PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (851928)

Clipboard (0)
None

Related Articles

1.  Genetic affinities among the lower castes and tribal groups of India: inference from Y chromosome and mitochondrial DNA 
BMC Genetics  2006;7:42.
Background
India is a country with enormous social and cultural diversity due to its positioning on the crossroads of many historic and pre-historic human migrations. The hierarchical caste system in the Hindu society dominates the social structure of the Indian populations. The origin of the caste system in India is a matter of debate with many linguists and anthropologists suggesting that it began with the arrival of Indo-European speakers from Central Asia about 3500 years ago. Previous genetic studies based on Indian populations failed to achieve a consensus in this regard. We analysed the Y-chromosome and mitochondrial DNA of three tribal populations of southern India, compared the results with available data from the Indian subcontinent and tried to reconstruct the evolutionary history of Indian caste and tribal populations.
Results
No significant difference was observed in the mitochondrial DNA between Indian tribal and caste populations, except for the presence of a higher frequency of west Eurasian-specific haplogroups in the higher castes, mostly in the north western part of India. On the other hand, the study of the Indian Y lineages revealed distinct distribution patterns among caste and tribal populations. The paternal lineages of Indian lower castes showed significantly closer affinity to the tribal populations than to the upper castes. The frequencies of deep-rooted Y haplogroups such as M89, M52, and M95 were higher in the lower castes and tribes, compared to the upper castes.
Conclusion
The present study suggests that the vast majority (>98%) of the Indian maternal gene pool, consisting of Indio-European and Dravidian speakers, is genetically more or less uniform. Invasions after the late Pleistocene settlement might have been mostly male-mediated. However, Y-SNP data provides compelling genetic evidence for a tribal origin of the lower caste populations in the subcontinent. Lower caste groups might have originated with the hierarchical divisions that arose within the tribal groups with the spread of Neolithic agriculturalists, much earlier than the arrival of Aryan speakers. The Indo-Europeans established themselves as upper castes among this already developed caste-like class structure within the tribes.
doi:10.1186/1471-2156-7-42
PMCID: PMC1569435  PMID: 16893451
2.  Population Differentiation of Southern Indian Male Lineages Correlates with Agricultural Expansions Predating the Caste System 
PLoS ONE  2012;7(11):e50269.
Previous studies that pooled Indian populations from a wide variety of geographical locations, have obtained contradictory conclusions about the processes of the establishment of the Varna caste system and its genetic impact on the origins and demographic histories of Indian populations. To further investigate these questions we took advantage that both Y chromosome and caste designation are paternally inherited, and genotyped 1,680 Y chromosomes representing 12 tribal and 19 non-tribal (caste) endogamous populations from the predominantly Dravidian-speaking Tamil Nadu state in the southernmost part of India. Tribes and castes were both characterized by an overwhelming proportion of putatively Indian autochthonous Y-chromosomal haplogroups (H-M69, F-M89, R1a1-M17, L1-M27, R2-M124, and C5-M356; 81% combined) with a shared genetic heritage dating back to the late Pleistocene (10–30 Kya), suggesting that more recent Holocene migrations from western Eurasia contributed <20% of the male lineages. We found strong evidence for genetic structure, associated primarily with the current mode of subsistence. Coalescence analysis suggested that the social stratification was established 4–6 Kya and there was little admixture during the last 3 Kya, implying a minimal genetic impact of the Varna (caste) system from the historically-documented Brahmin migrations into the area. In contrast, the overall Y-chromosomal patterns, the time depth of population diversifications and the period of differentiation were best explained by the emergence of agricultural technology in South Asia. These results highlight the utility of detailed local genetic studies within India, without prior assumptions about the importance of Varna rank status for population grouping, to obtain new insights into the relative influences of past demographic events for the population structure of the whole of modern India.
doi:10.1371/journal.pone.0050269
PMCID: PMC3508930  PMID: 23209694
3.  Genetic variation in South Indian castes: evidence from Y-chromosome, mitochondrial, and autosomal polymorphisms 
BMC Genetics  2008;9:86.
Background
Major population movements, social structure, and caste endogamy have influenced the genetic structure of Indian populations. An understanding of these influences is increasingly important as gene mapping and case-control studies are initiated in South Indian populations.
Results
We report new data on 155 individuals from four Tamil caste populations of South India and perform comparative analyses with caste populations from the neighboring state of Andhra Pradesh. Genetic differentiation among Tamil castes is low (RST = 0.96% for 45 autosomal short tandem repeat (STR) markers), reflecting a largely common origin. Nonetheless, caste- and continent-specific patterns are evident. For 32 lineage-defining Y-chromosome SNPs, Tamil castes show higher affinity to Europeans than to eastern Asians, and genetic distance estimates to the Europeans are ordered by caste rank. For 32 lineage-defining mitochondrial SNPs and hypervariable sequence (HVS) 1, Tamil castes have higher affinity to eastern Asians than to Europeans. For 45 autosomal STRs, upper and middle rank castes show higher affinity to Europeans than do lower rank castes from either Tamil Nadu or Andhra Pradesh. Local between-caste variation (Tamil Nadu RST = 0.96%, Andhra Pradesh RST = 0.77%) exceeds the estimate of variation between these geographically separated groups (RST = 0.12%). Low, but statistically significant, correlations between caste rank distance and genetic distance are demonstrated for Tamil castes using Y-chromosome, mtDNA, and autosomal data.
