Search tips
Search criteria

Results 1-25 (1432154)

Clipboard (0)

Related Articles

1.  The Diversity of Young Adult Wheeze; a Cluster Analysis in a Longitudinal Birth Cohort 
Cluster analyses have enhanced understanding of the heterogeneity of both paediatric and adult wheezing. However while adolescence represents an important transitional phase, the nature of young adult wheeze has yet to be clearly characterised.
To use cluster analysis to define, for the first time, clinically relevant young adult wheeze clusters in a longitudinal birth cohort.
K-Means Cluster analysis was undertaken among 309 currently wheezing subjects at 18-years in the Isle of Wight Birth Cohort ( N=1456). Thirteen disease characterising clustering variables at 18-years were used. Resulting clusters were then further characterised by severity indices plus potential risk factors for wheeze development throughout the 1st 18-years of life.
Six wheeze clusters were identified. Cluster 1 (12.3%) male-early-childhood-onset-atopicwheeze-with-normal-lung function had male predominance, normal spirometry, low BDR (bronchodilator reversibility), intermediate BHR (bronchial hyper-responsiveness), high atopy prevalence, and more admissions. Cluster 2 (24.2%) early-childhood-onset-wheeze-with-intermediate-lung-function had no specific sex association, intermediate spirometry, BDR, BHR, more significant BTS step therapy and admissions. Cluster 3 (9.7%) female-early-childhood-onset-atopic-wheeze-with-impaired-lung-function showed female predominance, high allergic disease comorbidity, more severe BDR and BHR, greatest airflow obstruction, high smoking prevalence, higher symptom severity and admissions. Cluster 4 (19.4%) female-undiagnosed-wheezers had adolescent onset non-atopic wheeze, low BDR and BHR, impaired but non-obstructed spirometry, high symptom frequency and highest smoking prevalence. Cluster 5 (24.6%) female-late-childhood-onset-wheeze-with-normal-lung-function showed no specific atopy association, normal spirometry, low BDR, BHR, and symptom severity. Cluster 6 (9.7%) male-late-childhood-onset-atopic-wheeze-with-impaired-lung-function had high atopy and rhinitis prevalence, elevated BDR and BHR, moderately impaired spirometry, high symptom severity and higher BTS step therapy.
Conclusions & Clinical Relevance
Young adult wheeze is diverse and can be classified into distinct clusters. More severe clusters merit attention and are associated with childhood onset, atopy, impaired lung function and in some, smoking. Smoking associated undiagnosed-wheezers also merit recognition. Better understanding of young adult wheeze could facilitate better later adult respiratory health.
PMCID: PMC4010938  PMID: 24654674
Asthma; Cluster Analysis; Morbidity; Severity; Smoking; Wheeze
2.  Risk factors for onset and remission of atopy, wheeze, and airway hyperresponsiveness 
Thorax  2002;57(2):104-109.
Background: Although many children with asthma may have a remission as they grow and other children who did not have asthma may develop asthma in adult life, knowledge about the factors that influence the onset and prognosis of asthma during adolescence and young adulthood is very limited.
Methods: A cohort of 8–10 year old children (n=718) living in Belmont, New South Wales, Australia were surveyed six times at 2 yearly intervals from 1982 to 1992, and then again 5 years later in 1997. From this cohort, 498 subjects had between three and seven assessments and were included in the analysis. Atopy, airway hyperresponsiveness (AHR), and wheeze in the last 12 months were measured at each survey. Late onset, remission, and persistence were defined based on characteristics at the initial survey and the changes in characteristics at the follow up surveys.
Results: The proportion of subjects with late onset atopy (13.7%) and wheeze (12.4%) was greater than the proportion with remission of atopy (3.2%) and wheeze (5.6%). Having atopy at age 8–12 years (OR 2.8, 95% CI 1.5 to 5.1) and having a parental history of asthma (OR 2.0, 95% CI 1.02 to 4.13) were significant risk factors for the onset of wheeze. Having AHR at age 8–12 years was a significant risk factor for the persistence of wheeze (OR 4.3, 95% CI 1.3 to 15.0). Female sex (OR 1.9, 95% CI 1.01 to 3.60) was a significant risk factor for late onset AHR whereas male sex (OR 1.9, 95% CI 1.1 to 2.8) was a significant risk factor for late onset atopy.
Conclusions: The onset of AHR is uncommon during adolescence, but the risk of acquiring atopy and recent wheeze for the first time continues during this period. Atopy, particularly present at the age of 8–10 years, predicts the subsequent onset of wheeze.
PMCID: PMC1746247  PMID: 11828037
3.  Parental and neonatal risk factors for atopy, airway hyper-responsiveness, and asthma. 
Archives of Disease in Childhood  1996;75(5):392-398.
BACKGROUND: Previous studies have not resolved the importance of several potential risk factors for the development of childhood atopy, airway hyperresponsiveness, and wheezing, which would allow the rational selection of interventions to reduce morbidity from asthma. Risk factors for these disorders were examined in a birth cohort of 1037 New Zealand children. METHODS: Responses to questions on respiratory symptoms and measurements of lung function and airway responsiveness were obtained every two to three years throughout childhood and adolescence, with over 85% cohort retention at age 18 years. Atopy was determined by skin prick tests at age 13 years. Relations between parental and neonatal factors, the development of atopy, and features of asthma were determined by comparison of proportions and logistic regression. RESULTS: Male sex was a significant independent predictor for atopy, airway hyper-responsiveness, hay fever, and asthma. A positive family history, especially maternal, of asthma strongly predicted childhood atopy, airway hyperresponsiveness, asthma, and hay fever. Maternal smoking in the last trimester was correlated with the onset of childhood asthma by the age of 1 year. Birth in the winter season increased the risk of sensitisation to cats. Among those with a parental history of asthma or hay fever, birth in autumn and winter also increased the risk of sensitisation to house dust mites. The number of siblings, position in the family, socioeconomic status, and birth weight were not consistently predictive of any characteristic of asthma. CONCLUSIONS: Male sex, parental atopy, and maternal smoking during pregnancy are risk factors for asthma in young children. Children born in winter exhibit a greater prevalence of sensitisation to cats and house dust mites. These data suggest possible areas for intervention in children at risk because of parental atopy.
PMCID: PMC1511782  PMID: 8957951
4.  Effects of geohelminth infection and age on the associations between allergen-specific IgE, skin test reactivity and wheeze: a case-control study 
Most childhood asthma in poor populations in Latin America is not associated with aeroallergen sensitization, an observation that could be explained by the attenuation of atopy by chronic helminth infections or effects of age.
To explore the effects of geohelminth infections and age on atopy, wheeze, and the association between atopy and wheeze.
A case-control study was done in 376 subjects (149 cases and 227 controls) aged 7–19 years living in rural communities in Ecuador. Wheeze cases, identified from a large cross-sectional survey, had recent wheeze and controls were a random sample of those without wheeze. Atopy was measured by the presence of allergen-specific IgE (asIgE) and skin prick test (SPT) responses to house dust mite and cockroach. Geohelminth infections were measured in stools and anti-Ascaris IgE in plasma.
The fraction of recent wheeze attributable to anti-Ascaris IgE was 45.9%, while those for SPT and asIgE were 10.0% and 10.5% respectively. The association between atopy and wheeze was greater in adolescents than children. Although Anti-Ascaris IgE was strongly associated with wheeze (adj. OR 2.24 (95% CI 1.33–3.78, P = 0.003) and with asIgE (adj. OR 5.34, 95% CI 2.49–11.45, P < 0.001), the association with wheeze was independent of asIgE. There was some evidence that the association between atopy and wheeze was greater in uninfected subjects compared with those with active geohelminth infections.
