recruited into the trial, the genetic analysis involved multiple comparisons—168 tests of 42 genetic variants. This increases the likelihood that any significant associations found could have resulted from chance alone. Significant associations from this study will require additional confirmation in larger studies.
Contribution to the evidence: This study adds data indicating that variation in the genes studied did not have an important influence on weight loss.
doi:10.1371/journal.pctr.0010012
PMCID: PMC1488899  PMID: 16871334
8.  Replication of 6 Obesity Genes in a Meta-Analysis of Genome-Wide Association Studies from Diverse Ancestries 
PLoS ONE  2014;9(5):e96149.
Obesity is a major public health problem with a significant genetic component. Multiple DNA polymorphisms/genes have been shown to be strongly associated with obesity, typically in populations of European descent. The aim of this study was to verify the extent to which 6 confirmed obesity genes (FTO, CTNNBL1, ADRB2, LEPR, PPARG and UCP2 genes) could be replicated in 8 different samples (n = 11,161) and to explore whether the same genes contribute to obesity-susceptibility in populations of different ancestries (five Caucasian, one Chinese, one African-American and one Hispanic population). GWAS-based data sets with 1000 G imputed variants were tested for association with obesity phenotypes individually in each population, and subsequently combined in a meta-analysis. Multiple variants at the FTO locus showed significant associations with BMI, fat mass (FM) and percentage of body fat (PBF) in meta-analysis. The strongest association was detected at rs7185735 (P-value = 1.01×10−7 for BMI, 1.80×10−6 for FM, and 5.29×10−4 for PBF). Variants at the CTNNBL1, LEPR and PPARG loci demonstrated nominal association with obesity phenotypes (meta-analysis P-values ranging from 1.15×10−3 to 4.94×10−2). There was no evidence of association with variants at ADRB2 and UCP2 genes. When stratified by sex and ethnicity, FTO variants showed sex-specific and ethnic-specific effects on obesity traits. Thus, it is likely that FTO has an important role in the sex- and ethnic-specific risk of obesity. Our data confirmed the role of FTO, CTNNBL1, LEPR and PPARG in obesity predisposition. These findings enhanced our knowledge of genetic associations between these genes and obesity-related phenotypes, and provided further justification for pursuing functional studies of these genes in the pathophysiology of obesity. Sex and ethnic differences in genetic susceptibility across populations of diverse ancestries may contribute to a more targeted prevention and customized treatment of obesity.
doi:10.1371/journal.pone.0096149
PMCID: PMC4039436  PMID: 24879436
9.  Association between Common Polymorphism near the MC4R Gene and Obesity Risk: A Systematic Review and Meta-Analysis 
PLoS ONE  2012;7(9):e45731.
Background
Genome-wide association studies on Europeans have shown that two polymorphisms (rs17782313, rs12970134) near the melanocortin 4 receptor (MC4R) gene were associated with increased risk of obesity. Subsequently studies among different ethnic populations have shown mixed results with some confirming and others showing inconsistent results, especially among East Asians and Africans. We performed a comprehensive meta-analysis of various studies from different ethnic populations to assess the association of the MC4R polymorphism with obesity risk.
Methods
We retrieved all published literature that investigated association of MC4R variants with obesity from PubMed and Embase. Pooled odds ratio (OR) with 95% confidence interval (CI) was calculated using fixed- or random-effects model.
Results
A total of 61 studies (80,957 cases/220,223 controls) for rs17782313 polymorphism (or proxy) were included in the meta-analysis. The results suggested that rs17782313 polymorphism was significantly associated with obesity risk (OR = 1.18, 95%CI = 1.15–1.21, p<0.001). Similar trends were observed among subgroups of Europeans and East Asians, adults and children, studies with high quality score, and for each five MC4R polymorphisms independently.
Conclusions
The present meta-analysis confirms the significant association of MC4R polymorphism with risk of obesity. Further studies should be conducted to identify the causal variant and the underlying mechanisms of the identified association.
doi:10.1371/journal.pone.0045731
PMCID: PMC3458070  PMID: 23049848
10.  The Role of Adiposity in Cardiometabolic Traits: A Mendelian Randomization Analysis 
Fall, Tove | Hägg, Sara | Mägi, Reedik | Ploner, Alexander | Fischer, Krista | Horikoshi, Momoko | Sarin, Antti-Pekka | Thorleifsson, Gudmar | Ladenvall, Claes | Kals, Mart | Kuningas, Maris | Draisma, Harmen H. M. | Ried, Janina S. | van Zuydam, Natalie R. | Huikari, Ville | Mangino, Massimo | Sonestedt, Emily | Benyamin, Beben | Nelson, Christopher P. | Rivera, Natalia V. | Kristiansson, Kati | Shen, Huei-yi | Havulinna, Aki S. | Dehghan, Abbas | Donnelly, Louise A. | Kaakinen, Marika | Nuotio, Marja-Liisa | Robertson, Neil | de Bruijn, Renée F. A. G. | Ikram, M. Arfan | Amin, Najaf | Balmforth, Anthony J. | Braund, Peter S. | Doney, Alexander S. F. | Döring, Angela | Elliott, Paul | Esko, Tõnu | Franco, Oscar H. | Gretarsdottir, Solveig | Hartikainen, Anna-Liisa | Heikkilä, Kauko | Herzig, Karl-Heinz | Holm, Hilma | Hottenga, Jouke Jan | Hyppönen, Elina | Illig, Thomas | Isaacs, Aaron | Isomaa, Bo | Karssen, Lennart C. | Kettunen, Johannes | Koenig, Wolfgang | Kuulasmaa, Kari | Laatikainen, Tiina | Laitinen, Jaana | Lindgren, Cecilia | Lyssenko, Valeriya | Läärä, Esa | Rayner, Nigel W. | Männistö, Satu | Pouta, Anneli | Rathmann, Wolfgang | Rivadeneira, Fernando | Ruokonen, Aimo | Savolainen, Markku J. | Sijbrands, Eric J. G. | Small, Kerrin S. | Smit, Jan H. | Steinthorsdottir, Valgerdur | Syvänen, Ann-Christine | Taanila, Anja | Tobin, Martin D. | Uitterlinden, Andre G. | Willems, Sara M. | Willemsen, Gonneke | Witteman, Jacqueline | Perola, Markus | Evans, Alun | Ferrières, Jean | Virtamo, Jarmo | Kee, Frank | Tregouet, David-Alexandre | Arveiler, Dominique | Amouyel, Philippe | Ferrario, Marco M. | Brambilla, Paolo | Hall, Alistair S. | Heath, Andrew C. | Madden, Pamela A. F. | Martin, Nicholas G. | Montgomery, Grant W. | Whitfield, John B. | Jula, Antti | Knekt, Paul | Oostra, Ben | van Duijn, Cornelia M. | Penninx, Brenda W. J. H. | Davey Smith, George | Kaprio, Jaakko | Samani, Nilesh J. | Gieger, Christian | Peters, Annette | Wichmann, H.-Erich | Boomsma, Dorret I. | de Geus, Eco J. C. | Tuomi, TiinaMaija | Power, Chris | Hammond, Christopher J. | Spector, Tim D. | Lind, Lars | Orho-Melander, Marju | Palmer, Colin Neil Alexander | Morris, Andrew D. | Groop, Leif | Järvelin, Marjo-Riitta | Salomaa, Veikko | Vartiainen, Erkki | Hofman, Albert | Ripatti, Samuli | Metspalu, Andres | Thorsteinsdottir, Unnur | Stefansson, Kari | Pedersen, Nancy L. | McCarthy, Mark I. | Ingelsson, Erik | Prokopenko, Inga
PLoS Medicine  2013;10(6):e1001474.
In this study, Prokopenko and colleagues provide novel evidence for causal relationship between adiposity and heart failure and increased liver enzymes using a Mendelian randomization study design.
Please see later in the article for the Editors' Summary
Background
The association between adiposity and cardiometabolic traits is well known from epidemiological studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine whether adiposity is causally related to various cardiometabolic traits using the Mendelian randomization approach.
Methods and Findings
We used the adiposity-associated variant rs9939609 at the FTO locus as an instrumental variable (IV) for body mass index (BMI) in a Mendelian randomization design. Thirty-six population-based studies of individuals of European descent contributed to the analyses.
