PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (452554)

Clipboard (0)
None

Related Articles

1.  The effect of different cochlear implant microphones on acoustic hearing individuals’ binaural benefits for speech perception in noise 
Ear and hearing  2011;32(4):468-484.
Objectives
Cochlear implant microphones differ in placement, frequency response, and other characteristics such as whether they are directional. Although normal hearing individuals are often used as controls in studies examining cochlear implant users’ binaural benefits, the considerable differences across cochlear implant microphones make such comparisons potentially misleading. The goal of this study was to examine binaural benefits for speech perception in noise for normal hearing individuals using stimuli processed by head-related transfer functions (HRTFs) based on the different cochlear implant microphones.
Design
HRTFs were created for different cochlear implant microphones and used to test participants on the Hearing in Noise Test. Experiment 1 tested cochlear implant users and normal hearing individuals with HRTF-processed stimuli and with sound field testing to determine whether the HRTFs adequately simulated sound field testing. Experiment 2 determined the measurement error and performance-intensity function for the Hearing in Noise Test with normal hearing individuals listening to stimuli processed with the various HRTFs. Experiment 3 compared normal hearing listeners’ performance across HRTFs to determine how the HRTFs affected performance. Experiment 4 evaluated binaural benefits for normal hearing listeners using the various HRTFs, including ones that were modified to investigate the contributions of interaural time and level cues.
Results
The results indicated that the HRTFs adequately simulated sound field testing for the Hearing in Noise Test. They also demonstrated that the test-retest reliability and performance-intensity function were consistent across HRTFs, and that the measurement error for the test was 1.3 dB, with a change in signal-to-noise ratio of 1 dB reflecting a 10% change in intelligibility. There were significant differences in performance when using the various HRTFs, with particularly good thresholds for the HRTF based on the directional microphone when the speech and masker were spatially separated, emphasizing the importance of measuring binaural benefits separately for each HRTF. Evaluation of binaural benefits indicated that binaural squelch and spatial release from masking were found for all HRTFs and binaural summation was found for all but one HRTF, although binaural summation was less robust than the other types of binaural benefits. Additionally, the results indicated that neither interaural time nor level cues dominated binaural benefits for the normal hearing participants.
Conclusions
This study provides a means to measure the degree to which cochlear implant microphones affect acoustic hearing with respect to speech perception in noise. It also provides measures that can be used to evaluate the independent contributions of interaural time and level cues. These measures provide tools that can aid researchers in understanding and improving binaural benefits in acoustic hearing individuals listening via cochlear implant microphones.
doi:10.1097/AUD.0b013e31820dd3f0
PMCID: PMC3120920  PMID: 21412155
Hearing in Noise Test; cochlear implant; binaural benefits
2.  Acoustic Basis of Directional Acuity in Laboratory Mice 
The acoustic basis of auditory spatial acuity was investigated in CBA/129 mice by relating patterns of behavioral errors to directional features of the head-related transfer function (HRTF). Behavioral performance was assessed by training the mice to lick a water spout during sound presentations from a “safe” location and to suppress the response during presentations from “warning” locations. Minimum audible angles (MAAs) were determined by delivering the safe and warning sounds from different locations in the inter-aural horizontal and median vertical planes. HRTFs were measured at the same locations by implanting a miniature microphone and recording the gain of sound energy near the ear drum relative to free field. Mice produced an average MAA of 31° when sound sources were located in the horizontal plane. Acoustic measures indicated that binaural inter-aural level differences (ILDs) and monaural spectral features of the HRTF change systematically with horizontal location and therefore may have contributed to the accuracy of behavioral performance. Subsequent manipulations of the auditory stimuli and the directional properties of the ear produced errors that suggest the mice primarily relied on ILD cues when discriminating changes in azimuth. The MAA increased beyond 80° when the importance of ILD cues was minimized by testing in the median vertical plane. Although acoustic measures demonstrated a less robust effect of vertical location on spectral features of the HRTF, this poor performance provides further evidence for the insensitivity to spectral cues that was noted during behavioral testing in the horizontal plane.
doi:10.1007/s10162-011-0279-y
PMCID: PMC3173556  PMID: 21717290
spatial acuity; minimum audible angle; head-related transfer function; inter-aural level differences; spectral cues
3.  Emergence of Multiplicative Auditory Responses in the Midbrain of the Barn Owl 
Journal of neurophysiology  2007;98(3):1181-1193.
