PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1729455)

Clipboard (0)
None

Related Articles

1.  Identification of Novel Inhibitors of the Type I Interferon Induction Pathway Using Cell-Based High-Throughput Screening 
Journal of Biomolecular Screening  2016;21(9):978-988.
Production of type I interferon (IFN) is an essential component of the innate immune response against invading pathogens. However, its production must be tightly regulated to avoid harmful effects. Compounds that modulate the IFN response are potentially valuable for a variety of applications due to IFN’s beneficial and detrimental roles. We developed and executed a cell-based high-throughput screen (HTS) targeting components that participate in and/or regulate the IRF3 and nuclear factor (NF)–κB branches of the IFN induction pathway. The assay detects activation of the IFN induction pathway via an enhanced green fluorescent protein (eGFP) reporter gene under the control of the IFNβ promoter and was optimized, miniaturized, and demonstrated suitable for HTS as robust Z′ factor scores of >0.6 were consistently achieved. A diversity screening set of 15,667 small molecules was assayed and two novel hit compounds validated that specifically inhibit the IFN induction pathway. We demonstrate that one of these compounds acts at or upstream of IRF3 phosphorylation. A second cell-based assay to detect activation of the IFN signaling (Jak-Stat) pathway via an eGFP reporter gene under the control of an IFN-stimulated response element (ISRE) containing MxA promoter also performed well (robust Z′ factor >0.7) and may therefore be similarly used to identify small molecules that modulate the IFN signaling pathway.
doi:10.1177/1087057116656314
PMCID: PMC5030734  PMID: 27358388
interferon; innate immunity; IRF3; NF-κB; high-throughput screen (HTS)
2.  Kinase-Independent Small-Molecule Inhibition of JAK-STAT Signaling 
Phenotypic cell-based screening is a powerful approach to small-molecule discovery, but a major challenge of this strategy lies in determining the intracellular target and mechanism of action (MoA) for validated hits. Here, we show that the small-molecule BRD0476, a novel suppressor of pancreatic β-cell apoptosis, inhibits interferon-gamma (IFN-γ)-induced Janus kinase 2 (JAK2) and signal transducer and activation of transcription 1 (STAT1) signaling to promote β-cell survival. However, unlike common JAK-STAT pathway inhibitors, BRD0476 inhibits JAK-STAT signaling without suppressing the kinase activity of any JAK. Rather, we identified the deubiquitinase ubiquitin-specific peptidase 9X (USP9X) as an intracellular target, using a quantitative proteomic analysis in rat β cells. RNAi-mediated and CRISPR/Cas9 knockdown mimicked the effects of BRD0476, and reverse chemical genetics using a known inhibitor of USP9X blocked JAK-STAT signaling without suppressing JAK activity. Site-directed mutagenesis of a putative ubiquitination site on JAK2 mitigated BRD0476 activity, suggesting a competition between phosphorylation and ubiquitination to explain small-molecule MoA. These results demonstrate that phenotypic screening, followed by comprehensive MoA efforts, can provide novel mechanistic insights into ostensibly well-understood cell signaling pathways. Furthermore, these results uncover USP9X as a potential target for regulating JAK2 activity in cellular inflammation.
Graphical abstract
doi:10.1021/jacs.5b04284
PMCID: PMC5003570  PMID: 26042473
3.  Characterization of a Novel Human-Specific STING Agonist that Elicits Antiviral Activity Against Emerging Alphaviruses 
PLoS Pathogens  2015;11(12):e1005324.
Pharmacologic stimulation of innate immune processes represents an attractive strategy to achieve multiple therapeutic outcomes including inhibition of virus replication, boosting antitumor immunity, and enhancing vaccine immunogenicity. In light of this we sought to identify small molecules capable of activating the type I interferon (IFN) response by way of the transcription factor IFN regulatory factor 3 (IRF3). A high throughput in vitro screen yielded 4-(2-chloro-6-fluorobenzyl)-N-(furan-2-ylmethyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (referred to herein as G10), which was found to trigger IRF3/IFN-associated transcription in human fibroblasts. Further examination of the cellular response to this molecule revealed expression of multiple IRF3-dependent antiviral effector genes as well as type I and III IFN subtypes. This led to the establishment of a cellular state that prevented replication of emerging Alphavirus species including Chikungunya virus, Venezuelan Equine Encephalitis virus, and Sindbis virus. To define cellular proteins essential to elicitation of the antiviral activity by the compound we employed a reverse genetics approach that utilized genome editing via CRISPR/Cas9 technology. This allowed the identification of IRF3, the IRF3-activating adaptor molecule STING, and the IFN-associated transcription factor STAT1 as required for observed gene induction and antiviral effects. Biochemical analysis indicates that G10 does not bind to STING directly, however. Thus the compound may represent the first synthetic small molecule characterized as an indirect activator of human STING-dependent phenotypes. In vivo stimulation of STING-dependent activity by an unrelated small molecule in a mouse model of Chikungunya virus infection blocked viremia demonstrating that pharmacologic activation of this signaling pathway may represent a feasible strategy for combating emerging Alphaviruses.
Author Summary
STING is a pattern recognition receptor of cyclic dinucleotides as well as an innate immune adaptor protein that enables signaling from cytoplasmic receptors to the transcription factor interferon regulatory factor 3. Initiation of these pathways leads to the expression of type I interferons and proteins associated with antiviral and antitumor immunity. Small molecules capable of triggering STING-dependent cellular processes are effective at blocking virus replication, enhancing vaccine efficacy, and facilitating immune response to cancer cells. Here we describe the first synthetic small molecule capable of activating STING-mediated signaling in human cells. In addition, we show that exposure of cells to the compound renders them refractory to replication by interferon-sensitive emerging Alphaviruses. In addition, in vivo stimulation of STING-dependent activity also blocks viremia of Chikungunya virus. Ultimately this work may lead to the utilization of STING as a target for multiple immune-mediated therapies.
doi:10.1371/journal.ppat.1005324
PMCID: PMC4672893  PMID: 26646986
4.  A Novel Small Molecule Inhibitor of Influenza A Viruses that Targets Polymerase Function and Indirectly Induces Interferon 
PLoS Pathogens  2012;8(4):e1002668.