Age- and sex-adjusted regression models were fitted to test for association between (i) rs9939609 and BMI (n = 198,502), (ii) rs9939609 and 24 traits, and (iii) BMI and 24 traits. The causal effect of BMI on the outcome measures was quantified by IV estimators. The estimators were compared to the BMI–trait associations derived from the same individuals. In the IV analysis, we demonstrated novel evidence for a causal relationship between adiposity and incident heart failure (hazard ratio, 1.19 per BMI-unit increase; 95% CI, 1.03–1.39) and replicated earlier reports of a causal association with type 2 diabetes, metabolic syndrome, dyslipidemia, and hypertension (odds ratio for IV estimator, 1.1–1.4; all p<0.05). For quantitative traits, our results provide novel evidence for a causal effect of adiposity on the liver enzymes alanine aminotransferase and gamma-glutamyl transferase and confirm previous reports of a causal effect of adiposity on systolic and diastolic blood pressure, fasting insulin, 2-h post-load glucose from the oral glucose tolerance test, C-reactive protein, triglycerides, and high-density lipoprotein cholesterol levels (all p<0.05). The estimated causal effects were in agreement with traditional observational measures in all instances except for type 2 diabetes, where the causal estimate was larger than the observational estimate (p = 0.001).
Conclusions
We provide novel evidence for a causal relationship between adiposity and heart failure as well as between adiposity and increased liver enzymes.
Please see later in the article for the Editors' Summary
Editors' Summary
Cardiovascular disease (CVD)—disease that affects the heart and/or the blood vessels—is a major cause of illness and death worldwide. In the US, for example, coronary heart disease—a CVD in which narrowing of the heart's blood vessels by fatty deposits slows the blood supply to the heart and may eventually cause a heart attack—is the leading cause of death, and stroke—a CVD in which the brain's blood supply is interrupted—is the fourth leading cause of death. Globally, both the incidence of CVD (the number of new cases in a population every year) and its prevalence (the proportion of the population with CVD) are increasing, particularly in low- and middle-income countries. This increasing burden of CVD is occurring in parallel with a global increase in the incidence and prevalence of obesity—having an unhealthy amount of body fat (adiposity)—and of metabolic diseases—conditions such as diabetes in which metabolism (the processes that the body uses to make energy from food) is disrupted, with resulting high blood sugar and damage to the blood vessels.
Why Was This Study Done?
Epidemiological studies—investigations that record the patterns and causes of disease in populations—have reported an association between adiposity (indicated by an increased body mass index [BMI], which is calculated by dividing body weight in kilograms by height in meters squared) and cardiometabolic traits such as coronary heart disease, stroke, heart failure (a condition in which the heart is incapable of pumping sufficient amounts of blood around the body), diabetes, high blood pressure (hypertension), and high blood cholesterol (dyslipidemia). However, observational studies cannot prove that adiposity causes any particular cardiometabolic trait because overweight individuals may share other characteristics (confounding factors) that are the real causes of both obesity and the cardiometabolic disease. Moreover, it is possible that having CVD or a metabolic disease causes obesity (reverse causation). For example, individuals with heart failure cannot do much exercise, so heart failure may cause obesity rather than vice versa. Here, the researchers use “Mendelian randomization” to examine whether adiposity is causally related to various cardiometabolic traits. Because gene variants are inherited randomly, they are not prone to confounding and are free from reverse causation. It is known that a genetic variant (rs9939609) within the genome region that encodes the fat-mass- and obesity-associated gene (FTO) is associated with increased BMI. Thus, an investigation of the associations between rs9939609 and cardiometabolic traits can indicate whether obesity is causally related to these traits.
What Did the Researchers Do and Find?
The researchers analyzed the association between rs9939609 (the “instrumental variable,” or IV) and BMI, between rs9939609 and 24 cardiometabolic traits, and between BMI and the same traits using genetic and health data collected in 36 population-based studies of nearly 200,000 individuals of European descent. They then quantified the strength of the causal association between BMI and the cardiometabolic traits by calculating “IV estimators.” Higher BMI showed a causal relationship with heart failure, metabolic syndrome (a combination of medical disorders that increases the risk of developing CVD), type 2 diabetes, dyslipidemia, hypertension, increased blood levels of liver enzymes (an indicator of liver damage; some metabolic disorders involve liver damage), and several other cardiometabolic traits. All the IV estimators were similar to the BMI–cardiovascular trait associations (observational estimates) derived from the same individuals, with the exception of diabetes, where the causal estimate was higher than the observational estimate, probably because the observational estimate is based on a single BMI measurement, whereas the causal estimate considers lifetime changes in BMI.
What Do These Findings Mean?
Like all Mendelian randomization studies, the reliability of the causal associations reported here depends on several assumptions made by the researchers. Nevertheless, these findings provide support for many previously suspected and biologically plausible causal relationships, such as that between adiposity and hypertension. They also provide new insights into the causal effect of obesity on liver enzyme levels and on heart failure. In the latter case, these findings suggest that a one-unit increase in BMI might increase the incidence of heart failure by 17%. In the US, this corresponds to 113,000 additional cases of heart failure for every unit increase in BMI at the population level. Although additional studies are needed to confirm and extend these findings, these results suggest that global efforts to reduce the burden of obesity will likely also reduce the occurrence of CVD and metabolic disorders.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001474.
The American Heart Association provides information on all aspects of cardiovascular disease and tips on keeping the heart healthy, including weight management (in several languages); its website includes personal stories about stroke and heart attacks
The US Centers for Disease Control and Prevention has information on heart disease, stroke, and all aspects of overweight and obesity (in English and Spanish)
The UK National Health Service Choices website provides information about cardiovascular disease and obesity, including a personal story about losing weight
The World Health Organization provides information on obesity (in several languages)
The International Obesity Taskforce provides information about the global obesity epidemic
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
MedlinePlus provides links to other sources of information on heart disease, on vascular disease, on obesity, and on metabolic disorders (in English and Spanish)
The International Association for the Study of Obesity provides maps and information about obesity worldwide
The International Diabetes Federation has a web page that describes types, complications, and risk factors of diabetes
doi:10.1371/journal.pmed.1001474
PMCID: PMC3692470  PMID: 23824655
11.  The Effect of Elevated Body Mass Index on Ischemic Heart Disease Risk: Causal Estimates from a Mendelian Randomisation Approach 
PLoS Medicine  2012;9(5):e1001212.
A Mendelian randomization analysis conducted by Børge G. Nordestgaard and colleagues using data from observational studies supports a causal relationship between body mass index and risk for ischemic heart disease.
Background
Adiposity, assessed as elevated body mass index (BMI), is associated with increased risk of ischemic heart disease (IHD); however, whether this is causal is unknown. We tested the hypothesis that positive observational associations between BMI and IHD are causal.
Methods and Findings
In 75,627 individuals taken from two population-based and one case-control study in Copenhagen, we measured BMI, ascertained 11,056 IHD events, and genotyped FTO(rs9939609), MC4R(rs17782313), and TMEM18(rs6548238). Using genotypes as a combined allele score in instrumental variable analyses, the causal odds ratio (OR) between BMI and IHD was estimated and compared with observational estimates. The allele score-BMI and the allele score-IHD associations used to estimate the causal OR were also calculated individually. In observational analyses the OR for IHD was 1.26 (95% CI 1.19–1.34) for every 4 kg/m2 increase in BMI. A one-unit allele score increase associated with a 0.28 kg/m2 (95 CI% 0.20–0.36) increase in BMI and an OR for IHD of 1.03 (95% CI 1.01–1.05) (corresponding to an average 1.68 kg/m2 BMI increase and 18% increase in the odds of IHD for those carrying all six BMI increasing alleles). In instrumental variable analysis using the same allele score the causal IHD OR for a 4 kg/m2 increase in BMI was 1.52 (95% CI 1.12–2.05).
Conclusions
For every 4 kg/m2 increase in BMI, observational estimates suggested a 26% increase in odds for IHD while causal estimates suggested a 52% increase. These data add evidence to support a causal link between increased BMI and IHD risk, though the mechanism may ultimately be through intermediate factors like hypertension, dyslipidemia, and type 2 diabetes. This work has important policy implications for public health, given the continuous nature of the BMI-IHD association and the modifiable nature of BMI. This analysis demonstrates the value of observational studies and their ability to provide unbiased results through inclusion of genetic data avoiding confounding, reverse causation, and bias.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Ischemic heart disease (IHD; also known as coronary heart disease) is the leading cause of death among adults in developed countries. In the US alone, IHD kills nearly half a million people every year. With age, fatty deposits (atherosclerotic plaques) build up in the walls of the coronary arteries, the blood vessels that supply the heart with oxygen and nutrients. The resultant reduction in the heart's blood supply causes shortness of breath, angina (chest pains that are usually relieved by rest), and potentially fatal heart attacks (myocardial infarctions). Risk factors for IHD include smoking, high blood pressure (hypertension), abnormal amounts of cholesterol and other fat in the blood (dyslipidemia), type 2 diabetes, and being overweight or obese (having excess body fat). Treatments for IHD include lifestyle changes (for example, losing weight) and medications that lower blood pressure and blood cholesterol levels. The narrowed arteries can also be widened using a device called a stent or surgically bypassed.
