PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1666206)

Clipboard (0)
None

Related Articles

1.  Multiple Independent Loci at Chromosome 15q25.1 Affect Smoking Quantity: a Meta-Analysis and Comparison with Lung Cancer and COPD 
PLoS Genetics  2010;6(8):e1001053.
Recently, genetic association findings for nicotine dependence, smoking behavior, and smoking-related diseases converged to implicate the chromosome 15q25.1 region, which includes the CHRNA5-CHRNA3-CHRNB4 cholinergic nicotinic receptor subunit genes. In particular, association with the nonsynonymous CHRNA5 SNP rs16969968 and correlates has been replicated in several independent studies. Extensive genotyping of this region has suggested additional statistically distinct signals for nicotine dependence, tagged by rs578776 and rs588765. One goal of the Consortium for the Genetic Analysis of Smoking Phenotypes (CGASP) is to elucidate the associations among these markers and dichotomous smoking quantity (heavy versus light smoking), lung cancer, and chronic obstructive pulmonary disease (COPD). We performed a meta-analysis across 34 datasets of European-ancestry subjects, including 38,617 smokers who were assessed for cigarettes-per-day, 7,700 lung cancer cases and 5,914 lung-cancer-free controls (all smokers), and 2,614 COPD cases and 3,568 COPD-free controls (all smokers). We demonstrate statistically independent associations of rs16969968 and rs588765 with smoking (mutually adjusted p-values<10−35 and <10−8 respectively). Because the risk alleles at these loci are negatively correlated, their association with smoking is stronger in the joint model than when each SNP is analyzed alone. Rs578776 also demonstrates association with smoking after adjustment for rs16969968 (p<10−6). In models adjusting for cigarettes-per-day, we confirm the association between rs16969968 and lung cancer (p<10−20) and observe a nominally significant association with COPD (p = 0.01); the other loci are not significantly associated with either lung cancer or COPD after adjusting for rs16969968. This study provides strong evidence that multiple statistically distinct loci in this region affect smoking behavior. This study is also the first report of association between rs588765 (and correlates) and smoking that achieves genome-wide significance; these SNPs have previously been associated with mRNA levels of CHRNA5 in brain and lung tissue.
Author Summary
Nicotine binds to cholinergic nicotinic receptors, which are composed of a variety of subunits. Genetic studies for smoking behavior and smoking-related diseases have implicated a genomic region that encodes the alpha5, alpha3, and beta4 subunits. We examined genetic data across this region for over 38,000 smokers, a subset of which had been assessed for lung cancer or chronic obstructive pulmonary disease. We demonstrate strong evidence that there are at least two statistically independent loci in this region that affect risk for heavy smoking. One of these loci represents a change in the protein structure of the alpha5 subunit. This work is also the first to report strong evidence of association between smoking and a group of genetic variants that are of biological interest because of their links to expression of the alpha5 cholinergic nicotinic receptor subunit gene. These advances in understanding the genetic influences on smoking behavior are important because of the profound public health burdens caused by smoking and nicotine addiction.
doi:10.1371/journal.pgen.1001053
PMCID: PMC2916847  PMID: 20700436
2.  Genetic Risk Can Be Decreased: Quitting Smoking Decreases and Delays Lung Cancer for Smokers With High and Low CHRNA5 Risk Genotypes — A Meta-Analysis 
EBioMedicine  2016;11:219-226.
Background
Recent meta-analyses show that individuals with high risk variants in CHRNA5 on chromosome 15q25 are likely to develop lung cancer earlier than those with low-risk genotypes. The same high-risk genetic variants also predict nicotine dependence and delayed smoking cessation. It is unclear whether smoking cessation confers the same benefits in terms of lung cancer risk reduction for those who possess CHRNA5 risk variants versus those who do not.
Methods
Meta-analyses examined the association between smoking cessation and lung cancer risk in 15 studies of individuals with European ancestry who possessed varying rs16969968 genotypes (N = 12,690 ever smokers, including 6988 cases of lung cancer and 5702 controls) in the International Lung Cancer Consortium.
Results
Smoking cessation (former vs. current smokers) was associated with a lower likelihood of lung cancer (OR = 0.48, 95%CI = 0.30–0.75, p = 0.0015). Among lung cancer patients, smoking cessation was associated with a 7-year delay in median age of lung cancer diagnosis (HR = 0.68, 95%CI = 0.61–0.77, p = 4.9 ∗ 10–10). The CHRNA5 rs16969968 risk genotype (AA) was associated with increased risk and earlier diagnosis for lung cancer, but the beneficial effects of smoking cessation were very similar in those with and without the risk genotype.
Conclusion
We demonstrate that quitting smoking is highly beneficial in reducing lung cancer risks for smokers regardless of their CHRNA5 rs16969968 genetic risk status. Smokers with high-risk CHRNA5 genotypes, on average, can largely eliminate their elevated genetic risk for lung cancer by quitting smoking- cutting their risk of lung cancer in half and delaying its onset by 7 years for those who develop it. These results: 1) underscore the potential value of smoking cessation for all smokers, 2) suggest that CHRNA5 rs16969968 genotype affects lung cancer diagnosis through its effects on smoking, and 3) have potential value for framing preventive interventions for those who smoke.
Highlights
•CHRNA5 rs16969968 confers risk for earlier lung cancer diagnosis, but quitting produces benefit regardless of genotype.•Smokers can cut their risk of lung cancer in half and delay its onset by 7 years among those diagnosed.•Precision prevention allows clinicians to provide personalized health benefits of smoking cessation.
This is a report on whether smoking cessation confers the same benefits in terms of lung cancer risk reduction for those who possess CHRNA5 risk variants versus those who do not. We determined that quitting smoking is highly beneficial in reducing lung cancer risk levels for smokers regardless of their CHRNA5 rs16969968 genetic risk status. Although CHRNA5 rs16969968 increases risk for earlier lung cancer by 4 years, quitting produces essentially the same benefit for smokers with either high or low genetic risks. Smokers can cut their risk of lung cancer in half and delay its onset by 7 years among those diagnosed. These results are important for smokers to prevent cancer. On average, smokers at all genetic risk levels can largely eliminate their elevated risk for lung cancer by quitting smoking.
doi:10.1016/j.ebiom.2016.08.012
PMCID: PMC5049934  PMID: 27543155
Smoking cessation; Genetics; Meta-analysis; Lung cancer
3.  Genetic susceptibility to lung cancer and co-morbidities 
Journal of Thoracic Disease  2013;5(Suppl 5):S454-S462.