Influenza viruses continue to pose a major public health threat worldwide and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The antiviral cytokine, interferon (IFN) is an essential mediator of the innate immune response and influenza viruses, like many viruses, have evolved strategies to evade this response, resulting in increased replication and enhanced pathogenicity. A cell-based assay that monitors IFN production was developed and applied in a high-throughput compound screen to identify molecules that restore the IFN response to influenza virus infected cells. We report the identification of compound ASN2, which induces IFN only in the presence of influenza virus infection. ASN2 preferentially inhibits the growth of influenza A viruses, including the 1918 H1N1, 1968 H3N2 and 2009 H1N1 pandemic strains and avian H5N1 virus. In vivo, ASN2 partially protects mice challenged with a lethal dose of influenza A virus. Surprisingly, we found that the antiviral activity of ASN2 is not dependent on IFN production and signaling. Rather, its IFN-inducing property appears to be an indirect effect resulting from ASN2-mediated inhibition of viral polymerase function, and subsequent loss of the expression of the viral IFN antagonist, NS1. Moreover, we identified a single amino acid mutation at position 499 of the influenza virus PB1 protein that confers resistance to ASN2, suggesting that PB1 is the direct target. This two-pronged antiviral mechanism, consisting of direct inhibition of virus replication and simultaneous activation of the host innate immune response, is a unique property not previously described for any single antiviral molecule.
Author Summary
Influenza viruses are rapidly developing resistance against available anti-influenza drugs and consequently there is an urgent demand for new treatment approaches. We identified compound ASN2 in a high-throughput screen for molecules that are capable of inducing the antiviral cytokine interferon (IFN) in the presence of influenza virus infection. Normally, influenza virus blocks IFN production, an activity that is dependent on the viral NS1 protein and contributes to the ability of the virus to cause disease in an infected host. We show that ASN2 is a potent inhibitor of influenza A virus and can partially protect infected animals from disease and death. ASN2 acts by targeting influenza virus polymerase function which results in inhibition of virus replication, and as a consequence, NS1 expression. Thus the ability of ASN2 to induce IFN is a “side-effect”, albeit a desirable one, of polymerase inhibition. This combination of directly inhibiting the virus while also stimulating the host immune response is a novel property for an antiviral compound.
doi:10.1371/journal.ppat.1002668
PMCID: PMC3343121  PMID: 22577360
5.  Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015) 
Shay, Jerry W. | Homma, Noriko | Zhou, Ruyun | Naseer, Muhammad Imran | Chaudhary, Adeel G. | Al-Qahtani, Mohammed | Hirokawa, Nobutaka | Goudarzi, Maryam | Fornace, Albert J. | Baeesa, Saleh | Hussain, Deema | Bangash, Mohammed | Alghamdi, Fahad | Schulten, Hans-Juergen | Carracedo, Angel | Khan, Ishaq | Qashqari, Hanadi | Madkhali, Nawal | Saka, Mohamad | Saini, Kulvinder S. | Jamal, Awatif | Al-Maghrabi, Jaudah | Abuzenadah, Adel | Chaudhary, Adeel | Al Qahtani, Mohammed | Damanhouri, Ghazi | Alkhatabi, Heba | Goodeve, Anne | Crookes, Laura | Niksic, Nikolas | Beauchamp, Nicholas | Abuzenadah, Adel M. | Vaught, Jim | Budowle, Bruce | Assidi, Mourad | Buhmeida, Abdelbaset | Al-Maghrabi, Jaudah | Buhmeida, Abdelbaset | Assidi, Mourad | Merdad, Leena | Kumar, Sudhir | Miura, Sayaka | Gomez, Karen | Carracedo, Angel | Rasool, Mahmood | Rebai, Ahmed | Karim, Sajjad | Eldin, Hend F. Nour | Abusamra, Heba | Alhathli, Elham M. | Salem, Nada | Al-Qahtani, Mohammed H. | Kumar, Sudhir | Faheem, Hossam | Agarwa, Ashok | Nieschlag, Eberhard | Wistuba, Joachim | Damm, Oliver S. | Beg, Mohd A. | Abdel-Meguid, Taha A. | Mosli, Hisham A. | Bajouh, Osama S. | Abuzenadah, Adel M. | Al-Qahtani, Mohammed H. | Coskun, Serdar | Abu-Elmagd, Muhammad | Buhmeida, Abdelbaset | Dallol, Ashraf | Al-Maghrabi, Jaudah | Hakamy, Sahar | Al-Qahtani, Wejdan | Al-Harbi, Asia | Hussain, Shireen | Assidi, Mourad | Al-Qahtani, Mohammed | Abuzenadah, Adel | Ozkosem, Burak | DuBois, Rick | Messaoudi, Safia S. | Dandana, Maryam T. | Mahjoub, Touhami | Almawi, Wassim Y. | Abdalla, S. | Al-Aama, M. Nabil | Elzawahry, Asmaa | Takahashi, Tsuyoshi | Mimaki, Sachiyo | Furukawa, Eisaku | Nakatsuka, Rie | Kurosaka, Isao | Nishigaki, Takahiko | Nakamura, Hiromi | Serada, Satoshi | Naka, Tetsuji | Hirota, Seiichi | Shibata, Tatsuhiro | Tsuchihara, Katsuya | Nishida, Toshirou | Kato, Mamoru | Mehmood, Sajid | Ashraf, Naeem Mahmood | Asif, Awais | Bilal, Muhammad | Mehmood, Malik Siddique | Hussain, Aadil | Jamal, Qazi Mohammad Sajid | Siddiqui, Mughees Uddin | Alzohairy, Mohammad A. | Al Karaawi, Mohammad A. | Nedjadi, Taoufik | Al-Maghrabi, Jaudah | Assidi, Mourad | Al-Khattabi, Heba | Al-Ammari, Adel | Al-Sayyad, Ahmed | Buhmeida, Abdelbaset | Al-Qahtani, Mohammed | Zitouni, Hédia | Raguema, Nozha | Ali, Marwa Ben | Malah, Wided | Lfalah, Raja | Almawi, Wassim | Mahjoub, Touhami | Elanbari, Mohammed | Ptitsyn, Andrey | Mahjoub, Sana | El Ghali, Rabeb | Achour, Bechir | Amor, Nidhal Ben | Assidi, Mourad | N’siri, Brahim | Morjani, Hamid | Nedjadi, Taoufik | Al-Ammari, Adel | Al-Sayyad, Ahmed | Salem, Nada | Azhar, Esam | Al-Maghrabi, Jaudah | Chayeb, Vera | Dendena, Maryam | Zitouni, Hedia | Zouari-Limayem, Khedija | Mahjoub, Touhami | Refaat, Bassem | Ashshi, Ahmed M. | Batwa, Sarah A. | Ramadan, Hazem | Awad, Amal | Ateya, Ahmed | El-Shemi, Adel Galal Ahmed | Ashshi, Ahmad | Basalamah, Mohammed | Na, Youjin | Yun, Chae-Ok | El-Shemi, Adel Galal Ahmed | Ashshi, Ahmad | Basalamah, Mohammed | Na, Youjin | Yun, Chae-Ok | El-Shemi, Adel Galal | Refaat, Bassem | Kensara, Osama | Abdelfattah, Amr | Dheeb, Batol Imran | Al-Halbosiy, Mohammed M. F. | Al lihabi, Rghad Kadhim | Khashman, Basim Mohammed | Laiche, Djouhri | Adeel, Chaudhary | Taoufik, Nedjadi | Al-Afghani, Hani | Łastowska, Maria | Al-Balool, Haya H. | Sheth, Harsh | Mercer, Emma | Coxhead, Jonathan M. | Redfern, Chris P. F. | Peters, Heiko | Burt, Alastair D. | Santibanez-Koref, Mauro | Bacon, Chris M. | Chesler, Louis | Rust, Alistair G. | Adams, David J. | Williamson, Daniel | Clifford, Steven C. | Jackson, Michael S. | Singh, Mala | Mansuri, Mohmmad Shoab | Jadeja, Shahnawaz D. | Patel, Hima | Marfatia, Yogesh S. | Begum, Rasheedunnisa | Mohamed, Amal M. | Kamel, Alaa K. | Helmy, Nivin A. | Hammad, Sayda A. | Kayed, Hesham F. | Shehab, Marwa I. | El Gerzawy, Assad | Ead, Maha M. | Ead, Ola M. | Mekkawy, Mona | Mazen, Innas | El-Ruby, Mona | Shahid, S. M. A. | Jamal, Qazi Mohammad Sajid | Arif, J. M. | Lohani, Mohtashim | Imen, Moumni | Leila, Chaouch | Houyem, Ouragini | Kais, Douzi | Fethi, Chaouachi Dorra Mellouli | Mohamed, Bejaoui | Salem, Abbes | Faggad, Areeg | Gebreslasie, Amanuel T. | Zaki, Hani Y. | Abdalla, Badreldin E. | AlShammari, Maha S. | Al-Ali, Rhaya | Al-Balawi, Nader | Al-Enazi, Mansour | Al-Muraikhi, Ali | Busaleh, Fadi | Al-Sahwan, Ali | Borgio, Francis | Sayyed, Abdulazeez | Al-Ali, Amein | Acharya, Sadananda | Zaki, Maha S. | El-Bassyouni, Hala T. | Shehab, Marwa I. | Elshal, Mohammed F. | M., Kaleemuddin | Aldahlawi, Alia M. | Saadah, Omar | McCoy, J. Philip | El-Tarras, Adel E. | Awad, Nabil S. | Alharthi, Abdulla A. | Ibrahim, Mohamed M. M. | Alsehli, Haneen S. | Dallol, Ashraf | Gari, Abdullah M. | Abbas, Mohammed M. | Kadam, Roaa A. | Gari, Mazen M. | Alkaff, Mohmmed H. | Abuzenadah, Adel M. | Gari, Mamdooh A. | Abusamra, Heba | Karim, Sajjad | eldin, Hend F. Nour | Alhathli, Elham M. | Salem, Nada | Kumar, Sudhir | Al-Qahtani, Mohammed H. | Moradi, Fatima A. | Rashidi, Omran M. | Awan, Zuhier A. | Kaya, Ibrahim Hamza | Al-Harazi, Olfat | Colak, Dilek | Alkousi, Nabila A. | Athanasopoulos, Takis | Bahmaid, Afnan O. | Alhwait, Etimad A. | Gari, Mamdooh A. | Alsehli, Haneen S. | Abbas, Mohammed M. | Alkaf, Mohammed H. | Kadam, Roaa | Dallol, Ashraf | Kalamegam, Gauthaman | Eldin, Hend F. Nour | Karim, Sajjad | Abusamra, Heba | Alhathli, Elham | Salem, Nada | Al-Qahtani, Mohammed H. | Kumar, Sudhir | Alsayed, Salma N. | Aljohani, Fawziah H. | Habeeb, Samaher M. | Almashali, Rawan A. | Basit, Sulman | Ahmed, Samia M. | Sharma, Rakesh | Agarwal, Ashok | Durairajanayagam, Damayanthi | Samanta, Luna | Abu-Elmagd, Muhammad | Abuzenadah, Adel M. | Sabanegh, Edmund S. | Assidi, Mourad | Al-Qahtani, Mohammed | Agarwal, Ashok | Sharma, Rakesh | Samanta, Luna | Durairajanayagam, Damayanthi | Assidi, Mourad | Abu-Elmagd, Muhammad | Al-Qahtani, Mohammed | Abuzenadah, Adel M. | Sabanegh, Edmund S. | Samanta, Luna | Agarwal, Ashok | Sharma, Rakesh | Cui, Zhihong | Assidi, Mourad | Abuzenadah, Adel M. | Abu-Elmagd, Muhammad | Al-Qahtani, Mohammed | Alboogmi, Alaa A. | Alansari, Nuha A. | Al-Quaiti, Maha