Why Was This Study Done?
Prospective observational studies have shown an association between a high body mass index (BMI, a measure of body fat that is calculated by dividing a person's weight in kilograms by their height in meters squared; a BMI greater than 30 kg/m2 indicates obesity) and an increased risk of IHD. Observational studies, which ask whether people who are exposed to a suspected risk factor develop a specific disease more often than people who are not exposed to the risk factor, cannot prove, however, that changes in BMI/adiposity cause IHD. Obese individuals may share other characteristics that cause both IHD and obesity (confounding) or, rather than obesity causing IHD, IHD may cause obesity (reverse causation). Here, the researchers use “Mendelian randomization” to examine whether elevations in BMI across the lifecourse have a causal impact on IHD risk. Three common genetic variants—FTO(rs9939609), MC4R(rs17782313), and TMEM18(rs6548238)—which have the largest single genetic variant associations with BMI were used in this study. Given that gene variants are inherited essentially randomly with respect to conventional confounding factors and are not subject reverse causation, use of these as instruments (or proxy measures) for variation in BMI as a risk factor (as opposed to measuring BMI directly) allows researchers to comment on whether obesity is causally involved in IHD.
What Did the Researchers Do and Find?
The researchers analyzed data from two population-based studies in which adults were physically examined and answered a lifestyle questionnaire before being followed to see how many developed IDH. They also analyzed data from a case-control study on IDH (in a case-control study, people with a disease are matched with similar people without the disease and the occurrence of risk factors in the patients and controls is compared). Overall, the researchers measured the BMI of 75,627 white individuals, among whom 11,056 already had IDH or developed it, and determined which of the BMI-increasing genetic variants each participant carried. On the basis of the observational data, every 4 kg/m2 increase in BMI increased the odds of IDH by 26% (an odds ratio of 1.26). Using a score derived from the combination of the three genetic variants, the researchers confirmed an association between each BMI increasing allele and both BMI (as expected) and IHD (0.28 kg/m2 and an odds ratio for IHD of 1.03, respectively). On average, compared to people carrying no BMI-increasing gene variants, people carrying six BMI-increasing gene variants had a 1.68 kg/m2 increase in BMI and an 18% increase in IHD risk. To extend this and to essentially reassess the original, observational, relationship between BMI and IHD risk, an “instrumental variable analysis” was used to examine the causal effect of a lifetime change in BMI on the risk of IDH. In this, it was found that for every 4 kg/m2 increase in BMI increased the odds of IDH by 52%.
What Do These Findings Mean?
These findings support a causal link between increased BMI and IDH risk, although it may be that BMI affects IDH through intermediate factors such as hypertension, dyslipidemia, and diabetes. The findings also show that observational studies into the impact of elevated BMI on IHD risk were consistent with this, but also that the inclusion of genetic data increases the value of observational studies by making it possible to avoid issues such as confounding and reverse causation. Finally, these findings and those of recent, observational studies have important implications for public-health policy because they show that the association between BMI (which is modifiable by lifestyle changes) and IHD is continuous. That is, any increase in BMI increases the risk of IHD; there is no threshold below which a BMI increase has no effect on IDH risk. Thus, public-health policies that aim to reduce BMI by even moderate levels could substantially reduce the occurrence of IDH in populations.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001212.
The American Heart Association provides information about IHD and tips on keeping the heart healthy, including weight management; it also provides personal stories about IHD
The UK National Health Service Choices website provides information about IHD, including information on prevention and personal stories about IHD
Information is available from the British Heart Foundation on heart disease and keeping the heart healthy
The US National Heart Lung and Blood Institute also provides information on IHD (in English and Spanish)
MedlinePlus provides links to many other sources of information on IHD (in English and Spanish)
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.1001212
PMCID: PMC3341326  PMID: 22563304
12.  UCP2 -866G/A, Ala55Val and UCP3 -55C/T Polymorphisms in Association with Obesity Susceptibility — A Meta-Analysis Study 
PLoS ONE  2013;8(4):e58939.
Aims/hypothesis
Variants of UCP2 and UCP3 genes have been reported to be associated with obesity, but the available data on the relationship are inconsistent. A meta-analysis was performed to determine whether there are any associations between the UCP2 -866G/A, Ala55Val, and UCP3 -55C/T polymorphisms and obesity susceptibility.
Methods
The PubMed, Embase, Web of Science and CNKI, CBMdisc databases were searched for all relevant case-control studies. The fixed or random effect pooled measure was determined on the bias of heterogeneity test among studies. Publication bias was examined by the modified Begg's and Egger's test.
Results
Twenty-two published articles with thirty-two outcomes were included in the meta-analysis: 12 studies with a total of 7,390 cases and 9,860 controls were analyzed for UCP2 -866G/A polymorphism with obesity, 9 studies with 1,483 cases and 2,067 controls for UCP2 Ala55Val and 8 studies with 2,180 cases and 2,514 controls for UCP3 -55C/T polymorphism. Using an additive model, the UCP2 -866G/A polymorphism showed no significant association with obesity risk in Asians (REM OR = 0.81, 95% CI: 0.65–1.01). In contrast, a statistically significant association was observed in subjects of European descent (FEM OR = 1.06, 95% CI: 1.01–1.12). But neither the UCP2 Ala55Val nor the UCP3 -55C/T polymorphism showed any significant association with obesity risk in either subjects of Asian (REM OR = 0.84, 95% CI: 0.67–1.06 for Ala55Val; REM OR = 0.94, 95% CI: 0.55–1.28 for -55C/T) or of European descent (REM OR = 1.04, 95% CI: 0.80-1.36 for Ala55Val; FEM OR = 1.08, 95% CI: 0.97–1.20 for -55C/T).
Conclusions and Interpretation
Our meta-analysis revealed that the UCP2 -866G/A polymorphism may be a risk factor for susceptibility to obesity in subjects of European descent, but not in individuals of Asian descent. And our results did not support the association between UCP2 Ala55Val, UCP3 -55C/T polymorphisms and obesity in the populations investigated. This conclusion warrants confirmation by further studies.
doi:10.1371/journal.pone.0058939
PMCID: PMC3613358  PMID: 23560041
13.  Triglyceride-raising APOA5 genetic variants are associated with obesity and non-HDL-C in Chinese children and adolescents 
Background
Although the association between the apolipoprotein A5 (APOA5) genetic variants and hypertriglyceridemia has been extensively studied, there have been few studies, particularly in children and adolescents, on the association between APOA5 genetic variants and obesity or non-high-density lipoprotein cholesterol (non-HDL-C) levels. The objective of this study was to examine whether APOA5 gene polymorphisms affect body mass index (BMI) or plasma non-HDL-C levels in Chinese child population.
Methods
This was a case–control study. Single nucleotide polymorphisms (SNPs) were genotyped using Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry for an association study in 569 obese or overweight and 194 healthy Chinese children and adolescents.
Results
Genotype distributions for all polymorphisms in both cohorts were in accordance with the Hardy-Weinberg distribution. The frequencies of the risk alleles in rs662799 and rs651821 SNPs in APOA5 gene were all increased in obese or overweight patients compared to the controls. After adjusted for age and sex, C carriers in rs662799 had a 1.496-fold [95% confidence interval (CI): 1.074-2.084, P = 0.017] higher risk for developing obesity or overweight than subjects with TT genotype, while C carriers in rs651821 had a 1.515-fold higher risk than subjects with TT genotype (95% CI: 1.088-2.100, P = 0.014). Triglyceride (TG) and non-HDL-C concentrations were significantly different among rs662799 variants and both were higher in carriers of minor allele than in noncarriers for TG (1.64 ± 0.96 vs. 1.33 ± 0.67 mmol/L) (P < 0.001), and for non-HDL-C (3.23 ± 0.92 vs. 3.02 ± 0.80 mmol/L) (P = 0.005), respectively. There was also a trend towards increased TG and non-high-density lipoprotein cholesterol levels for rs651821 C carriers (P < 0.001 and P = 0.002, respectively). Furthermore, to confirm the independence of the associations between APOA5 gene and TG or non-HDL-C levels, multiple linear regression analysis was performed and the relationships were not eliminated by adjustment for age, sex and BMI.
