Search tips
Search criteria

Results 1-25 (1081728)

Clipboard (0)

Related Articles

1.  Transforming Growth Factor-β Receptor-3 Is Associated with Pulmonary Emphysema 
Chronic obstructive pulmonary disease (COPD) is a heterogeneous syndrome, including emphysema and airway disease. Phenotypes defined on the basis of chest computed tomography (CT) may decrease disease heterogeneity and aid in the identification of candidate genes for COPD subtypes. To identify these genes, we performed genome-wide linkage analysis in extended pedigrees from the Boston Early-Onset COPD Study, stratified by emphysema status (defined by chest CT scans) of the probands, followed by genetic association analysis of positional candidate genes. A region on chromosome 1p showed strong evidence of linkage to lung function traits in families of emphysema-predominant probands in the stratified analysis (LOD score = 2.99 in families of emphysema-predominant probands versus 1.98 in all families). Association analysis in 949 individuals from 127 early-onset COPD pedigrees revealed association for COPD-related traits with an intronic single-nucleotide polymorphism (SNP) in transforming growth factor-β receptor-3 (TGFBR3) (P = 0.005). This SNP was significantly associated with COPD affection status comparing 389 cases from the National Emphysema Treatment Trial to 472 control smokers (P = 0.04), and with FEV1 (P = 0.004) and CT emphysema (P = 0.05) in 3,117 subjects from the International COPD Genetics Network. Gene-level replication of association with lung function was seen in 427 patients with COPD from the Lung Health Study. In conclusion, stratified linkage analysis followed by association testing identified TGFBR3 (betaglycan) as a potential susceptibility gene for COPD. Published human microarray and murine linkage studies have also demonstrated the importance of TGFBR3 in emphysema and lung function, and our group and others have previously found association of COPD-related traits with TGFB1, a ligand for TGFBR3.
PMCID: PMC2742752  PMID: 19131638
betaglycan; chronic obstructive pulmonary disease; computed tomography; linkage; single nucleotide polymorphism
2.  Genome-wide Association Study Identifies BICD1 as a Susceptibility Gene for Emphysema 
Rationale: Chronic obstructive pulmonary disease (COPD), characterized by airflow limitation, is a disorder with high phenotypic and genetic heterogeneity. Pulmonary emphysema is a major but variable component of COPD; familial data suggest that different components of COPD, such as emphysema, may be influenced by specific genetic factors.
Objectives: To identify genetic determinants of emphysema assessed through high-resolution chest computed tomography in individuals with COPD.
Methods: We performed a genome-wide association study (GWAS) of emphysema determined from chest computed tomography scans with a total of 2,380 individuals with COPD in three independent cohorts of white individuals from (1) a cohort from Bergen, Norway, (2) the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Study, and (3) the National Emphysema Treatment Trial (NETT). We tested single-nucleotide polymorphism associations with the presence or absence of emphysema determined by radiologist assessment in two of the three cohorts and a quantitative emphysema trait (percentage of lung voxels less than –950 Hounsfield units) in all three cohorts.
Measurements and Main Results: We identified association of a single-nucleotide polymorphism in BICD1 with the presence or absence of emphysema (P = 5.2 × 10−7 with at least mild emphysema vs. control subjects; P = 4.8 × 10−8 with moderate and more severe emphysema vs. control subjects).
Conclusions: Our study suggests that genetic variants in BICD1 are associated with qualitative emphysema in COPD. Variants in BICD1 are associated with length of telomeres, which suggests that a mechanism linked to accelerated aging may be involved in the pathogenesis of emphysema.
Clinical trial registered with (NCT00292552).
PMCID: PMC3040393  PMID: 20709820
emphysema; chronic obstructive pulmonary disease; BICD1; single-nucleotide polymorphism
3.  SOX5 Is a Candidate Gene for Chronic Obstructive Pulmonary Disease Susceptibility and Is Necessary for Lung Development 
Rationale: Chromosome 12p has been linked to chronic obstructive pulmonary disease (COPD) in the Boston Early-Onset COPD Study (BEOCOPD), but a susceptibility gene in that region has not been identified.
Objectives: We used high-density single-nucleotide polymorphism (SNP) mapping to implicate a COPD susceptibility gene and an animal model to determine the potential role of SOX5 in lung development and COPD.
Methods: On chromosome 12p, we genotyped 1,387 SNPs in 386 COPD cases from the National Emphysema Treatment Trial and 424 control smokers from the Normative Aging Study. SNPs with significant associations were then tested in the BEOCOPD study and the International COPD Genetics Network. Based on the human results, we assessed histology and gene expression in the lungs of Sox5−/− mice.