Conclusion
Genetic data from Y-chromosome, mtDNA, and autosomal STRs are in accord with historical accounts of northwest to southeast population movements in India. The influence of ancient and historical population movements and caste social structure can be detected and replicated in South Indian caste populations from two different geographic regions.
doi:10.1186/1471-2156-9-86
PMCID: PMC2621241  PMID: 19077280
4.  Presence of three different paternal lineages among North Indians: A study of 560 Y chromosomes 
Annals of human biology  2009;36(1):46-59.
Background
The genetic structure, affinities, and diversity of the 1 billion Indians hold important keys to numerous unanswered questions regarding the evolution of human populations and the forces shaping contemporary patterns of genetic variation. Although there have been several recent studies of South Indian caste groups, North Indian caste groups, and South Indian Muslims using Y-chromosomal markers, overall, the Indian population has still not been well studied compared to other geographical populations. In particular, no genetic study has been conducted on Shias and Sunnis from North India.
Aim
This study aims to investigate genetic variation and the gene pool in North Indians.
Subjects and methods
A total of 32 Y-chromosomal markers in 560 North Indian males collected from three higher caste groups (Brahmins, Chaturvedis and Bhargavas) and two Muslims groups (Shia and Sunni) were genotyped.
Results
Three distinct lineages were revealed based upon 13 haplogroups. The first was a Central Asian lineage harbouring haplogroups R1 and R2. The second lineage was of Middle-Eastern origin represented by haplogroups J2*, Shia-specific E1b1b1, and to some extent G* and L*. The third was the indigenous Indian Y-lineage represented by haplogroups H1*, F*, C* and O*. Haplogroup E1b1b1 was observed in Shias only.
Conclusion
The results revealed that a substantial part of today’s North Indian paternal gene pool was contributed by Central Asian lineages who are Indo-European speakers, suggesting that extant Indian caste groups are primarily the descendants of Indo-European migrants. The presence of haplogroup E in Shias, first reported in this study, suggests a genetic distinction between the two Indo Muslim sects. The findings of the present study provide insights into prehistoric and early historic patterns of migration into India and the evolution of Indian populations in recent history.
doi:10.1080/03014460802558522
PMCID: PMC2755252  PMID: 19058044
Paternal lineages; Y-chromosomal markers; North Indians; migration
5.  The Grandest Genetic Experiment Ever Performed on Man? – A Y-Chromosomal Perspective on Genetic Variation in India 
We have analysed Y-chromosomal data from Indian caste, Indian tribal and East Asian populations in order to investigate the impact of the caste system on male genetic variation. We find that variation within populations is lower in India than in East Asia, while variation between populations is overall higher. This observation can be explained by greater subdivision within the Indian population, leading to more genetic drift. However, the effect is most marked in the tribal populations, and the level of variation between caste populations is similar to the level between Chinese populations. The caste system has therefore had a detectable impact on Y-chromosomal variation, but this has been less strong than the influence of the tribal system, perhaps because of larger population sizes in the castes, more gene flow or a shorter period of time.
PMCID: PMC2987567  PMID: 21103011
Y chromosome; genetic variation; Indian caste system; endogamy; population substructure
6.  Genetic affinities between endogamous and inbreeding populations of Uttar Pradesh 
BMC Genetics  2007;8:12.
Background
India has experienced several waves of migration since the Middle Paleolithic. It is believed that the initial demic movement into India was from Africa along the southern coastal route, approximately 60,000–85,000 years before present (ybp). It has also been reported that there were two other major colonization which included eastward diffusion of Neolithic farmers (Elamo Dravidians) from Middle East sometime between 10,000 and 7,000 ybp and a southern dispersal of Indo Europeans from Central Asia 3,000 ybp. Mongol entry during the thirteenth century A.D. as well as some possible minor incursions from South China 50,000 to 60,000 ybp may have also contributed to cultural, linguistic and genetic diversity in India. Therefore, the genetic affinity and relationship of Indians with other world populations and also within India are often contested. In the present study, we have attempted to offer a fresh and immaculate interpretation on the genetic relationships of different North Indian populations with other Indian and world populations.
Results
We have first genotyped 20 tetra-nucleotide STR markers among 1800 north Indian samples of nine endogamous populations belonging to three different socio-cultural strata. Genetic distances (Nei's DA and Reynold's Fst) were calculated among the nine studied populations, Caucasians and East Asians. This analysis was based upon the allelic profile of 20 STR markers to assess the genetic similarity and differences of the north Indian populations. North Indians showed a stronger genetic relationship with the Europeans (DA 0.0341 and Fst 0.0119) as compared to the Asians (DA 0.1694 and Fst – 0.0718). The upper caste Brahmins and Muslims were closest to Caucasians while middle caste populations were closer to Asians. Finally, three phylogenetic assessments based on two different NJ and ML phylogenetic methods and PC plot analysis were carried out using the same panel of 20 STR markers and 20 geo-ethnic populations. The three phylogenetic assessments revealed that north Indians are clustering with Caucasians.
Conclusion
The genetic affinities of Indians and that of different caste groups towards Caucasians or East Asians is distributed in a cline where geographically north Indians and both upper caste and Muslim populations are genetically closer to the Caucasians.
doi:10.1186/1471-2156-8-12
PMCID: PMC1855350  PMID: 17417972
7.  Genetic structure of four socio-culturally diversified caste populations of southwest India and their affinity with related Indian and global groups 
BMC Genetics  2004;5:23.