Conclusions
These findings suggest the TG-raising genetic variants in the APOA5 gene may influence the susceptibility of the individual to obesity, which may also contribute to an increased risk of high non-HDL-C levels in Chinese obese children and adolescents.
doi:10.1186/1476-511X-13-93
PMCID: PMC4055914  PMID: 24903888
Apolipoprotein A5; Obesity; Dyslipidemia; Children
14.  Stratifying Type 2 Diabetes Cases by BMI Identifies Genetic Risk Variants in LAMA1 and Enrichment for Risk Variants in Lean Compared to Obese Cases 
Perry, John R. B. | Voight, Benjamin F. | Yengo, Loïc | Amin, Najaf | Dupuis, Josée | Ganser, Martha | Grallert, Harald | Navarro, Pau | Li, Man | Qi, Lu | Steinthorsdottir, Valgerdur | Scott, Robert A. | Almgren, Peter | Arking, Dan E. | Aulchenko, Yurii | Balkau, Beverley | Benediktsson, Rafn | Bergman, Richard N. | Boerwinkle, Eric | Bonnycastle, Lori | Burtt, Noël P. | Campbell, Harry | Charpentier, Guillaume | Collins, Francis S. | Gieger, Christian | Green, Todd | Hadjadj, Samy | Hattersley, Andrew T. | Herder, Christian | Hofman, Albert | Johnson, Andrew D. | Kottgen, Anna | Kraft, Peter | Labrune, Yann | Langenberg, Claudia | Manning, Alisa K. | Mohlke, Karen L. | Morris, Andrew P. | Oostra, Ben | Pankow, James | Petersen, Ann-Kristin | Pramstaller, Peter P. | Prokopenko, Inga | Rathmann, Wolfgang | Rayner, William | Roden, Michael | Rudan, Igor | Rybin, Denis | Scott, Laura J. | Sigurdsson, Gunnar | Sladek, Rob | Thorleifsson, Gudmar | Thorsteinsdottir, Unnur | Tuomilehto, Jaakko | Uitterlinden, Andre G. | Vivequin, Sidonie | Weedon, Michael N. | Wright, Alan F. | Hu, Frank B. | Illig, Thomas | Kao, Linda | Meigs, James B. | Wilson, James F. | Stefansson, Kari | van Duijn, Cornelia | Altschuler, David | Morris, Andrew D. | Boehnke, Michael | McCarthy, Mark I. | Froguel, Philippe | Palmer, Colin N. A. | Wareham, Nicholas J. | Groop, Leif | Frayling, Timothy M. | Cauchi, Stéphane
PLoS Genetics  2012;8(5):e1002741.
Common diseases such as type 2 diabetes are phenotypically heterogeneous. Obesity is a major risk factor for type 2 diabetes, but patients vary appreciably in body mass index. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI<25 Kg/m2) compared to obese cases (BMI≥30 Kg/m2). We performed two case-control genome-wide studies using two accepted cut-offs for defining individuals as overweight or obese. We used 2,112 lean type 2 diabetes cases (BMI<25 kg/m2) or 4,123 obese cases (BMI≥30 kg/m2), and 54,412 un-stratified controls. Replication was performed in 2,881 lean cases or 8,702 obese cases, and 18,957 un-stratified controls. To assess the effects of known signals, we tested the individual and combined effects of SNPs representing 36 type 2 diabetes loci. After combining data from discovery and replication datasets, we identified two signals not previously reported in Europeans. A variant (rs8090011) in the LAMA1 gene was associated with type 2 diabetes in lean cases (P = 8.4×10−9, OR = 1.13 [95% CI 1.09–1.18]), and this association was stronger than that in obese cases (P = 0.04, OR = 1.03 [95% CI 1.00–1.06]). A variant in HMG20A—previously identified in South Asians but not Europeans—was associated with type 2 diabetes in obese cases (P = 1.3×10−8, OR = 1.11 [95% CI 1.07–1.15]), although this association was not significantly stronger than that in lean cases (P = 0.02, OR = 1.09 [95% CI 1.02–1.17]). For 36 known type 2 diabetes loci, 29 had a larger odds ratio in the lean compared to obese (binomial P = 0.0002). In the lean analysis, we observed a weighted per-risk allele OR = 1.13 [95% CI 1.10–1.17], P = 3.2×10−14. This was larger than the same model fitted in the obese analysis where the OR = 1.06 [95% CI 1.05–1.08], P = 2.2×10−16. This study provides evidence that stratification of type 2 diabetes cases by BMI may help identify additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes.
Author Summary
Individuals with Type 2 diabetes (T2D) can present with variable clinical characteristics. It is well known that obesity is a major risk factor for type 2 diabetes, yet patients can vary considerably—there are many lean diabetes patients and many overweight people without diabetes. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI<25 Kg/m2) compared to obese cases (BMI≥30 Kg/m2). Specifically, as lean T2D patients had lower risk than obese patients, they must have been more genetically susceptible. Using genetic data from multiple genome-wide association studies, we tested genetic markers across the genome in 2,112 lean type 2 diabetes cases (BMI<25 kg/m2), 4,123 obese cases (BMI≥30 kg/m2), and 54,412 healthy controls. We confirmed our results in an additional 2,881 lean cases, 8,702 obese cases, and 18,957 healthy controls. Using these data we found differences in genetic enrichment between lean and obese cases, supporting our original hypothesis. We also searched for genetic variants that may be risk factors only in lean or obese patients and found two novel gene regions not previously reported in European individuals. These findings may influence future study design for type 2 diabetes and provide further insight into the biology of the disease.
doi:10.1371/journal.pgen.1002741
PMCID: PMC3364960  PMID: 22693455
15.  Missense mutations and polymorphisms of the MC4R gene in Polish obese children and adolescents in relation to the relative body mass index 
Journal of Applied Genetics  2011;52(3):319-323.
Extensive studies of the MC4R gene polymorphism showed that, among numerous variants, there are mutations responsible for monogenic obesity, as well as polymorphisms negatively correlated with the risk of obesity. In this report, we present the first studies of the whole coding sequence of the MC4R gene in 243 Polish obese children and adolescents (the mean relative body mass index [RBMI] was 163.6). In addition, 101 non-obese adults were also analyzed. Direct sequencing facilitated the identification of six missense (K73R, V103I, T112M, S127L, M215L, and I251L) and one silent (c.756 C > T) single-nucleotide polymorphisms (SNPs). Two non-synonymous polymorphisms (K73R and M215L) appeared to be novel and one was found in obese patients (M215L, one patient) and one in non-obese adults (K73R, one person). The overall frequency of non-synonymous variant carriers reached 4.1% and 6.9% in obese patients and non-obese adults, respectively. Only one obesity-associated variant (127L) was found in two obese patients (0.82%) and in two non-obese adults (1.98%). The obesity-protecting variants (103I and 251L) appeared to be the most common in both groups: 3.3% and 4.0%, respectively. It was also observed that the RBMI in obese children and adolescents carrying the minor variants did not differ significantly from the non-carriers; however, the expected trends for the associated and protecting variants were observed. We conclude that the contribution of the MC4R gene variants to the pathogenesis of obesity in Polish children and adolescents is low.
doi:10.1007/s13353-011-0036-2
PMCID: PMC3132382  PMID: 21404042
Adolescents; Children; MC4R; Mutation; Obesity; Polish population; Polymorphism
16.  Frequencies of obesity susceptibility alleles among ethnically and racially diverse bariatric patient populations 
Background
Genetic factors likely play a role in obesity and the outcomes after bariatric surgery. Single nucleotide polymorphisms in or near the insulin-induced gene 2 (INSIG-2), fat mass and obesity-associated gene (FTO), melanocortin 4 receptor gene (MC4R), and proprotein convertase subtilisn/kexin type 1 gene (PCSK-1) have been associated with class III obesity in whites. Minimal data are available regarding the genetic susceptibility to obesity in class III obese nonwhites, especially Hispanics. Our objective was to perform a comparative analysis of 4 common genetic variants (INSIG-2, FTO, MC4R, and PCSK-1) associated with obesity in a diverse population of bariatric surgery patients to determine whether a difference exists by ethnicity (white versus Hispanic). The setting of the study was 2 university hospitals in the United States.
Methods
Bariatric surgery patients from 2 different institutions were enrolled prospectively, and genotyping was performed. Differences in the distribution of INSIG-2, FTO, MC4R, and PCSK-1 single nucleotide polymorphisms among the different ethnicities (whites and Hispanics) were compared using an additive model (0, 1, or 2 risk alleles). A propensity-matched analysis was used to account for cohort differences.
Results
A total of 1276 bariatric patients were genotyped for the INSIG-2, FTO, MC4R, and PCSK-1 obesity single nucleotide polymorphisms. Statistically significant differences in FTO, INSIG-2, MC4R, and PCSK-1 were seen using an additive model. FTO, PCSK-1, and MC4R (test for trend) remained significantly different in the propensity analysis.