M. | Ashgan, Fai T. | Bandah, Afnan | Jamal, Hasan S. | Rozi, Abdullraheem | Mirza, Zeenat | Abuzenadah, Adel M. | Karim, Sajjad | Al-Qahtani, Mohammed H. | Karim, Sajjad | Schulten, Hans-Juergen | Al Sayyad, Ahmad J. | Farsi, Hasan M. A. | Al-Maghrabi, Jaudah A. | Mirza, Zeenat | Alotibi, Reem | Al-Ahmadi, Alaa | Alansari, Nuha A. | Albogmi, Alaa A. | Al-Quaiti, Maha M. | Ashgan, Fai T. | Bandah, Afnan | Al-Qahtani, Mohammed H. | Ebiya, Rasha A. | Darwish, Samia M. | Montaser, Metwally M. | Abusamra, Heba | Bajic, Vladimir B. | Al-Maghrabi, Jaudah | Gomaa, Wafaey | Hanbazazh, Mehenaz | Al-Ahwal, Mahmoud | Al-Harbi, Asia | Al-Qahtani, Wejdan | Hakamy, Saher | Baba, Ghali | Buhmeida, Abdelbaset | Al-Qahtani, Mohammed | Al-Maghrabi, Jaudah | Al-Harbi, Abdullah | Al-Ahwal, Mahmoud | Al-Harbi, Asia | Al-Qahtani, Wejdan | Hakamy, Sahar | Baba, Ghalia | Buhmeida, Abdelbaset | Al-Qahtani, Mohammed | Alhathli, Elham M. | Karim, Sajjad | Salem, Nada | Eldin, Hend Nour | Abusamra, Heba | Kumar, Sudhir | Al-Qahtani, Mohammed H. | Alyamani, Aisha A. | Kalamegam, Gauthaman | Alhwait, Etimad A. | Gari, Mamdooh A. | Abbas, Mohammed M. | Alkaf, Mohammed H. | Alsehli, Haneen S. | Kadam, Roaa A. | Al-Qahtani, Mohammed | Gadi, Rawan | Buhmeida, Abdelbaset | Assidi, Mourad | Chaudhary, Adeel | Merdad, Leena | Alfakeeh, Saadiah M. | Alhwait, Etimad A. | Gari, Mamdooh A. | Abbas, Mohammed M. | Alkaf, Mohammed H. | Alsehli, Haneen S. | Kadam, Roaa | Kalamegam, Gauthaman | Ghazala, Rubi | Mathew, Shilu | Hamed, M. Haroon | Assidi, Mourad | Al-Qahtani, Mohammed | Qadri, Ishtiaq | Mathew, Shilu | Mira, Lobna | Shaabad, Manal | Hussain, Shireen | Assidi, Mourad | Abu-Elmagd, Muhammad | Al-Qahtani, Mohammed | Mathew, Shilu | Shaabad, Manal | Mira, Lobna | Hussain, Shireen | Assidi, Mourad | Abu-Elmagd, Muhammad | Al-Qahtani, Mohammed | Rebai, Ahmed | Assidi, Mourad | Buhmeida, Abdelbaset | Abu-Elmagd, Muhammad | Dallol, Ashraf | Shay, Jerry W. | Almutairi, Mikhlid H. | Ambers, Angie | Churchill, Jennifer | King, Jonathan | Stoljarova, Monika | Gill-King, Harrell | Assidi, Mourad | Abu-Elmagd, Muhammad | Buhmeida, Abdelbaset | Al-Qatani, Muhammad | Budowle, Bruce | Abu-Elmagd, Muhammad | Ahmed, Farid | Dallol, Ashraf | Assidi, Mourad | Almagd, Taha Abo | Hakamy, Sahar | Agarwal, Ashok | Al-Qahtani, Muhammad | Abuzenadah, Adel | Karim, Sajjad | Schulten, Hans-Juergen | Al Sayyad, Ahmad J. | Farsi, Hasan M. A. | Al-Maghrabi, Jaudah A. | Buhmaida, Abdelbaset | Mirza, Zeenat | Alotibi, Reem | Al-Ahmadi, Alaa | Alansari, Nuha A. | Albogmi, Alaa A. | Al-Quaiti, Maha M. | Ashgan, Fai T. | Bandah, Afnan | Al-Qahtani, Mohammed H. | Satar, Rukhsana | Rasool, Mahmood | Ahmad, Waseem | Nazam, Nazia | Lone, Mohamad I. | Naseer, Muhammad I. | Jamal, Mohammad S. | Zaidi, Syed K. | Pushparaj, Peter N. | Jafri, Mohammad A. | Ansari, Shakeel A. | Alqahtani, Mohammed H. | Bashier, Hanan | Al Qahtani, Abrar | Mathew, Shilu | Nour, Amal M. | Alkhatabi, Heba | Zenadah, Adel M. Abu | Buhmeida, Abdelbaset | Assidi, Mourad | Al Qahtani, Muhammed | Faheem, Muhammad | Mathew, Shilu | Mathew, Shiny | Pushparaj, Peter Natesan | Al-Qahtani, Mohammad H. | Alhadrami, Hani A. | Dallol, Ashraf | Abuzenadah, Adel | Hussein, Ibtessam R. | Chaudhary, Adeel G. | Bader, Rima S. | Bassiouni, Randa | Alquaiti, Maha | Ashgan, Fai | Schulten, Hans | Alama, Mohamed Nabil | Al Qahtani, Mohammad H. | Lone, Mohammad I. | Nizam, Nazia | Ahmad, Waseem | Jafri, Mohammad A. | Rasool, Mahmood | Ansari, Shakeel A. | Al-Qahtani, Muhammed H. | Alshihri, Eradah | Abu-Elmagd, Muhammad | Alharbi, Lina | Assidi, Mourad | Al-Qahtani, Mohammed | Mathew, Shilu | Natesan, Peter Pushparaj | Al Qahtani, Muhammed | Kalamegam, Gauthaman | Pushparaj, Peter Natesan | Khan, Fazal | Kadam, Roaa | Ahmed, Farid | Assidi, Mourad | Sait, Khalid Hussain Wali | Anfinan, Nisreen | Al Qahtani, Mohammed | Naseer, Muhammad I. | Chaudhary, Adeel G. | Jamal, Mohammad S. | Mathew, Shilu | Mira, Lobna S. | Pushparaj, Peter N. | Ansari, Shakeel A. | Rasool, Mahmood | AlQahtani, Mohammed H. | Naseer, Muhammad I. | Chaudhary, Adeel G. | Mathew, Shilu | Mira, Lobna S. | Jamal, Mohammad S. | Sogaty, Sameera | Bassiouni, Randa I. | Rasool, Mahmood | AlQahtani, Mohammed H. | Rasool, Mahmood | Ansari, Shakeel A. | Jamal, Mohammad S. | Pushparaj, Peter N. | Sibiani, Abdulrahman M. S. | Ahmad, Waseem | Buhmeida, Abdelbaset | Jafri, Mohammad A. | Warsi, Mohiuddin K. | Naseer, Muhammad I. | Al-Qahtani, Mohammed H. | Rubi | Kumar, Kundan | Naqvi, Ahmad