Space-specific neurons in the barn owl’s auditory space map gain spatial selectivity through tuning to combinations of the interaural time difference (ITD) and interaural level difference (ILD). The combination of ITD and ILD in the subthreshold responses of space-specific neurons in the external nucleus of the inferior colliculus (ICx) is well described by a multiplication of ITD- and ILD-dependent components. It is unknown, however, how ITD and ILD are combined at the site of ITD and ILD convergence in the lateral shell of the central nucleus of the inferior colliculus (ICcl) and therefore whether ICx is the first site in the auditory pathway where multiplicative tuning to ITD-and ILD-dependent signals occurs. We used extracellular re-cording of single neurons to determine how ITD and ILD are combined in ICcl of the anesthetized barn owl (Tyto alba). A comparison of additive, multiplicative, and linear-threshold models of neural responses shows that ITD and ILD are combined nonlinearly in ICcl, but the interaction of ITD and ILD is not uniformly multiplicative over the sample. A subset (61%) of the neural responses is well described by the multiplicative model, indicating that ICcl is the first site where multiplicative tuning to ITD- and ILD-dependent signals occurs. ICx, however, is the first site where multiplicative tuning is observed consistently. A network model shows that a linear combination of ICcl responses to ITD–ILD pairs is sufficient to produce the multiplicative subthreshold responses to ITD and ILD seen in ICx.
doi:10.1152/jn.00370.2007
PMCID: PMC2532518  PMID: 17615132
4.  Sound pressure transformations by the head and pinnae of the adult Chinchilla (Chinchilla lanigera) 
Hearing research  2010;272(1-2):135-147.
There are three main cues to sound location: the interaural differences in time (ITD) and level (ILD) as well as the monaural spectral shape cues. These cues are generated by the spatial- and frequency-dependent filtering of propagating sound waves by the head and external ears. Although the chinchilla has been used for decades to study the anatomy, physiology, and psychophysics of audition, including binaural and spatial hearing, little is actually known about the sound pressure transformations by the head and pinnae and the resulting sound localization cues available to them. Here, we measured the directional transfer functions (DTFs), the directional components of the head-related transfer functions, for 9 adult chinchillas. The resulting localization cues were computed from the DTFs. In the frontal hemisphere, spectral notch cues were present for frequencies from ~6–18 kHz. In general, the frequency corresponding to the notch increased with increases in source elevation as well as in azimuth towards the ipsilateral ear. The ILDs demonstrated a strong correlation with source azimuth and frequency. The maximum ILDs were < 10 dB for frequencies < 5 kHz, and ranged from 10–30 dB for the frequencies > 5 kHz. The maximum ITDs were dependent on frequency, yielding 236 μs at 4 kHz and 336 μs at 250 Hz. Removal of the pinnae eliminated the spectral notch cues, reduced the acoustic gain and the ILDs, altered the acoustic axis, and reduced the ITDs.
doi:10.1016/j.heares.2010.10.007
PMCID: PMC3039070  PMID: 20971180
sound localization; interaural time difference; interaural level difference; head related transfer function; directional transfer functions
5.  Effects of Signal Level and Background Noise on Spectral Representations in the Auditory Nerve of the Domestic Cat 
Background noise poses a significant obstacle for auditory perception, especially among individuals with hearing loss. To better understand the physiological basis of this perceptual impediment, the present study evaluated the effects of background noise on the auditory nerve representation of head-related transfer functions (HRTFs). These complex spectral shapes describe the directional filtering effects of the head and torso. When a broadband sound passes through the outer ear en route to the tympanic membrane, the HRTF alters its spectrum in a manner that establishes the perceived location of the sound source. HRTF-shaped noise shares many of the acoustic features of human speech, while communicating biologically relevant localization cues that are generalized across mammalian species. Previous studies have used parametric manipulations of random spectral shapes to elucidate HRTF coding principles at various stages of the cat’s auditory system. This study extended that body of work by examining the effects of sound level and background noise on the quality of spectral coding in the auditory nerve. When fibers were classified by their spontaneous rates, the coding properties of the more numerous low-threshold, high-spontaneous rate fibers were found to degrade at high presentation levels and in low signal-to-noise ratios. Because cats are known to maintain accurate directional hearing under these challenging listening conditions, behavioral performance may be disproportionally based on the enhanced dynamic range of the less common high-threshold, low-spontaneous rate fibers.
doi:10.1007/s10162-010-0232-5
PMCID: PMC3015029  PMID: 20824483
spectral integration; auditory nerve; rate representation; sound localization; background noise
6.  Acoustic and non-acoustic factors in modeling listener-specific performance of sagittal-plane sound localization 
The ability of sound-source localization in sagittal planes (along the top-down and front-back dimension) varies considerably across listeners. The directional acoustic spectral features, described by head-related transfer functions (HRTFs), also vary considerably across listeners, a consequence of the listener-specific shape of the ears. It is not clear whether the differences in localization ability result from differences in the encoding of directional information provided by the HRTFs, i.e., an acoustic factor, or from differences in auditory processing of those cues (e.g., spectral-shape sensitivity), i.e., non-acoustic factors. We addressed this issue by analyzing the listener-specific localization ability in terms of localization performance. Directional responses to spatially distributed broadband stimuli from 18 listeners were used. A model of sagittal-plane localization was fit individually for each listener by considering the actual localization performance, the listener-specific HRTFs representing the acoustic factor, and an uncertainty parameter representing the non-acoustic factors. The model was configured to simulate the condition of complete calibration of the listener to the tested HRTFs. Listener-specifically calibrated model predictions yielded correlations of, on average, 0.93 with the actual localization performance. Then, the model parameters representing the acoustic and non-acoustic factors were systematically permuted across the listener group. While the permutation of HRTFs affected the localization performance, the permutation of listener-specific uncertainty had a substantially larger impact. Our findings suggest that across-listener variability in sagittal-plane localization ability is only marginally determined by the acoustic factor, i.e., the quality of directional cues found in typical human HRTFs. Rather, the non-acoustic factors, supposed to represent the listeners' efficiency in processing directional cues, appear to be important.