Conclusion
Significant differences in the frequencies of several common obesity susceptibility variants in or near FTO, PCSK-1, and MC4R were found in white and Hispanic patients with class III obesity undergoing bariatric surgery. Larger studies in more class III obese Hispanics of different nationalities are needed.
doi:10.1016/j.soard.2012.04.004
PMCID: PMC3685296  PMID: 22695173
Obesity; Genes; Genetics; Hispanics; Genotyping; Alleles; Frequency; Bariatric surgery
17.  Genetic variants predicting left ventricular hypertrophy in a diabetic population: a Go-DARTS study including meta-analysis 
Background
Left ventricular hypertrophy has multiple aetiologies including diabetes and genetic factors. We aimed to identify genetic variants predicting left ventricular hypertrophy in diabetic individuals.
Methods
Demographic, echocardiographic, prescribing, morbidity, mortality and genotyping databases connected with the Genetics of Diabetes Audit and Research in Tayside, Scotland project were accurately linked using a patient-specific identifier. Left ventricular hypertrophy cases were identified using echocardiographic data.
Genotyping data from 973 cases and 1443 non-left ventricular hypertrophy controls were analysed, investigating whether single nucleotide polymorphisms associated with left ventricular hypertrophy in previous Genome Wide Association Studies predicted left ventricular hypertrophy in our population of individuals with type 2 diabetes. Meta-analysis assessed overall significance of these single nucleotide polymorphisms, which were also used to create gene scores. Logistic regression assessed whether these scores predicted left ventricular hypertrophy.
Results
Two single nucleotide polymorphisms previously associated with left ventricular hypertrophy were significant: rs17132261: OR 2.03, 95% CI 1.10-3.73, p-value 0.02 and rs2292462: OR 0.82, 95% CI 0.73-0.93 and p-value 2.26x10-3. Meta-analysis confirmed rs17132261 and rs2292462 were associated with left ventricular hypertrophy (p=1.03x10-8 and p=5.86x10-10 respectively) and one single nucleotide polymorphisms in IGF1R (rs4966014) became genome wide significant upon meta-analysis although was not significant in our study. Gene scoring based on published single nucleotide polymorphisms also predicted left ventricular hypertrophy in our study.
Rs17132261, within SLC25A46, encodes a mitochondrial phosphate transporter, implying abnormal myocardial energetics contribute to left ventricular hypertrophy development. Rs2292462 lies within the obesity-implicated neuromedin B gene. Rs4966014 lies within the IGF1R1 gene. IGF1 signalling is an established factor in cardiac hypertrophy.
Conclusions
We created a resource to study genetics of left ventricular hypertrophy in diabetes and validated our left ventricular hypertrophy phenotype in replicating single nucleotide polymorphisms identified by previous genome wide association studies investigating left ventricular hypertrophy.
doi:10.1186/1475-2840-12-109
PMCID: PMC3729417  PMID: 23879873
Left ventricular hypertrophy; Genetics; Type 2 diabetes mellitus
18.  Assessing Causality in the Association between Child Adiposity and Physical Activity Levels: A Mendelian Randomization Analysis 
PLoS Medicine  2014;11(3):e1001618.
Here, Timpson and colleagues performed a Mendelian Randomization analysis to determine whether childhood adiposity causally influences levels of physical activity. The results suggest that increased adiposity causes a reduction in physical activity in children; however, this study does not exclude lower physical activity also leading to increasing adiposity.
Please see later in the article for the Editors' Summary
Background
Cross-sectional studies have shown that objectively measured physical activity is associated with childhood adiposity, and a strong inverse dose–response association with body mass index (BMI) has been found. However, few studies have explored the extent to which this association reflects reverse causation. We aimed to determine whether childhood adiposity causally influences levels of physical activity using genetic variants reliably associated with adiposity to estimate causal effects.
Methods and Findings
The Avon Longitudinal Study of Parents and Children collected data on objectively assessed activity levels of 4,296 children at age 11 y with recorded BMI and genotypic data. We used 32 established genetic correlates of BMI combined in a weighted allelic score as an instrumental variable for adiposity to estimate the causal effect of adiposity on activity.
In observational analysis, a 3.3 kg/m2 (one standard deviation) higher BMI was associated with 22.3 (95% CI, 17.0, 27.6) movement counts/min less total physical activity (p = 1.6×10−16), 2.6 (2.1, 3.1) min/d less moderate-to-vigorous-intensity activity (p = 3.7×10−29), and 3.5 (1.5, 5.5) min/d more sedentary time (p = 5.0×10−4). In Mendelian randomization analyses, the same difference in BMI was associated with 32.4 (0.9, 63.9) movement counts/min less total physical activity (p = 0.04) (∼5.3% of the mean counts/minute), 2.8 (0.1, 5.5) min/d less moderate-to-vigorous-intensity activity (p = 0.04), and 13.2 (1.3, 25.2) min/d more sedentary time (p = 0.03). There was no strong evidence for a difference between variable estimates from observational estimates. Similar results were obtained using fat mass index. Low power and poor instrumentation of activity limited causal analysis of the influence of physical activity on BMI.
Conclusions
Our results suggest that increased adiposity causes a reduction in physical activity in children and support research into the targeting of BMI in efforts to increase childhood activity levels. Importantly, this does not exclude lower physical activity also leading to increased adiposity, i.e., bidirectional causation.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
The World Health Organization estimates that globally at least 42 million children under the age of five are obese. The World Health Organization recommends that all children undertake at least one hour of physical activity daily, on the basis that increased physical activity will reduce or prevent excessive weight gain in children and adolescents. In practice, while numerous studies have shown that body mass index (BMI) shows a strong inverse correlation with physical activity (i.e., active children are thinner than sedentary ones), exercise programs specifically targeted at obese children have had only very limited success in reducing weight. The reasons for this are not clear, although environmental factors such as watching television and lack of exercise facilities are traditionally blamed.
Why Was This Study Done?
One of the reasons why obese children do not lose weight through exercise might be that being fat in itself leads to a decrease in physical activity. This is termed reverse causation, i.e., obesity causes sedentary behavior, rather than the other way around. The potential influence of environmental factors (e.g., lack of opportunity to exercise) makes it difficult to prove this argument. Recent research has demonstrated that specific genotypes are related to obesity in children. Specific variations within the DNA of individual genes (single nucleotide polymorphisms, or SNPs) are more common in obese individuals and predispose to greater adiposity across the weight distribution. While adiposity itself can be influenced by many environmental factors that complicate the interpretation of observed associations, at the population level, genetic variation is not related to the same factors, and over the life course cannot be changed. Investigations that exploit these properties of genetic associations to inform the interpretation of observed associations are termed Mendelian randomization studies. This research technique is used to reduce the influence of confounding environmental factors on an observed clinical condition. The authors of this study use Mendelian randomization to determine whether a genetic tendency towards high BMI and fat mass is correlated with reduced levels of physical activity in a large cohort of children.
What Did the Researchers Do and Find?
The researchers looked at a cohort of children from a large long-term health research project (the Avon Longitudinal Study of Parents and Children). BMI and total body fat were recorded. Total daily activity was measured via a small movement-counting device. In addition, the participants underwent genotyping to detect the presence of several SNPs known to be linked to obesity. For each child a total BMI allelic score was determined based on the number of obesity-related genetic variants carried by that individual. The association between obesity and reduced physical activity was then studied in two ways. Direct correlation between actual BMI and physical activity was measured (observational data). Separately, the link between BMI allelic score and physical activity was also determined (Mendelian randomization or instrumental variable analysis). The observational data showed that boys were more active than girls and had lower BMI. Across both sexes, a higher-than-average BMI was associated with lower daily activity. In genetic analyses, allelic score had a positive correlation with BMI, with one particular SNP being most strongly linked to high BMI and total fat mass. A high allelic score for BMI was also correlated with lower levels of daily physical activity. The authors conclude that children who are obese and have an inherent predisposition to high BMI also have a propensity to reduced levels of physical activity, which may compound their weight gain.
What Do These Findings Mean?
This study provides evidence that being fat is in itself a risk factor for low activity levels, separately from external environmental influences. This may be an example of “reverse causation,” i.e., high BMI causes a reduction in physical activity. Alternatively, there may be a bidirectional causality, so that those with a genetic predisposition to high fat mass exercise less, leading to higher BMI, and so on, in a vicious circle. A significant limitation of the study is that validated allelic scores for physical activity are not available. Thus, it is not possible to determine whether individuals with a high allelic score for BMI also have a propensity to exercise less, or whether it is simply the circumstance of being overweight that discourages activity. This study does suggest that trying to persuade obese children to lose weight by exercising more is likely to be ineffective unless additional strategies to reduce BMI, such as strict diet control, are also implemented.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001618.