Lung cancer is a leading cause of cancer death and disease burden in many countries. Understanding of the biological pathways involved in lung cancer aetiology is required to identify key biomolecules that could be of significant clinical value, either as predictive, prognostic or diagnostic markers, or as targets for the development of novel therapies to treat this disease, in addition to smoking avoidance strategies. Genome-wide association studies (GWAS) have enabled significant progress in the past 5 years in investigating genetic susceptibility to lung cancer. Large scale, multi-cohort GWAS of mainly Caucasian, smoking, populations have identified strong associations for lung cancer mapped to chromosomal regions 15q [nicotinic acetylcholine receptor (nAChR) subunits: CHRNA3, CHRNA5], 5p (TERT-CLPTM1L locus) and 6p (BAT3-MSH5). Some studies in Asian populations of smokers have found similar risk loci, whereas GWAS in never smoking Asian females have identified associations in other chromosomal regions, e.g., 3q (TP63), that are distinct from smoking-related lung cancer risk loci. GWAS of smoking behaviour have identified risk loci for smoking quantity at 15q (similar genes to lung cancer susceptibility: CHRNA3, CHRNA5) and 19q (CYP2A6). Other genes have been mapped for smoking initiation and smoking cessation. In chronic obstructive pulmonary disease (COPD), which is a known risk factor for lung cancer, GWAS in large cohorts have also found CHRNA3 and CHRNA5 single nucleotide polymorphisms (SNPs) mapping at 15q as risk loci, as well as other regions at 4q31 (HHIP), 4q24 (FAM13A) and 5q (HTR4). The overlap in risk loci between lung cancer, smoking behaviour and COPD may be due to the effects of nicotine addiction; however, more work needs to be undertaken to explore the potential direct effects of nicotine and its metabolites in gene-environment interaction in these phenotypes. Goals of future genetic susceptibility studies of lung cancer should focus on refining the strongest risk loci in a wide range of populations with lung cancer, and integrating other clinical and biomarker information, in order to achieve the aim of personalised therapy for lung cancer.
doi:10.3978/j.issn.2072-1439.2013.08.06
PMCID: PMC3804872  PMID: 24163739
Lung cancer; genetics; pulmonary disease; chronic obstructive; genome-wide association study (GWAS)
4.  Chromosome 15q25 (CHRNA3-CHRNB4) Variation Indirectly Impacts Lung Cancer Risk in Chinese Males 
PLoS ONE  2016;11(3):e0149946.
Introduction
Recently, genome-wide association studies (GWAS) in Caucasian populations have identified an association between single nucleotide polymorphisms (SNPs) in the CHRNA5-A3-B4 nicotinic acetylcholine receptor subunit gene cluster on chromosome 15q25, lung cancer risk and smoking behaviors. However, these SNPs are rare in Asians, and there is currently no consensus on whether SNPs in CHRNA5-A3-B4 have a direct or indirect carcinogenic effect through smoking behaviors on lung cancer risk. Though some studies confirmed rs6495308 polymorphisms to be associated with smoking behaviors and lung cancer, no research was conducted in China. Using a case-control study, we decided to investigate the associations between CHRNA3 rs6495308, CHRNB4 rs11072768, smoking behaviors and lung cancer risk, as well as explore whether the two SNPs have a direct or indirect carcinogenic effect on lung cancer.
Methods
A total of 1025 males were interviewed using a structured questionnaire (204 male lung cancer patients and 821 healthy men) to acquire socio-demographic status and smoking behaviors. Venous blood samples were collected to measure rs6495308 and rs11072768 gene polymorphisms. All subjects were divided into 3 groups: non-smokers, light smokers (1–15 cigarettes per day) and heavy smokers (>15 cigarettes per day).
Results
Compared to wild genotype, rs6495308 and rs11072768 variant genotypes reported smoking more cigarettes per day and a higher pack-years of smoking (P<0.05). More importantly, among smokers, both rs6495308 CT/TT and rs11072768 GT/GG had a higher risk of lung cancer compared to wild genotype without adjusting for potential confounding factors (OR = 1.36, 95%CI = 1.09–1.95; OR = 1.11, 95%CI = 1.07–1.58 respectively). Furthermore, heavy smokers with rs6495308 or rs11072768 variant genotypes have a positive interactive effect on lung cancer after adjustment for potential confounding factors (OR = 1.13, 95%CI = 1.01–3.09; OR = 1.09, 95%CI = 1.01–3.41 respectively). However, No significant associations were found between lung cancer risk and both rs6495308 and rs11072768 genotypes among non-smokers and smokers after adjusting for age, occupation, and education.
Conclusion
This study confirmed both rs6495308 and rs11072768 gene polymorphisms association with smoking behaviors and had an indirect link between gene polymorphisms and lung cancer risk.
doi:10.1371/journal.pone.0149946
PMCID: PMC4778880  PMID: 26942719
5.  A Candidate Gene Approach Identifies the CHRNA5-A3-B4 Region as a Risk Factor for Age-Dependent Nicotine Addiction 
PLoS Genetics  2008;4(7):e1000125.
People who begin daily smoking at an early age are at greater risk of long-term nicotine addiction. We tested the hypothesis that associations between nicotinic acetylcholine receptor (nAChR) genetic variants and nicotine dependence assessed in adulthood will be stronger among smokers who began daily nicotine exposure during adolescence. We compared nicotine addiction—measured by the Fagerstrom Test of Nicotine Dependence—in three cohorts of long-term smokers recruited in Utah, Wisconsin, and by the NHLBI Lung Health Study, using a candidate-gene approach with the neuronal nAChR subunit genes. This SNP panel included common coding variants and haplotypes detected in eight α and three β nAChR subunit genes found in European American populations. In the 2,827 long-term smokers examined, common susceptibility and protective haplotypes at the CHRNA5-A3-B4 locus were associated with nicotine dependence severity (p = 2.0×10−5; odds ratio = 1.82; 95% confidence interval 1.39–2.39) in subjects who began daily smoking at or before the age of 16, an exposure period that results in a more severe form of adult nicotine dependence. A substantial shift in susceptibility versus protective diplotype frequency (AA versus BC = 17%, AA versus CC = 27%) was observed in the group that began smoking by age 16. This genetic effect was not observed in subjects who began daily nicotine use after the age of 16. These results establish a strong mechanistic link among early nicotine exposure, common CHRNA5-A3-B4 haplotypes, and adult nicotine addiction in three independent populations of European origins. The identification of an age-dependent susceptibility haplotype reinforces the importance of preventing early exposure to tobacco through public health policies.
Author Summary
Tobacco use is a global health care problem, and persistent smoking takes an enormous toll on individual health. The onset of daily smoking in adolescence is related to chronic use and severe nicotine dependence in adulthood. Since nicotine is the key addictive chemical in tobacco, we tested the hypothesis that genetic variants within nicotinic acetylcholine receptors will influence the severity of addiction measured in adulthood. Using genomic resequencing to define the patterns of variation found in these candidate genes, we observed that common haplotypes in the CHRNA5-A3-B4 gene cluster are associated with adult nicotine addiction, specifically among those who began daily smoking before age 17. We show that in populations of European origins, one haplotype is a risk factor for dependence, one is protective, and one is neutral. These observations suggest that genetic determinants expressed during human adolescence contribute to the risk of lifetime addiction severity produced from early onset of cigarette use. Because disease risk from the adverse health effects of tobacco smoke is related to lifetime tobacco exposure, the finding that an age-dependent effect of these haplotypes has a strong influence on lifetime smoking behavior reinforces the public health significance of delaying smoking onset.
doi:10.1371/journal.pgen.1000125
PMCID: PMC2442220  PMID: 18618000
6.  MEDIATING EFFECTS OF SMOKING AND CHRONIC OBSTRUCTIVE AIRWAY DISEASE ON THE RELATIONSHIP BETWEEN THE CHRNA5-A3 GENETIC LOCUS AND LUNG CANCER RISK 
Cancer  2010;116(14):3458-3462.