doi:10.3389/fpsyg.2014.00319
PMCID: PMC4006033  PMID: 24795672
sound localization; localization model; sagittal plane; listener-specific factors; head-related transfer functions
7.  Behavioral Sensitivity to Broadband Binaural Localization Cues in the Ferret 
Although the ferret has become an important model species for studying both fundamental and clinical aspects of spatial hearing, previous behavioral work has focused on studies of sound localization and spatial release from masking in the free field. This makes it difficult to tease apart the role played by different spatial cues. In humans and other species, interaural time differences (ITDs) and interaural level differences (ILDs) play a critical role in sound localization in the azimuthal plane and also facilitate sound source separation in noisy environments. In this study, we used a range of broadband noise stimuli presented via customized earphones to measure ITD and ILD sensitivity in the ferret. Our behavioral data show that ferrets are extremely sensitive to changes in either binaural cue, with levels of performance approximating that found in humans. The measured thresholds were relatively stable despite extensive and prolonged (>16 weeks) testing on ITD and ILD tasks with broadband stimuli. For both cues, sensitivity was reduced at shorter durations. In addition, subtle effects of changing the stimulus envelope were observed on ITD, but not ILD, thresholds. Sensitivity to these cues also differed in other ways. Whereas ILD sensitivity was unaffected by changes in average binaural level or interaural correlation, the same manipulations produced much larger effects on ITD sensitivity, with thresholds declining when either of these parameters was reduced. The binaural sensitivity measured in this study can largely account for the ability of ferrets to localize broadband stimuli in the azimuthal plane. Our results are also broadly consistent with data from humans and confirm the ferret as an excellent experimental model for studying spatial hearing.
doi:10.1007/s10162-013-0390-3
PMCID: PMC3705081  PMID: 23615803
sound localization; spatial hearing; psychometric function; interaural time difference; interaural level difference; azimuth
8.  The acoustical cues to sound location in the rat: measurements of Directional Transfer Functions 
The acoustical cues for sound location are generated by spatial- and frequency-dependent filtering of propagating sound waves by the head and external ears. Although rats have been a common model system for anatomy, physiology, and psychophysics of localization, there have been few studies of the acoustical cues available to rats. Here, directional transfer functions (DTFs), the directional components of the head-related transfer functions, were measured in 6 adult rats. The cues to location were computed from the DTFs. In the frontal hemisphere, spectral notches were present for frequencies from ∼16-30 kHz; in general, the frequency corresponding to the notch increased with increases in source elevation and in azimuth towards the ipsilateral ear. The maximum high-frequency envelope-based interaural time differences (ITDs) were 130 μs whearas low-frequency (< 3.5 kHz) fine-structure ITDs were 160 μs; both types of ITDs were larger than predicted from spherical head models. Interaural level differences (ILDs) depended strongly on location and frequency. Maximum ILDs were < 10 dB for frequencies < 8 kHz, and were as large as 20-40 dB for frequencies > 20 kHz. Removal of the pinna eliminated the spectral notches, reduced the acoustic gain and ILDs, altered the acoustical axis, and reduced the ITDs.
doi:10.1121/1.2916587
PMCID: PMC2579256  PMID: 18537381
9.  The representation of sound localization cues in the barn owl's inferior colliculus 
The barn owl is a well-known model system for studying auditory processing and sound localization. This article reviews the morphological and functional organization, as well as the role of the underlying microcircuits, of the barn owl's inferior colliculus (IC). We focus on the processing of frequency and interaural time (ITD) and level differences (ILD). We first summarize the morphology of the sub-nuclei belonging to the IC and their differentiation by antero- and retrograde labeling and by staining with various antibodies. We then focus on the response properties of neurons in the three major sub-nuclei of IC [core of the central nucleus of the IC (ICCc), lateral shell of the central nucleus of the IC (ICCls), and the external nucleus of the IC (ICX)]. ICCc projects to ICCls, which in turn sends its information to ICX. The responses of neurons in ICCc are sensitive to changes in ITD but not to changes in ILD. The distribution of ITD sensitivity with frequency in ICCc can only partly be explained by optimal coding. We continue with the tuning properties of ICCls neurons, the first station in the midbrain where the ITD and ILD pathways merge after they have split at the level of the cochlear nucleus. The ICCc and ICCls share similar ITD and frequency tuning. By contrast, ICCls shows sigmoidal ILD tuning which is absent in ICCc. Both ICCc and ICCls project to the forebrain, and ICCls also projects to ICX, where space-specific neurons are found. Space-specific neurons exhibit side peak suppression in ITD tuning, bell-shaped ILD tuning, and are broadly tuned to frequency. These neurons respond only to restricted positions of auditory space and form a map of two-dimensional auditory space. Finally, we briefly review major IC features, including multiplication-like computations, correlates of echo suppression, plasticity, and adaptation.
doi:10.3389/fncir.2012.00045
PMCID: PMC3394089  PMID: 22798945
sound localization; central nucleus of the inferior colliculus; auditory; plasticity; adaptation; interaural time difference; interaural level difference; frequency tuning
10.  Multiplicative Auditory Spatial Receptive Fields Created by a Hierarchy of Population Codes 
PLoS ONE  2009;4(11):e8015.