The US Centers for Disease Control and Prevention provides obesity-related statistics, details of prevention programs, and an overview on public health strategy in the United States
A more worldwide view is given by the World Health Organization
The UK National Health Service website gives information on physical activity guidelines for different age groups
The International Obesity Task Force is a network of organizations that seeks to alert the world to the growing health crisis threatened by soaring levels of obesity
MedlinePlus—which brings together authoritative information from the US National Library of Medicine, National Institutes of Health, and other government agencies and health-related organizations—has a page on obesity
Additional information on the Avon Longitudinal Study of Parents and Children is available
The British Medical Journal has an article that describes Mendelian randomization
doi:10.1371/journal.pmed.1001618
PMCID: PMC3958348  PMID: 24642734
19.  Meta-analysis on the effect of the N363S polymorphism of the glucocorticoid receptor gene (GRL) on human obesity 
BMC Medical Genetics  2006;7:50.
Background
Since both excess glucocorticoid secretion and central obesity are clinical features of some obese patients, it is worthwhile to study a possible association of glucocorticoid receptor gene (GRL) variants with obesity. Previous studies have linked the N363S variant of the GRL gene to increased glucocorticoid effects such as higher body fat, a lower lean-body mass and a larger insulin response to dexamethasone. However, contradictory findings have been also reported about the association between this variant and obesity phenotypes. Individual studies may lack statistical power which may result in disparate results. This limitation can be overcome using meta-analytic techniques.
Methods
We conducted a meta-analysis to assess the association between the N363S polymorphism of the GRL gene and obesity risk. In addition to published research, we included also our own unpublished data -three novel case-control studies- in the meta-analysis The new case-control studies were conducted in German and Spanish children, adolescents and adults (total number of subjects: 1,117). Genotype was assessed by PCR-RFLP (Tsp509I). The final formal meta-analysis included a total number of 5,909 individuals.
Results
The meta-analysis revealed a higher body mass index (BMI) with an overall estimation of +0.18 kg/m2 (95% CI: +0.004 to +0.35) for homo-/heterozygous carriers of the 363S allele of the GRL gene in comparison to non-carriers. Moreover, differences in pooled BMI were statistically significant and positive when considering one-group studies from the literature in which participants had a BMI below 27 kg/m2 (+ 0.41 kg/m2 [95% CI +0.17 to +0.66]), but the differences in BMI were negative when only our novel data from younger (aged under 45) and normal weight subjects were pooled together (-0.50 kg/m2 [95% CI -0.84 to -0.17]). The overall risk for obesity for homo-/heterozygous carriers of the 363S allele was not statistically significant in the meta-analysis (pooled OR = 1.02; 95% CI: 0.56–1.87).
Conclusion
Although certain genotypic effects could be population-specific, we conclude that there is no compelling evidence that the N363S polymorphism of the GRL gene is associated with either average BMI or obesity risk.
doi:10.1186/1471-2350-7-50
PMCID: PMC1481544  PMID: 16725041
20.  Mutation screen and association studies for the fatty acid amide hydrolase (FAAH) gene and early onset and adult obesity 
BMC Medical Genetics  2010;11:2.
Background
The orexigenic effects of cannabinoids are limited by activation of the endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH). The aim of this study was to analyse whether FAAH alleles are associated with early and late onset obesity.
Methods
We initially assessed association of five single nucleotide polymorphisms (SNPs) in FAAH with early onset extreme obesity in up to 521 German obese children and both parents. SNPs with nominal p-values ≤ 0.1 were subsequently analysed in 235 independent German obesity families. SNPs associated with childhood obesity (p-values ≤ 0.05) were further analysed in 8,491 adult individuals of a population-based cohort (KORA) for association with adult obesity. One SNP was further analysed in 985 German obese adults and 588 normal and underweight controls. In parallel, we screened the FAAH coding region for novel sequence variants in 92 extremely obese children using single-stranded-conformation-polymorphism-analysis and denaturing HPLC and assessed the implication of the identified new variants for childhood obesity.
Results
The trio analysis revealed some evidence for an association of three SNPs in FAAH (rs324420 rs324419 and rs873978) with childhood obesity (two-sided p-values between 0.06 and 0.10). Although analyses of these variants in 235 independent obesity families did not result in statistically significant effects (two-sided p-values between 0.14 and 0.75), the combined analysis of all 603 obesity families supported the idea of an association of two SNPs in FAAH (rs324420 and rs2295632) with early onset extreme obesity (p-values between 0.02 and 0.03). No association was, however, found between these variants and adult obesity. The mutation screen revealed four novel variants, which were not associated with early onset obesity (p > 0.05).
Conclusions
As we observed some evidence for an association of the FAAH variants rs2295632 rs324420 with early onset but not adult obesity, we conclude that the FAAH variants analyzed here at least do not seem to play a major role in the etiology of obesity within our samples.
doi:10.1186/1471-2350-11-2
PMCID: PMC2830932  PMID: 20044928
21.  Gene-Lifestyle Interaction and Type 2 Diabetes: The EPIC InterAct Case-Cohort Study 
PLoS Medicine  2014;11(5):e1001647.
In this study, Wareham and colleagues quantified the combined effects of genetic and lifestyle factors on risk of T2D in order to inform strategies for prevention. The authors found that the relative effect of a type 2 diabetes genetic risk score is greater in younger and leaner participants, and the high absolute risk associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Please see later in the article for the Editors' Summary
Background
Understanding of the genetic basis of type 2 diabetes (T2D) has progressed rapidly, but the interactions between common genetic variants and lifestyle risk factors have not been systematically investigated in studies with adequate statistical power. Therefore, we aimed to quantify the combined effects of genetic and lifestyle factors on risk of T2D in order to inform strategies for prevention.
Methods and Findings
The InterAct study includes 12,403 incident T2D cases and a representative sub-cohort of 16,154 individuals from a cohort of 340,234 European participants with 3.99 million person-years of follow-up. We studied the combined effects of an additive genetic T2D risk score and modifiable and non-modifiable risk factors using Prentice-weighted Cox regression and random effects meta-analysis methods. The effect of the genetic score was significantly greater in younger individuals (p for interaction  = 1.20×10−4). Relative genetic risk (per standard deviation [4.4 risk alleles]) was also larger in participants who were leaner, both in terms of body mass index (p for interaction  = 1.50×10−3) and waist circumference (p for interaction  = 7.49×10−9). Examination of absolute risks by strata showed the importance of obesity for T2D risk. The 10-y cumulative incidence of T2D rose from 0.25% to 0.89% across extreme quartiles of the genetic score in normal weight individuals, compared to 4.22% to 7.99% in obese individuals. We detected no significant interactions between the genetic score and sex, diabetes family history, physical activity, or dietary habits assessed by a Mediterranean diet score.
Conclusions
The relative effect of a T2D genetic risk score is greater in younger and leaner participants. However, this sub-group is at low absolute risk and would not be a logical target for preventive interventions. The high absolute risk associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Worldwide, more than 380 million people currently have diabetes, and the condition is becoming increasingly common. Diabetes is characterized by high levels of glucose (sugar) in the blood. Blood sugar levels are usually controlled by insulin, a hormone released by the pancreas after meals (digestion of food produces glucose). In people with type 2 diabetes (the commonest type of diabetes), blood sugar control fails because the fat and muscle cells that normally respond to insulin by removing excess sugar from the blood become less responsive to insulin. Type 2 diabetes can often initially be controlled with diet and exercise (lifestyle changes) and with antidiabetic drugs such as metformin and sulfonylureas, but patients may eventually need insulin injections to control their blood sugar levels. Long-term complications of diabetes, which include an increased risk of heart disease and stroke, reduce the life expectancy of people with diabetes by about ten years compared to people without diabetes.
Why Was This Study Done?
Type 2 diabetes is thought to originate from the interplay between genetic and lifestyle factors. But although rapid progress is being made in understanding the genetic basis of type 2 diabetes, it is not known whether the consequences of adverse lifestyles (for example, being overweight and/or physically inactive) differ according to an individual's underlying genetic risk of diabetes. It is important to investigate this question to inform strategies for prevention. If, for example, obese individuals with a high level of genetic risk have a higher risk of developing diabetes than obese individuals with a low level of genetic risk, then preventative strategies that target lifestyle interventions to obese individuals with a high genetic risk would be more effective than strategies that target all obese individuals. In this case-cohort study, researchers from the InterAct consortium quantify the combined effects of genetic and lifestyle factors on the risk of type 2 diabetes. A case-cohort study measures exposure to potential risk factors in a group (cohort) of people and compares the occurrence of these risk factors in people who later develop the disease with those who remain disease free.