A. T. | Ahmad, Faizan | Hassan, Md I. | Jamal, Mohammad S. | Rasool, Mahmood | AlQahtani, Mohammed H. | Ali, Ashraf | Jarullah, Jummanah | Rasool, Mahmood | Buhmeida, Abdelbasit | Khan, Shahida | Abdussami, Ghufrana | Mahfooz, Maryam | Kamal, Mohammad A. | Damanhouri, Ghazi A. | Jamal, Mohammad S. | Jarullah, Bushra | Jarullah, Jummanah | Jarullah, Mohammad S. S. | Ali, Ashraf | Rasool, Mahmood | Jamal, Mohammad S. | Assidi, Mourad | Abu-Elmagd, Muhammad | Bajouh, Osama | Pushparaj, Peter Natesan | Al-Qahtani, Mohammed | Abuzenadah, Adel | Jamal, Mohammad S. | Jarullah, Jummanah | Mathkoor, Abdulah E. A. | Alsalmi, Hashim M. A. | Oun, Anas M. M. | Damanhauri, Ghazi A. | Rasool, Mahmood | AlQahtani, Mohammed H. | Naseer, Muhammad I. | Rasool, Mahmood | Sogaty, Sameera | Chudhary, Adeel G. | Abutalib, Yousif A. | Merico, Daniele | Walker, Susan | Marshall, Christian R. | Zarrei, Mehdi | Scherer, Stephen W. | Al-Qahtani, Mohammad H. | Naseer, Muhammad I. | Faheem, Muhammad | Chaudhary, Adeel G. | Rasool, Mahmood | Kalamegam, Gauthaman | Ashgan, Fai Talal | Assidi, Mourad | Ahmed, Farid | Zaidi, Syed Kashif | Jan, Mohammed M. | Al-Qahtani, Mohammad H. | Al-Zahrani, Maryam | Lary, Sahira | Hakamy, Sahar | Dallol, Ashraf | Al-Ahwal, Mahmoud | Al-Maghrabi, Jaudah | Dermitzakis, Emmanuel | Abuzenadah, Adel | Buhmeida, Abdelbaset | Al-Qahtani, Mohammed | Al-refai, Abeer A. | Saleh, Mona | Yassien, Rehab I. | Kamel, Mahmmoud | Habeb, Rabab M. | Filimban, Najlaa | Dallol, Ashraf | Ghannam, Nadia | Al-Qahtani, Mohammed | Abuzenadah, Adel Mohammed | Bibi, Fehmida | Akhtar, Sana | Azhar, Esam I. | Yasir, Muhammad | Nasser, Muhammad I. | Jiman-Fatani, Asif A. | Sawan, Ali | Lahzah, Ruaa A. | Ali, Asho | Hassan, Syed A. | Hasnain, Seyed E. | Tayubi, Iftikhar A. | Abujabal, Hamza A. | Magrabi, Alaa O. | Khan, Fazal | Kalamegam, Gauthaman | Pushparaj, Peter Natesan | Abuzenada, Adel | Kumosani, Taha Abduallah | Barbour, Elie | Al-Qahtani, Mohammed | Shabaad, Manal | Mathew, Shilu | Dallol, Ashraf | Merdad, Adnan | Buhmeida, Abdelbaset | Al-Qahtani, Mohammed | Assidi, Mourad | Abu-Elmagd, Muhammad | Gauthaman, Kalamegam | Gari, Mamdooh | Chaudhary, Adeel | Abuzenadah, Adel | Pushparaj, Peter Natesan | Al-Qahtani, Mohammed | Hassan, Syed A. | Tayubi, Iftikhar A. | Aljahdali, Hani M. A. | Al Nono, Reham | Gari, Mamdooh | Alsehli, Haneen | Ahmed, Farid | Abbas, Mohammed | Kalamegam, Gauthaman | Al-Qahtani, Mohammed | Mathew, Shilu | Khan, Fazal | Rasool, Mahmood | Jamal, Mohammed Sarwar | Naseer, Muhammad Imran | Mirza, Zeenat | Karim, Sajjad | Ansari, Shakeel | Assidi, Mourad | Kalamegam, Gauthaman | Gari, Mamdooh | Chaudhary, Adeel | Abuzenadah, Adel | Pushparaj, Peter Natesan | Al-Qahtani, Mohammed | Abu-Elmagd, Muhammad | Kalamegam, Gauthaman | Kadam, Roaa | Alghamdi, Mansour A. | Shamy, Magdy | Costa, Max | Khoder, Mamdouh I. | Assidi, Mourad | Pushparaj, Peter Natesan | Gari, Mamdooh | Al-Qahtani, Mohammed | Kharrat, Najla | Belmabrouk, Sabrine | Abdelhedi, Rania | Benmarzoug, Riadh | Assidi, Mourad | Al Qahtani, Mohammed H. | Rebai, Ahmed | Dhamanhouri, Ghazi | Pushparaj, Peter Natesan | Noorwali, Abdelwahab | Alwasiyah, Mohammad Khalid | Bahamaid, Afnan | Alfakeeh, Saadiah | Alyamani, Aisha | Alsehli, Haneen | Abbas, Mohammed | Gari, Mamdooh | Mobasheri, Ali | Kalamegam, Gauthaman | Al-Qahtani, Mohammed | Faheem, Muhammad | Mathew, Shilu | Pushparaj, Peter Natesan | Al-Qahtani, Mohammad H. | Mathew, Shilu | Faheem, Muhammad | Mathew, Shiny | Pushparaj, Peter Natesan | Al-Qahtani, Mohammad H. | Jamal, Mohammad Sarwar | Zaidi, Syed Kashif | Khan, Raziuddin | Bhatia, Kanchan | Al-Qahtani, Mohammed H. | Ahmad, Saif | AslamTayubi, Iftikhar | Tripathi, Manish | Hassan, Syed Asif | Shrivastava, Rahul | Tayubi, Iftikhar A. | Hassan, Syed | Abujabal, Hamza A. S. | Shah, Ishani | Jarullah, Bushra | Jamal, Mohammad S. | Jarullah, Jummanah | Sheikh, Ishfaq A. | Ahmad, Ejaz | Jamal, Mohammad S. | Rehan, Mohd | Abu-Elmagd, Muhammad | Tayubi, Iftikhar A. | AlBasri, Samera F. | Bajouh, Osama S. | Turki, Rola F. | Abuzenadah, Adel M. | Damanhouri, Ghazi A. | Beg, Mohd A. | Al-Qahtani, Mohammed | Hammoudah, Sahar A. F. | AlHarbi, Khalid M. | El-Attar, Lama M. | Darwish, Ahmed M. Z. | Ibrahim, Sara M. | Dallol, Ashraf | Choudhry, Hani | Abuzenadah, Adel | Awlia, Jalaludden | Chaudhary, Adeel | Ahmed, Farid | Al-Qahtani, Mohammed | Jafri, Mohammad A. | Abu-Elmagd, Muhammad | Assidi, Mourad | Al-Qahtani, Mohammed | khan, Imran | Yasir, Muhammad | Azhar, Esam