A multiplicative combination of tuning to interaural time difference (ITD) and interaural level difference (ILD) contributes to the generation of spatially selective auditory neurons in the owl's midbrain. Previous analyses of multiplicative responses in the owl have not taken into consideration the frequency-dependence of ITD and ILD cues that occur under natural listening conditions. Here, we present a model for the responses of ITD- and ILD-sensitive neurons in the barn owl's inferior colliculus which satisfies constraints raised by experimental data on frequency convergence, multiplicative interaction of ITD and ILD, and response properties of afferent neurons. We propose that multiplication between ITD- and ILD-dependent signals occurs only within frequency channels and that frequency integration occurs using a linear-threshold mechanism. The model reproduces the experimentally observed nonlinear responses to ITD and ILD in the inferior colliculus, with greater accuracy than previous models. We show that linear-threshold frequency integration allows the system to represent multiple sound sources with natural sound localization cues, whereas multiplicative frequency integration does not. Nonlinear responses in the owl's inferior colliculus can thus be generated using a combination of cellular and network mechanisms, showing that multiple elements of previous theories can be combined in a single system.
doi:10.1371/journal.pone.0008015
PMCID: PMC2776990  PMID: 19956693
11.  The Conductive Hearing Loss Due to an Experimentally Induced Middle Ear Effusion Alters the Interaural Level and Time Difference Cues to Sound Location 
Otitis media with effusion (OME) is a pathologic condition of the middle ear that leads to a mild to moderate conductive hearing loss as a result of fluid in the middle ear. Recurring OME in children during the first few years of life has been shown to be associated with poor detection and recognition of sounds in noisy environments, hypothesized to result due to altered sound localization cues. To explore this hypothesis, we simulated a middle ear effusion by filling the middle ear space of chinchillas with different viscosities and volumes of silicone oil to simulate varying degrees of OME. While the effects of middle ear effusions on the interaural level difference (ILD) cue to location are known, little is known about whether and how middle ear effusions affect interaural time differences (ITDs). Cochlear microphonic amplitudes and phases were measured in response to sounds delivered from several locations in azimuth before and after filling the middle ear with fluid. Significant attenuations (20–40 dB) of sound were observed when the middle ear was filled with at least 1.0 ml of fluid with a viscosity of 3.5 Poise (P) or greater. As expected, ILDs were altered by ~30 dB. Additionally, ITDs were shifted by ~600 μs for low frequency stimuli (<4 kHz) due to a delay in the transmission of sound to the inner ear. The data show that in an experimental model of OME, ILDs and ITDs are shifted in the spatial direction of the ear without the experimental effusion.
doi:10.1007/s10162-012-0335-2
PMCID: PMC3441957  PMID: 22648382
otitis media with effusion; conductive hearing loss; sound localization; cochlear microphonic
12.  Discrimination and identification of azimuth using spectral shapea) 
Monaural measurements of minimum audible angle (MAA) (discrimination between two locations) and absolute identification (AI) of azimuthal locations in the frontal horizontal plane are reported. All experiments used roving-level fixed-spectral-shape stimuli processed with nonindividualized head-related transfer functions (HRTFs) to simulate the source locations. Listeners were instructed to maximize percent correct, and correct-answer feedback was provided after every trial. Measurements are reported for normal-hearing subjects, who listened with only one ear, and effectively monaural subjects, who had substantial unilateral hearing impairments (i.e., hearing losses greater than 60 dB) and listened with their normal ears. Both populations behaved similarly; the monaural experience of the unilaterally impaired listeners was not beneficial for these monaural localization tasks. Performance in the AI experiments was similar with both 7 and 13 source locations. The average root-mean-squared deviation between the virtual source location and the reported location was 35°, the average slopes of the best fitting line was 0.82, and the average bias was 2°. The best monaural MAAs were less than 5°. The MAAs were consistent with a theoretical analysis of the HRTFs, which suggests that monaural azimuthal discrimination is related to spectral-shape discrimination.