Measurements and Main Results: In the case-control analysis, 27 SNPs were significant at P ≤ 0.01. The most significant SNP in the BEOCOPD replication was rs11046966 (National Emphysema Treatment Trial–Normative Aging Study P = 6.0 × 10−4, BEOCOPD P = 1.5 × 10−5, combined P = 1.7 × 10−7), located 3′ to the gene SOX5. Association with rs11046966 was not replicated in the International COPD Genetics Network. Sox5−/− mice showed abnormal lung development, with a delay in maturation before the saccular stage, as early as E16.5. Lung pathology in Sox5−/− lungs was associated with a decrease in fibronectin expression, an extracellular matrix component critical for branching morphogenesis.
Conclusions: Genetic variation in the transcription factor SOX5 is associated with COPD susceptibility. A mouse model suggests that the effect may be due, in part, to its effects on lung development and/or repair processes.
PMCID: PMC3137139  PMID: 21330457
chronic obstructive pulmonary disease; emphysema; knockout mice; lung development; single nucleotide polymorphism
4.  Excessive visceral fat accumulation in advanced chronic obstructive pulmonary disease 
Previous studies have suggested links between chronic obstructive pulmonary disease (COPD), cardiovascular disease, and abdominal obesity. Although abdominal visceral fat is thought to be associated with cardiovascular risk factors, the degree of visceral fat accumulation in patients with COPD has not been directly studied. The aim of this study was to investigate the abdominal visceral fat accumulation and the association between visceral fat and the severity and changes in emphysema in COPD patients.
We performed clinical and laboratory tests, including pulmonary function, dyspnea score, and the six-minute walking test in COPD patients (n = 101) and control, which included subjects with a smoking history but without airflow obstruction (n = 62). We used computed tomography to evaluate the abdominal visceral fat area (VFA), subcutaneous fat area (SFA), and the extent of emphysema.
The COPD group had a larger VFA than the control group. The prevalence of non-obese subjects with an increased VFA was greater in the Global Initiative for Chronic Obstructive Lung Disease Stages III and IV than in the other stages of COPD. The extent of emphysema was inversely correlated with waist circumference and SFA. However, VFA did not decrease with the severity of emphysema. VFA was positively correlated with the degree of dyspnea.
COPD patients have excessive visceral fat, which is retained in patients with more advanced stages of COPD or severe emphysema despite the absence of obesity.
PMCID: PMC3157945  PMID: 21857782
abdominal obesity; chronic obstructive pulmonary disease; emphysema; visceral fat
5.  Analysis of Exonic Elastin Variants in Severe, Early-Onset Chronic Obstructive Pulmonary Disease 
The destruction of elastic fibers has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Emphysema has been described in autosomal dominant cutis laxa, which can be caused by mutations in the elastin gene. Previously, a rare functional mutation in the terminal exon of elastin was found in a case of severe, early-onset COPD. To test the hypothesis that other similar elastin mutations may predispose to COPD, we screened 90 probands from the Boston Early-Onset COPD Study and 90 smoking control subjects from the Normative Aging Study for mutations in elastin exons using high-resolution DNA melt analysis followed by resequencing. Rare nonsynonymous single-nucleotide polymorphisms (SNPs) seen only in cases were examined for segregation with airflow obstruction within pedigrees. Common nonsynonymous SNPs were tested for association with COPD in a family-based analysis of 949 subjects from the Boston Early-Onset COPD Study, and in a case–control analysis in 389 COPD cases from the National Emphysema Treatment Trial and 472 control subjects from the Normative Aging Study. Of 28 elastin variants found, 3 were nonsynonymous SNPs found only in cases. The previously described Gly773Asp mutation was found in another proband. The other two SNPs did not clearly segregate with COPD within families. Two common nonsynonymous SNPs did not demonstrate significant associations in either a family-based or case–control analysis. Exonic SNPs in the elastin gene do not appear to be common risk factors for severe COPD.
PMCID: PMC2689920  PMID: 19029017
elastin; chronic obstructive pulmonary disease; emphysema; genetic polymorphism
6.  Association Between Emphysema Score, Six-Minute Walk and Cardiopulmonary Exercise Tests in COPD 
High-resolution computed tomography (HRCT) has allowed in detection of airway wall abnormalities and emphysema, whose extent may correlate with the clinical severity of the disease in patients with chronic obstructive pulmonary disease (COPD). Six minute walk test (6MWT) and cardiopulmonary exercise test (CPET) can determine functional status.
A study was undertaken to investigate whether the extent of emphysema in COPD patients quantitatively confirmed by HRCT scoring was associated with distance walked, inspiratory capacity (IC) changes after exercise, anaerobic threshold of cardiopulmonary exercise and the BODE index (body mass index, airflow obstruction, dyspnea, exercise performance).
Seventeen patients with COPD underwent HRCT scanning, 6MWT and CPET. The emphysema score was highly correlated to forced vital capacity (FVC) (r=-0.748, p<0.001), forced expiratory volume in 1 second (FEV1) (r=-0.615, p<0.01), IC post exercise (r=-0.663, p<0.01) and dyspnea score post exercise (r=0.609, p<0.01), but was not associated with the BODE index. The distance walked during 6MWT was inversely correlated to emphysema score (r=-0.557, p<0.05). IC before exercise was highly related to the 6MWT. The change in IC after exercise was associated with the percent decline of oxygen saturation after exercise (r=0.633, p<0.01). Severity of lung emphysema in COPD patients was inversely correlated to VO2 max (r=-0.514, p<0.05) and anaerobic threshold (r=-0.595, p<0.01) of cardiopulmonary exercise.