Background
A large number of microsatellites have been extensively used to comprehend the genetic diversity of different global groups. This paper entails polymorphism at 15 STR in four predominant and endogamous populations representing Karnataka, located on the southwest coast of India. The populations residing in this region are believed to have received gene flow from south Indian populations and world migrants, hence, we carried out a detailed study on populations inhabiting this region to understand their genetic structure, diversity related to geography and linguistic affiliation and relatedness to other Indian and global migrant populations.
Results
Various statistical analyses were performed on the microsatellite data to accomplish the objectives of the paper. The heretozygosity was moderately high and similar across the loci, with low average GST value. Iyengar and Lyngayat were placed above the regression line in the R-matrix analysis as opposed to the Gowda and Muslim. AMOVA indicated that majority of variation was confined to individuals within a population, with geographic grouping demonstrating lesser genetic differentiation as compared to linguistic clustering. DA distances show the genetic affinity among the southern populations, with Iyengar, Lyngayat and Vanniyar displaying some affinity with northern Brahmins and global migrant groups from East Asia and Europe.
Conclusion
The microsatellite study divulges a common ancestry for the four diverse populations of Karnataka, with the overall genetic differentiation among them being largely confined to intra-population variation. The practice of consanguineous marriages might have attributed to the relatively lower gene flow displayed by Gowda and Muslim as compared to Iyengar and Lyngayat. The various statistical analyses strongly suggest that the studied populations could not be differentiated on the basis of caste or spatial location, although, linguistic affinity was reflected among the southern populations, distinguishing them from the northern groups. Our study also indicates a heterogeneous origin for Lyngayat and Iyengar owing to their genetic proximity with southern populations and northern Brahmins. The high-ranking communities, in particular, Iyengar, Lyngayat, Vanniyar and northern Brahmins might have experienced genetic admixture from East Asian and European ethnic groups.
doi:10.1186/1471-2156-5-23
PMCID: PMC515297  PMID: 15317657
8.  Influence of language and ancestry on genetic structure of contiguous populations: A microsatellite based study on populations of Orissa 
BMC Genetics  2005;6:4.
Background
We have examined genetic diversity at fifteen autosomal microsatellite loci in seven predominant populations of Orissa to decipher whether populations inhabiting the same geographic region can be differentiated on the basis of language or ancestry. The studied populations have diverse historical accounts of their origin, belong to two major ethnic groups and different linguistic families. Caucasoid caste populations are speakers of Indo-European language and comprise Brahmins, Khandayat, Karan and Gope, while the three Australoid tribal populations include two Austric speakers: Juang and Saora and a Dravidian speaking population, Paroja. These divergent groups provide a varied substratum for understanding variation of genetic patterns in a geographical area resulting from differential admixture between migrants groups and aboriginals, and the influence of this admixture on population stratification.
Results
The allele distribution pattern showed uniformity in the studied groups with approximately 81% genetic variability within populations. The coefficient of gene differentiation was found to be significantly higher in tribes (0.014) than caste groups (0.004). Genetic variance between the groups was 0.34% in both ethnic and linguistic clusters and statistically significant only in the ethnic apportionment. Although the populations were genetically close (FST = 0.010), the contemporary caste and tribal groups formed distinct clusters in both Principal-Component plot and Neighbor-Joining tree. In the phylogenetic tree, the Orissa Brahmins showed close affinity to populations of North India, while Khandayat and Gope clustered with the tribal groups, suggesting a possibility of their origin from indigenous people.
Conclusions
The extent of genetic differentiation in the contemporary caste and tribal groups of Orissa is highly significant and constitutes two distinct genetic clusters. Based on our observations, we suggest that since genetic distances and coefficient of gene differentiation were fairly small, the studied populations are indeed genetically similar and that the genetic structure of populations in a geographical region is primarily influenced by their ancestry and not by socio-cultural hierarchy or language. The scenario of genetic structure, however, might be different for other regions of the subcontinent where populations have more similar ethnic and linguistic backgrounds and there might be variations in the patterns of genomic and socio-cultural affinities in different geographical regions.
doi:10.1186/1471-2156-6-4
PMCID: PMC549189  PMID: 15694006
9.  Genomic view on the peopling of India 
India is known for its vast human diversity, consisting of more than four and a half thousand anthropologically well-defined populations. Each population differs in terms of language, culture, physical features and, most importantly, genetic architecture. The size of populations varies from a few hundred to millions. Based on the social structure, Indians are classified into various caste, tribe and religious groups. These social classifications are very rigid and have remained undisturbed by emerging urbanisation and cultural changes. The variable social customs, strict endogamy marriage practices, long-term isolation and evolutionary forces have added immensely to the diversification of the Indian populations. These factors have also led to these populations acquiring a set of Indian-specific genetic variations responsible for various diseases in India. Interestingly, most of these variations are absent outside the Indian subcontinent. Thus, this review is focused on the peopling of India, the caste system, marriage practice and the resulting health and forensic implications.
doi:10.1186/2041-2223-3-20
PMCID: PMC3514343  PMID: 23020857
Admixture; caste; Indians; mtDNA; tribe; Y-chromosome
10.  High incidence of neural tube defects in Northern part of India 
Asian Journal of Neurosurgery  2016;11(4):352-355.
Background:
In the absence of primary care and prevailing associated social stigma, many patients of neural tube defects (NTDs) from remote areas die without getting any treatment. The high number of such untreated cases and unregistered deaths in these areas made us ponders to the fact that tertiary care center-based studies do not represent the true incidence of NTDs.