doi:10.1121/1.2981634
PMCID: PMC2597187  PMID: 19045798
13.  Biophysical basis of the sound analog membrane potential that underlies coincidence detection in the barn owl 
Interaural time difference (ITD), or the difference in timing of a sound wave arriving at the two ears, is a fundamental cue for sound localization. A wide variety of animals have specialized neural circuits dedicated to the computation of ITDs. In the avian auditory brainstem, ITDs are encoded as the spike rates in the coincidence detector neurons of the nucleus laminaris (NL). NL neurons compare the binaural phase-locked inputs from the axons of ipsi- and contralateral nucleus magnocellularis (NM) neurons. Intracellular recordings from the barn owl's NL in vivo showed that tonal stimuli induce oscillations in the membrane potential. Since this oscillatory potential resembled the stimulus sound waveform, it was named the sound analog potential (Funabiki et al., 2011). Previous modeling studies suggested that a convergence of phase-locked spikes from NM leads to an oscillatory membrane potential in NL, but how presynaptic, synaptic, and postsynaptic factors affect the formation of the sound analog potential remains to be investigated. In the accompanying paper, we derive analytical relations between these parameters and the signal and noise components of the oscillation. In this paper, we focus on the effects of the number of presynaptic NM fibers, the mean firing rate of these fibers, their average degree of phase-locking, and the synaptic time scale. Theoretical analyses and numerical simulations show that, provided the total synaptic input is kept constant, changes in the number and spike rate of NM fibers alter the ITD-independent noise whereas the degree of phase-locking is linearly converted to the ITD-dependent signal component of the sound analog potential. The synaptic time constant affects the signal more prominently than the noise, making faster synaptic input more suitable for effective ITD computation.
doi:10.3389/fncom.2013.00102
PMCID: PMC3821004  PMID: 24265615
phase-locking; sound localization; auditory brainstem; periodic signals; oscillation; owl
14.  Auditory Spatial Acuity Approximates the Resolving Power of Space-Specific Neurons 
PLoS ONE  2007;2(8):e675.
The relationship between neuronal acuity and behavioral performance was assessed in the barn owl (Tyto alba), a nocturnal raptor renowned for its ability to localize sounds and for the topographic representation of auditory space found in the midbrain. We measured discrimination of sound-source separation using a newly developed procedure involving the habituation and recovery of the pupillary dilation response. The smallest discriminable change of source location was found to be about two times finer in azimuth than in elevation. Recordings from neurons in its midbrain space map revealed that their spatial tuning, like the spatial discrimination behavior, was also better in azimuth than in elevation by a factor of about two. Because the PDR behavioral assay is mediated by the same circuitry whether discrimination is assessed in azimuth or in elevation, this difference in vertical and horizontal acuity is likely to reflect a true difference in sensory resolution, without additional confounding effects of differences in motor performance in the two dimensions. Our results, therefore, are consistent with the hypothesis that the acuity of the midbrain space map determines auditory spatial discrimination.
doi:10.1371/journal.pone.0000675
PMCID: PMC1925148  PMID: 17668055
15.  The effects of experimentally induced conductive hearing loss on spectral and temporal aspects of sound transmission through the ear 
Hearing research  2010;272(1-2):30-41.
Conductive hearing loss (CHL) is known to produce hearing deficits, including deficits in sound localization ability. The differences in sound intensities and timing experienced between the two tympanic membranes are important cues to sound localization (ILD and ITD, respectively). Although much is known about the effect of CHL on hearing levels, little investigation has been conducted into the actual impact of CHL on sound location cues. This study investigated effects of CHL induced by earplugs on cochlear microphonic (CM) amplitude and timing and their corresponding effect on the ILD and ITD location cues. Acoustic and CM measurements were made in 5 chinchillas before and after earplug insertion, and again after earplug removal using pure tones (500 Hz to 24 kHz). ILDs in the unoccluded condition demonstrated position and frequency dependence where peak far-lateral ILDs approached 30 dB for high frequencies. Unoccluded ear ITD cues demonstrated positional and frequency dependence with increased ITD cue for both decreasing frequency (± 420 µs at 500 Hz, ± 310 µs for 1–4 kHz ) and increasingly lateral sound source locations. Occlusion of the ear canal with foam plugs resulted in a mild, frequency-dependent conductive hearing loss of 10–38 dB (mean 31 ± 3.9 dB) leading to a concomitant frequency dependent increase in ILDs at all source locations. The effective ITDs increased in a frequency dependent manner with ear occlusion as a direct result of the acoustic properties of the plugging material, the latter confirmed via acoustical measurements using a model ear canal with varying volumes of acoustic foam. Upon ear plugging with acoustic foam, a mild CHL is induced. Furthermore, the CHL induced by acoustic foam results in substantial changes in the magnitudes of both the ITD and ILD cues to sound location.
doi:10.1016/j.heares.2010.11.003
PMCID: PMC3073683  PMID: 21073935
Conductive hearing loss; Interaural level differences (ILD); Interaural timing differences (ITD); Otitis media with effusion
16.  The role of broadband inhibition in the rate representation of spectral cues for sound localization in the inferior colliculus 
Hearing research  2008;238(1-2):77-93.