These results suggest that COPD associated with emphysema on HRCT is characterized by more severe lung function impairment, greater exercise impairment and cardiopulmonary dysfunction.
PMCID: PMC3480708  PMID: 23115601
Chronic obstructive pulmonary disease; High-resolution computed tomography; Six-minute walk test; cardiopulmonary exercise test; Inspiratory capacity.
7.  Virus-induced exacerbations in asthma and COPD 
Chronic obstructive pulmonary disease (COPD) is characterized by chronic airway inflammation and/or airflow limitation due to pulmonary emphysema. Chronic bronchitis, pulmonary emphysema, and bronchial asthma may all be associated with airflow limitation; therefore, exacerbation of asthma may be associated with the pathophysiology of COPD. Furthermore, recent studies have suggested that the exacerbation of asthma, namely virus-induced asthma, may be associated with a wide variety of respiratory viruses. COPD and asthma have different underlying pathophysiological processes and thus require individual therapies. Exacerbation of both COPD and asthma, which are basically defined and diagnosed by clinical symptoms, is associated with a rapid decline in lung function and increased mortality. Similar pathogens, including human rhinovirus, respiratory syncytial virus, influenza virus, parainfluenza virus, and coronavirus, are also frequently detected during exacerbation of asthma and/or COPD. Immune response to respiratory viral infections, which may be related to the severity of exacerbation in each disease, varies in patients with both COPD and asthma. In this regard, it is crucial to recognize and understand both the similarities and differences of clinical features in patients with COPD and/or asthma associated with respiratory viral infections, especially in the exacerbative stage. In relation to definition, epidemiology, and pathophysiology, this review aims to summarize current knowledge concerning exacerbation of both COPD and asthma by focusing on the clinical significance of associated respiratory virus infections.
PMCID: PMC3787546  PMID: 24098299
asthma; COPD; respiratory virus; exacerbation; overlap syndrome; human rhinovirus; respiratory syncytial virus
8.  Convergence of the epidemiology and pathology of COPD 
Thorax  2006;61(1):86-88.
The epidemiology of chronic obstructive pulmonary disease (COPD) has been dominated by one hypothesis stating that cigarette smoking and chronic bronchitis were the key to pathogenesis and another that asthma, chronic bronchitis, and even emphysema are related to different expressions of a primary airway abnormality. The first hypothesis was rejected in the late 1960s based on a longitudinal study of working men where only a fraction of smokers developed COPD and where development of COPD was independent of the absence or presence of chronic bronchitis. Chronic bronchitis in more advanced COPD was subsequently associated with a more rapid decline in lung function and more frequent exacerbations. The second hypothesis is more difficult to test but longitudinal studies have shown that the presence of bronchial hyperresponsiveness may predict the subjects who go on to develop COPD. This brief review attempts to reconcile these findings with the pathology found in the lung.
PMCID: PMC2080699  PMID: 16227325
chronic obstructive pulmonary disease; pathology; epidemiology; smoking; pathogenesis
9.  Gene-environment interactions in chronic obstructive pulmonary disease 
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death throughout the world and is largely associated with cigarette smoking. Despite the appreciation of the central role of smoking in the development of COPD, only a relatively small number of smokers (15%–20%) develop COPD. Recent studies depicting familial aggregation suggest that some subjects may have a genetic predisposition to developing COPD. In this respect, a number of single nucleotide polymorphisms have been reported in association with different COPD features (subphenotypes), although much of this data remains controversial. Classical genetic studies (including twin and family studies) assume an “equal-environment” scenario, but as gene-environment interactions occur in COPD, this assumption needs revision. Thus, new integrated models are needed to examine the major environmental factors associated with COPD which include smoking as well as air pollution, and respiratory infections, and not only genetic predisposition. Revisiting this area, may help answer the question of what has more bearing in the pathogenesis of COPD—the environment or the genomic sequence of the affected subjects. It is anticipated that an improved understanding of this interaction will both enable improved identification of individuals susceptible to developing this disease, as well as improved future treatments for this disease.
PMCID: PMC2629985  PMID: 18990979
chronic obstructive pulmonary disease; environment; genomics; pathogenesis
10.  Pharmacogenetics of chronic obstructive pulmonary disease: challenges and opportunities 
Pharmacogenomics  2010;11(2):237-247.