Materials and Methods:
We did a population-based survey for NTDs births of rural areas from Jaunpur to Ghazipur district in Eastern Uttar Pradesh. These districts are among the least developed areas of Northern India in Uttar Pradesh among other 17.
Results:
The data show an incidence of 7.48 per 1000 live births.
Conclusion:
Besides of unawareness regarding periconceptional folate supplementation, intensive effort is required to design adequately powered studies to search other key factors responsible for high prevalence of NTDs.
doi:10.4103/1793-5482.175628
PMCID: PMC4974957  PMID: 27695536
Epidemiology; India; meningomyelocele; neural tube defect
11.  Social Affiliation and the Demand for Health Services: Caste and Child Health in South India * 
Journal of development economics  2007;83(2):256-279.
This paper assesses the role of social affiliation, measured by caste, in shaping investments in child health. The special setting that we have chosen for the analysis – tea estates in the South Indian High Range – allows us to control nonparametrically for differences in income, access to health services, and patterns of morbidity across low caste and high caste households. In this controlled setting, low caste households spend more on their children's health than high caste households, reversing the pattern we would expect to find elsewhere in India. Moreover, health expenditures do not vary by gender within either caste group, in contrast once again with the male preference documented throughout the country. A simple explanation, based on differences in the returns to human capital across castes in the tea estates is proposed to explain these striking results.
doi:10.1016/j.jdeveco.2006.07.005
PMCID: PMC2098704  PMID: 18046465
Health; Human Capital; Networks; Caste; Gender; Household decisions
12.  Fine-mapping of a QTL influencing pork tenderness on porcine chromosome 2 
BMC Genetics  2007;8:69.
Background
In a previous study, a quantitative trait locus (QTL) exhibiting large effects on both Instron shear force and taste panel tenderness was detected within the Illinois Meat Quality Pedigree (IMQP). This QTL mapped to the q arm of porcine chromosome 2 (SSC2q). Comparative analysis of SSC2q indicates that it is orthologous to a segment of human chromosome 5 (HSA5) containing a strong positional candidate gene, calpastatin (CAST). CAST polymorphisms have recently been shown to be associated with meat quality characteristics; however, the possible involvement of other genes and/or molecular variation in this region cannot be excluded, thus requiring fine-mapping of the QTL.
Results
Recent advances in porcine genome resources, including high-resolution radiation hybrid and bacterial artificial chromosome (BAC) physical maps, were utilized for development of novel informative markers. Marker density in the ~30-Mb region surrounding the most likely QTL position was increased by addition of eighteen new microsatellite markers, including nine publicly-available and nine novel markers. Two newly-developed markers were derived from a porcine BAC clone containing the CAST gene. Refinement of the QTL position was achieved through linkage and haplotype analyses. Within-family linkage analyses revealed at least two families segregating for a highly-significant QTL in strong positional agreement with CAST markers. A combined analysis of these two families yielded QTL intervals of 36 cM and 7 cM for Instron shear force and taste panel tenderness, respectively, while haplotype analyses suggested further refinement to a 1.8 cM interval containing CAST markers. The presence of additional tenderness QTL on SSC2q was also suggested.
Conclusion
These results reinforce CAST as a strong positional candidate. Further analysis of CAST molecular variation within the IMQP F1 boars should enhance understanding of the molecular basis of pork tenderness, and thus allow for genetic improvement of pork products. Furthermore, additional resources have been generated for the targeted investigation of other putative QTL on SSC2q, which may lead to further advancements in pork quality.
doi:10.1186/1471-2156-8-69
PMCID: PMC2213680  PMID: 17935628
13.  Phylogeography of mtDNA haplogroup R7 in the Indian peninsula 
Background
Human genetic diversity observed in Indian subcontinent is second only to that of Africa. This implies an early settlement and demographic growth soon after the first 'Out-of-Africa' dispersal of anatomically modern humans in Late Pleistocene. In contrast to this perspective, linguistic diversity in India has been thought to derive from more recent population movements and episodes of contact. With the exception of Dravidian, which origin and relatedness to other language phyla is obscure, all the language families in India can be linked to language families spoken in different regions of Eurasia. Mitochondrial DNA and Y chromosome evidence has supported largely local evolution of the genetic lineages of the majority of Dravidian and Indo-European speaking populations, but there is no consensus yet on the question of whether the Munda (Austro-Asiatic) speaking populations originated in India or derive from a relatively recent migration from further East.
Results
Here, we report the analysis of 35 novel complete mtDNA sequences from India which refine the structure of Indian-specific varieties of haplogroup R. Detailed analysis of haplogroup R7, coupled with a survey of ~12,000 mtDNAs from caste and tribal groups over the entire Indian subcontinent, reveals that one of its more recently derived branches (R7a1), is particularly frequent among Munda-speaking tribal groups. This branch is nested within diverse R7 lineages found among Dravidian and Indo-European speakers of India. We have inferred from this that a subset of Munda-speaking groups have acquired R7 relatively recently. Furthermore, we find that the distribution of R7a1 within the Munda-speakers is largely restricted to one of the sub-branches (Kherwari) of northern Munda languages. This evidence does not support the hypothesis that the Austro-Asiatic speakers are the primary source of the R7 variation. Statistical analyses suggest a significant correlation between genetic variation and geography, rather than between genes and languages.