What Did the Researchers Do and Find?
The InterAct study involves 12,403 middle-aged individuals who developed type 2 diabetes after enrollment (incident cases) into the European Prospective Investigation into Cancer and Nutrition (EPIC) and a sub-cohort of 16,154 EPIC participants. The researchers calculated a genetic type 2 diabetes risk score for most of these individuals by determining which of 49 gene variants associated with type 2 diabetes each person carried, and collected baseline information about exposure to lifestyle risk factors for type 2 diabetes. They then used various statistical approaches to examine the combined effects of the genetic risk score and lifestyle factors on diabetes development. The effect of the genetic score was greater in younger individuals than in older individuals and greater in leaner participants than in participants with larger amounts of body fat. The absolute risk of type 2 diabetes, expressed as the ten-year cumulative incidence of type 2 diabetes (the percentage of participants who developed diabetes over a ten-year period) increased with increasing genetic score in normal weight individuals from 0.25% in people with the lowest genetic risk scores to 0.89% in those with the highest scores; in obese people, the ten-year cumulative incidence rose from 4.22% to 7.99% with increasing genetic risk score.
What Do These Findings Mean?
These findings show that in this middle-aged cohort, the relative association with type 2 diabetes of a genetic risk score comprised of a large number of gene variants is greatest in individuals who are younger and leaner at baseline. This finding may in part reflect the methods used to originally identify gene variants associated with type 2 diabetes, and future investigations that include other genetic variants, other lifestyle factors, and individuals living in other settings should be undertaken to confirm this finding. Importantly, however, this study shows that young, lean individuals with a high genetic risk score have a low absolute risk of developing type 2 diabetes. Thus, this sub-group of individuals is not a logical target for preventative interventions. Rather, suggest the researchers, the high absolute risk of type 2 diabetes associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001647.
The US National Diabetes Information Clearinghouse provides information about diabetes for patients, health-care professionals and the general public, including detailed information on diabetes prevention (in English and Spanish)
The UK National Health Service Choices website provides information for patients and carers about type 2 diabetes and about living with diabetes; it also provides people's stories about diabetes
The charity Diabetes UK provides detailed information for patients and carers in several languages, including information on healthy lifestyles for people with diabetes
The UK-based non-profit organization Healthtalkonline has interviews with people about their experiences of diabetes
The Genetic Landscape of Diabetes is published by the US National Center for Biotechnology Information
More information on the InterAct study is available
MedlinePlus provides links to further resources and advice about diabetes and diabetes prevention (in English and Spanish)
doi:10.1371/journal.pmed.1001647
PMCID: PMC4028183  PMID: 24845081
22.  Physical Activity Attenuates the Genetic Predisposition to Obesity in 20,000 Men and Women from EPIC-Norfolk Prospective Population Study 
PLoS Medicine  2010;7(8):e1000332.
Shengxu Li and colleagues use data from a large prospective observational cohort to examine the extent to which a genetic predisposition toward obesity may be modified by living a physically active lifestyle.
Background
We have previously shown that multiple genetic loci identified by genome-wide association studies (GWAS) increase the susceptibility to obesity in a cumulative manner. It is, however, not known whether and to what extent this genetic susceptibility may be attenuated by a physically active lifestyle. We aimed to assess the influence of a physically active lifestyle on the genetic predisposition to obesity in a large population-based study.
Methods and Findings
We genotyped 12 SNPs in obesity-susceptibility loci in a population-based sample of 20,430 individuals (aged 39–79 y) from the European Prospective Investigation of Cancer (EPIC)-Norfolk cohort with an average follow-up period of 3.6 y. A genetic predisposition score was calculated for each individual by adding the body mass index (BMI)-increasing alleles across the 12 SNPs. Physical activity was assessed using a self-administered questionnaire. Linear and logistic regression models were used to examine main effects of the genetic predisposition score and its interaction with physical activity on BMI/obesity risk and BMI change over time, assuming an additive effect for each additional BMI-increasing allele carried. Each additional BMI-increasing allele was associated with 0.154 (standard error [SE] 0.012) kg/m2 (p = 6.73×10−37) increase in BMI (equivalent to 445 g in body weight for a person 1.70 m tall). This association was significantly (pinteraction = 0.005) more pronounced in inactive people (0.205 [SE 0.024] kg/m2 [p = 3.62×10−18; 592 g in weight]) than in active people (0.131 [SE 0.014] kg/m2 [p = 7.97×10−21; 379 g in weight]). Similarly, each additional BMI-increasing allele increased the risk of obesity 1.116-fold (95% confidence interval [CI] 1.093–1.139, p = 3.37×10−26) in the whole population, but significantly (pinteraction = 0.015) more in inactive individuals (odds ratio [OR] = 1.158 [95% CI 1.118–1.199; p = 1.93×10−16]) than in active individuals (OR = 1.095 (95% CI 1.068–1.123; p = 1.15×10−12]). Consistent with the cross-sectional observations, physical activity modified the association between the genetic predisposition score and change in BMI during follow-up (pinteraction = 0.028).
Conclusions
Our study shows that living a physically active lifestyle is associated with a 40% reduction in the genetic predisposition to common obesity, as estimated by the number of risk alleles carried for any of the 12 recently GWAS-identified loci.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
In the past few decades, the global incidence of obesity—defined as a body mass index (BMI, a simple index of weight-for-height that uses the weight in kilograms divided by the square of the height in meters) of 30 and over, has increased so much that this growing public health concern is now commonly referred to as the “obesity epidemic.” Once considered prevalent only in high-income countries, obesity is an increasing health problem in low- and middle-income countries, particularly in urban settings. In 2005, at least 400 million adults world-wide were obese, and the projected figure for 2015 is a substantial increase of 300 million to around 700 million. Childhood obesity is also a growing concern. Contributing factors to the obesity epidemic are a shift in diet to an increased intake of energy-dense foods that are high in fat and sugars and a trend towards decreased physical activity due to increasingly sedentary lifestyles.
However, genetics are also thought to play a critical role as genetically predisposed individuals may be more prone to obesity if they live in an environment that has abundant access to energy-dense food and labor-saving devices.
Why Was This Study Done?
Although recent genetic studies (genome-wide association studies) have identified 12 alleles (a DNA variant that is located at a specific position on a specific chromosome) associated with increased BMI, there has been no convincing evidence of the interaction between genetics and lifestyle. In this study the researchers examined the possibility of such an interaction by assessing whether individuals with a genetic predisposition to increased obesity risk could modify this risk by increasing their daily physical activity.
What Did the Researchers Do and Find?
The researchers used a population-based cohort study of 25,631 people living in Norwich, UK (The EPIC-Norfolk study) and identified individuals who were 39 to 79 years old during a health check between 1993 and 1997. The researchers invited these people to a second health examination. In total, 20,430 individuals had baseline data available, of which 11,936 had BMI data at the second health check. The researchers used genotyping methods and then calculated a genetic predisposition score for each individual and their occupational and leisure-time physical activities were assessed by using a validated self-administered questionnaire. Then, the researchers used modeling techniques to examine the main effects of the genetic predisposition score and its interaction with physical activity on BMI/obesity risk and BMI change over time. The researchers found that each additional BMI-increasing allele was associated with an increase in BMI equivalent to 445 g in body weight for a person 1.70 m tall and that the size of this effect was greater in inactive people than in active people. In individuals who have a physically active lifestyle, this increase was only 379 g/allele, or 36% lower than in physically inactive individuals in whom the increase was 592 g/allele. Furthermore, in the total sample each additional obesity-susceptibility allele increased the odds of obesity by 1.116-fold. However, the increased odds per allele for obesity risk were 40% lower in physically active individuals (1.095 odds/allele) compared to physically inactive individuals (1.158 odds/allele).
What Do These Findings Mean?
The findings of this study indicate that the genetic predisposition to obesity can be reduced by approximately 40% by having a physically active lifestyle. The findings of this study suggest that, while the whole population benefits from increased physical activity levels, individuals who are genetically predisposed to obesity would benefit more than genetically protected individuals. Furthermore, these findings challenge the deterministic view of the genetic predisposition to obesity that is often held by the public, as they show that even the most genetically predisposed individuals will benefit from adopting a healthy lifestyle. The results are limited by participants self-reporting their physical activity levels, which is less accurate than objective measures of physical activity.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000332.