Similar to other common chronic diseases, chronic obstructive pulmonary disease (COPD) is a heterogeneous disorder with multiple disease subtypes. Candidate gene studies have found genetic associations for COPD-related phenotypes that may be relevant for pharmacogenetics studies, including lung function decline and COPD exacerbations. However, few COPD pharmacogenetics studies have been completed. Most studies have focused on the role of variants in the β2-adrenergic receptor gene on bronchodilator response, but the findings have been inconclusive. Candidate gene studies highlight the concept that genes for COPD susceptibility may also be relevant in COPD pharmacogenetics. Currently, there are no clinical applications of pharmacogenetics to COPD therapy, but the use of pharmacogenetics to determine initial smoking cessation therapy may be closer to clinical application.
PMCID: PMC2832747  PMID: 20136362
bronchodilator response; chronic obstructive pulmonary disease; emphysema; exacerbation; pharmacogenetics; smoking cessation; SNP
11.  National Emphysema Treatment Trial State of the Art 
Although a hereditary contribution to emphysema has been long suspected, severe α1-antitrypsin deficiency remains the only conclusively proven genetic risk factor for chronic obstructive pulmonary disease (COPD). Recently, genome-wide linkage analysis has led to the identification of two promising candidate genes for COPD: TGFB1 and SERPINE2. Like multiple other COPD candidate gene associations, even these positionally identified genes have not been universally replicated across all studies. Differences in phenotype definition may contribute to nonreplication in genetic studies of heterogeneous disorders such as COPD. The use of precisely measured phenotypes, including emphysema quantification on high-resolution chest computed tomography scans, has aided in the discovery of additional genes for clinically relevant COPD-related traits. The use of computed tomography scans to assess emphysema and airway disease as well as newer genetic technologies, including gene expression microarrays and genome-wide association studies, has great potential to detect novel genes affecting COPD susceptibility, severity, and response to treatment.
PMCID: PMC2645324  PMID: 18453360
α1-antitrypsin deficiency; chronic obstructive pulmonary disease; genetic linkage; single-nucleotide polymorphism
12.  Association Between Single-Nucleotide Polymorphisms in Interleukin-12A and Risk of Chronic Obstructive Pulmonary Disease 
DNA and Cell Biology  2012;31(9):1475-1479.
Chronic obstructive pulmonary disease (COPD) is characterized by airflow obstruction due to chronic bronchitis, emphysema, and/or disease of small airways. It has been reported that the genetic variation may play a role in the development and severity of COPD. The purpose of this study was to investigate whether single-nucleotide polymorphisms (SNP) in interleukin (IL)-12A and IL-12B were associated with COPD in a Chinese population. The IL-12A rs2243115 and IL-12B rs3212227 polymorphisms were genotyped by performing polymerase chain reaction–restriction fragment length polymorphism in 298 patients with COPD and 346 healthy controls. We observed that the frequencies of GT and GT+GG of IL-12A rs2243115 were significantly different from TT in the COPD group and the control group (GT vs. TT: odds ratio [OR]=2.35, 95% confidence interval [CI]=1.55–3.57, p<0.001; GT+GG vs. TT: OR=2.46, 95% CI=1.63–3.71, p<0.001). These data suggest that the IL-12A rs2243115 polymorphism may contribute to genetic susceptibility to COPD in a Chinese population.
Chronic obstructive pulmonary disease is caused by both environmental factors (such as smoking) and underlying genetic polymorphisms. In this article, a role of the proinflammatory cytokine, IL-12, is shown to be associated with the risk of disease.
PMCID: PMC3429285  PMID: 22734699
13.  Genome-Wide Association Analysis of Blood Biomarkers in Chronic Obstructive Pulmonary Disease 
Rationale: A genome-wide association study (GWAS) for circulating chronic obstructive pulmonary disease (COPD) biomarkers could identify genetic determinants of biomarker levels and COPD susceptibility.
Objectives: To identify genetic variants of circulating protein biomarkers and novel genetic determinants of COPD.
Methods: GWAS was performed for two pneumoproteins, Clara cell secretory protein (CC16) and surfactant protein D (SP-D), and five systemic inflammatory markers (C-reactive protein, fibrinogen, IL-6, IL-8, and tumor necrosis factor-α) in 1,951 subjects with COPD. For genome-wide significant single nucleotide polymorphisms (SNPs) (P < 1 × 10−8), association with COPD susceptibility was tested in 2,939 cases with COPD and 1,380 smoking control subjects. The association of candidate SNPs with mRNA expression in induced sputum was also elucidated.
Measurements and Main Results: Genome-wide significant susceptibility loci affecting biomarker levels were found only for the two pneumoproteins. Two discrete loci affecting CC16, one region near the CC16 coding gene (SCGB1A1) on chromosome 11 and another locus approximately 25 Mb away from SCGB1A1, were identified, whereas multiple SNPs on chromosomes 6 and 16, in addition to SNPs near SFTPD, had genome-wide significant associations with SP-D levels. Several SNPs affecting circulating CC16 levels were significantly associated with sputum mRNA expression of SCGB1A1 (P = 0.009–0.03). Several SNPs highly associated with CC16 or SP-D levels were nominally associated with COPD in a collaborative GWAS (P = 0.001–0.049), although these COPD associations were not replicated in two additional cohorts.