Conclusion
Our high-resolution phylogeographic study, involving diverse linguistic groups in India, suggests that the high frequency of mtDNA haplogroup R7 among Munda speaking populations of India can be explained best by gene flow from linguistically different populations of Indian subcontinent. The conclusion is based on the observation that among Indo-Europeans, and particularly in Dravidians, the haplogroup is, despite its lower frequency, phylogenetically more divergent, while among the Munda speakers only one sub-clade of R7, i.e. R7a1, can be observed. It is noteworthy that though R7 is autochthonous to India, and arises from the root of hg R, its distribution and phylogeography in India is not uniform. This suggests the more ancient establishment of an autochthonous matrilineal genetic structure, and that isolation in the Pleistocene, lineage loss through drift, and endogamy of prehistoric and historic groups have greatly inhibited genetic homogenization and geographical uniformity.
doi:10.1186/1471-2148-8-227
PMCID: PMC2529308  PMID: 18680585
14.  Gender variation in morphological patterns of lip prints among some north Indian populations 
Background:
Personal identification is an integral part of forensic investigations. For the same, DNA profiling and fingerprints are the most commonly used tools. But these evidences are not ubiquitous and may not necessarily be obtained from the crime scene. In such a scenario, other physical and trace evidences play a pivotal role and subsequently the branches employed are forensic osteology, odontology, biometrics, etc. A relatively recent field in the branch of forensic odontology is cheiloscopy or the study of lip prints. A comparison of lip prints from the crime scene and those obtained from the suspects may be useful in the identification or narrowing down the investigation.
Aim:
The purpose of the present study is to determine the gender and population variability in the morphological patterns of lip prints among brahmins, Jats, and scheduled castes of Delhi and Haryana, India.
Settings and Design:
Samples were collected from Jats, brahmins, and scheduled castes of Delhi and Haryana. The total sample size consisted of 1399 individuals including 781 males and 618 females in the age group of 8–60 years. Care was taken not to collect samples from genetically related individuals. The technique was standardized by recording lip prints of 20 persons and analyzing them.
Materials and Methods:
Lip prints were collected by using a corporate's invisible tape and analyzed using a hand lens. The patterns were studied along the entire length and breadth of both the upper and the lower lip. The data were analyzed by SPSS statistical package version 17 to determine the frequencies and percentages of occurrence of the pattern types in each population group and a comparison between males and females among the groups was carried out by using the z test.
Results and Conclusions:
The z-test comparison between patterns of males and females shows significant differences with respect to pattern types I’, II, III, and IV among brahmins; I’, II, III, IV, and Y among Jats; and I, I’, II, III, and V among scheduled castes. Thus, it can be concluded that the variability of the lip print pattern can help sex differentiation among groups and that more studies on the lip print pattern should be carried out to bring new dimensions to forensic anthropology and to aid the law enforcement agencies.
doi:10.4103/0975-1475.99155
PMCID: PMC3470412  PMID: 23087577
Cheiloscopy; gender; population variability
15.  Polymorphic Alu Insertion/Deletion in Different Caste and Tribal Populations from South India 
PLoS ONE  2016;11(6):e0157468.
Seven human-specific Alu markers were studied in 574 unrelated individuals from 10 endogamous groups and 2 hill tribes of Tamil Nadu and Kerala states. DNA was isolated, amplified by PCR-SSP, and subjected to agarose gel electrophoresis, and genotypes were assigned for various Alu loci. Average heterozygosity among caste populations was in the range of 0.292–0.468. Among tribes, the average heterozygosity was higher for Paliyan (0.3759) than for Kani (0.2915). Frequency differences were prominent in all loci studied except Alu CD4. For Alu CD4, the frequency was 0.0363 in Yadavas, a traditional pastoral and herd maintaining population, and 0.2439 in Narikuravars, a nomadic gypsy population. The overall genetic difference (Gst) of 12 populations (castes and tribes) studied was 3.6%, which corresponds to the Gst values of 3.6% recorded earlier for Western Asian populations. Thus, our study confirms the genetic similarities between West Asian populations and South Indian castes and tribes and supported the large scale coastal migrations from Africa into India through West Asia. However, the average genetic difference (Gst) of Kani and Paliyan tribes with other South Indian tribes studied earlier was 8.3%. The average Gst of combined South and North Indian Tribes (CSNIT) was 9.5%. Neighbor joining tree constructed showed close proximity of Kani and Paliyan tribal groups to the other two South Indian tribes, Toda and Irula of Nilgiri hills studied earlier. Further, the analysis revealed the affinities among populations and confirmed the presence of North and South India specific lineages. Our findings have documented the highly diverse (micro differentiated) nature of South Indian tribes, predominantly due to isolation, than the endogamous population groups of South India. Thus, our study firmly established the genetic relationship of South Indian castes and tribes and supported the proposed large scale ancestral migrations from Africa, particularly into South India through West Asian corridor.