Background
Recent genome-wide association (GWA) studies of lung cancer have shown that the CHRNA5-A3 region on chromosome 15q24-25.1 is strongly associated with an increased risk of lung cancer and nicotine dependence, and thought to be associated with chronic obstructive airways disease as well. However, it has not been established whether the association between genetic variants and lung cancer risk is a direct one or one mediated by nicotine dependence.
Methods
In this paper we applied a rigorous statistical approach, mediation analysis, to examine the mediating effect of smoking behavior and self-reported physician-diagnosed emphysema (chronic obstructive pulmonary disease [COPD]) on the relationship between the CHRNA5-A3 region genetic variant rs1051730 and the risk of lung cancer.
Results
Our results showed that rs1051730 is directly associated with lung cancer risk, but that it is also associated with lung cancer risk through its effect on both smoking behavior and COPD. Furthermore, we showed that COPD is a mediating phenotype that explains part of the effect of smoking behavior on lung cancer. Our results also suggested that smoking behavior is a mediator of the relationship between rs1051730 and COPD risk.
Conclusions
Smoking behavior and COPD are mediators of the association between the SNP rs1051730 and the risk of lung cancer. Also, COPD is a mediator of the association between smoking behavior and lung cancer. Finally, smoking behavior also has mediating effects on the association between the SNP and COPD.
doi:10.1002/cncr.25085
PMCID: PMC3073819  PMID: 20564069
Lung Cancer; COPD; Mediation analysis; smoking behavior; genetic variants
7.  Smokers with the CHRNA Lung Cancer-Associated Variants are Exposed to Higher Levels of Nicotine Equivalents and a Carcinogenic Tobacco-Specific Nitrosamine 
Cancer research  2008;68(22):9137-9140.
A locus at 15q24/15q25.1, which includes the nicotinic acetylcholine receptor A subunits 3 and 5 (CHRNA3, CHRNA5) genes, has recently been associated with lung cancer risk, self-reported number of cigarettes smoked per day and a nicotine-dependence scale. It is not clear whether the association with lung cancer is direct or mediated through differences in smoking behavior. We used urinary biomarkers to test whether two linked lung cancer risk variants in CHRNA3 (rs1051730) and CHRNA5 (rs16969968) are associated with intensity of smoking and exposure to a tobacco-specific carcinogenic nitrosamine per cigarette dose. We studied 819 smokers and found that carriers of these variants extract a greater amount of nicotine (p=0.003) and are exposed to a higher internal dose of NNK (p=0.03) per cigarette than non-carriers. Thus, smokers who carry the CHRNA3 and A5 variants are expected to be at increased risk for lung cancer, compared to smokers who do not carry these alleles even if they smoked the same number of cigarettes. Number of cigarettes per day, even if it could be accurately assessed, is not an adequate measure of smoking dose.
doi:10.1158/0008-5472.CAN-08-2271
PMCID: PMC2587068  PMID: 19010884
8.  Role of Nicotine Dependence on the Relationship between Variants in the Nicotinic Receptor Genes and Risk of Lung Adenocarcinoma 
PLoS ONE  2014;9(9):e107268.
Several variations in the nicotinic receptor genes have been identified to be associated with both lung cancer risk and smoking in the genome-wide association (GWA) studies. However, the relationships among these three factors (genetic variants, nicotine dependence, and lung cancer) remain unclear. In an attempt to elucidate these relationships, we applied mediation analysis to quantify the impact of nicotine dependence on the association between the nicotinic receptor genetic variants and lung adenocarcinoma risk. We evaluated 23 single nucleotide polymorphisms (SNPs) in the five nicotinic receptor related genes (CHRNB3, CHRNA6, and CHRNA5/A3/B4) previously reported to be associated with lung cancer risk and smoking behavior and 14 SNPs in the four ‘control’ genes (TERT, CLPTM1L, CYP1A1, and TP53), which were not reported in the smoking GWA studies. A total of 661 lung adenocarcinoma cases and 1,347 controls with a smoking history, obtained from the Environment and Genetics in Lung Cancer Etiology case-control study, were included in the study. Results show that nicotine dependence is a mediator of the association between lung adenocarcinoma and gene variations in the regions of CHRNA5/A3/B4 and accounts for approximately 15% of this relationship. The top two CHRNA3 SNPs associated with the risk for lung adenocarcinoma were rs1051730 and rs12914385 (p-value = 1.9×10−10 and 1.1×10−10, respectively). Also, these two SNPs had significant indirect effects on lung adenocarcinoma risk through nicotine dependence (p = 0.003 and 0.007). Gene variations rs2736100 and rs2853676 in TERT and rs401681 and rs31489 in CLPTM1L had significant direct associations on lung adenocarcinoma without indirect effects through nicotine dependence. Our findings suggest that nicotine dependence plays an important role between genetic variants in the CHRNA5/A3/B4 region, especially CHRNA3, and lung adenocarcinoma. This may provide valuable information for understanding the pathogenesis of lung adenocarcinoma and for conducting personalized smoking cessation interventions.
doi:10.1371/journal.pone.0107268
PMCID: PMC4169410  PMID: 25233467
9.  The CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans 
Cancer research  2009;69(17):6848-6856.
Genetic association studies have demonstrated the importance of variants in the CHRNA5-CHRNA3-CHRNB4 cholinergic nicotinic receptor subunit gene cluster on chromosome 15q24-25.1 in risk for nicotine dependence, smoking, and lung cancer in populations of European descent. We have now carried out a detailed study of this region using dense genotyping in both European- and African-Americans.
We genotyped 75 known single-nucleotide-polymorphisms (SNPs) and one sequencing-discovered SNP in an African-American (AA) sample (N = 710) and European-American (EA) sample (N = 2062). Cases were nicotine-dependent and controls were non-dependent smokers.
The non-synonymous CHRNA5 SNP rs16969968 is the most significant SNP associated with nicotine dependence in the full sample of 2772 subjects (p = 4.49×10−8, OR 1.42 (1.25–1.61)) as well as in AAs only (p = 0.015, OR = 2.04 (1.15–3.62)) and EAs only (p = 4.14×10−7, OR = 1.40 (1.23–1.59)). Other SNPs that have been shown to affect mRNA levels of CHRNA5 in EAs are associated with nicotine dependence in AAs but not in EAs. The CHRNA3 SNP rs578776, which has low correlation with rs16969968, is associated with nicotine dependence in EAs but not in AAs. Less common SNPs (frequency ≤ 5%) also are associated with nicotine dependence.