Conclusions and clinical relevance
Atopy to house dust mite and cockroach explained few wheeze cases in our study population, while the presence of anti-Ascaris IgE was an important risk factor. Our data provided only limited evidence that active geohelminth infections attenuated the association between atopy and wheeze in endemic areas or that age modified this association. The role of allergic sensitization to Ascaris in the development of wheeze, independent of atopy, requires further investigation.
PMCID: PMC3563216  PMID: 23278881
allergen skin test reactivity; allergen-specific IgE; atopy; geohelminths; wheeze
5.  Trajectories of Lung Function during Childhood 
Rationale: Developmental patterns of lung function during childhood may have major implications for our understanding of the pathogenesis of respiratory disease throughout life.
Objectives: To explore longitudinal trajectories of lung function during childhood and factors associated with lung function decline.
Methods: In a population-based birth cohort, specific airway resistance (sRaw) was assessed at age 3 (n = 560), 5 (n = 829), 8 (n = 786), and 11 years (n = 644). Based on prospective data (questionnaires, skin tests, IgE), children were assigned to wheeze phenotypes (no wheezing, transient, late-onset, and persistent) and atopy phenotypes (no atopy, dust mite, non–dust mite, multiple early, and multiple late). We used longitudinal linear mixed models to determine predictors of change in sRaw over time.
Measurements and Main Results: Contrary to the assumption that sRaw is independent of age and sex, boys had higher sRaw than girls (mean difference, 0.080; 95% confidence interval [CI], 0.049–0.111; P < 0.001) and a higher rate of increase over time. For girls, sRaw increased by 0.017 kPa ⋅ s−1 per year (95% CI, 0.011–0.023). In boys this increase was significantly greater (P = 0.012; mean between-sex difference, 0.011 kPa ⋅ s−1; 95% CI, 0.003–0.019). Children with persistent wheeze (but not other wheeze phenotypes) had a significantly greater rate of deterioration in sRaw over time compared with never wheezers (P = 0.009). Similarly, children with multiple early, but not other atopy phenotypes had significantly poorer lung function than those without atopy (mean difference, 0.116 kPa ⋅ s−1; 95% CI, 0.065–0.168; P < 0.001). sRaw increased progressively with the increasing number of asthma exacerbations.
Conclusions: Children with persistent wheeze, frequent asthma exacerbations, and multiple early atopy have diminished lung function throughout childhood, and are at risk of a progressive loss of lung function from age 3 to 11 years. These effects are more marked in boys.
PMCID: PMC4098108  PMID: 24606581
lung function; childhood; longitudinal analysis; specific airway resistance; epidemiology
6.  Incidence and prognosis of asthma and wheezing illness from early childhood to age 33 in a national British cohort. 
BMJ : British Medical Journal  1996;312(7040):1195-1199.
OBJECTIVE--To describe the incidence and prognosis of wheezing illness from birth to age 33 and the relation of incidence to perinatal, medical, social, environmental, and lifestyle factors. DESIGN--Prospective longitudinal study. SETTING--England, Scotland and Wales. SUBJECTS--18,559 people born on 3-9 March 1958. 5801 (31%) contributed information at ages 7, 11, 16, 23, and 33 years. Attrition bias was evaluated using information on 14, 571 (79%) subjects. MAIN OUTCOME MEASURE--History of asthma, wheezy bronchitis, or wheezing obtained from interview with subjects' parents at ages 7, 11, and 16 and reported at interview by subjects at ages 23 and 33. RESULTS--The cumulative incidence of wheezing illness was 18% by age 7, 24% by age 16, and 43% by age 33. Incidence during childhood was strongly and independently associated with pneumonia, hay fever, and eczema. There were weaker independent associations with male sex, third trimester antepartum haemorrhage, whooping cough, recurrent abdominal pain, and migraine. Incidence from age 17 to 33 was associated strongly with active cigarette smoking and a history of hay fever. There were weaker independent associations with female sex, maternal albuminuria during pregnancy, and histories of eczema and migraine. Maternal smoking during pregnancy was weakly and inconsistently related to childhood wheezing but was a stronger and significant independent predictor of incidence after age 16. Among 880 subjects who developed asthma or wheezy bronchitis from birth to age 7, 50% had attacks in the previous year at age 7; 18% at 11, 10% at 16, 10% at 23, and 27% at 33. Relapse at 33 after prolonged remission of childhood wheezing was more common among current smokers and atopic subjects. CONCLUSION--Atopy and active cigarette smoking are major influences on the incidence and recurrence of wheezing during adulthood.
PMCID: PMC2350975  PMID: 8634562
7.  Pertussis vaccination and wheezing illnesses in young children: prospective cohort study 
BMJ : British Medical Journal  1999;318(7192):1173-1176.
To examine the relation between pertussis vaccination and the prevalence of wheezing illnesses in young children.
Prospective cohort study.
Three former health districts comprising Avon Health Authority.
9444 of 14 138 children enrolled in the Avon longitudinal study of pregnancy and childhood and for whom data on wheezing symptoms, vaccination status, and 15 environmental and biological variables were available.
Main outcome measures
Episodes of wheezing from birth to 6 months, 7-18 months, 19-30 months, and 31-42 months. These time periods were used to derive five categories of wheezing illness: early wheezing (not after 18 months); late onset wheezing (after 18 months); persistent wheezing (at every time period); recurrent wheezing (any combination of two or more episodes for each period); and intermittent wheezing (any combination of single episodes of reported wheezing). These categories were stratified according to parental self reported asthma or allergy.
Unadjusted comparisons of the defined wheezing illnesses in vaccinated and non-vaccinated children showed no significant association between pertussis vaccination and any of the wheezing outcomes regardless of stratification for parental asthma or allergy. Wheeze was more common in non-vaccinated children at 18 months, and there was a tendency for late onset wheezing to be associated with non-vaccination in children whose parents did not have asthma, but this was not significant. After adjustment for environmental and biological variables, logistic regression analyses showed no significant increased relative risk for any of the wheezing outcomes in vaccinated children: early wheezing (0.99, 95% confidence interval 0.80 to 1.23), late onset wheezing (0.85, 0.69 to 1.05), persistent wheezing (0.91, 0.47 to 1.79), recurrent wheezing (0.96, 0.72 to 1.26), and intermittent wheezing (1.06, 0.81 to 1.37).
No evidence was found that pertussis vaccination increases the risk of wheezing illnesses in young children. Further follow up of this population with objective measurement of allergy and bronchial responsiveness is planned to confirm these observations.
Key messagesPertussis vaccination has been proposed as a risk factor for the development of asthma and atopyThere was no evidence for increased wheezing illnesses in young children who were vaccinated against pertussis compared with non-vaccinated childrenFollow up studies of this population will help to further clarify the relation between early infections and vaccination and the development of atopic diseases, including asthmaLarge scale longitudinal studies beginning in pregnancy offer the opportunity to examine complex interactions between genetics and the environment in the cause of common childhood diseases
PMCID: PMC27852  PMID: 10221941
8.  Characterisation of atopic and non-atopic wheeze in 10 year old children 
Thorax  2004;59(7):563-568.
Background: Wheezing occurs in both atopic and non-atopic children. The characteristics of atopic and non-atopic wheeze in children at 10 years of age were assessed and attempts made to identify whether different mechanisms underlie these states.