doi:10.1371/journal.pone.0157468
PMCID: PMC4912101  PMID: 27315142
16.  Genetic and functional evaluation of the role of DLL1 in susceptibility to visceral leishmaniasis in India 
Chromosome 6q26–27 is linked to susceptibility to visceral leishmaniasis (VL) in Brazil and Sudan. DLL1 encoding the Delta-like 1 ligand for Notch 3 was implicated as the etiological gene. DLL1 belongs to the family of Notch ligands known to selectively drive antigen-specific CD4 T helper 1 cell responses, which are important in protective immune response in leishmaniasis. Here we provide further genetic and functional evidence that supports a role for DLL1 in a well-powered population-based study centred in the largest global focus of VL in India. Twenty-one single nucleotide polymorphisms (SNPs) at PHF10/C6orf70/DLL1/FAM120B/PSMB1/TBP were genotyped in 941 cases and 992 controls. Logistic regression analysis under an additive model showed association between VL and variants at DLL1 and FAM120B, with top associations (rs9460106, OR=1.17, 95%CI 1.01–1.35, P=0.033; rs2103816, OR=1.16, 95%CI 1.01–1.34, P=0.039) robust to analysis using caste as a covariate to take account of population substructure. Haplotype analysis taking population substructure into account identified a common 2-SNP risk haplotype (frequency 0.43; P=0.028) at FAM120B, while the most significant protective haplotype (frequency 0.18; P=0.007) was a 5-SNP haplotype across the interval 5’ of both DLL1 (negative strand) and FAM120B (positive strand) and extending to intron 4 of DLL1. Quantitative RT/PCR was used to compare expression of 6q27 genes in paired pre- and post-treatment splenic aspirates from VL patients (N=19). DLL1 was the only gene to show differential expression that was higher (P<0.0001) in pre- compared to post-treatment samples, suggesting that regulation of gene expression was important in disease pathogenesis. This well-powered genetic and functional study in an Indian population provides evidence supporting DLL1 as the etiological gene contributing to susceptibility to VL at Chromosome 6q27, confirming the potential for polymorphism at DLL1 to act as a genetic risk factor across the epidemiological divides of geography and parasite species.
doi:10.1016/j.meegid.2012.04.017
PMCID: PMC3651914  PMID: 22561395
visceral leishmaniasis; DLL1; genetic association; Notch signalling
17.  A Shared Y-chromosomal Heritage between Muslims and Hindus in India 
Human genetics  2006;120(4):543-551.
Arab forces conquered the Indus Delta region in 711 A.D. and, although a Muslim state was established there, their influence was barely felt in the rest of South Asia at that time. By the end of the tenth century, Central Asian Muslims moved into India from the northwest and expanded throughout the subcontinent. Muslim communities are now the largest minority religion in India, comprising more than 138 million people in a predominantly Hindu population of over one billion. It is unclear whether the Muslim expansion in India was a purely cultural phenomenon or had a genetic impact on the local population. To address this question from a male perspective, we typed eight microsatellite loci and 16 binary markers from the Y chromosome in 246 Muslims from Andhra Pradesh, and compared them to published data on 4,204 males from China, Central Asia, other parts of India, Sri Lanka, Pakistan, Iran, the Middle East, Turkey, Egypt and Morocco. We find that the Muslim populations in general are genetically closer to their non-Muslim geographical neighbors than to other Muslims in India, and that there is a highly significant correlation between genetics and geography (but not religion). Our findings indicate that, despite the documented practice of marriage between Muslim men and Hindu women, Islamization in India did not involve large-scale replacement of Hindu Y chromosomes. The Muslim expansion in India was predominantly a cultural change and was not accompanied by significant gene flow, as seen in other places, such as China and Central Asia.
doi:10.1007/s00439-006-0234-x
PMCID: PMC2590854  PMID: 16951948
Y-chromosomal polymorphism; India; Muslim; Hindu
18.  Out of pocket expenditure to deliver at public health facilities in India: a cross sectional analysis 
Reproductive Health  2016;13(1):99.
Background
To expand access to safe deliveries, some developing countries have initiated demand-side financing schemes promoting institutional delivery. In the context of conditional cash incentive scheme and free maternity care in public health facilities in India, studies have highlighted high out of pocket expenditure (OOPE) of Indian families for delivery and maternity care. In this context the study assesses the components of OOPE that women incurred while accessing maternity care in public health facilities in Uttar Pradesh, India. It also assesses the determinants of OOPE and the level of maternal satisfaction while accessing care from these facilities.
Method
It is a cross-sectional analysis of 558 recently delivered women who have delivered at four public health facilities in Uttar Pradesh, India. All OOPE related information was collected through interviews using structured pre-tested questionnaires. Frequencies, Mann-Whitney test and categorical regression were used for data reduction.
Results
The analysis showed that the median OOPE was INR 700 (US$ 11.48) which varied between INR 680 (US$ 11.15) for normal delivery and INR 970 (US$ 15.9) for complicated cases. Tips for getting services (consisting of gifts and tips for services) with a median value of INR 320 (US$ 5.25) contributed to the major share in OOPE. Women from households with income more than INR 4000 (US$ 65.57) per month, general castes, primi-gravida, complicated delivery and those not accompanied by community health workers incurred higher OOPE. The significant predictors for high OOPE were caste (General Vs. OBC, SC/ST), type of delivery (Complicated Vs. Normal), and presence of ASHA (No Vs. Yes). OOPE while accessing care for delivery was one among the least satisfactory items and 76 % women expressed their dissatisfaction.
Conclusion
Even though services at the public health facilities in India are supposed to be provided free of cost, it is actually not free, and the women in this study paid almost half of their mandated cash incentives to obtain delivery care.
doi:10.1186/s12978-016-0221-1
PMCID: PMC4997742  PMID: 27557904
Out of pocket expenditure; Tips for getting services; Delivery care; Public health facilities; India
19.  Genetic diversity in India and the inference of Eurasian population expansion 
Genome Biology  2010;11(11):R113.
Background
Genetic studies of populations from the Indian subcontinent are of great interest because of India's large population size, complex demographic history, and unique social structure. Despite recent large-scale efforts in discovering human genetic variation, India's vast reservoir of genetic diversity remains largely unexplored.