Previous investigations have shown that a subset of inferior colliculus neurons, which have been designated type O units, respond selectively to isolated features of the cat’s head-related transfer functions (HRTFs: the directional transformation of a free-field sound as it propagates from the head to the eardrum). Based on those results, it was hypothesized that type O units would show enhanced spatial tuning in a virtual sound field that conveyed the full complement of HRTF-based localization cues. As anticipated, a number of neurons produced representations of virtual sound source locations that were spatially tuned, level tolerant, and effective under monaural conditions. Preferred locations were associated with spectral cues that complemented the highly individualized broadband inhibitory patterns of tuned neurons. That is, higher response magnitudes were achieved when spectral peaks coincided with excitatory influences at best frequency (BF: the most sensitive frequency) and spectral notches fell within flanking inhibitory regions. The directionally dependent modulation of narrowband ON-BF excitation by broadband OFF-BF inhibition was not a unique property of type O units.
doi:10.1016/j.heares.2008.01.008
PMCID: PMC2327218  PMID: 18295420
head-related transfer function; spatial tuning; spectral integration; level tolerance; monaural hearing
17.  Comparison of Midbrain and Thalamic Space-Specific Neurons in Barn Owls 
Journal of neurophysiology  2006;95(2):783-790.
Spatial receptive fields of neurons in the auditory pathway of the barn owl result from the sensitivity to combinations of interaural time (ITD) and level differences across stimulus frequency. Both the forebrain and tectum of the owl contain such neurons. The neural pathways, which lead to the forebrain and tectal representations of auditory space, separate before the midbrain map of auditory space is synthesized. The first nuclei that belong exclusively to either the forebrain or the tectal pathways are the nucleus ovoidalis (Ov) and the external nucleus of the inferior colliculus (ICx), respectively. Both receive projections from the lateral shell subdivision of the inferior colliculus but are not interconnected. Previous studies indicate that the owl’s tectal representation of auditory space is different from those found in the owl’s forebrain and the mammalian brain. We addressed the question of whether the computation of spatial cues in both pathways is the same by comparing the ITD tuning of Ov and ICx neurons. Unlike in ICx, the relationship between frequency and ITD tuning had not been studied in single Ov units. In contrast to the conspicuous frequency independent ITD tuning of space-specific neurons of ICx, ITD selectivity varied with frequency in Ov. We also observed that the spatially tuned neurons of Ov respond to lower frequencies and are more broadly tuned to ITD than in ICx. Thus there are differences in the integration of frequency and ITD in the two sound-localization pathways. Thalamic neurons integrate spatial information not only within a broader frequency band but also across ITD channels.
doi:10.1152/jn.00833.2005
PMCID: PMC2532520  PMID: 16424454
18.  A first-generation microsatellite linkage map of the ruff 
Ecology and Evolution  2013;3(14):4631-4640.
A linkage map of the ruff (Philomachus pugnax) genome was constructed based on segregation analysis of 58 microsatellite loci from 381 captive-bred individuals spanning fourteen breeding years and comprising 64 families. Twenty-eight of the markers were resolved into seven linkage groups and five single marker loci, homologous to known chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) chromosomes. Linkage groups range from 10.1 to 488.7 cM in length and covered a total map distance of 641.6 cM, corresponding to an estimated 30–35% coverage of the ruff genome, with a mean spacing of 22.9 cM between loci. Through comparative mapping, we are able to assign linkage groups Ppu1, Ppu2, Ppu6, Ppu7, Ppu10, Ppu13, and PpuZ to chromosomes and identify several intrachromosomal rearrangements between the homologs of chicken, zebra finch, and ruff microsatellite loci. This is the first linkage map created in the ruff and is a major step toward providing genomic resources for this enigmatic species. It will provide an essential framework for mapping of phenotypically and behaviorally important loci in the ruff.
doi:10.1002/ece3.830
PMCID: PMC3867899  PMID: 24363892
Chromosomes; genetic map; linkage groups; microsatellite; ruff
19.  Perceptual Sensitivity to High-Frequency Interaural Time Differences Created by Rustling Sounds 
Interaural time differences (ITDs) can be used to localize sounds in the horizontal plane. ITDs can be extracted from either the fine structure of low-frequency sounds or from the envelopes of high-frequency sounds. Studies of the latter have included stimuli with periodic envelopes like amplitude-modulated tones or transposed stimuli, and high-pass filtered Gaussian noises. Here, four experiments are presented investigating the perceptual relevance of ITD cues in synthetic and recorded “rustling” sounds. Both share the broad long-term power spectrum with Gaussian noise but provide more pronounced envelope fluctuations than Gaussian noise, quantified by an increased waveform fourth moment, W. The current data show that the JNDs in ITD for band-pass rustling sounds tended to improve with increasing W and with increasing bandwidth when the sounds were band limited. In contrast, no influence of W on JND was observed for broadband sounds, apparently because of listeners' sensitivity to ITD in low-frequency fine structure, present in the broadband sounds. Second, it is shown that for high-frequency rustling sounds ITD JNDs can be as low as 30 μs. The third result was that the amount of dominance for ITD extraction of low frequencies decreases systematically with increasing amount of envelope fluctuations. Finally, it is shown that despite the exceptionally good envelope ITD sensitivity evident with high-frequency rustling sounds, minimum audible angles of both synthetic and recorded high-frequency rustling sounds in virtual acoustic space are still best when the angular information is mediated by interaural level differences.
doi:10.1007/s10162-011-0303-2
PMCID: PMC3254714  PMID: 22124890
binaural hearing; envelope; roughness; duplex theory; dominance region
20.  Mutation in the Kv3.3 Voltage-Gated Potassium Channel Causing Spinocerebellar Ataxia 13 Disrupts Sound-Localization Mechanisms 
PLoS ONE  2013;8(10):e76749.