Conclusions: Distant genetic loci and biomarker-coding genes affect circulating levels of COPD-related pneumoproteins. A subset of these protein quantitative trait loci may influence their gene expression in the lung and/or COPD susceptibility.
Clinical trial registered with (NCT 00292552).
PMCID: PMC3622441  PMID: 23144326
biomarker; chronic obstructive pulmonary disease; genome-wide association study
14.  Acute and chronic inflammatory responses induced by smoking in individuals susceptible and non-susceptible to development of COPD: from specific disease phenotyping towards novel therapy. Protocol of a cross-sectional study 
BMJ Open  2013;3(2):e002178.
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease with pulmonary and extra-pulmonary manifestations. Although COPD is a complex disease, diagnosis and staging are still based on simple spirometry measurements. Different COPD phenotypes exist based on clinical, physiological, immunological and radiological observations. Cigarette smoking is the most important risk factor for COPD, but only 15–20% of smokers develop the disease, suggesting a genetic predisposition. Unfortunately, little is known about the pathogenesis of COPD, and even less on the very first steps that are associated with an aberrant response to smoke exposure. This study aims to investigate the underlying local and systemic inflammation of different clinical COPD phenotypes, and acute effects of cigarette smoke exposure in individuals susceptible and non-susceptible for the development of COPD. Furthermore, we will investigate mechanisms associated with corticosteroid insensitivity. Our study will provide valuable information regarding the pathogenetic mechanisms underlying the natural course of COPD.
Methods and analysis
This cross-sectional study will include young and old individuals susceptible or non-susceptible to develop COPD. At a young age (18–40 years) 60 ‘party smokers’ will be included who are called susceptible or non-susceptible based on COPD prevalence in smoking family members. In addition, 30 healthy smokers (age 40–75 years) and 110 COPD patients will be included. Measurements will include questionnaires, pulmonary function, low-dose CT scanning of the lung, body composition, 6 min walking distance and biomarkers in peripheral blood, sputum, urine, exhaled breath condensate, epithelial lining fluid, bronchial brushes and biopsies. Non-biased approaches such as proteomics will be performed in blood and epithelial lining fluid.
Ethics and dissemination
This multicentre study was approved by the medical ethical committees of UMC Groningen and Utrecht, the Netherlands. The study findings will be presented at conferences and will be reported in peer-reviewed journals.
Trial registration, NCT00807469 (study 1) and NCT00850863 (study 2).
PMCID: PMC3586075  PMID: 23377993
COPD; Inflammation; Susceptibility; Corticosteroid insensitivity; Smoking
15.  Gender Differences in Plasma Biomarker Levels in a Cohort of COPD Patients: A Pilot Study 
PLoS ONE  2011;6(1):e16021.
Little is known about gender differences in plasma biomarker levels in patients with chronic obstructive pulmonary disease (COPD).
There are differences in serum biomarker levels between women and men with COPD.
Explore gender differences in plasma biomarker levels in patients with COPD and smokers without COPD.
We measured plasma levels of IL-6, IL-8, IL-16, MCP-1, MMP-9, PARC and VEGF in 80 smokers without COPD (40 males, 40 females) and 152 stable COPD patients (76 males, 76 females) with similar airflow obstruction. We determined anthropometrics, smoking history, lung function, exercise tolerance, body composition, BODE index, co-morbidities and quality of life. We then explored associations between plasma biomarkers levels and the clinical characteristics of the patients and also with the clinical and physiological variables known to predict outcome in COPD.
The plasma biomarkers level explored were similar in men and women without COPD. In contrast, in patients with COPD the median value in pg/mL of IL-6 (6.26 vs 8.0, p = 0.03), IL-16 (390 vs 321, p = 0.009) and VEGF (50 vs 87, p = 0.02) differed between women and men. Adjusted for smoking history, gender was independently associated with IL-16, PARC and VEGF levels. There were also gender differences in the associations between IL-6, IL-16 and VEGF and physiologic variables that predict outcomes.
In stable COPD patients with similar airflow obstruction, there are gender differences in plasma biomarker levels and in the association between biomarker levels and important clinical or physiological variables. Further studies should confirm our findings.
PMCID: PMC3022655  PMID: 21267454
16.  Can a normal peak expiratory flow exclude severe chronic obstructive pulmonary disease? 
Chronic obstructive pulmonary disease (COPD) is underdiagnosed. One barrier to diagnosis is the limited availability of spirometry testing, but in adults at risk for COPD, a normal pre-bronchodilator (pre-BD) peak expiratory flow (PEF) may rule out clinically significant COPD.
To identify post-BD airway obstruction using data from 13 708 individuals aged ≥40 years from the PLATINO and BOLD studies.