Results
To analyze an unbiased sample of genetic diversity in India and to investigate human migration history in Eurasia, we resequenced one 100-kb ENCODE region in 92 samples collected from three castes and one tribal group from the state of Andhra Pradesh in south India. Analyses of the four Indian populations, along with eight HapMap populations (692 samples), showed that 30% of all SNPs in the south Indian populations are not seen in HapMap populations. Several Indian populations, such as the Yadava, Mala/Madiga, and Irula, have nucleotide diversity levels as high as those of HapMap African populations. Using unbiased allele-frequency spectra, we investigated the expansion of human populations into Eurasia. The divergence time estimates among the major population groups suggest that Eurasian populations in this study diverged from Africans during the same time frame (approximately 90 to 110 thousand years ago). The divergence among different Eurasian populations occurred more than 40,000 years after their divergence with Africans.
Conclusions
Our results show that Indian populations harbor large amounts of genetic variation that have not been surveyed adequately by public SNP discovery efforts. Our data also support a delayed expansion hypothesis in which an ancestral Eurasian founding population remained isolated long after the out-of-Africa diaspora, before expanding throughout Eurasia.
doi:10.1186/gb-2010-11-11-r113
PMCID: PMC3156952  PMID: 21106085
20.  Haemoglobin S and βThal: Their Distribution in Maharashtra, India 
It has been more than six decades since the first report of sickle cell anaemia in Indian subcontinent. Since then the researchers have been reported various haemoglobin varients prevalent in India, they are HbS, HbβT, HbE and HbD. Earlier studies were confined to tribal and scheduled castes populations as if sickle haemoglobin was restricted to these two groups only. Since a decade or so, few studies on haemoglobinopathies from other Indian populations are available. Examination of premarital age group of 5172 Indian subjects (2762 males and 2410 females) from eastern Maharashtra of India showed high incidences of HbS (0-33 per cent) and HbβT (0-10 per cent) in different ethnic groups. In present study cumulative gene frequency for HbS and HbβT was found to be of 6.1 per cent and 2.3 per cent respectively. In present study sickle cell gene has been found in general categories of Indian populations besides scheduled castes and tribal populations. In Scheduled tribes HbS ranges from 0-24 per cent, in Scheduled castes and Nomadic tribal groups, HbS ranges from 0-13 per cent, in Other Backward caste categories it varies from 0-20 per cent while in higher caste populations it ranges from 0-5 per cent. The incidences of HbS are much higher among tribal groups than that found in other caste populations. The incidences of homozygous individuals are very few in HbS and HbβT. The hitherto regional and populations specific HbβT haemoglobin variant in Sindhi and Bengali communities is gradually spreading in other populations of Maharashtra as evident from the present study. Lesser value of MCV, MCH and MCHC in homozygous HbβT is due to impairments of synthesis β-globin chain. The subject with the presence of β-thalassaemia is accompanied by raised level of HbA2. Unusual higher values of RBC and WBC suggest the high concentration of hypochromic microcytosis in anemia. The means of MCV MCH and MCHC in HbβT are much lower than the normal ranges compared to HbS.
PMCID: PMC3708271  PMID: 23847457
haemoglobinopathies; sickle cell anemia; thalassaemia; eastern maharashtra; India
21.  Worker caste determination in the army ant Eciton burchellii 
Biology Letters  2007;3(5):513-516.
Elaborate division of labour has contributed significantly to the ecological success of social insects. Division of labour is achieved either by behavioural task specialization or by morphological specialization of colony members. In physical caste systems, the diet and rearing environment of developing larvae is known to determine the phenotype of adult individuals, but recent studies have shown that genetic components also contribute to the determination of worker caste. One of the most extreme cases of worker caste differentiation occurs in the army ant genus Eciton, where queens mate with many males and colonies are therefore composed of numerous full-sister subfamilies. This high intracolonial genetic diversity, in combination with the extreme caste polymorphism, provides an excellent test system for studying the extent to which caste determination is genetically controlled. Here we show that genetic effects contribute significantly to worker caste fate in Eciton burchellii. We conclude that the combination of polyandry and genetic variation for caste determination may have facilitated the evolution of worker caste diversity in some lineages of social insects.
doi:10.1098/rsbl.2007.0257
PMCID: PMC2391184  PMID: 17638672
division of labour; polyandry; multiple mating; worker polymorphism; social insects
22.  Mitochondrial and Y-chromosome diversity of the Tharus (Nepal): a reservoir of genetic variation 
Background
Central Asia and the Indian subcontinent represent an area considered as a source and a reservoir for human genetic diversity, with many markers taking root here, most of which are the ancestral state of eastern and western haplogroups, while others are local. Between these two regions, Terai (Nepal) is a pivotal passageway allowing, in different times, multiple population interactions, although because of its highly malarial environment, it was scarcely inhabited until a few decades ago, when malaria was eradicated. One of the oldest and the largest indigenous people of Terai is represented by the malaria resistant Tharus, whose gene pool could still retain traces of ancient complex interactions. Until now, however, investigations on their genetic structure have been scarce mainly identifying East Asian signatures.
Results
High-resolution analyses of mitochondrial-DNA (including 34 complete sequences) and Y-chromosome (67 SNPs and 12 STRs) variations carried out in 173 Tharus (two groups from Central and one from Eastern Terai), and 104 Indians (Hindus from Terai and New Delhi and tribals from Andhra Pradesh) allowed the identification of three principal components: East Asian, West Eurasian and Indian, the last including both local and inter-regional sub-components, at least for the Y chromosome.