In summary, multiple variants in this gene cluster contribute to nicotine dependence risk, and some are also associated with functional effects on CHRNA5. The non-synonymous SNP rs16969968, a known risk variant in European-descent populations, is also significantly associated with risk in African-Americans. Additional SNPs contribute in distinct ways to risk in these two populations.
doi:10.1158/0008-5472.CAN-09-0786
PMCID: PMC2874321  PMID: 19706762
genetic association; smoking; cholinergic nicotinic receptors; nicotinic acetylcholine receptors
10.  Variants Located Upstream of CHRNB4 on Chromosome 15q25.1 Are Associated with Age at Onset of Daily Smoking and Habitual Smoking 
PLoS ONE  2012;7(3):e33513.
Several genome-wide association and candidate gene studies have linked chromosome 15q24–q25.1 (a region including the CHRNA5-CHRNA3-CHRNB4 gene cluster) with alcohol dependence, nicotine dependence and smoking-related illnesses such as lung cancer and chronic obstructive pulmonary disease. To further examine the impact of these genes on the development of substance use disorders, we tested whether variants within and flanking the CHRNA5-CHRNA3-CHRNB4 gene cluster affect the transition to daily smoking (individuals who smoked cigarettes 4 or more days per week) in a cross sectional sample of adolescents and young adults from the COGA (Collaborative Study of the Genetics of Alcoholism) families. Subjects were recruited from families affected with alcoholism (either as a first or second degree relative) and the comparison families. Participants completed the SSAGA interview, a comprehensive assessment of alcohol and other substance use and related behaviors. Using the Quantitative trait disequilibrium test (QTDT) significant association was detected between age at onset of daily smoking and variants located upstream of CHRNB4. Multivariate analysis using a Cox proportional hazards model further revealed that these variants significantly predict the age at onset of habitual smoking among daily smokers. These variants were not in high linkage disequilibrium (0.28
doi:10.1371/journal.pone.0033513
PMCID: PMC3306405  PMID: 22438940
Introduction
Three genome-wide association studies identified a region on chromosome 15q25.1 associated with lung cancer and measures of nicotine addiction. This region includes nicotinic acetylcholine receptor subunit genes CHRNA3 and CHRNA5. These studies were conducted in European or European American populations and do not provide risk estimates for African Americans. The goal of this study was to determine whether recently identified genetic variation in 3 SNPs (rs1051730, rs931794, rs8034191) on chromosome 15q25.1 contributes to risk of lung cancer in African Americans.
Methods
Data were derived from three case-control studies. Participants included 1058 population-based non-small cell lung cancer cases selected from the Detroit area SEER registry and 1314 controls matched within study by age, race, and sex. Thirty-nine percent of participants were African American.
Results
Risk associated with rs1051730 (odds ratio 1.59; 95% confidence interval 1.16–2.19) and rs931794 (odds ratio 1.39; 95% confidence interval 1.09–1.78) increased in ever smoking African Americans adjusting for cigarettes smoked per day. Among white cases, the number of cigarettes smoked varied by genotype at all three SNPs, and when smoking quantity was included in the models, risk was not significantly associated with any of the three SNPs.
Conclusions
These findings suggest that SNPs in the CHRNA3 and CHRNA5 region contribute to lung cancer risk, and while variant alleles are less frequent in African Americans, risk in this group may be greater than in whites and less likely to reflect an indirect effect on lung cancer risk through nicotine dependence.
doi:10.1097/JTO.0b013e3181b244ef
PMCID: PMC3768000  PMID: 19641473
Non-small cell lung cancer; Smoking; SNPs
Genes, brain, and behavior  2010;9(7):741-750.
Several independent studies show that the chromosome 15q25.1 region, which contains the CHRNA5-CHRNA3-CHRNB4 gene cluster, harbors variants strongly associated with nicotine dependence, other smoking behaviors, lung cancer, and chronic obstructive pulmonary disease.
We investigated whether variants in other cholinergic nicotinic receptor subunit (CHRN) genes affect risk for nicotine dependence in a new sample of African-Americans (N = 710). We also analyzed this African-American sample together with a European-American sample (N=2062, 1608 of which have been previously studied), allowing for differing effects in the two populations. Cases are current nicotine-dependent smokers and controls are non-dependent smokers.
Variants in or near CHRND-CHRNG, CHRNA7, and CHRNA10 show modest association with nicotine dependence risk in the African-American sample. In addition, CHRNA4, CHRNB3-CHRNA6, and CHRNB1 show association in at least one population. CHRNG and CHRNA4 harbor SNPs that have opposite directions of effect in the two populations. In each of the population samples, these loci substantially increase the trait variation explained, although no loci meet Bonferroni-corrected significance in the African-American sample alone. The trait variation explained by three key associated SNPs in CHRNA5-CHRNA3-CHRNB4 is 1.9% in European-Americans and also 1.9% in African-Americans; this increases to 4.5% in EAs and 7.3% in AAs when we add six variants representing associations at other CHRN genes.
Multiple nicotinic receptor subunit genes outside of chromosome 15q25 are likely to be important in the biological processes and development of nicotine dependence, and some of these risks may be shared across diverse populations.
doi:10.1111/j.1601-183X.2010.00608.x
PMCID: PMC2970751  PMID: 20584212
genetic association; smoking; cholinergic nicotinic receptors; nicotinic acetylcholine receptors
Journal of Internal Medicine  2015;279(4):388-398.
Abstract
Background
Genetic variation in the cluster on chromosome 15, encoding the nicotinic acetylcholine receptor subunits (CHRNA5‐CHRNA3‐CHRNB4), has shown strong associations with tobacco consumption and an additional risk increase in smoking‐related diseases such as chronic obstructive pulmonary disease (COPD), peripheral artery disease and lung cancer.
Objectives
To test whether rs1051730 (C/T), a tag for multiple variants in the CHRNA5‐CHRNA3‐CHRNB3 cluster, is associated with a change in risk of smoking‐related mortality and morbidity in the Malmö Diet and Cancer study, a population‐based prospective cohort study.
Methods
At baseline participants were classified as current (n = 6951), previous (n = 8426) or never (n = 9417) smokers. Cox‐proportional hazards models were used to determine the correlation between rs1051730 and incidence of first COPD, tobacco‐related cancer, other cancer and cardiovascular disease (CVD), and total mortality due to these causes, during approximately 14 years of follow‐up.
Results
Amongst current smokers there were 480 first incident COPD events, 852 tobacco‐related cancers, 810 other cancers and 1022 CVD events. A total of 1508 deaths occurred, including 500 due to CVD, 102 due to respiratory diseases and 677 due to cancer. In adjusted additive models, an increasing number of T alleles were associated with a gradual increase in total mortality, incident COPD and tobacco‐related cancer, even after adjustment for smoking quantity. No significant associations were observed amongst never smokers.