We evaluated different cut-off points of pre-BD. The PEF was obtained from a diagnostic-quality spirometer (not a mechanical PEF meter). At least one of the following COPD risk factors was present in 77% of the subjects: chronic respiratory symptoms; exposure to tobacco smoke, biomass smoke or dust in the workplace; or a previous diagnosis of asthma, COPD, emphysema or chronic bronchitis.
Although the positive predictive value was low as expected, a pre-BD PEF of ≥70% predicted effectively ruled out Stages III and IV COPD of the Global Initiative for Chronic Obstructive Lung Disease. Among those with at least one risk factor, only 12% would require confirmatory spirometry using this criterion.
Adding PEF measurement to a screening questionnaire may rule out severe to very severe COPD without the need for pre- and post-BD spirometry testing. Confirmation is needed from a study using inexpensive PEF meters or pocket spirometers with a staged screening protocol.
PMCID: PMC3334276  PMID: 19275802
17.  Genetic Determinants of Emphysema Distribution in the National Emphysema Treatment Trial 
Rationale: Computed tomography (CT) scanning of the lung may reduce phenotypic heterogeneity in defining subjects with chronic obstructive pulmonary disease (COPD), and allow identification of genetic determinants of emphysema severity and distribution.
Objectives: We sought to identify genes associated with CT scan distribution of emphysema in individuals without α1-antitrypsin deficiency but with severe COPD.
Methods: We evaluated baseline CT densitometry phenotypes in 282 individuals with emphysema enrolled in the Genetics Ancillary Study of the National Emphysema Treatment Trial, and used regression models to identify genetic variants associated with emphysema distribution.
Measurements and Main Results: Emphysema distribution was assessed by two methods—assessment by radiologists and by computerized density mask quantitation, using a threshold of −950 Hounsfield units. A total of 77 polymorphisms in 20 candidate genes were analyzed for association with distribution of emphysema. GSTP1, EPHX1, and MMP1 polymorphisms were associated with the densitometric, apical-predominant distribution of emphysema (p value range = 0.001–0.050). When an apical-predominant phenotype was defined by the radiologist scoring method, GSTP1 and EPHX1 single-nucleotide polymorphisms were found to be significantly associated. In a case–control analysis of COPD susceptibility limited to cases with densitometric upper-lobe–predominant cases, the EPHX1 His139Arg single-nucleotide polymorphism was associated with COPD (p = 0.005).
Conclusions: Apical and basal emphysematous destruction appears to be influenced by different genes. Polymorphisms in the xenobiotic enzymes, GSTP1 and EPHX1, are associated with apical-predominant emphysema. Altered detoxification of cigarette smoke metabolites may contribute to emphysema distribution, and these findings may lead to further insight into genetic determinants of emphysema.
PMCID: PMC2049064  PMID: 17363767
COPD; genetics; association analysis; computed tomography; emphysema
18.  Gender and Chronic Obstructive Pulmonary Disease 
The prevalence of chronic obstructive pulmonary disease (COPD) in women is increasing, as is hospitalization for COPD. The number of women dying of COPD in the United States now surpasses men. Despite this, research suggests that physicians are still more likely to correctly diagnose men with COPD than women. Increased tobacco use in women likely explains some of the increase in the prevalence of COPD in women, but data suggest that women may actually be at greater risk of smoking-induced lung function impairment, more severe dyspnea, and poorer health status for the same level of tobacco exposure. The degree to which these observations represent biologic, physiologic, or sociologic differences is not known. Nonsmokers with COPD are also more likely to be female. In addition, new evidence is emerging that men and women may be phenotypically different in their response to tobacco smoke, with men being more prone to an emphysematous phenotype and women an airway predominant phenotype. Inasmuch as COPD is a disease of inflammation, it is also possible that sexual dimorphism of the human immune response may also be responsible for gender differences in the disease. More data are still needed on what the implications of these findings are on therapy. In this clinical commentary, we present current knowledge regarding how gender influences the epidemiology, diagnosis, and presentation of COPD in addition to physiologic and psychologic impairments and we attempt to offer insight into why these differences might exist and how this may influence therapeutic management.
PMCID: PMC2720110  PMID: 17673696
tobacco susceptibility; smoking; sex; obstructive lung disease
19.  Association between markers of emphysema and more severe chronic obstructive pulmonary disease 
Thorax  2006;61(12):1037-1042.
The predominant emphysema phenotype is associated with more severe airflow limitation in patients with chronic obstructive pulmonary disease (COPD). A study was undertaken to investigate whether COPD patients, with or without emphysema quantitatively confirmed by high resolution computed tomography (HRCT), have different COPD severity as assessed by the BODE index (body mass index, airflow obstruction, dyspnoea, exercise performance) and inspiratory capacity to total lung capacity ratio (IC/TLC), and by different biological markers of lung parenchymal destruction.
Twenty six outpatients with COPD and eight healthy non‐smokers were examined. Each subject underwent HRCT scanning, pulmonary function tests, cell counts, and measurements of neutrophil elastase, matrix metalloproteinase (MMP)‐9 and tissue inhibitor of metalloproteinase (TIMP)‐1 in induced sputum, as well as measurement of desmosine, a marker of elastin degradation in urine, plasma and sputum.