Methods: Children were seen at birth and at 1, 2, 4 and 10 years of age in a whole population birth cohort study (n = 1456; 1373 seen at 10 years). Information was collected prospectively on inherited and early life environmental risk factors for wheezing. Skin prick testing, spirometry, and methacholine bronchial challenge were conducted at 10 years. Wheezing at 10 years of age was considered atopic or non-atopic depending on the results of the skin prick test. Independent significant risk factors for atopic and non-atopic wheeze were determined by logistic regression.
Results: Atopic (10.9%) and non-atopic (9.7%) wheeze were equally common at 10 years of age. Greater bronchial hyperresponsiveness (p<0.001) and airways obstruction (p = 0.011) occurred in children with atopic wheeze than in those with non-atopic wheeze at 10 years. Children with atopic wheeze more often received treatment (p<0.001) or an asthma diagnosis for their disorder, although current morbidity at 10 years differed little for these states. Maternal asthma and recurrent chest infections at 2 years were independently significant factors for developing non-atopic wheeze. For atopic wheeze, sibling asthma, eczema at 1 year, rhinitis at 4 years, and male sex were independently significant.
Conclusions: Non-atopic wheeze is as common as atopic wheeze in children aged 10 years, but treatment is more frequent in those with atopic wheeze. Different risk factor profiles appear relevant to the presence of atopic and non-atopic wheeze at 10 years of age.
PMCID: PMC1747084  PMID: 15223861
Thorax  2013;68(4):372-379.
Obesity and asthma have increased in westernised countries. Maternal obesity may increase childhood asthma risk. If this relation is causal it may be mediated through factors associated with maternal adiposity, such as fetal development, pregnancy complications or infant adiposity. We investigated the relationships of maternal BMI and fat mass with childhood wheeze and examined the influences of infant weight gain and childhood obesity.
Maternal pre-pregnancy BMI and estimated fat mass (from skinfold thicknesses) were related to asthma, wheeze and atopy in 940 children. Transient or persistent/late wheeze was classified using questionnaire data collected at ages 6, 12, 24 and 36 months and 6 years. At 6 years, skin prick testing was conducted and exhaled nitric oxide and spirometry measured. Infant adiposity gain was calculated from skinfold thickness at birth and 6 months.
Greater maternal BMI and fat mass were associated with increased childhood wheeze (RR 1.08 per 5 kg m−2, p=0.006; RR 1.09 per 10 kg, p=0.003); these reflected associations with transient wheeze (RR 1.11, p=0.003; RR 1.13, p=0.002, respectively) but not with persistent wheeze or asthma. Infant adiposity gain was associated with persistent wheeze but not significantly. Adjusting for infant adiposity gain or BMI at 3 or 6 years did not reduce the association between maternal adiposity and transient wheeze. Maternal adiposity was not associated with offspring atopy, exhaled nitric oxide, or spirometry.
Greater maternal adiposity is associated with transient wheeze but not asthma or atopy, suggesting effects upon airway structure/function but not allergic predisposition.
PMCID: PMC3661999  PMID: 23291350
adiposity; body mass index; obesity; asthma; allergic sensitisation
10.  Peak flow variability, methacholine responsiveness and atopy as markers for detecting different wheezing phenotypes in childhood 
Thorax  1997;52(11):946-952.
BACKGROUND: There is increasing evidence that wheezing during childhood may be a heterogeneous condition, and that different forms of wheezing may be associated with different risk factors and prognosis. The aim of this study was to determine if measures of airway lability and of atopy could identify distinct wheezing phenotypes during childhood. METHOD: In a cohort of children followed from birth peak flow variability (n = 600) was evaluated and methacholine challenge responsiveness (n = 397) was measured at age 11 in relation to wheezing before the age of three, and at age six and 11 years total serum IgE and skin test reactivity to allergens were determined. RESULTS: Neither positive peak flow variability nor methacholine hyperresponsiveness measured at age 11 were associated with wheezing occurring only during the first three years of life. Both methacholine hyperresponsiveness and positive peak flow variability were associated with wheezing at both ages six and 11 (OR 5.1 (95% CI 2.4 to 10.6) and 2.3 (1.2 to 4.5), respectively). In addition, positive peak flow variability was associated with wheezing up to the age of six but not at age 11 in non-atopic children (OR 2.9 (95% CI 1.0 to 8.8)). Methacholine hyperresponsiveness measured at age 11 was more frequently observed in boys (OR 2.1 (95% CI 1.2 to 3.5)) and was strongly associated with serum IgE levels measured at ages six and 11 (p < 0.001) and with positive skin test reactivity (OR 4.5 (95% CI 2.0 to 10.1)). Peak flow variability was unrelated to sex or markers of atopy (IgE and skin test reactivity). CONCLUSIONS: Methacholine responsiveness and peak flow variability assessed at age 11, together with markers of atopy (IgE and skin test reactivity to allergens) identify three different wheezing phenotypes in childhood: "transient early wheezing" limited to the first three years of life and unrelated to increased airway lability; "non-atopic wheezing" of the toddler and early school years associated with positive peak flow variability but not with methacholine hyperresponsiveness; and "IgE-associated wheeze/asthma" associated with persistent wheezing at any age and with methacholine hyperresponsiveness, peak flow variability, and markers of atopy. 

PMCID: PMC1758449  PMID: 9487341
Environment international  2009;35(6):877-884.
The main goal of the paper was to assess the pattern of risk factors having an impact on the onset of early wheezing phenotypes in the birth cohort of 468 two-year olds and to investigate the severity of respiratory illness in the two-year olds in relation to both wheezing phenotypes, environmental tobacco smoke (ETS) and personal PM2.5 exposure over pregnancy period (fine particulate matter). The secondary goal of the paper was to assess possible association of early persistent wheezing with the length of the baby at birth. Pregnant women were recruited from ambulatory prenatal clinics in the first and second trimester of pregnancy. Only women 18–35 years of age, who claimed to be non-smokers, with singleton pregnancies, without illicit drug use and HIV infection, free from chronic diseases were eligible for the study. In the statistical analysis of respiratory health of children multinomial logistic regression and zero-inflated Poisson regression models were used. Approximately one third of the children in the study sample experienced wheezing in the first two years of life and in about two third of cases (67%) the symptom developed already in the first year of life. The early wheezing was easily reversible and in about 70% of infants with wheezing the symptom receded in the second year of life. The adjusted relative risk ratio (RRR) of persistent wheezing increased with maternal atopy (RRR = 3.05; 95%CI: 1.30 – 7.15), older siblings (RRR = 3.05; 95%CI: 1.67 – 5.58) and prenatal ETS exposure (RRR= 1.13; 95%CI: 1.04 – 1.23), but was inversely associated with the length of baby at birth (RRR = 0.88; 95%CI: 0.76 – 1.01). The adjusted incidence risk ratios (IRR) of coughing, difficult breathing, runny/stuffy nose and pharyngitis/tonsillitis in wheezers were much higher than that observed among non-wheezers and significantly depended on prenatal PM2.5 exposure, older siblings and maternal atopy. The study shows a clear inverse association between maternal age or maternal education and respiratory illnesses and calls for more research efforts aiming at explanation of factors hidden behind proxy measures of quality of maternal care of babies. The data support the hypothesis that burden of respiratory symptoms in early childhood and possibly in later life may be programmed already in prenatal period when the respiratory system is completing its growth and maturation.
PMCID: PMC2709737  PMID: 19394697
wheezing phenotypes; respiratory symptoms; prenatal and postnatal environmental air quality; birth cohort study
12.  Higher Risk of Wheeze in Female than Male Smokers. Results from the Swedish GA2LEN Study 
PLoS ONE  2013;8(1):e54137.
Women who smoke have higher risk of lung function impairment, COPD and lung cancer than smoking men. An influence of sex hormones has been demonstrated, but the mechanisms are unclear and the associations often subject to confounding. This was a study of wheeze in relation to smoking and sex with adjustment for important confounders.