Conclusion
Our data suggest that gene variance in the CHRNA5‐CHRNA3‐CHRNB4 cluster is associated with an increased risk of death, incidence of COPD and tobacco‐related cancer in smokers. These findings indicate an individual susceptibility to tobacco use and its complications; this may be important when targeting and designing smoking cessation therapies.
doi:10.1111/joim.12454
PMCID: PMC5019278  PMID: 26689306
CHRNA; COPD; epidemiology; smoking genetics; tobacco‐related cancer
Drug and alcohol dependence  2009;104(Suppl 1):S64-S69.
Technological advances in testing have led to the discovery of genetic variants that contribute to many illnesses including nicotine dependence. A multi-stage model of the development of nicotine dependence underlies these genetic studies, and it includes a progression through several stages of smoking behavior from never smoking to nicotine dependence. The final step in this model of dependence is the progression from established smoking behavior to the development of nicotine dependence. Contrasting individuals who smoke only a few cigarettes per day, or “chippers”, to heavy smoking, nicotine dependent subjects, focuses a genetic study on the transition from smoking to nicotine dependence. This approach has identified distinct genetic variants that contribute to nicotine dependence on chromosome 15 in the region of the α5-α3-β4 family of nicotinic receptor genes.
This region of association includes an amino acid change in the α5 nicotinic receptor protein, which is most likely a biological variant altering the risk of developing dependence. There is also evidence that other variants alter the α5 nicotinic receptor gene expression and potentially the risk of smoking. The discovery of these genetic variants and their contribution to the development of nicotine dependence highlight some of the many challenges in genetic studies. The first is that the prevalence of risk alleles can vary across populations so that a genetic risk factor can have a larger or small effect in a population depending on its frequency. The second challenge is that the risk that each genetic variant contributes in the development of a disorder is small and so it is many genes along with environmental risk factors that contribute to the development of a disorder. Interestingly, recent genetic studies of lung cancer and chronic obstructive pulmonary disease demonstrate that this same region has an important genetic influence on these disorders. Finally, there are differences in the risk of developing nicotine dependence based on gender and socioeconomic status. As our understanding of the genetic contributions of nicotine dependence increases, we may improve and personalize our treatments for smoking cessation and enhance our knowledge of other smoking related diseases in those who are at high risk for the many adverse consequences of smoking.
doi:10.1016/j.drugalcdep.2009.06.003
PMCID: PMC2748747  PMID: 19596527
Nicotine dependence; genetics; nicotinic receptor; chromosome 15
PLoS ONE  2011;6(10):e26668.
Some controversy exists on the specific genetic variants that are associated with nicotine dependence and smoking-related phenotypes. The purpose of this study was to analyse the association of smoking status and smoking-related phenotypes (included nicotine dependence) with 17 candidate genetic variants: CYP2A6*1×2, CYP2A6*2 (1799T>A) [rs1801272], CYP2A6*9 (−48T>G) [rs28399433], CYP2A6*12, CYP2A13*2 (3375C>T) [rs8192789], CYP2A13*3 (7520C>G), CYP2A13*4 (579G>A), CYP2A13*7 (578C>T) [rs72552266], CYP2B6*4 (785A>G), CYP2B6*9 (516G>T), CHRNA3 546C>T [rs578776], CHRNA5 1192G>A [rs16969968], CNR1 3764C>G [rs6928499], DRD2-ANKK1 2137G>A (Taq1A) [rs1800497], 5HTT LPR, HTR2A −1438A>G [rs6311] and OPRM1 118A>G [rs1799971]. We studied the genotypes of the aforementioned polymorphisms in a cohort of Spanish smokers (cases, N = 126) and ethnically matched never smokers (controls, N = 80). The results showed significant between-group differences for CYP2A6*2 and CYP2A6*12 (both P<0.001). Compared with carriers of variant alleles, the odds ratio (OR) for being a non-smoker in individuals with the wild-type genotype of CYP2A6*12 and DRD2-ANKK1 2137G>A (Taq1A) polymorphisms was 3.60 (95%CI: 1.75, 7.44) and 2.63 (95%CI: 1.41, 4.89) respectively. Compared with the wild-type genotype, the OR for being a non-smoker in carriers of the minor CYP2A6*2 allele was 1.80 (95%CI: 1.24, 2.65). We found a significant genotype effect (all P≤0.017) for the following smoking-related phenotypes: (i) cigarettes smoked per day and CYP2A13*3; (ii) pack years smoked and CYP2A6*2, CYP2A6*1×2, CYP2A13*7, CYP2B6*4 and DRD2-ANKK1 2137G>A (Taq1A); (iii) nicotine dependence (assessed with the Fagestrom test) and CYP2A6*9. Overall, our results suggest that genetic variants potentially involved in nicotine metabolization (mainly, CYP2A6 polymorphisms) are those showing the strongest association with smoking-related phenotypes, as opposed to genetic variants influencing the brain effects of nicotine, e.g., through nicotinic acetylcholine (CHRNA5), serotoninergic (HTR2A), opioid (OPRM1) or cannabinoid receptors (CNR1).
doi:10.1371/journal.pone.0026668
PMCID: PMC3202555  PMID: 22046326
Oncotarget  2012;3(11):1428-1438.
Studies in European and East Asian populations have identified lung cancer susceptibility loci in nicotinic acetylcholine receptor (nAChR) genes on chromosome 15q25.1 which also appear to influence smoking behaviors. We sought to determine if genetic variation in nAChR genes influences lung cancer susceptibly in African-Americans, and evaluated the association of these cancer susceptibility loci with smoking behavior. A total of 1308 African-Americans with lung cancer and 1241 African-American controls from three centers were genotyped for 378 single nucleotide polymorphisms (SNPs) spanning the sixteen human nAChR genes. Associations between SNPs and the risk of lung cancer were estimated using logistic regression, adjusted for relevant covariates. Seven SNPs in three nAChR genes were significantly associated with lung cancer at a strict Bonferroni-corrected level, including a novel association on chromosome 2 near the promoter of CHRNA1 (rs3755486: OR = 1.40, 95% CI = 1.18-1.67, P = 1.0 × 10−4). Association analysis of an additional 305 imputed SNPs on 2q31.1 supported this association. Publicly available expression data demonstrated that the rs3755486 risk allele correlates with increased CHRNA1 gene expression. Additional SNP associations were observed on 15q25.1 in genes previously associated with lung cancer, including a missense variant in CHRNA5 (rs16969968: OR = 1.60, 95% CI = 1.27-2.01, P = 5.9 × 10−5). Risk alleles on 15q25.1 also correlated with an increased number of cigarettes smoked per day among the controls. These findings identify a novel lung cancer risk locus on 2q31.1 which correlates with CHRNA1 expression and replicate previous associations on 15q25.1 in African-Americans.