I. | Al-basri, Sameera | Barbour, Elie | Kumosani, Taha | Khan, Fazal | Kalamegam, Gauthaman | Pushparaj, Peter Natesan | Abuzenada, Adel | Kumosani, Taha Abduallah | Barbour, Elie | EL Sayed, Heba M. | Hafez, Eman A. | Schulten, Hans-Juergen | Elaimi, Aisha Hassan | Hussein, Ibtessam R. | Bassiouni, Randa Ibrahim | Alwasiyah, Mohammad Khalid | Wintle, Richard F. | Chaudhary, Adeel | Scherer, Stephen W. | Al-Qahtani, Mohammed | Mirza, Zeenat | Pillai, Vikram Gopalakrishna | Karim, Sajjad | Sharma, Sujata | Kaur, Punit | Srinivasan, Alagiri | Singh, Tej P. | Al-Qahtani, Mohammed | Alotibi, Reem | Al-Ahmadi, Alaa | Al-Adwani, Fatima | Hussein, Deema | Karim, Sajjad | Al-Sharif, Mona | Jamal, Awatif | Al-Ghamdi, Fahad | Al-Maghrabi, Jaudah | Baeesa, Saleh S. | Bangash, Mohammed | Chaudhary, Adeel | Schulten, Hans-Juergen | Al-Qahtani, Mohammed | Faheem, Muhammad | Pushparaj, Peter Natesan | Mathew, Shilu | Kumosani, Taha Abdullah | Kalamegam, Gauthaman | Al-Qahtani, Mohammed | Al-Allaf, Faisal A. | Abduljaleel, Zainularifeen | Alashwal, Abdullah | Taher, Mohiuddin M. | Bouazzaoui, Abdellatif | Abalkhail, Halah | Ba-Hammam, Faisal A. | Athar, Mohammad | Kalamegam, Gauthaman | Pushparaj, Peter Natesan | Abu-Elmagd, Muhammad | Ahmed, Farid | Sait, Khalid HussainWali | Anfinan, Nisreen | Gari, Mamdooh | Chaudhary, Adeel | Abuzenadah, Adel | Assidi, Mourad | Al-Qahtani, Mohammed | Mami, Naira Ben | Haffani, Yosr Z. | Medhioub, Mouna | Hamzaoui, Lamine | Cherif, Ameur | Azouz, Msadok | Kalamegam, Gauthaman | Khan, Fazal | Mathew, Shilu | Nasser, Mohammed Imran | Rasool, Mahmood | Ahmed, Farid | Pushparaj, Peter Natesan | Al-Qahtani, Mohammed | Turkistany, Shereen A. | Al-harbi, Lina M. | Dallol, Ashraf | Sabir, Jamal | Chaudhary, Adeel | Abuzenadah, Adel | Al-Madoudi, Basmah | Al-Aslani, Bayan | Al-Harbi, Khulud | Al-Jahdali, Rwan | Qudaih, Hanadi | Al Hamzy, Emad | Assidi, Mourad | Al Qahtani, Mohammed | Ilyas, Asad M. | Ahmed, Youssri | Gari, Mamdooh | Ahmed, Farid | Alqahtani, Mohammed | Salem, Nada | Karim, Sajjad | Alhathli, Elham M. | Abusamra, Heba | Eldin, Hend F. Nour | Al-Qahtani, Mohammed H. | Kumar, Sudhir | Al-Adwani, Fatima | Hussein, Deema | Al-Sharif, Mona | Jamal, Awatif | Al-Ghamdi, Fahad | Al-Maghrabi, Jaudah | Baeesa, Saleh S. | Bangash, Mohammed | Chaudhary, Adeel | Al-Qahtani, Mohammed | Schulten, Hans-Juergen | Alamandi, Alaa | Alotibi, Reem | Hussein, Deema | Karim, Sajjad | Al-Maghrabi, Jaudah | Al-Ghamdi, Fahad | Jamal, Awatif | Baeesa, Saleh S. | Bangash, Mohammed | Chaudhary, Adeel | Schulten, Hans-Juergen | Al-Qahtani, Mohammed | Subhi, Ohoud | Bagatian, Nadia | Karim, Sajjad | Al-Johari, Adel | Al-Hamour, Osman Abdel | Al-Aradati, Hosam | Al-Mutawa, Abdulmonem | Al-Mashat, Faisal | Al-Maghrabi, Jaudah | Schulten, Hans-Juergen | Al-Qahtani, Mohammad | Bagatian, Nadia | Subhi, Ohoud | Karim, Sajjad | Al-Johari, Adel | Al-Hamour, Osman Abdel | Al-Mutawa, Abdulmonem | Al-Aradati, Hosam | Al-Mashat, Faisal | Al-Qahtani, Mohammad | Schulten, Hans-Juergen | Al-Maghrabi, Jaudah | shah, Muhammad W. | Yasir, Muhammad | Azhar, Esam I | Al-Masoodi, Saad | Haffani, Yosr Z. | Azouz, Msadok | Khamla, Emna | Jlassi, Chaima | Masmoudi, Ahmed S. | Cherif, Ameur | Belbahri, Lassaad | Al-Khayyat, Shadi | Attas, Roba | Abu-Sanad, Atlal | Abuzinadah, Mohammed | Merdad, Adnan | Dallol, Ashraf | Chaudhary, Adeel | Al-Qahtani, Mohammed | Abuzenadah, Adel | Bouazzi, Habib | Trujillo, Carlos | Alwasiyah, Mohammad Khalid | Al-Qahtani, Mohammed | Alotaibi, Maha | Nassir, Rami | Sheikh, Ishfaq A. | Kamal, Mohammad A. | Jiffri, Essam H. | Ashraf, Ghulam M. | Beg, Mohd A. | Aziz, Mohammad A. | Ali, Rizwan | Rasool, Mahmood | Jamal, Mohammad S. | Samman, Nusaibah | Abdussami, Ghufrana | Periyasamy, Sathish | Warsi, Mohiuddin K. | Aldress, Mohammed | Al Otaibi, Majed | Al Yousef, Zeyad | Boudjelal, Mohamed | Buhmeida, Abdelbasit | Al-Qahtani, Mohammed H. | AlAbdulkarim, Ibrahim | Ghazala, Rubi | Mathew, Shilu | Hamed, M. Haroon | Assidi, Mourad | Al-Qahtani, Mohammed | Qadri, Ishtiaq | Sheikh, Ishfaq A. | Abu-Elmagd, Muhammad | Turki, Rola F. | Damanhouri, Ghazi A. | Beg, Mohd A. | Suhail, Mohd | Qureshi, Abid | Jamal, Adil | Pushparaj, Peter Natesan | Al-Qahtani, Mohammad | Qadri, Ishtiaq | El-Readi, Mahmoud Z. | Eid, Safaa Y. | Wink, Michael | Isa, Ahmed M. | Alnuaim, Lulu | Almutawa, Johara | Abu-Rafae, Basim | Alasiri, Saleh | Binsaleh, Saleh | Nazam, Nazia | Lone, Mohamad I. | Ahmad, Waseem | Ansari, Shakeel A. | Alqahtani, Mohamed H.