In 2008 the Global Allergy and Asthma European Network (GA2LEN) questionnaire was mailed to 45.000 Swedes (age 16–75 years), and 26.851 (60%) participated. “Any wheeze”: any wheeze during the last 12 months. “Asthmatic wheeze”: wheeze with breathlessness apart from colds.
Any wheeze and asthmatic wheeze was reported by 17.3% and 7.1% of women, vs. 15.8% and 6.1% of men (both p<0.001). Although smoking prevalence was similar in both sexes, men had greater cumulative exposure, 16.2 pack-years vs. 12.8 in women (p<0.001). Most other exposures and characteristics associated with wheeze were significantly overrepresented in men. Adjusted for these potential confounders and pack-years, current smoking was a stronger risk factor for any wheeze in women aged <53 years, adjusted odds ratio (aOR) 1.85 (1.56–2.19) vs. 1.60 (1.30–1.96) in men. Cumulative smoke exposure and current smoking each interacted significantly with female sex, aOR 1.02 per pack-year (p<0.01) and aOR 1.28 (p = 0.04) respectively. Female compared to male current smokers also had greater risk of asthmatic wheeze, aOR 1.53 vs. 1.03, interaction aOR 1.52 (p = 0.02). These interactions were not seen in age ≥53 years.
In addition to the increased risk of COPD and lung cancer female, compared to male, smokers are at greater risk of significant wheezing symptoms in younger age. This became clearer after adjustment for important confounders including cumulative smoke exposure. Estrogen has previously been shown to increase the bioactivation of several compounds in tobacco smoke, which may enhance smoke-induced airway inflammation in fertile women.
PMCID: PMC3554721  PMID: 23357876
13.  Wheeze associated with prenatal tobacco smoke exposure: a prospective, longitudinal study 
Archives of Disease in Childhood  2000;83(4):307-312.
AIMS—To determine whether maternal smoking during pregnancy is a risk factor for reported wheeze in early childhood that is independent of postnatal environmental tobacco smoke (ETS) exposure and other known risk factors.
METHODS—A total of 8561 mothers and infants completed questions about smoking during pregnancy, ETS exposure, and the mother's recall of wheeze during early childhood.
RESULTS—A total of 1869 (21.8%) children had reported wheeze between 18 and 30 months of age, and 3496 (40.8%) had reported wheeze in one or more of the three study periods (birth to 6 months, 6-18 months, 18-30 months). The risk of wheeze between 18 and 30 months of age was higher if the mother smoked during pregnancy. This relation did not show a dose-response effect and became less obvious after adjustment for the effects of other factors. Average daily duration of ETS exposure reported at 6 months of age showed a dose-response effect and conferred a similar risk of reported wheeze. Factors associated with early childhood wheeze had the following adjusted odds ratios: maternal history of asthma 2.03(1.74 to 2.37); preterm delivery 1.66 (1.30 to 2.13); male sex 1.42 (1.28 to 1.59); rented accommodation 1.29 (1.11 to 1.51); and each additional child in household 1.13 (1.04 to 1.24).
CONCLUSIONS—Maternal smoking during pregnancy may be a risk factor for reported wheeze during early childhood that is independent of postnatal ETS exposure. For wheeze between 18 and 30 months of age, light smoking during the third trimester of pregnancy appears to confer the same risk as heavier smoking.

PMCID: PMC1718491  PMID: 10999864
14.  Preterm Birth and Childhood Wheezing Disorders: A Systematic Review and Meta-Analysis 
PLoS Medicine  2014;11(1):e1001596.
In a systematic review and meta-analysis, Jasper Been and colleagues investigate the association between preterm birth and the development of wheezing disorders in childhood.
Please see later in the article for the Editors' Summary
Accumulating evidence implicates early life factors in the aetiology of non-communicable diseases, including asthma/wheezing disorders. We undertook a systematic review investigating risks of asthma/wheezing disorders in children born preterm, including the increasing numbers who, as a result of advances in neonatal care, now survive very preterm birth.
Methods and Findings
Two reviewers independently searched seven online databases for contemporaneous (1 January 1995–23 September 2013) epidemiological studies investigating the association between preterm birth and asthma/wheezing disorders. Additional studies were identified through reference and citation searches, and contacting international experts. Quality appraisal was undertaken using the Effective Public Health Practice Project instrument. We pooled unadjusted and adjusted effect estimates using random-effects meta-analysis, investigated “dose–response” associations, and undertook subgroup, sensitivity, and meta-regression analyses to assess the robustness of associations.
We identified 42 eligible studies from six continents. Twelve were excluded for population overlap, leaving 30 unique studies involving 1,543,639 children. Preterm birth was associated with an increased risk of wheezing disorders in unadjusted (13.7% versus 8.3%; odds ratio [OR] 1.71, 95% CI 1.57–1.87; 26 studies including 1,500,916 children) and adjusted analyses (OR 1.46, 95% CI 1.29–1.65; 17 studies including 874,710 children). The risk was particularly high among children born very preterm (<32 wk gestation; unadjusted: OR 3.00, 95% CI 2.61–3.44; adjusted: OR 2.81, 95% CI 2.55–3.12). Findings were most pronounced for studies with low risk of bias and were consistent across sensitivity analyses. The estimated population-attributable risk of preterm birth for childhood wheezing disorders was ≥3.1%.
Key limitations related to the paucity of data from low- and middle-income countries, and risk of residual confounding.
There is compelling evidence that preterm birth—particularly very preterm birth—increases the risk of asthma. Given the projected global increases in children surviving preterm births, research now needs to focus on understanding underlying mechanisms, and then to translate these insights into the development of preventive interventions.
Review Registration
PROSPERO CRD42013004965
Please see later in the article for the Editors' Summary
Editors' Summary
Most pregnancies last around 40 weeks, but worldwide, more than 11% of babies are born before 37 weeks of gestation (the period during which a baby develops in its mother's womb). Preterm birth is a major cause of infant death—more than 1 million babies die annually from preterm birth complications—and the number of preterm births is increasing globally. Multiple pregnancies, infections, and chronic (long-term) maternal conditions such as diabetes can all cause premature birth, but the cause of many preterm births is unknown. The most obvious immediate complication that is associated with preterm birth is respiratory distress syndrome. This breathing problem, which is more common in early preterm babies than in near-term babies, occurs because the lungs of premature babies are structurally immature and lack pulmonary surfactant, a unique mixture of lipids and proteins that coats the inner lining of the lungs and helps to prevent the collapse of the small air sacs in the lungs that absorb oxygen from the air. Consequently, preterm babies often need help with their breathing and oxygen supplementation.
Why Was This Study Done?
Improvements in the management of prematurity mean that more preterm babies survive today than in the past. However, accumulating evidence suggests that early life events are involved in the subsequent development of non-communicable diseases (non-infectious chronic diseases). Given the increasing burden of preterm birth, a better understanding of the long-term effects of preterm birth is essential. Here, the researchers investigate the risks of asthma and wheezing disorders in children who are born preterm by undertaking a systematic review (a study that uses predefined criteria to identify all the research on a given topic) and a meta-analysis (a statistical method for combining the results of several studies). Asthma is a chronic condition that is caused by inflammation of the airways. In people with asthma, the airways can react very strongly to allergens such as animal fur and to irritants such as cigarette smoke. Exercise, cold air, and infections can also trigger asthma attacks, which can sometimes be fatal. The symptoms of asthma include wheezing (a high-pitched whistling sound during breathing), coughing, chest tightness, and shortness of breath. Asthma cannot be cured, but drugs can relieve its symptoms and prevent acute asthma attacks.