This study relies on the results of previous genome-wide association studies The National Human Genome Research Institute provides an easy-to-follow guide to understanding such studies
The International Association for the Study of Obesity aims to improve global health by promoting the understanding of obesity and weight-related diseases through scientific research and dialogue
The International Obesity Taskforce is the research-led think tank and advocacy arm of the International Association for the Study of Obesity
The Global Alliance for the Prevention of Obesity and Related Chronic Disease is a global action program that addresses the issues surrounding the prevention of obesity
The National Institutes of Health has its own obesity task force, which includes 26 institutes
doi:10.1371/journal.pmed.1000332
PMCID: PMC2930873  PMID: 20824172
23.  Combining Information from Common Type 2 Diabetes Risk Polymorphisms Improves Disease Prediction 
PLoS Medicine  2006;3(10):e374.
Background
A limited number of studies have assessed the risk of common diseases when combining information from several predisposing polymorphisms. In most cases, individual polymorphisms only moderately increase risk (~20%), and they are thought to be unhelpful in assessing individuals' risk clinically. The value of analyzing multiple alleles simultaneously is not well studied. This is often because, for any given disease, very few common risk alleles have been confirmed.
Methods and Findings
Three common variants (Lys23 of KCNJ11, Pro12 of PPARG, and the T allele at rs7903146 of TCF7L2) have been shown to predispose to type 2 diabetes mellitus across many large studies. Risk allele frequencies ranged from 0.30 to 0.88 in controls. To assess the combined effect of multiple susceptibility alleles, we genotyped these variants in a large case-control study (3,668 controls versus 2,409 cases). Individual allele odds ratios (ORs) ranged from 1.14 (95% confidence interval [CI], 1.05 to 1.23) to 1.48 (95% CI, 1.36 to 1.60). We found no evidence of gene-gene interaction, and the risks of multiple alleles were consistent with a multiplicative model. Each additional risk allele increased the odds of type 2 diabetes by 1.28 (95% CI, 1.21 to 1.35) times. Participants with all six risk alleles had an OR of 5.71 (95% CI, 1.15 to 28.3) compared to those with no risk alleles. The 8.1% of participants that were double-homozygous for the risk alleles at TCF7L2 and Pro12Ala had an OR of 3.16 (95% CI, 2.22 to 4.50), compared to 4.3% with no TCF7L2 risk alleles and either no or one Glu23Lys or Pro12Ala risk alleles.
Conclusions
Combining information from several known common risk polymorphisms allows the identification of population subgroups with markedly differing risks of developing type 2 diabetes compared to those obtained using single polymorphisms. This approach may have a role in future preventative measures for common, polygenic diseases.
Combining information from several known common risk polymorphisms allows the identification of subgroups of the population with markedly differing risks of developing type 2 diabetes.
Editors' Summary
Background.
Diabetes is an important and increasingly common global health problem; the World Health Organization has estimated that about 170 million people currently have diabetes worldwide. One particular form, type 2 diabetes, develops when cells in the body become unable to respond to a hormone called insulin. Insulin is normally released by the pancreas and controls the ability of body cells to take in glucose (sugar). Therefore, when cells become insensitive to insulin as in people with type 2 diabetes, glucose levels in the body are not well controlled and may become dangerously high in the blood. These high levels can have long-term damaging effects on various organs in the body, particularly the eyes, nerves, heart, and kidneys. There are many different factors that affect whether someone is likely to develop type 2 diabetes. These factors can be broadly grouped into two categories: environmental and genetic. Environmental factors such as obesity, a diet high in sugar, and a sedentary lifestyle are all risk factors for developing type 2 diabetes in later life. Genetically, a number of variants in many different genes may affect the risk of developing the disease. Generally, these gene variants are common in human populations but each gene variant only mildly increases the risk that a person possessing it will get type 2 diabetes.
Why Was This Study Done?
The investigators performing this study wanted to understand how different gene variants combine to affect an individual's risk of getting type 2 diabetes. That is, if a person carries many different variants, does their overall risk increase a lot or only a little?
What Did the Researchers Do and Find?
First, the researchers surveyed the published reports to identify those gene variants for which there was strong evidence of an association with type 2 diabetes. They found mutations in three genes that had been shown reproducibly to be associated with type 2 diabetes in different studies: PPARG (whose product is involved in regulation of fat tissue), KCNJ11 (whose product is involved in insulin production), and TCF7L2 (whose product is thought to be involved in controlling sugar levels). Then, they compared two groups of white people in the UK: 2,409 people with type 2 diabetes (“cases”), and 3,668 people from the general population (“controls”). The researchers compared the two groups to see which individuals possessed which gene variants, and did statistical testing to work out to what extent having particular combinations of the gene variants affected an individual's chance of being a “case” versus a “control.” Their results showed that in the groups studied, having an ever-increasing number of gene variants increased the risk of developing diabetes. The risk that someone with none of the gene variants would develop type 2 diabetes was about 2%, while the chance for someone with all gene variants was about10%.
What Do These Findings Mean?
These results show that the risk of developing type 2 diabetes is greater if an individual possesses all of the gene variants that were examined in this study. The analysis also suggests that using information on all three variants, rather than just one, is likely to be more accurate in predicting future risk. How this genetic information should be used alongside other well-known preventative measures such as altered lifestyle requires further study.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030374.
NHS Direct patient information on diabetes
National Diabetes Information Clearinghouse information on type 2 diabetes
World Health Organization Diabetes Programme
Centers for Disease ControlDiabetes Public Health Resource
doi:10.1371/journal.pmed.0030374
PMCID: PMC1584415  PMID: 17020404
24.  Association of variants in the PCSK1 gene with obesity in the EPIC-Norfolk study 
Human Molecular Genetics  2009;18(18):3496-3501.
Recently, the rs6232 (N221D) and rs6235 (S690T) SNPs in the PCSK1 gene were associated with obesity in a meta-analysis comprising more than 13 000 individuals of European ancestry. Each additional minor allele of rs6232 or rs6235 was associated with a 1.34- or 1.22-fold increase in the risk of obesity, respectively. So far, only one relatively small study has aimed to replicate these findings, but could not confirm the association of the rs6235 SNP and did not study the rs6232 variant. In the present study, we examined the associations of the rs6232 and rs6235 SNPs with obesity in a population-based cohort consisting of 20 249 individuals of European descent from Norfolk, UK. Logistic regression and generalized linear models were used to test the associations of the risk alleles with obesity and related quantitative traits, respectively. Neither of the SNPs was significantly associated with obesity, BMI or waist circumference under the additive genetic model (P > 0.05). However, we observed an interaction between rs6232 and age on the level of BMI (P = 0.010) and risk of obesity (P = 0.020). The rs6232 SNP was associated with BMI (P = 0.021) and obesity (P = 0.022) in the younger individuals [less than median age (59 years)], but not among the older age group (P = 0.81 and P = 0.68 for BMI and obesity, respectively). In conclusion, our data suggest that the PCSK1 rs6232 and rs6235 SNPs are not major contributors to common obesity in the general population. However, the effect of rs6232 may be age-dependent.
doi:10.1093/hmg/ddp280
PMCID: PMC2729665  PMID: 19528091
25.  Common Variant rs9939609 in Gene FTO Confers Risk to Polycystic Ovary Syndrome 
PLoS ONE  2013;8(7):e66250.
Background
Fat mass and obesity-associated gene (FTO) has been associated with obesity, especially the common variant rs9939609. Polycystic ovary syndrome (PCOS) is a complex endocrine-metabolic disorder and over 50% of patients are overweight/obese. Thus FTO is a potential candidate gene for PCOS but their relationship is confusing and remains to be clarified in different population with a large sample size.
Method
This study was performed adopting a two-stage design by genotyping SNP rs9939609. The first set comprise of 741 PCOS and 704 control subjects, with data from our previous GWAS. The second phase of replication study was performed among another independent group of 2858 PCOS and 2358 control subjects using TaqMan-MGB probe assay. All subjects are from Han Chinese.
Results
The less meaningful association of FTO rs9939609 and PCOS discovered in GWAS (P = 2.47E-03), was further confirmed in the replication study (P = 1.86E-09). Using meta-analysis, the P-meta value has reached 6.89E-12, over-exceeding the genome-wide association level of 5.00E-8. By combination, the P value was 1.26E-11 and after BMI adjustment it remained significant(P = 1.82E-06). To further elucidate whether this association is resulted from obesity or PCOS per se, the samples were divided into two groups–obese and non-obese PCOS, and the results were still positive in obese group (P obese = 5.81E-05, OR = 1.55), as well as in non-obese PCOS group (P non-obese = 7.06E-04, OR = 1.28).
Conclusion
Variant rs9939609 in FTO is associated with PCOS in Chinese women, not only in obese PCOS subjects, but also in non-obese cases.
doi:10.1371/journal.pone.0066250
PMCID: PMC3698074  PMID: 23840863

Results 1-25 (1352392)