BMC Genomics  2016;17(Suppl 6):487.
Table of contents
O1 Regulation of genes by telomere length over long distances
Jerry W. Shay
O2 The microtubule destabilizer KIF2A regulates the postnatal establishment of neuronal circuits in addition to prenatal cell survival, cell migration, and axon elongation, and its loss leading to malformation of cortical development and severe epilepsy
Noriko Homma, Ruyun Zhou, Muhammad Imran Naseer, Adeel G. Chaudhary, Mohammed Al-Qahtani, Nobutaka Hirokawa
O3 Integration of metagenomics and metabolomics in gut microbiome research
Maryam Goudarzi, Albert J. Fornace Jr.
O4 A unique integrated system to discern pathogenesis of central nervous system tumors
Saleh Baeesa, Deema Hussain, Mohammed Bangash, Fahad Alghamdi, Hans-Juergen Schulten, Angel Carracedo, Ishaq Khan, Hanadi Qashqari, Nawal Madkhali, Mohamad Saka, Kulvinder S. Saini, Awatif Jamal, Jaudah Al-Maghrabi, Adel Abuzenadah, Adeel Chaudhary, Mohammed Al Qahtani, Ghazi Damanhouri
O5 RPL27A is a target of miR-595 and deficiency contributes to ribosomal dysgenesis
Heba Alkhatabi
O6 Next generation DNA sequencing panels for haemostatic and platelet disorders and for Fanconi anaemia in routine diagnostic service
Anne Goodeve, Laura Crookes, Nikolas Niksic, Nicholas Beauchamp
O7 Targeted sequencing panels and their utilization in personalized medicine
Adel M. Abuzenadah
O8 International biobanking in the era of precision medicine
Jim Vaught
O9 Biobank and biodata for clinical and forensic applications
Bruce Budowle, Mourad Assidi, Abdelbaset Buhmeida
O10 Tissue microarray technique: a powerful adjunct tool for molecular profiling of solid tumors
Jaudah Al-Maghrabi
O11 The CEGMR biobanking unit: achievements, challenges and future plans
Abdelbaset Buhmeida, Mourad Assidi, Leena Merdad
O12 Phylomedicine of tumors
Sudhir Kumar, Sayaka Miura, Karen Gomez
O13 Clinical implementation of pharmacogenomics for colorectal cancer treatment
Angel Carracedo, Mahmood Rasool
O14 From association to causality: translation of GWAS findings for genomic medicine
Ahmed Rebai
O15 E-GRASP: an interactive database and web application for efficient analysis of disease-associated genetic information
Sajjad Karim, Hend F Nour Eldin, Heba Abusamra, Elham M Alhathli, Nada Salem, Mohammed H Al-Qahtani, Sudhir Kumar
O16 The supercomputer facility “AZIZ” at KAU: utility and future prospects
Hossam Faheem
O17 New research into the causes of male infertility
Ashok Agarwa
O18 The Klinefelter syndrome: recent progress in pathophysiology and management
Eberhard Nieschlag, Joachim Wistuba, Oliver S. Damm, Mohd A. Beg, Taha A. Abdel-Meguid, Hisham A. Mosli, Osama S. Bajouh, Adel M. Abuzenadah, Mohammed H. Al-Qahtani
O19 A new look to reproductive medicine in the era of genomics
Serdar Coskun
P1 Wnt signalling receptors expression in Saudi breast cancer patients
Muhammad Abu-Elmagd, Abdelbaset Buhmeida, Ashraf Dallol, Jaudah Al-Maghrabi, Sahar Hakamy, Wejdan Al-Qahtani, Asia Al-Harbi, Shireen Hussain, Mourad Assidi, Mohammed Al-Qahtani, Adel Abuzenadah
P2 Analysis of oxidative stress interactome during spermatogenesis: a systems biology approach to reproduction
Burak Ozkosem, Rick DuBois
P3 Interleukin-18 gene variants are strongly associated with idiopathic recurrent pregnancy loss.