PMCID: PMC3717803  PMID: 23232035
Lung cancer; nicotine dependence; African-Americans; genetic association; smoking
Translational Psychiatry  2015;5(10):e651-.
We conducted a 1000 Genomes–imputed genome-wide association study (GWAS) meta-analysis for nicotine dependence, defined by the Fagerström Test for Nicotine Dependence in 17 074 ever smokers from five European-ancestry samples. We followed up novel variants in 7469 ever smokers from five independent European-ancestry samples. We identified genome-wide significant association in the alpha-4 nicotinic receptor subunit (CHRNA4) gene on chromosome 20q13: lowest P=8.0 × 10−9 across all the samples for rs2273500-C (frequency=0.15; odds ratio=1.12 and 95% confidence interval=1.08–1.17 for severe vs mild dependence). rs2273500-C, a splice site acceptor variant resulting in an alternate CHRNA4 transcript predicted to be targeted for nonsense-mediated decay, was associated with decreased CHRNA4 expression in physiologically normal human brains (lowest P=7.3 × 10−4). Importantly, rs2273500-C was associated with increased lung cancer risk (N=28 998, odds ratio=1.06 and 95% confidence interval=1.00–1.12), likely through its effect on smoking, as rs2273500-C was no longer associated with lung cancer after adjustment for smoking. Using criteria for smoking behavior that encompass more than the single ‘cigarettes per day' item, we identified a common CHRNA4 variant with important regulatory properties that contributes to nicotine dependence and smoking-related consequences.
doi:10.1038/tp.2015.149
PMCID: PMC4930126  PMID: 26440539
EBioMedicine  2016;4:153-161.
Background
Genome-wide association studies have identified polymorphisms linked to both smoking exposure and risk of lung cancer. The degree to which lung cancer risk is driven by increased smoking, genetics, or gene–environment interactions is not well understood.
Methods
We analyzed associations between 28 single nucleotide polymorphisms (SNPs) previously associated with smoking quantity and lung cancer in 7156 African-American females in the Women's Health Initiative (WHI), then analyzed main effects of top nominally significant SNPs and interactions between SNPs, cigarettes per day (CPD) and pack-years for lung cancer in an independent, multi-center case–control study of African-American females and males (1078 lung cancer cases and 822 controls).
Findings
Nine nominally significant SNPs for CPD in WHI were associated with incident lung cancer (corrected p-values from 0.027 to 6.09 × 10− 5). CPD was found to be a nominally significant effect modifier between SNP and lung cancer for six SNPs, including CHRNA5 rs2036527[A](betaSNP*CPD = − 0.017, p = 0.0061, corrected p = 0.054), which was associated with CPD in a previous genome-wide meta-analysis of African-Americans.
Interpretation
These results suggest that chromosome 15q25.1 variants are robustly associated with CPD and lung cancer in African-Americans and that the allelic dose effect of these polymorphisms on lung cancer risk is most pronounced in lighter smokers.
Highlights
•Genetic by environment (e.g., cigarettes/day, CPD) interactions for lung cancer are understudied in non-European ancestry populations.•We analyzed interactions between nominal smoking quantity SNPs (n = 7156 discovery sample) and CPD and risk of lung cancer (n = 1078 cases, n = 822 controls).•Six SNPs were effect modifiers of CPD for lung cancer, suggesting that the allelic dose effect is most pronounced in light smokers.
Lung cancer is the leading cause of cancer death, disproportionately affecting African-Americans. Prior studies have reported specific genetic markers linked to both smoking quantity and risk of lung cancer in multiple ethnic/racial groups. Investigators analyzed associations between 28 polymorphisms and average cigarettes smoked per day (CPD) in 7156 African-American females and examined interactions between the top polymorphisms and CPD in a cohort of African-American males and females (1078 lung cancer cases and 822 health control patients). The results suggested that six polymorphisms within one genomic region increased lung cancer risk in African-Americans, which was most pronounced in light smokers.
doi:10.1016/j.ebiom.2016.01.002
PMCID: PMC4776066  PMID: 26981579
African-Americans; Environment; Genetics; Lung Cancer; rs2036527; Single Nucleotide Polymorphisms; Smoking
Background:
Recent meta-analyses show strong evidence of associations among genetic variants in CHRNA5 on chromosome 15q25, smoking quantity, and lung cancer. This meta-analysis tests whether the CHRNA5 variant rs16969968 predicts age of smoking cessation and age of lung cancer diagnosis.
Methods:
Meta-analyses examined associations between rs16969968, age of quitting smoking, and age of lung cancer diagnosis in 24 studies of European ancestry (n = 29 072). In each dataset, we used Cox regression models to evaluate the association between rs16969968 and the two primary phenotypes (age of smoking cessation among ever smokers and age of lung cancer diagnosis among lung cancer case patients) and the secondary phenotype of smoking duration. Heterogeneity across studies was assessed with the Cochran Q test. All statistical tests were two-sided.
Results:
The rs16969968 allele (A) was associated with a lower likelihood of smoking cessation (hazard ratio [HR] = 0.95, 95% confidence interval [CI] = 0.91 to 0.98, P = .0042), and the AA genotype was associated with a four-year delay in median age of quitting compared with the GG genotype. Among smokers with lung cancer diagnoses, the rs16969968 genotype (AA) was associated with a four-year earlier median age of diagnosis compared with the low-risk genotype (GG) (HR = 1.08, 95% CI = 1.04 to 1.12, P = 1.1*10–5).
Conclusion:
These data support the clinical significance of the CHRNA5 variant rs16969968. It predicts delayed smoking cessation and an earlier age of lung cancer diagnosis in this meta-analysis. Given the existing evidence that this CHRNA5 variant predicts favorable response to cessation pharmacotherapy, these findings underscore the potential clinical and public health importance of rs16969968 in CHRNA5 in relation to smoking cessation success and lung cancer risk.
doi:10.1093/jnci/djv100
PMCID: PMC4822525  PMID: 25873736
Molecular psychiatry  2015;21(5):601-607.
The common nonsynonymous variant rs16969968 in the α5 nicotinic receptor subunit gene (CHRNA5) is the strongest genetic risk factor for nicotine dependence in European Americans and contributes to risk in African Americans. To comprehensively examine whether other CHRNA5 coding variation influences nicotine dependence risk, we performed targeted sequencing on 1582 nicotine dependent cases (Fagerström Test for Nicotine Dependence score≥4) and 1238 non-dependent controls, with independent replication of common and low frequency variants using 12 studies with exome chip data. Nicotine dependence was examined using logistic regression with individual common variants (MAF≥0.05), aggregate low frequency variants (0.05>MAF≥0.005), and aggregate rare variants (MAF<0.005). Meta-analysis of primary results was performed with replication studies containing 12 174 heavy and 11 290 light smokers. Next-generation sequencing with 180X coverage identified 24 nonsynonymous variants and 2 frameshift deletions in CHRNA5, including 9 novel variants in the 2820 subjects. Meta-analysis confirmed the risk effect of the only common variant (rs16969968, European ancestry: OR=1.3, p=3.5×10−11; African ancestry: OR=1.3, p=0.01) and demonstrated that 3 low frequency variants contributed an independent risk (aggregate term, European ancestry: OR=1.3, p=0.005; African ancestry: OR=1.4, p=0.0006). The remaining 22 rare coding variants were associated with increased risk of nicotine dependence in the European American primary sample (OR=12.9, p=0.01) and in the same risk direction in African Americans (OR=1.5, p=0.37). Our results indicate that common, low frequency and rare CHRNA5 coding variants are independently associated with nicotine dependence risk. These newly identified variants likely influence risk for smoking-related diseases such as lung cancer.
doi:10.1038/mp.2015.105
PMCID: PMC4740321  PMID: 26239294
PLoS Medicine  2008;5(9):e185.