Conclusion
Although remarkable quantitative and qualitative differences appear among the various population groups and also between sexes within the same group, many mitochondrial-DNA and Y-chromosome lineages are shared or derived from ancient Indian haplogroups, thus revealing a deep shared ancestry between Tharus and Indians. Interestingly, the local Y-chromosome Indian component observed in the Andhra-Pradesh tribals is present in all Tharu groups, whereas the inter-regional component strongly prevails in the two Hindu samples and other Nepalese populations.
The complete sequencing of mtDNAs from unresolved haplogroups also provided informative markers that greatly improved the mtDNA phylogeny and allowed the identification of ancient relationships between Tharus and Malaysia, the Andaman Islands and Japan as well as between India and North and East Africa. Overall, this study gives a paradigmatic example of the importance of genetic isolates in revealing variants not easily detectable in the general population.
doi:10.1186/1471-2148-9-154
PMCID: PMC2720951  PMID: 19573232
23.  Distribution of CC-chemokine receptor-5-∆32 allele among the tribal and caste population of Vidarbha region of Maharashtra state 
BACKGROUND:
Genetic relationships among the ethnic groups are not uniform across the geographical region. Considering this assumption, we analyzed the frequency of the CC-chemokine receptor-5 (CCR5)-∆32 allele of the CCR5 chemokine receptor, which is considered a Caucasian marker, in Bhil tribal and Brahmin caste sample sets from the population.
MATERIALS AND METHODS:
108 blood samples were collected from 6 tribe's populations and a caste population from the district of Vidarbha region.
RESULTS AND DISCUSSION:
The presence of low frequencies of CCR5-Δ32 in an individual of Bhil tribe (0.034, χ2 value 0.017) in the present study implies that these communities may have a better resistance toward human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) than the other studied tribe sample, as non-show such mutation.
CONCLUSION:
The marginal presence of the allele seen in the studied tribal population could be due to gene flow from the people of European descent. However, lack of the homozygous CCR5-Δ32 mutation and the low prevalence of heterozygous CCR5-Δ32 mutations suggest that the Indians are highly susceptible to HIV/AIDS, and this correlates with the highest number of HIV/AIDS infected individuals in India.
doi:10.4103/0971-6866.112894
PMCID: PMC3722632  PMID: 23901195
Allele frequency; CC-chemokine receptor-5-∆32; India; genetic polymorphism; tribes; Vidarbha
24.  Population stratification and genetic association studies in South Asia 
Population stratification and its influence on genetic association studies is a controversial topic. Although it has been suggested that stratification is unlikely to bias the results of association studies conducted in developed countries, convincing contrary empirical evidence has been published. However, it is in populations where historical ethnic, religious and language barriers exist that community subdivisions will predictably exert greatest genetic effect, and influence the organization of association studies. In many of the populations of the Indian sub-continent, these basic population divisions are compounded by a strict tradition of intra-community marriage and by marriage between close biological relatives. Data on the very significant levels of genetic diversity that characterize the populations of India and Pakistan, with some 50,000-60,000 caste and non-caste communities in India, and average first cousin marriage rates of 40%-50% in Pakistan, are presented and discussed. Under these circumstances, failure to explicitly control for caste/biraderi membership and the presence of consanguinity could seriously jeopardize, and may totally invalidate, the results of association/case control studies and clinical trials.
PMCID: PMC2702070  PMID: 19565013
Stratification; endogamy; consanguinity; association studies; India; Pakistan
25.  An association between the Calpastatin (CAST) gene and keratoconus 
Cornea  2013;32(5):696-701.
Purpose
Keratoconus is a genetically heterogeneous corneal dystrophy. Previously, we performed two genome-wide linkage scans in a four generation autosomal dominant pedigree and repeatedly mapped a keratoconus locus to a genomic region located on chromosome 5q overlapping the gene encoding the inhibitor of calpains, calpastatin (CAST). To test whether variants in CAST gene are involved in genetic susceptibility to keratoconus we performed genetic testing of polymorphic markers in CAST gene in family and case-control panels of patients with keratoconus.
Methods
We genotyped SNPs (Single Nucleotide Polymorphisms) located in CAST gene in 262 patients in 40 Caucasian keratoconus families and in a Caucasian case-control panel with 304 cases and 518 controls. Generalized estimating equation models accounting for familial correlations implemented in GWAF program were used for association testing in families. Logistic regression models implemented in PLINK were performed to test associations in case-control samples.
Results
Genetic testing of first set of seven SNPs in familial samples revealed two tentative nominally significant markers (rs4869307 p=0.03; rs27654: p=0.07). Additional genotyping of twelve tightly spaced SNPs identified CAST SNP rs4434401 to be associated with keratoconus in both familial and case-control panels with p values of 0.005 and 0.05, respectively; and with combined meta p value of familial and case-control cohorts of 0.002, or, after Bonferroni correction, 0.04.
Conclusions
Linkage analysis and genetic association support involvement of CAST gene in the genetic susceptibility to keratoconus. In-silico analysis of CAST expression suggests differential regulation of calpain/calpastatin system in cornea as a potential mechanism of functional defect.
doi:10.1097/ICO.0b013e3182821c1c
PMCID: PMC3653445  PMID: 23449483
Linkage analysis; genetic association; common variation; keratoconus; calpains; calpastatin

Results 1-25 (851928)