What Did the Researchers Do and Find?
The researchers identified 30 studies undertaken between 1995 and the present (a time span chosen to allow for recent changes in the management of prematurity) that investigated the association between preterm birth and asthma/wheezing disorders in more than 1.5 million children. Across the studies, 13.7% of preterm babies developed asthma/wheezing disorders during childhood, compared to only 8.3% of babies born at term. Thus, the risk of preterm babies developing asthma or a wheezing disorder during childhood was 1.71 times higher than the risk of term babies developing these conditions (an unadjusted odds ratio [OR] of 1.71). In analyses that allowed for confounding factors—other factors that affect the risk of developing asthma/wheezing disorders such as maternal smoking—the risk of preterm babies developing asthma or a wheezing disorder during childhood was 1.46 times higher than that of babies born at term (an adjusted OR of 1.46). Notably, compared to children born at term, children born very early (before 32 weeks of gestation) had about three times the risk of developing asthma/wheezing disorders in unadjusted and adjusted analyses. Finally, the population-attributable risk of preterm birth for childhood wheezing disorders was more than 3.1%. That is, if no preterm births had occurred, there would have been more than a 3.1% reduction in childhood wheezing disorders.
What Do These Findings Mean?
These findings strongly suggest that preterm birth increases the risk of asthma and wheezing disorders during childhood and that the risk of asthma/wheezing disorders increases as the degree of prematurity increases. The accuracy of these findings may be affected, however, by residual confounding. That is, preterm children may share other, unknown characteristics that increase their risk of developing asthma/wheezing disorders. Moreover, the generalizability of these findings is limited by the lack of data from low- and middle-income countries. However, given the projected global increases in children surviving preterm births, these findings highlight the need to undertake research into the mechanisms underlying the association between preterm birth and asthma/wheezing disorders and the need to develop appropriate preventative and therapeutic measures.
Additional Information
Please access these websites via the online version of this summary at
The March of Dimes, a nonprofit organization for pregnancy and baby health, provides information on preterm birth (in English and Spanish)
Nemours, another nonprofit organization for child health, also provides information (in English and Spanish) on premature babies and on asthma (including personal stories)
The UK National Health Service Choices website provides information about premature labor and birth and a real story about having a preterm baby; it provides information about asthma in children (including real stories)
The MedlinePlus Encyclopedia has pages on preterm birth, asthma, asthma in children, and wheezing (in English and Spanish); MedlinePlus provides links to further information on premature birth, asthma, and asthma in children (in English and Spanish)
PMCID: PMC3904844  PMID: 24492409
15.  Developmental Profiles of Eczema, Wheeze, and Rhinitis: Two Population-Based Birth Cohort Studies 
PLoS Medicine  2014;11(10):e1001748.
Using data from two population-based birth cohorts, Danielle Belgrave and colleagues examine the evidence for atopic march in developmental profiles for allergic disorders.
Please see later in the article for the Editors' Summary
The term “atopic march” has been used to imply a natural progression of a cascade of symptoms from eczema to asthma and rhinitis through childhood. We hypothesize that this expression does not adequately describe the natural history of eczema, wheeze, and rhinitis during childhood. We propose that this paradigm arose from cross-sectional analyses of longitudinal studies, and may reflect a population pattern that may not predominate at the individual level.
Methods and Findings
Data from 9,801 children in two population-based birth cohorts were used to determine individual profiles of eczema, wheeze, and rhinitis and whether the manifestations of these symptoms followed an atopic march pattern. Children were assessed at ages 1, 3, 5, 8, and 11 y. We used Bayesian machine learning methods to identify distinct latent classes based on individual profiles of eczema, wheeze, and rhinitis. This approach allowed us to identify groups of children with similar patterns of eczema, wheeze, and rhinitis over time.
Using a latent disease profile model, the data were best described by eight latent classes: no disease (51.3%), atopic march (3.1%), persistent eczema and wheeze (2.7%), persistent eczema with later-onset rhinitis (4.7%), persistent wheeze with later-onset rhinitis (5.7%), transient wheeze (7.7%), eczema only (15.3%), and rhinitis only (9.6%). When latent variable modelling was carried out separately for the two cohorts, similar results were obtained. Highly concordant patterns of sensitisation were associated with different profiles of eczema, rhinitis, and wheeze. The main limitation of this study was the difference in wording of the questions used to ascertain the presence of eczema, wheeze, and rhinitis in the two cohorts.
The developmental profiles of eczema, wheeze, and rhinitis are heterogeneous; only a small proportion of children (∼7% of those with symptoms) follow trajectory profiles resembling the atopic march.
Please see later in the article for the Editors' Summary
Editors' Summary
Our immune system protects us from viruses, bacteria, and other pathogens by recognizing specific molecules on the invader's surface and initiating a sequence of events that culminates in the death of the pathogen. Sometimes, however, our immune system responds to harmless materials (allergens such as pollen) and triggers allergic, or atopic, symptoms. Common atopic symptoms include eczema (transient dry itchy patches on the skin), wheeze (high pitched whistling in the chest, a symptom of asthma), and rhinitis (sneezing or a runny nose in the absence of a cold or influenza). All these symptoms are very common during childhood, but recent epidemiological studies (examinations of the patterns and causes of diseases in a population) have revealed age-related changes in the proportions of children affected by each symptom. So, for example, eczema is more common in infants than in school-age children. These findings have led to the idea of “atopic march,” a natural progression of symptoms within individual children that starts with eczema, then progresses to wheeze and finally rhinitis.
Why Was This Study Done?
The concept of atopic march has led to the initiation of studies that aim to prevent the development of asthma in children who are thought to be at risk of asthma because they have eczema. Moreover, some guidelines recommend that clinicians tell parents that children with eczema may later develop asthma or rhinitis. However, because of the design of the epidemiological studies that support the concept of atopic march, children with eczema who later develop wheeze and rhinitis may actually belong to a distinct subgroup of children, rather than representing the typical progression of atopic diseases. It is important to know whether atopic march adequately describes the natural history of atopic diseases during childhood to avoid the imposition of unnecessary strategies on children with eczema to prevent asthma. Here, the researchers use machine learning techniques to model the developmental profiles of eczema, wheeze, and rhinitis during childhood in two large population-based birth cohorts by taking into account time-related (longitudinal) changes in symptoms within individuals. Machine learning is a data-driven approach that identifies structure within the data (for example, a typical progression of symptoms) using unsupervised learning of latent variables (variables that are not directly measured but are inferred from other observable characteristics).
What Did the Researchers Do and Find?
The researchers used data from two UK birth cohorts—the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Manchester Asthma and Allergy Study (MAAS)—for their study (9,801 children in total). Both studies enrolled children at birth and monitored their subsequent health at regular review clinics. At each review clinic, information about eczema, wheeze, and rhinitis was collected from the parents using validated questionnaires. The researchers then used these data and machine learning methods to identify groups of children with similar patterns of onset of eczema, wheeze, and rhinitis over the first 11 years of life. Using a type of statistical model called a latent disease profile model, the researchers found that the data were best described by eight latent classes—no disease (51.3% of the children), atopic march (3.1%), persistent eczema and wheeze (2.7%), persistent eczema with later-onset rhinitis (4.7%), persistent wheeze with later-onset rhinitis (5.7%), transient wheeze (7.7%), eczema only (15.3%), and rhinitis only (9.6%).
What Do These Findings Mean?