Normal sound localization requires precise comparisons of sound timing and pressure levels between the two ears. The primary localization cues are interaural time differences, ITD, and interaural level differences, ILD. Voltage-gated potassium channels, including Kv3.3, are highly expressed in the auditory brainstem and are thought to underlie the exquisite temporal precision and rapid spike rates that characterize brainstem binaural pathways. An autosomal dominant mutation in the gene encoding Kv3.3 has been demonstrated in a large Filipino kindred manifesting as spinocerebellar ataxia type 13 (SCA13). This kindred provides a rare opportunity to test in vivo the importance of a specific channel subunit for human hearing. Here, we demonstrate psychophysically that individuals with the mutant allele exhibit profound deficits in both ITD and ILD sensitivity, despite showing no obvious impairment in pure-tone sensitivity with either ear. Surprisingly, several individuals exhibited the auditory deficits even though they were pre-symptomatic for SCA13. We would expect that impairments of binaural processing as great as those observed in this family would result in prominent deficits in localization of sound sources and in loss of the "spatial release from masking" that aids in understanding speech in the presence of competing sounds.
doi:10.1371/journal.pone.0076749
PMCID: PMC3792041  PMID: 24116147
21.  Decoding neural responses to temporal cues for sound localization 
eLife  2013;2:e01312.
The activity of sensory neural populations carries information about the environment. This may be extracted from neural activity using different strategies. In the auditory brainstem, a recent theory proposes that sound location in the horizontal plane is decoded from the relative summed activity of two populations in each hemisphere, whereas earlier theories hypothesized that the location was decoded from the identity of the most active cells. We tested the performance of various decoders of neural responses in increasingly complex acoustical situations, including spectrum variations, noise, and sound diffraction. We demonstrate that there is insufficient information in the pooled activity of each hemisphere to estimate sound direction in a reliable way consistent with behavior, whereas robust estimates can be obtained from neural activity by taking into account the heterogeneous tuning of cells. These estimates can still be obtained when only contralateral neural responses are used, consistently with unilateral lesion studies.
DOI: http://dx.doi.org/10.7554/eLife.01312.001
eLife digest
Having two ears allows animals to localize the source of a sound. For example, barn owls can snatch their prey in complete darkness by relying on sound alone. It has been known for a long time that this ability depends on tiny differences in the sounds that arrive at each ear, including differences in the time of arrival: in humans, for example, sound will arrive at the ear closer to the source up to half a millisecond earlier than it arrives at the other ear. These differences are called interaural time differences. However, the way that the brain processes this information to figure out where the sound came from has been the source of much debate.
Several theories have been proposed for how the brain calculates position from interaural time differences. According to the hemispheric theory, the activities of particular binaurally sensitive neurons in each of side of the brain are added together: adding signals in this way has been shown to maximize sensitivity to time differences under simple, controlled circumstances. The peak decoding theory proposes that the brain can work out the location of a sound on the basis of which neurons responded most strongly to the sound.
Both theories have their potential advantages, and there is evidence in support of each. Now, Goodman et al. have used computational simulations to compare the models under ecologically relevant circumstances. The simulations show that the results predicted by both models are inconsistent with those observed in real animals, and they propose that the brain must use the full pattern of neural responses to calculate the location of a sound.
One of the parts of the brain that is responsible for locating sounds is the inferior colliculus. Studies in cats and humans have shown that damage to the inferior colliculus on one side of the brain prevents accurate localization of sounds on the opposite side of the body, but the animals are still able to locate sounds on the same side. This finding is difficult to explain using the hemispheric model, but Goodman et al. show that it can be explained with pattern-based models.
DOI: http://dx.doi.org/10.7554/eLife.01312.002
doi:10.7554/eLife.01312
PMCID: PMC3844708  PMID: 24302571
sound localization; neural coding; audition; None
22.  Modelling of Human Low Frequency Sound Localization Acuity Demonstrates Dominance of Spatial Variation of Interaural Time Difference and Suggests Uniform Just-Noticeable Differences in Interaural Time Difference 
PLoS ONE  2014;9(2):e89033.