Background
Better information on lung cancer occurrence in lifelong nonsmokers is needed to understand gender and racial disparities and to examine how factors other than active smoking influence risk in different time periods and geographic regions.
Methods and Findings
We pooled information on lung cancer incidence and/or death rates among self-reported never-smokers from 13 large cohort studies, representing over 630,000 and 1.8 million persons for incidence and mortality, respectively. We also abstracted population-based data for women from 22 cancer registries and ten countries in time periods and geographic regions where few women smoked. Our main findings were: (1) Men had higher death rates from lung cancer than women in all age and racial groups studied; (2) male and female incidence rates were similar when standardized across all ages 40+ y, albeit with some variation by age; (3) African Americans and Asians living in Korea and Japan (but not in the US) had higher death rates from lung cancer than individuals of European descent; (4) no temporal trends were seen when comparing incidence and death rates among US women age 40–69 y during the 1930s to contemporary populations where few women smoke, or in temporal comparisons of never-smokers in two large American Cancer Society cohorts from 1959 to 2004; and (5) lung cancer incidence rates were higher and more variable among women in East Asia than in other geographic areas with low female smoking.
Conclusions
These comprehensive analyses support claims that the death rate from lung cancer among never-smokers is higher in men than in women, and in African Americans and Asians residing in Asia than in individuals of European descent, but contradict assertions that risk is increasing or that women have a higher incidence rate than men. Further research is needed on the high and variable lung cancer rates among women in Pacific Rim countries.
Michael Thun and colleagues pooled and analyzed comprehensive data on lung cancer incidence and death rates among never-smokers to examine what factors other than active smoking affect lung cancer risk.
Editors' Summary
Background.
Every year, more than 1.4 million people die from lung cancer, a leading cause of cancer deaths worldwide. In the US alone, more than 161,000 people will die from lung cancer this year. Like all cancers, lung cancer occurs when cells begin to divide uncontrollably because of changes in their genes. The main trigger for these changes in lung cancer is exposure to the chemicals in cigarette smoke—either directly through smoking cigarettes or indirectly through exposure to secondhand smoke. Eighty-five to 90% of lung cancer deaths are caused by exposure to cigarette smoke and, on average, current smokers are 15 times more likely to die from lung cancer than lifelong nonsmokers (never smokers). Furthermore, a person's cumulative lifetime risk of developing lung cancer is related to how much they smoke, to how many years they are a smoker, and—if they give up smoking—to the age at which they stop smoking.
Why Was This Study Done?
Because lung cancer is so common, even the small fraction of lung cancer that occurs in lifelong nonsmokers represents a large number of people. For example, about 20,000 of this year's US lung cancer deaths will be in never-smokers. However, very little is known about how age, sex, or race affects the incidence (the annual number of new cases of diseases in a population) or death rates from lung cancer among never-smokers. A better understanding of the patterns of lung cancer incidence and death rates among never-smokers could provide useful information about the factors other than cigarette smoke that increase the likelihood of not only never-smokers, but also former smokers and current smokers developing lung cancer. In this study, therefore, the researchers pooled and analyzed a large amount of information about lung cancer incidence and death rates among never smokers to examine what factors other than active smoking affect lung cancer risk.
What Did the Researchers Do and Find?
The researchers analyzed information on lung cancer incidence and/or death rates among nearly 2.5 million self-reported never smokers (men and women) from 13 large studies investigating the health of people in North America, Europe, and Asia. They also analyzed similar information for women taken from cancer registries in ten countries at times when very few women were smokers (for example, the US in the late 1930s). The researchers' detailed statistical analyses reveal, for example, that lung cancer death rates in African Americans and in Asians living in Korea and Japan (but not among Asians living in the US) are higher than those in people of the European continental ancestry group. They also show that men have higher death rates from lung cancer than women irrespective of racial group, but that women aged 40–59 years have a slightly higher incidence of lung cancer than men of a similar age. This difference disappears at older ages. Finally, an analysis of lung cancer incidence and death rates at different times during the past 70 years shows no evidence of an increase in the lung cancer burden among never smokers over time.
What Do These Findings Mean?
Although some of the findings described above have been hinted at in previous, smaller studies, these and other findings provide a much more accurate picture of lung cancer incidence and death rates among never smokers. Most importantly the underlying data used in these analyses are now freely available and should provide an excellent resource for future studies of lung cancer in never smokers.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050185.
The US National Cancer Institute provides detailed information for patients and health professionals about all aspects of lung cancer and information on smoking and cancer (in English and Spanish)
Links to other US-based resources dealing with lung cancer are provided by MedlinePlus (in English and Spanish)
Cancer Research UK provides key facts about the link between lung cancer and smoking and information about all other aspects of lung cancer
doi:10.1371/journal.pmed.0050185
PMCID: PMC2531137  PMID: 18788891
Respiratory Research  2011;12(1):9.
Background
Cigarette smoking is the principal environmental risk factor for developing COPD, and nicotine dependence strongly influences smoking behavior. This study was performed to elucidate the relationship between nicotine dependence, genetic susceptibility to nicotine dependence, and volumetric CT findings in smokers.
Methods
Current smokers with COPD (GOLD stage ≥ 2) or normal spirometry were analyzed from the COPDGene Study, a prospective observational study. Nicotine dependence was determined by the Fagerstrom test for nicotine dependence (FTND). Volumetric CT acquisitions measuring the percent of emphysema on inspiratory CT (% of lung <-950 HU) and gas trapping on expiratory CT (% of lung <-856 HU) were obtained. Genotypes for two SNPs in the CHRNA3/5 region (rs8034191, rs1051730) previously associated with nicotine dependence and COPD were analyzed for association to COPD and nicotine dependence phenotypes.
Results
Among 842 currently smoking subjects (335 COPD cases and 507 controls), 329 subjects (39.1%) showed high nicotine dependence. Subjects with high nicotine dependence had greater cumulative and current amounts of smoking. However, emphysema severity was negatively correlated with the FTND score in controls (ρ = -0.19, p < .0001) as well as in COPD cases (ρ = -0.18, p = 0.0008). Lower FTND score, male gender, lower body mass index, and lower FEV1 were independent risk factors for emphysema severity in COPD cases. Both CHRNA3/5 SNPs were associated with FTND in current smokers. An association of genetic variants in CHRNA3/5 with severity of emphysema was only found in former smokers, but not in current smokers.