Patients with HRCT confirmed emphysema had a higher BODE index and lower IC/TLC ratio than subjects without HRCT confirmed emphysema and controls. Forced expiratory volume in 1 second (FEV1), FEV1/forced vital capacity ratio, and carbon monoxide transfer coefficient were lower, whereas the number of eosinophils, MMP‐9, and the MMP‐9/TIMP‐1 ratio in sputum were higher in patients with emphysema. In COPD patients the number of sputum eosinophils was the biological variable that correlated positively with the HRCT score of emphysema (p = 0.04).
These results suggest that COPD associated with HRCT confirmed emphysema is characterised by more severe lung function impairment, more intense airway inflammation and, possibly, more serious systemic dysfunction than COPD not associated with HRCT confirmed emphysema.
PMCID: PMC2117071  PMID: 16769715
chronic obstructive pulmonary disease; emphysema; biological markers; outcomes
20.  Evaluation of Quality of Life with the Chronic Obstructive Pulmonary Disease Assessment Test in Chronic Obstructive Pulmonary Disease and the Effect of Dyspnea on Disease-Specific Quality of Life in These Patients 
Yonsei Medical Journal  2013;54(5):1214-1219.
The chronic obstructive pulmonary disease (COPD) assessment test (CAT) was recently introduced for use in assessing disease-specific quality of life and follow-up of patients with COPD. The purpose of this study was to evaluate the effect of the dyspnea on disease-specific quality of life detected by CAT score in patients with COPD.
Materials and Methods
In this study, 90 stable patients with COPD as defined by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria were included. The level of dyspnea was assessed with the Medical Research Council (MRC) dyspnea scale, and disease-specific quality of life was assessed with CAT score.
The mean±SD age was 68.5±10.9 (range 41-97) years. A significant relationship was established between CAT score, MRC dyspnea scale score and GOLD stage in patients with COPD. There was also a positive correlation between dyspnea scale scores and GOLD stage in the patients (p<0.001), as well as positive correlation between CAT score and dyspnea scale score (p<0.001). CAT score showed a significant correlation with hospitalization and exacerbations (p<0.05).
Dyspnea is an important symptom that may impact quality of life in patients with COPD. CAT was shown to be a simple, fast and intelligible measurement of disease-specific quality of life, and was correlated with levels of dyspnea in patients with COPD.
PMCID: PMC3743182  PMID: 23918572
Chronic obstructive pulmonary disease; dyspnea; quality of life
21.  Chronic obstructive pulmonary disease due to occupational exposure to silica dust: a review of epidemiological and pathological evidence 
Occupational exposure is an important risk factor for chronic obstructive pulmonary disease (COPD), and silica dust is one of the most important occupational respiratory toxins. Epidemiological and pathological studies suggest that silica dust exposure can lead to COPD, even in the absence of radiological signs of silicosis, and that the association between cumulative silica dust exposure and airflow obstruction is independent of silicosis. Recent clinicopathological and experimental studies have contributed further towards explaining the potential mechanism through which silica can cause pathological changes that may lead to the development of COPD. In this paper we review the epidemiological and pathological evidence relevant to the development of COPD in silica dust exposed workers within the context of recent findings. The evidence surveyed suggests that chronic levels of silica dust that do not cause disabling silicosis may cause the development of chronic bronchitis, emphysema, and/or small airways disease that can lead to airflow obstruction, even in the absence of radiological silicosis.
PMCID: PMC1740506  PMID: 12660371
22.  Involvement of surfactant protein D in emphysema revealed by genetic association study 
Surfactant protein D (SFTPD) induces emphysema in knockout mice, but the association of SFTPD with chronic obstructive pulmonary disease (COPD) and emphysema in humans is unclear. Therefore, we aimed to determine the association between genetic variations in SFTPD and susceptibility to COPD and emphysema.
Two populations were studied: population A comprised 270 smokers, including 188 COPD and 82 at-risk subjects, and population B comprised 1131 autopsy cases including 160 cases with emphysema. Six single-nucleotide polymorphisms (SNPs) that tagged the linkage disequilibrium blocks on the entire SFTPD gene were genotyped; the associations of the genotypes with COPD, pulmonary function, percentage of the low-attenuation area (LAA%), and percentage of the airway wall area (WA%) were determined in population A. In population B, the associations of the genotypes with emphysema were assessed.
A C allele at SNP rs721917 that results in the replacement of Met with Thr at position 11 in SFTPD was positively correlated with the LAA% in the upper lung (P=1.1 × 10−5) and overall LAA% (P=1.0 × 10−4), and negatively correlated with the serum concentration of SFTPD (P=7 × 10−11) in the population A. The C/C (rs721917/rs10887199) haplotype was associated with emphysema in both the populations.
Subjects with a C allele at rs721917 have a lower serum SFTPD concentration and are more susceptible to emphysema. This suggests a protective effect of SFTPD against COPD and emphysema.