Sound source localization is critical to animal survival and for identification of auditory objects. We investigated the acuity with which humans localize low frequency, pure tone sounds using timing differences between the ears. These small differences in time, known as interaural time differences or ITDs, are identified in a manner that allows localization acuity of around 1° at the midline. Acuity, a relative measure of localization ability, displays a non-linear variation as sound sources are positioned more laterally. All species studied localize sounds best at the midline and progressively worse as the sound is located out towards the side. To understand why sound localization displays this variation with azimuthal angle, we took a first-principles, systemic, analytical approach to model localization acuity. We calculated how ITDs vary with sound frequency, head size and sound source location for humans. This allowed us to model ITD variation for previously published experimental acuity data and determine the distribution of just-noticeable differences in ITD. Our results suggest that the best-fit model is one whereby just-noticeable differences in ITDs are identified with uniform or close to uniform sensitivity across the physiological range. We discuss how our results have several implications for neural ITD processing in different species as well as development of the auditory system.
doi:10.1371/journal.pone.0089033
PMCID: PMC3928360  PMID: 24558468
23.  Binaural Gain Modulation of Spectrotemporal Tuning in the Interaural Level Difference-Coding Pathway 
The Journal of Neuroscience  2013;33(27):11089-11099.
In the brainstem, the auditory system diverges into two pathways that process different sound localization cues, interaural time differences (ITDs) and level differences (ILDs). We investigated the site where ILD is detected in the auditory system of barn owls, the posterior part of the lateral lemniscus (LLDp). This structure is equivalent to the lateral superior olive in mammals. The LLDp is unique in that it is the first place of binaural convergence in the brainstem where monaural excitatory and inhibitory inputs converge. Using binaurally uncorrelated noise and a generalized linear model, we were able to estimate the spectrotemporal tuning of excitatory and inhibitory inputs to these cells. We show that the response of LLDp neurons is highly locked to the stimulus envelope. Our data demonstrate that spectrotemporally tuned, temporally delayed inhibition enhances the reliability of envelope locking by modulating the gain of LLDp neurons' responses. The dependence of gain modulation on ILD shown here constitutes a means for space-dependent coding of stimulus identity by the initial stages of the auditory pathway.
doi:10.1523/JNEUROSCI.4941-12.2013
PMCID: PMC3718367  PMID: 23825414
24.  Cross-Correlation in the Auditory Coincidence Detectors of Owls 
Interaural time difference (ITD) plays a central role in many auditory functions, most importantly in sound localization. The classic model for how ITD is computed was put forth by Jeffress (1948). One of the predictions of the Jeffress model is that the neurons that compute ITD should behave as cross-correlators. Whereas cross-correlation-like properties of the ITD-computing neurons have been reported, attempts to show that the shape of the ITD response function is determined by the spectral tuning of the neuron, a core prediction of cross-correlation, have been unsuccessful. Using reverse correlation analysis, we demonstrate in the barn owl that the relationship between the spectral tuning and the ITD response of the ITD-computing neurons is that predicted by cross-correlation. Moreover, we show that a model of coincidence detector responses derived from responses to binaurally uncorrelated noise is consistent with binaural interaction based on cross-correlation. These results are thus consistent with one of the key tenets of the Jeffress model. Our work sets forth both the methodology to answer whether cross-correlation describes coincidence detector responses and a demonstration that in the barn owl, the result is that expected by theory.
doi:10.1523/JNEUROSCI.1969-08.2008
PMCID: PMC2637928  PMID: 18685035
barn owl; interaural time difference; cross-correlation; coincidence detection; sound localization; nucleus laminaris
25.  Neuronal specializations for the processing of interaural difference cues in the chick 
Sound information is encoded as a series of spikes of the auditory nerve fibers (ANFs), and then transmitted to the brainstem auditory nuclei. Features such as timing and level are extracted from ANFs activity and further processed as the interaural time difference (ITD) and the interaural level difference (ILD), respectively. These two interaural difference cues are used for sound source localization by behaving animals. Both cues depend on the head size of animals and are extremely small, requiring specialized neural properties in order to process these cues with precision. Moreover, the sound level and timing cues are not processed independently from one another. Neurons in the nucleus angularis (NA) are specialized for coding sound level information in birds and the ILD is processed in the posterior part of the dorsal lateral lemniscus nucleus (LLDp). Processing of ILD is affected by the phase difference of binaural sound. Temporal features of sound are encoded in the pathway starting in nucleus magnocellularis (NM), and ITD is processed in the nucleus laminaris (NL). In this pathway a variety of specializations are found in synapse morphology, neuronal excitability, distribution of ion channels and receptors along the tonotopic axis, which reduces spike timing fluctuation in the ANFs-NM synapse, and imparts precise and stable ITD processing to the NL. Moreover, the contrast of ITD processing in NL is enhanced over a wide range of sound level through the activity of GABAergic inhibitory systems from both the superior olivary nucleus (SON) and local inhibitory neurons that follow monosynaptic to NM activity.
doi:10.3389/fncir.2014.00047
PMCID: PMC4023016  PMID: 24847212
brainstem auditory nucleus; interaural difference cues; SON; tonic inhibition; phasic inhibition

Results 1-25 (452554)