These findings show that, in two large UK birth cohorts, the developmental profiles of eczema, wheeze, and rhinitis were heterogeneous. Most notably, the progression of symptoms fitted the profile of atopic march in fewer than 7% of children with symptoms. The researchers acknowledge that their study has some limitations. For example, small differences in the wording of the questions used to gather information from parents about their children's symptoms in the two cohorts may have slightly affected the findings. However, based on their findings, the researchers propose that, because eczema, wheeze, and rhinitis are common, these symptoms often coexist in individuals, but as independent entities rather than as a linked progression of symptoms. Thus, using eczema as an indicator of subsequent asthma risk and assigning “preventative” measures to children with eczema is flawed. Importantly, clinicians need to understand the heterogeneity of patterns of atopic diseases in children and to communicate this variability to parents when advising them about the development and resolution of atopic symptoms in their children.
Additional Information
Please access these websites via the online version of this summary at
The UK National Health Service Choices website provides information about eczema (including personal stories), asthma (including personal stories), and rhinitis
The US National Institute of Allergy and Infectious Diseases provides information about atopic diseases
The UK not-for-profit organization Allergy UK provides information about atopic diseases and a description of the atopic march
MedlinePlus encyclopedia has pages on eczema, wheezing, and rhinitis (in English and Spanish)
MedlinePlus provides links to further resources about allergies, eczema, and asthma (in English and Spanish)
Information about ALSPAC and MAAS is available
Wikipedia has pages on machine learning and latent disease profile models (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC4204810  PMID: 25335105
16.  Differences between infants and adults in the social aetiology of wheeze. The ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood 
OBJECTIVES: To compare the relation between relative deprivation, its associated social risk factors and the prevalence of wheeze in infancy and in adulthood. DESIGN: A cross sectional population study. SETTING: The three District Health Authorities of Bristol. SUBJECTS: A random sample of 1954 women stratified by age and housing tenure to be representative of women with children < 1 in Great Britain and selected from the Avon Longitudinal Study of Pregnancy and Childhood (ALSPAC). MAIN OUTCOME MEASURES: The prevalence of wheeze for infants at six months after birth and for their mothers and fathers at eight months postpartum. Potential mediators of the relation between relative deprivation and wheeze measured were overcrowded living conditions, number of other siblings in the household, damp or mouldy housing conditions, maternal and paternal smoking behaviour, and infant feeding practice. RESULTS: 63.4% (1239) of the sample lived in owner occupied/mortgaged accommodation (relatively affluent) and 36.6% (715) lived in council house/rented accommodation (relatively deprived). Wheeze was significantly more likely for infants living in council house/rented accommodation (chi 2 = 15.93, df = 1, p < 0.0001), their mothers (chi 2 = 9.28, df = 1, p < 0.001) and their fathers (chi 2 = 7.41, df = 1, p < 0.01). For those living in council house/rented accommodation backward stepwise logistic regression analyses showed that infants with other siblings in the household were significantly more likely to wheeze (OR = 1.83, 95% CI = 1.27, 2.65), as were infants whose mothers smoked (OR = 1.82, 95% CI = 1.30, 2.55) and those who were breast fed for less than three months (OR = 0.66, 95% CI = 0.44, 0.98). Mothers with a partner who smoked were significantly more likely to report wheeze (OR = 1.73, 95% CI = 1.05, 2.85). There was no independent association between the social factors included in the analysis and the likelihood of wheeze for fathers. CONCLUSIONS: This study identified differences in the social factors associated with a higher prevalence of wheeze in infancy and in adulthood; results suggested that this symptom was commonly linked to infection in infancy, but not in adulthood. While environmental tobacco smoke was associated with a higher prevalence of wheeze in infancy and in adulthood, this does not necessarily indicate a common underlying mechanism; possible explanations are discussed.
PMCID: PMC1756779  PMID: 10616676
17.  Frequent use of chemical household products is associated with persistent wheezing in pre-school age children 
Thorax  2005;60(1):45-49.
Background: In the UK and other developed countries the prevalence of asthma symptoms has increased in recent years. This is likely to be the result of increased exposure to environmental factors. A study was undertaken to investigate the association between maternal use of chemical based products in the prenatal period and patterns of wheeze in early childhood.
Methods: In the population based Avon Longitudinal Study of Parents and Children (ALSPAC), the frequency of use of 11 chemical based domestic products was determined from questionnaires completed by women during pregnancy and a total chemical burden (TCB) score was derived. Four mutually exclusive wheezing patterns were defined for the period from birth to 42 months based on parental questionnaire responses (never wheezed, transient early wheeze, persistent wheeze, and late onset wheeze). Multinomial logistic regression models were used to assess the relationship between these wheezing outcomes and TCB exposure while accounting for numerous potential confounding variables. Complete data for analysis was available for 7019 of 13 971 (50%) children.
Results: The mean (SD) TCB score was 9.4 (4.1), range 0–30. Increased use of domestic chemical based products was associated with persistent wheezing during early childhood (adjusted odds ratio (OR) per unit increase of TCB 1.06 (95% confidence interval (CI) 1.03 to 1.09)) but not with transient early wheeze or late onset wheeze. Children whose mothers had high TCB scores (>90th centile) were more than twice as likely to wheeze persistently throughout early childhood than children whose mothers had a low TCB score (<10th centile) (adjusted OR 2.3 (95% CI 1.2 to 4.4)).
Conclusion: These findings suggest that frequent use of chemical based products in the prenatal period is associated with persistent wheezing in young children. Follow up of this cohort is underway to determine whether TCB is associated with wheezing, asthma, and atopy at later stages in childhood.
PMCID: PMC1747149  PMID: 15618582
18.  IL13 gene polymorphisms modify the effect of exposure to tobacco smoke on persistent wheeze and asthma in childhood, a longitudinal study 
Respiratory Research  2008;9(1):2.
Tobacco smoke and genetic susceptibility are risk factors for asthma and wheezing. The aim of this study was to investigate whether there is a combined effect of interleukin-13 gene (IL13) polymorphisms and tobacco smoke on persistent childhood wheezing and asthma.
In the Isle of Wight birth cohort (UK, 1989–1999), five IL13 single nucleotide polymorphisms (SNPs): rs1800925 (-1112C/T), rs2066960, rs1295686, rs20541 (R130Q) and rs1295685 were genotyped. Parents were asked whether their children had wheezed in the last 12 months at ages 1, 2, 4 and 10 years. Children who reported wheeze in the first 4 years of life and also had wheezing at age 10 were classified as early-onset persistent wheeze phenotype; non-wheezers never wheezed up to age 10. Persistent asthma was defined as having a diagnosis of asthma both during the first four years of life and at age 10. Logistic regression methods were used to analyze data on 791 children with complete information. Potential confounders were gender, birth weight, duration of breast feeding, and household cat or dog present during pregnancy.
Maternal smoking during pregnancy was associated with early-onset persistent wheeze (OR 2.93, p < 0.0001); polymorphisms in IL13 were not (OR 1.15, p = 0.60 for the common haplotype pair). However, the effect of maternal smoking during pregnancy was stronger in children with the common IL13 haplotype pair compared to those without it (OR 5.58 and OR 1.29, respectively; p for interaction = 0.014). Single SNP analysis revealed a similar statistical significance for rs20541 (p for interaction = 0.02). Comparable results were observed for persistent childhood asthma (p for interaction = 0.03).
This is the first report that shows a combined effect of in utero exposure to smoking and IL13 on asthma phenotypes in childhood. The results emphasize that genetic studies need to take environmental exposures into account, since they may explain contradictory findings.