Conclusions
Nicotine dependence was a negative predictor for emphysema on CT in COPD and control smokers. Increased inflammation in more highly addicted current smokers could influence the CT lung density distribution, which may influence genetic association studies of emphysema phenotypes.
Trial registration
ClinicalTrials (NCT): NCT00608764
doi:10.1186/1465-9921-12-9
PMCID: PMC3033825  PMID: 21232152
Genome-wide association studies of white persons with lung cancer have identified a region of extensive linkage disequilibrium on chromosome 15q25.1 that appears to be associated with both risk for lung cancer and smoking dependence. Because studying African American persons, who exhibit lower levels of linkage disequilibrium in this region, may identify additional loci that are associated with lung cancer, we genotyped 34 single-nucleotide polymorphisms (SNPs) in this region (including LOC123688, PSMA4, CHRNA5, CHRNA3, and CHRNB4 genes) in 467 African American patients with lung cancer and 388 frequency-matched African American control subjects. Associations of SNPs in LOC123688 (rs10519203; odds ratio [OR] = 1.60, 95% confidence interval [CI] = 1.25 to 2.05, P = .00016), CHRNA5 (rs2036527; OR = 1.67, 95% CI = 1.26 to 2.21, P = .00031), and CHRNA3 (rs1051730; OR = 1.81, 95% CI = 1.26 to 2.59, P = .00137) genes with lung cancer risk reached Bonferroni-corrected levels of statistical significance (all statistical tests were two-sided). Joint logistic regression analysis showed that rs684513 (OR = 0.47, 95% CI = 0.31 to 0.71, P = .0003) in CHRNA5 and rs8034191 (OR = 1.76, 95% CI = 1.23 to 2.52, P = .002) in LOC123688 were also associated with risk. The functional A variant of rs1696698 in CHRNA5 had the strongest association with lung cancer (OR = 1.98, 95% CI = 1.25 to 3.11, P = .003). These SNPs were primarily associated with increased risk for lung adenocarcinoma histology and were only weakly associated with smoking phenotypes. Thus, among African American persons, multiple loci in the region of chromosome 15q25.1 appear to be strongly associated with lung cancer risk.
doi:10.1093/jnci/djq232
PMCID: PMC2914761  PMID: 20554942
PLoS Genetics  2010;6(8):e1001051.
Genome-wide association studies of lung cancer reported in populations of European background have identified three regions on chromosomes 5p15.33, 6p21.33, and 15q25 that have achieved genome-wide significance with p-values of 10−7 or lower. These studies have been performed primarily in cigarette smokers, raising the possibility that the observed associations could be related to tobacco use, lung carcinogenesis, or both. Since most women in Asia do not smoke, we conducted a genome-wide association study of lung adenocarcinoma in never-smoking females (584 cases, 585 controls) among Han Chinese in Taiwan and found that the most significant association was for rs2736100 on chromosome 5p15.33 (p = 1.30×10−11). This finding was independently replicated in seven studies from East Asia totaling 1,164 lung adenocarcinomas and 1,736 controls (p = 5.38×10−11). A pooled analysis achieved genome-wide significance for rs2736100. This SNP marker localizes to the CLPTM1L-TERT locus on chromosome 5p15.33 (p = 2.60×10−20, allelic risk = 1.54, 95% Confidence Interval (CI) 1.41–1.68). Risks for heterozygote and homozygote carriers of the minor allele were 1.62 (95% CI; 1.40–1.87), and 2.35 (95% CI: 1.95–2.83), respectively. In summary, our results show that genetic variation in the CLPTM1L-TERT locus of chromosome 5p15.33 is directly associated with the risk of lung cancer, most notably adenocarcinoma.
Author Summary
Worldwide, approximately 15% of lung cancer cases occur among nonsmokers. Genome-wide association studies (GWAS) of lung cancer conducted in populations of European background have identified three regions on chromosomes 5, 6, and 15 that harbor genetic variants that confer risk for lung cancer. Prior studies were conducted primarily in cigarette smokers, raising the possibility that the associations could be related to tobacco use, lung carcinogenesis, or both. A GWAS of lung cancer among never-smokers is an optimal setting to discover effects that are independent of smoking. Since most women in Asia do not smoke, we conducted a GWAS of lung adenocarcinoma among never-smoking females (584 cases, 585 controls) in Taiwan, and observed a region on chromosome 5 significantly associated with risk for lung cancer in never-smoking women. The finding was independently replicated in seven studies from East Asia totaling 1,164 lung adenocarcinomas and 1,736 controls. To our knowledge, this study is the first reported GWAS of lung cancer in East Asian women, and together with the replication studies represents the largest genetic association study in this population. The findings provide insight into the genetic contribution of common variants to lung carcinogenesis.
doi:10.1371/journal.pgen.1001051
PMCID: PMC2916850  PMID: 20700438
PLoS ONE  2014;9(10):e109036.
Background
The 15q25.1 lung cancer susceptibility locus, containing CHRNA5, could modify lung cancer susceptibility and multiple smoking related phenotypes. However, no studies have investigated the association between CHRNA5 rs3841324, which has been proven to have the highest association with CHRNA5 mRNA expression, and the risk of other smoking-associated cancers, except lung cancer. In the current study we examined the association between rs3841324 and susceptibility to smoking-associated nasopharyngeal carcinoma (NPC).
Methods
In this case-control study we genotyped the CHRNA5 rs3841324 polymorphism with 400 NPC cases and 491 healthy controls who were Han Chinese and frequency-matched by age (±5 years), gender, and alcohol consumption. Univariate and multivariate logistic regression analyses were used to calculate the odds ratio (OR) and 95% confidence intervals (95% CI).
Results
We found that individuals with CHRNA5 rs3841324 combined variant genotypes (ins/del+del/del) had a >1.5-fold elevated risk for NPC than those with the ins/ins genotype (adjusted OR = 1.52; 95% CI, 1.16–2.00), especially among ever smokers (adjusted OR = 2.07; 95% CI, 1.23–3.48). The combined variant genotypes acted jointly with cigarette smoking to contribute to a 4.35-fold increased NPC risk (adjusted OR = 4.35; 95% CI, 2.57–7.38). There was a dose-response relationship between deletion alleles and NPC susceptibility (trend test, P = 0.011).
Conclusions
Our results suggest that genetic variants on the 15q25.1 lung cancer susceptibility locus may influence susceptibility to NPC, particularly for smoking-associated NPC. Such work may be helpful to facilitate an understanding of the etiology of smoking-associated cancers and improve prevention efforts.
doi:10.1371/journal.pone.0109036
PMCID: PMC4203692  PMID: 25329654

Results 1-25 (1666206)