PMCID: PMC3260918  PMID: 21934714
chronic obstructive pulmonary disease; emphysema; genetic variation; pulmonary surfactant-associated protein D
23.  Models of chronic obstructive pulmonary disease 
Respiratory Research  2004;5(1):18.
Chronic obstructive pulmonary disease (COPD) is a major global health problem and is predicted to become the third most common cause of death by 2020. Apart from the important preventive steps of smoking cessation, there are no other specific treatments for COPD that are as effective in reversing the condition, and therefore there is a need to understand the pathophysiological mechanisms that could lead to new therapeutic strategies. The development of experimental models will help to dissect these mechanisms at the cellular and molecular level. COPD is a disease characterized by progressive airflow obstruction of the peripheral airways, associated with lung inflammation, emphysema and mucus hypersecretion. Different approaches to mimic COPD have been developed but are limited in comparison to models of allergic asthma. COPD models usually do not mimic the major features of human COPD and are commonly based on the induction of COPD-like lesions in the lungs and airways using noxious inhalants such as tobacco smoke, nitrogen dioxide, or sulfur dioxide. Depending on the duration and intensity of exposure, these noxious stimuli induce signs of chronic inflammation and airway remodelling. Emphysema can be achieved by combining such exposure with instillation of tissue-degrading enzymes. Other approaches are based on genetically-targeted mice which develop COPD-like lesions with emphysema, and such mice provide deep insights into pathophysiological mechanisms. Future approaches should aim to mimic irreversible airflow obstruction, associated with cough and sputum production, with the possibility of inducing exacerbations.
PMCID: PMC533858  PMID: 15522115
Chronic obstructive pulmonary disease; COPD; asthma; animal; mice; rat; guinea pig; tobacco smoke; nitrogen dioxide; sulfur dioxide
24.  Characterisation of phenotypes based on severity of emphysema in chronic obstructive pulmonary disease 
Thorax  2007;62(11):932-937.
Airflow limitation in chronic obstructive pulmonary disease (COPD) is caused by a mixture of small airway disease and emphysema, the relative contributions of which may vary among patients. Phenotypes of COPD classified purely based on severity of emphysema are not well defined and may be different from the classic phenotypes of “pink puffers” and “blue bloaters”.
To characterise clinical phenotypes based on severity of emphysema, 274 subjects with COPD were recruited, excluding those with physician‐diagnosed bronchial asthma. For all subjects a detailed interview of disease history and symptoms, quality of life (QOL) measurement, blood sampling, pulmonary function tests before and after inhalation of salbutamol (0.4 mg) and high‐resolution CT scanning were performed.
Severity of emphysema visually evaluated varied widely even among subjects with the same stage of disease. No significant differences were noted among three groups of subjects classified by severity of emphysema in age, smoking history, chronic bronchitis symptoms, blood eosinophil count, serum IgE level or bronchodilator response. However, subjects with severe emphysema had significantly lower body mass index (BMI) and poorer QOL scores, evaluated using St George's Respiratory Questionnaire (SGRQ), than those with no/mild emphysema (mean (SD) BMI 21.2 (0.5) vs 23.5 (0.3) kg/m2, respectively; SGRQ total score 40 (3) vs 28 (2), respectively; p<0.001 for both). These characteristics held true even if subjects with the same degree of airflow limitation were chosen.
The severity of emphysema varies widely even in patients with the same stage of COPD, and chronic bronchitis symptoms are equally distributed irrespective of emphysema severity. Patients with the phenotype in which emphysema predominates have lower BMI and poorer health‐related QOL.
PMCID: PMC2117136  PMID: 17573447
25.  Pathogenic triad in COPD: oxidative stress, protease–antiprotease imbalance, and inflammation 
Patients with chronic obstructive pulmonary disease (COPD) exhibit dominant features of chronic bronchitis, emphysema, and/or asthma, with a common phenotype of airflow obstruction. COPD pulmonary physiology reflects the sum of pathological changes in COPD, which can occur in large central airways, small peripheral airways, and the lung parenchyma. Quantitative or high-resolution computed tomography is used as a surrogate measure for assessment of disease progression. Different biological or molecular markers have been reported that reflect the mechanistic or pathogenic triad of inflammation, proteases, and oxidants and correspond to the different aspects of COPD histopathology. Similar to the pathogenic triad markers, genetic variations or polymorphisms have also been linked to COPD-associated inflammation, protease–antiprotease imbalance, and oxidative stress. Furthermore, in recent years, there have been reports identifying aging-associated mechanistic markers as downstream consequences of the pathogenic triad in the lungs from COPD patients. For this review, the authors have limited their discussion to a review of mechanistic markers and genetic variations and their association with COPD histopathology and disease status.
PMCID: PMC3157944  PMID: 21857781
senescence; apoptosis; chronic obstructive pulmonary disease; bronchitis; emphysema

Results 1-25 (1081728)