PMCID: PMC2265286  PMID: 18186920
19.  Outcome of Asthma and Wheezing in the First 6 Years of Life 
Rationale: The effect of early life wheezing on respiratory function and continued symptoms through adolescence has not been fully described. Using data from a population-based birth cohort in Tucson, Arizona, we previously described four phenotypes based on the occurrence of wheezing lower respiratory illnesses before age 3 yr and active wheeze at age 6 yr: never wheezers (n = 425), transient early wheezers (n = 164), persistent wheezers (n = 113), and late-onset wheezers (n = 124).
Objective: We sought to determine the prognosis for these phenotypes, with reference to lung function and symptoms, through adolescence.
Methods: Current wheeze was assessed by questionnaire, lung function was measured by conventional spirometry, and atopy was determined by skin prick tests.
Results: The prevalence of atopy and wheeze by age 16 yr was similar for never and transient wheezers and for persistent and late-onset wheezers. Both transient early, and persistent wheezers had significantly lower FEF25–75 (–259 ml/s, p < 0.001, and –260 ml/s, p = 0.001, respectively), FEV1 (–75 ml, p = 0.02, and –87 ml, p = 0.03, respectively), and FEV1:FVC ratio (–1.9%, p = 0.002, and –2.5%, p = 0.001, respectively) through age 16 yr compared with never wheezers. Late-onset wheezers had levels of lung function similar to those of never wheezers through age 16 yr. There was no significant change in lung function among subjects with any of the four phenotypes, relative to their peers, from age 6 to 16 yr.
Conclusion: Patterns of wheezing prevalence and levels of lung function are established by age 6 yr and do not appear to change significantly by age 16 yr in children who start having asthmalike symptoms during the preschool years.
PMCID: PMC2718414  PMID: 16109980
adolescent; preschool child; respiratory function tests
The main goal of the study was to determine the relationship between prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) measured by PAH-DNA adducts in umbilical cord blood and early wheeze. The level of PAH-DNA adducts in the cord blood is assumed to reflect the cumulative dose of PAHs absorbed by the fetus over the prenatal period. The effect of prenatal PAH exposure on respiratory health measured by the incidence rate ratio (IRR) for the number of wheezing days in the subsequent four year follow-up was adjusted for potential confounding factors such as personal prenatal exposure to fine particulate matter (PM2.5), environmental tobacco smoke (ETS), gender of child, maternal characteristics (age, education and atopy), parity, and mold/dampness in the home. The study sample includes 339 newborns of non-smoking mothers 18-35 years of age and free from chronic diseases, who were recruited from ambulatory prenatal clinics in the first or second trimester of pregnancy. The number of wheezing days during the first two years of life was positively associated with prenatal level of PAH-DNA adducts (IRR = 1.69, 95%CI = 1.52 – 1.88), prenatal particulate matter (PM2.5) level dichotomized by the median (IRR = 1.38; 95%CI: 1.25 – 1.51), maternal atopy (IRR = 1.43; 95%CI: 1.29 – 1.58), moldy/damp house (IRR = 1.43; 95%CI: 1.27 – 1.61). The level of maternal education and maternal age at delivery were inversely associated with the IRRs for wheeze. The significant association between frequency of wheeze and the level of prenatal environmental hazards (PAHs and PM2.5) was not observed at ages 3 or 4 years. Although the frequency of wheezing at ages 3 or 4 years was no longer associated with prenatal exposure to PAHs and PM2.5, its occurrence depended on the presence of wheezing in the first two years of life, which nearly tripled the risk of wheezing in later life. In conclusion, the findings may suggest that driving force for early wheezing (<24 months of age) are different to those leading to later onset of wheeze. As we reported no synergistic effects between prenatal PAH (measured by PAH-DNA adducts) and PM2.5 exposures on early wheeze, this suggests the two exposures may exert independent effects via different biological mechanism on wheeze.
PMCID: PMC3683604  PMID: 20444151
prenatal exposure to polycyclic aromatic hydrocarbons; biomarkers of exposure; DNA adducts; early wheeze; 4-year olds; birth cohort study
21.  Maternal Plasma Phosphatidylcholine Fatty Acids and Atopy and Wheeze in the Offspring at Age of 6 Years 
Variation in exposure to polyunsaturated fatty acids (PUFAs) might influence the development of atopy, asthma, and wheeze. This study aimed to determine whether differences in PUFA concentrations in maternal plasma phosphatidylcholine are associated with the risk of childhood wheeze or atopy. For 865 term-born children, we measured phosphatidylcholine fatty acid composition in maternal plasma collected at 34 weeks' gestation. Wheezing was classified using questionnaires at 6, 12, 24, and 36 months and 6 years. At age of 6 years, the children underwent skin prick testing, fractional exhaled nitric oxide (FENO) measurement, and spirometry. Maternal n-6 fatty acids and the ratio of n-3 to n-6 fatty acids were not associated with childhood wheeze. However, higher maternal eicosapentaenoic acid, docosahexaenoic acid, and total n-3 fatty acids were associated with reduced risk of non-atopic persistent/late wheeze (RR 0.57, 0.67 and 0.69, resp. P = 0.01, 0.015, and 0.021, resp.). Maternal arachidonic acid was positively associated with FENO (P = 0.024). A higher ratio of linoleic acid to its unsaturated metabolic products was associated with reduced risk of skin sensitisation (RR 0.82, P = 0.013). These associations provide some support for the hypothesis that variation in exposure to n-6 and n-3 fatty acids during pregnancy influences the risk of childhood wheeze and atopy.
PMCID: PMC3463812  PMID: 23049600
22.  Association between breast feeding and asthma in 6 year old children: findings of a prospective birth cohort study 
BMJ : British Medical Journal  1999;319(7213):815-819.
To investigate the association between the duration of exclusive breast feeding and the development of asthma related outcomes in children at age 6 years.
Prospective cohort study.
Western Australia.
2187 children ascertained through antenatal clinics at the major tertiary obstetric hospital in Perth and followed to age 6 years.
Main outcome measures
Unconditional logistic regression to model the association between duration of exclusive breast feeding and outcomes related to asthma or atopy at 6 years of age, allowing for several important confounders: sex, gestational age, smoking in the household, and early childcare.
After adjustment for confounders, the introduction of milk other than breast milk before 4 months of age was a significant risk factor for all asthma and atopy related outcomes in children aged 6 years: asthma diagnosed by a doctor (odds ratio 1.25, 95% confidence interval 1.02 to 1.52); wheeze three or more times since 1 year of age (1.41, 1.14 to 1.76); wheeze in the past year (1.31, 1.05 to 1.64); sleep disturbance due to wheeze within the past year (1.42, 1.07 to 1.89); age when doctor diagnosed asthma (hazard ratio 1.22, 1.03 to 1.43); age at first wheeze (1.36, 1.17 to 1.59); and positive skin prick test reaction to at least one common aeroallergen (1.30, 1.04 to 1.61).
A significant reduction in the risk of childhood asthma at age 6 years occurs if exclusive breast feeding is continued for at least the 4 months after birth. These findings are important for our understanding of the cause of childhood asthma and suggest that public health interventions to optimise breast feeding may help to reduce the community burden of childhood asthma and its associated traits.
Key messagesAsthma is the leading cause of admission to hospital in Australian children and its prevalence is increasingWhether breast feeding protects against asthma or atopy, or both, is controversialAsthma is a complex disease, and the relative risks between breast feeding and asthma or atopy are unlikely to be large; this suggests the need for investigation in a large prospective birth cohort with timely assessment of atopic outcomes and all relevant exposuresExclusive breast feeding for at least 4 months is associated with a significant reduction in the risk of asthma and atopy at age 6 years and with a significant delay in the age at onset of wheezing and asthma being diagnosed by a doctorPublic health interventions to promote an increased duration of exclusive breast feeding may help to reduce the morbidity and prevalence of childhood asthma and atopy
PMCID: PMC314207  PMID: 10496824
23.  MMP-9 gene variants increase the risk for non-atopic asthma in children 
Respiratory Research  2010;11(1):23.
Atopic and non-atopic wheezing may be caused by different etiologies: while eosinophils are more important in atopic asthmatic wheezers, neutrophils are predominantly found in BAL samples of young children with wheezing. Both neutrophils as well as eosinophils may secrete matrix metalloproteinase 9 (MMP-9). Considering that MMP-9 plays an important role in airway wall thickening and airway inflammation, it may influence the development of obstructive airway phenotypes in children. In the present study we investigated whether genetic variations in MMP-9 influence the development of different forms of childhood asthma.
Genotyping of four HapMap derived tagging SNPs in the MMP-9 gene was performed using MALDI-TOF MS in three cross sectional study populations of German children (age 9-11; N = 4,264) phenotyped for asthma and atopic diseases according to ISAAC standard procedures. Effects of single SNPs and haplotypes were studied using SAS 9.1.3 and Haploview.
SNP rs2664538 significantly increased the risk for non-atopic wheezing (OR 2.12, 95%CI 1.40-3.21, p < 0.001) and non-atopic asthma (OR 1.66, 95%CI 1.12-2.46, p = 0.011). Furthermore, the minor allele of rs3918241 may be associated with decreased expiratory flow measurements in non-atopic children. No significant effects on the development of atopy or total serum IgE levels were observed.
Our results have shown that homozygocity for MMP-9 variants increase the risk to develop non-atopic forms of asthma and wheezing, which may be explained by a functional role of MMP-9 in airway remodeling. These results suggest that different wheezing disorders in childhood are affected differently by genetic alterations.
PMCID: PMC2838833  PMID: 20181264
24.  Asthma and allergies in Jamaican children aged 2–17 years: a cross-sectional prevalence survey 
BMJ Open  2012;2(4):e001132.
To determine the prevalence and severity of asthma and allergies as well as risk factors for asthma among Jamaican children aged 2–17 years.
A cross-sectional, community-based prevalence survey using the International Study of Asthma and Allergies in Childhood questionnaire. The authors selected a representative sample of 2017 children using stratified, multistage cluster sampling design using enumeration districts as primary sampling units.
Jamaica, a Caribbean island with a total population of approximately 2.6 million, geographically divided into 14 parishes.
Children aged 2–17 years, who were resident in private households. Institutionalised children such as those in boarding schools and hospitals were excluded from the survey.
Primary and secondary outcome measures
The prevalence and severity of asthma and allergy symptoms, doctor-diagnosed asthma and risk factors for asthma.
Almost a fifth (19.6%) of Jamaican children aged 2–17 years had current wheeze, while 16.7% had self-reported doctor-diagnosed asthma. Both were more common among males than among females. The prevalence of rhinitis, hay fever and eczema among children was 24.5%, 25% and 17.3%, respectively. Current wheeze was more common among children with rhinitis in the last 12 months (44.3% vs 12.6%, p<0.001), hay fever (36.8% vs 13.8%, p<0.001) and eczema (34.1% vs 16.4%, p<0.001). Independent risk factors for current wheeze (ORs, 95% CI) were chest infections in the first year of life 4.83 (3.00 to 7.77), parental asthma 4.19 (2.8 to 6.08), rhinitis in the last 12 months 6.92 (5.16 to 9.29), hay fever 4.82 (3.62 to 6.41), moulds in the home 2.25 (1.16 to 4.45), cat in the home 2.44 (1.66 to 3.58) and dog in the home 1.81 (1.18 to 2.78).
The prevalence of asthma and allergies in Jamaican children is high. Significant risk factors for asthma include chest infections in the first year of life, a history of asthma in the family, allergies, moulds and pets in the home.
Article summary
Article focus
The prevalence of asthma and allergies in both developed and developing countries is continuing to rise.
In some Caribbean countries, asthma is a public health problem associated with high economic costs.
This study determined the prevalence of asthma, allergy symptoms and associated risk factors.
Key messages
We demonstrated that the prevalence of asthma and allergy symptoms among Jamaican children aged 2–17 years is high.
Both the prevalence and severity of asthma symptoms are comparable to that reported among children in high-income countries.
Current wheeze and doctor-diagnosed asthma were more common in males and in children with allergies.
A history of asthma in the family, chest infections in the first year of life, allergies, exposure to moulds and pets in the home were associated with significant risk for asthma.
Identifying children at high risk for asthma and controlling modifiable risk factors is important in reducing the prevalence and morbidity related to asthma.
Strengths and limitations of this study
This is the first national study on asthma and allergies in Jamaica using a nationally representative sample of children with a response rate of 80%.
We used a modified ISAAC protocol in which sampling was done by household rather than by school. Using a population-based sampling strategy; we sampled one child and one adult per household. This approach enabled us to obtain national prevalence estimates for both adults and children in one survey at a reduced cost.
Limitations of this study include the fact that the prevalence of asthma and allergies was based solely on self-reports, no objective measures were done. Also in younger children, caregivers responded to questionnaires.
PMCID: PMC3400072  PMID: 22798254
25.  Particular characteristics of allergic symptoms in tropical environments: follow up to 24 months in the FRAAT birth cohort study 
Early wheezing and asthma are relevant health problems in the tropics. Mite sensitization is an important risk factor, but the roles of others, inherent in poverty, are unknown. We designed a birth-cohort study in Cartagena (Colombia) to investigate genetic and environmental risk factors for asthma and atopy, considering as particular features perennial exposure to mites, parasite infections and poor living conditions.
Pregnant women representative of the low-income suburbs of the city were randomly screened for eligibility at delivery; 326 mother-infant pairs were included at baseline and biological samples were collected from birth to 24 months for immunological testing, molecular genetics and gene expression analysis. Pre and post-natal information was collected using questionnaires.
94% of families were from the poorest communes of the city, 40% lacked sewage and 11% tap-water. Intestinal parasites were found as early as 3 months; by the second year, 37.9% of children have had parasites and 5.22% detectable eggs of Ascaris lumbricoides in stools (Median 3458 epg, IQR 975-9256). The prevalence of "wheezing ever" was 17.5% at 6 months, 31.1% at 12 months and 38.3% at 24 months; and recurrent wheezing (3 or more episodes) 7.1% at 12 months and 14.2% at 24 months. Maternal rhinitis [aOR 3.03 (95%CI 1.60-5.74), p = 0.001] and male gender [aOR 2.09 (95%CI 1.09 - 4.01), p = 0.026], increased risk for wheezing at 6 months. At 24 months, maternal asthma was the main predisposing factor for wheezing [aOR 3.65 (95%CI 1.23-10.8), p = 0.01]. Clinical symptoms of milk/egg allergy or other food-induced allergies were scarce (1.8%) and no case of atopic eczema was observed.
Wheezing is the most frequent phenotype during the first 24 months of life and is strongly associated with maternal asthma. At 24 months, the natural history of allergic symptoms is different to the "atopic march" described in some industrialized countries. This cohort is representative of socially deprived urban areas of underdeveloped tropical countries. The collection of biological samples, data on exposure and defined phenotypes, will contribute to understand the gene/environment interactions leading to allergy inception and evolution.
PMCID: PMC3331807  PMID: 22439773
Birth cohort study; Wheezing; Allergy; Asthma; Rhinitis; Eczema; Atopic march; The tropics; Parasite; Poverty; Cartagena; Latin America

Results 1-25 (1432154)