Safia S Messaoudi, Maryam T Dandana, Touhami Mahjoub, Wassim Y Almawi
P4 Effect of environmental factors on gene-gene and gene-environment reactions: model and theoretical study applied to environmental interventions using genotype
S. Abdalla, M. Nabil Al-Aama
P5 Genomics and transcriptomic analysis of imatinib resistance in gastrointestinal stromal tumor
Asmaa Elzawahry, Tsuyoshi Takahashi, Sachiyo Mimaki, Eisaku Furukawa, Rie Nakatsuka, Isao Kurosaka, Takahiko Nishigaki, Hiromi Nakamura, Satoshi Serada, Tetsuji Naka, Seiichi Hirota, Tatsuhiro Shibata, Katsuya Tsuchihara, Toshirou Nishida, Mamoru Kato
P6 In-Silico analysis of putative HCV epitopes against Pakistani human leukocyte antigen background: an approach towards development of future vaccines for Pakistani population
Sajid Mehmood, Naeem Mahmood Ashraf, Awais Asif, Muhammad Bilal, Malik Siddique Mehmood, Aadil Hussain
P7 Inhibition of AChE and BuChE with the natural compounds of Bacopa monerri for the treatment of Alzheimer’s disease: a bioinformatics approach
Qazi Mohammad Sajid Jamal, Mughees Uddin Siddiqui, Mohammad A. Alzohairy, Mohammad A. Al Karaawi
P8 Her2 expression in urothelial cell carcinoma of the bladder in Saudi Arabia
Taoufik Nedjadi, Jaudah Al-Maghrabi, Mourad Assidi, Heba Al-Khattabi, Adel Al-Ammari, Ahmed Al-Sayyad, Abdelbaset Buhmeida, Mohammed Al-Qahtani
P9 Association of angiotensinogen single nucleotide polymorphisms with Preeclampsia in patients from North Africa
Hédia Zitouni, Nozha Raguema, Marwa Ben Ali, Wided Malah, Raja Lfalah, Wassim Almawi, Touhami Mahjoub
P10 Systems biology analysis reveals relations between normal skin, benign nevi and malignant melanoma
Mohammed Elanbari, Andrey Ptitsyn
P11 The apoptotic effect of thymoquinone in Jurkat cells
Sana Mahjoub, Rabeb El Ghali, Bechir Achour, Nidhal Ben Amor, Mourad Assidi, Brahim N'siri, Hamid Morjani
P12 Sonic hedgehog contributes in bladder cancer invasion in Saudi Arabia
Taoufik Nedjadi, Adel Al-Ammari, Ahmed Al-Sayyad, Nada Salem, Esam Azhar, Jaudah Al-Maghrabi
P13 Association of Interleukin 18 gene promoter polymorphisms - 607A/C and -137 G/C with colorectal cancer onset in a sample of Tunisian population
Vera Chayeb, Maryam Dendena, Hedia Zitouni, Khedija Zouari-Limayem, Touhami Mahjoub
P14 Pathological expression of interleukin-6, -11, leukemia inhibitory factor and their receptors in tubal gestation with and without tubal cytomegalovirus infection
Bassem Refaat, Ahmed M Ashshi, Sarah A Batwa
P15 Phenotypic and genetic profiling of avian pathogenic and human diarrhegenic Escherichia coli in Egypt
Hazem Ramadan, Amal Awad, Ahmed Ateya
P16 Cancer-targeting dual gene virotherapy as a promising therapeutic strategy for treatment of hepatocellular carcinoma
Adel Galal Ahmed El-Shemi, Ahmad Ashshi, Mohammed Basalamah, Youjin Na, Chae-Ok YUN
P17 Cancer dual gene therapy with oncolytic adenoviruses expressing TRAIL and IL-12 transgenes markedly eradicated human hepatocellular carcinoma both in vitro and in vivo
Adel Galal Ahmed El-Shemi, Ahmad Ashshi, Mohammed Basalamah, Youjin Na, Chae-Ok Yun
P18 Therapy with paricalcitol attenuates tumor growth and augments tumoricidal and anti-oncogenic effects of 5-fluorouracil on animal model of colon cancer
Adel Galal El-Shemi, Bassem Refaat, Osama Kensara, Amr Abdelfattah
P19 The effects of Rubus idaeus extract on normal human lymphocytes and cancer cell line
Batol Imran Dheeb, Mohammed M. F. Al-Halbosiy, Rghad Kadhim Al lihabi, Basim Mohammed Khashman
P20 Etanercept, a TNF-alpha inhibitor, alleviates mechanical hypersensitivity and spontaneous pain in a rat model of chemotherapy-induced neuropathic pain
Djouhri, Laiche, Chaudhary Adeel, Nedjadi, Taoufik
P21 Sleeping beauty mutagenesis system identified genes and neuronal transcription factor network involved in pediatric solid tumour (medulloblastoma)
Hani Al-Afghani, Maria Łastowska, Haya H Al-Balool, Harsh Sheth, Emma Mercer, Jonathan M Coxhead, Chris PF Redfern, Heiko Peters, Alastair D Burt, Mauro Santibanez-Koref, Chris M Bacon, Louis Chesler, Alistair G Rust, David J Adams, Daniel Williamson, Steven C Clifford, Michael S Jackson
P22 Involvement of interleukin-1 in vitiligo pathogenesis
Mala Singh, Mohmmad Shoab Mansuri, Shahnawaz D. Jadeja, Hima Patel, Yogesh S. Marfatia, Rasheedunnisa Begum
P23 Cytogenetics abnormalities in 12,884 referred population for chromosomal analysis and the role of FISH in refining the diagnosis (cytogenetic experience 2004-2013)
Amal M Mohamed, Alaa K Kamel, Nivin A Helmy, Sayda A Hammad, Hesham F Kayed, Marwa I Shehab, Assad El Gerzawy, Maha M. Ead, Ola M Ead, Mona Mekkawy, Innas Mazen, Mona El-Ruby
P24 Analysis of binding properties of angiotensin-converting enzyme 2 through in silico method
S. M. A. Shahid, Qazi Mohammad Sajid Jamal, J. M. Arif, Mohtashim Lohani
P25 Relationship of genetics markers cis and trans to the β-S globin gene with fetal hemoglobin expression in Tunisian sickle cell patients
Moumni Imen, Chaouch Leila, Ouragini Houyem, Douzi Kais, Chaouachi Dorra Mellouli Fethi, Bejaoui Mohamed, Abbes Salem
P26 Analysis of estrogen receptor alpha gene polymorphisms in breast cancer: link to genetic predisposition in Sudanese women
Areeg Faggad, Amanuel T Gebreslasie, Hani Y Zaki, Badreldin E Abdalla
P27 KCNQI gene polymorphism and its association with CVD and T2DM in the Saudi population
Maha S AlShammari, Rhaya Al-Ali, Nader Al-Balawi , Mansour Al-Enazi, Ali Al-Muraikhi, Fadi Busaleh, Ali Al-Sahwan, Francis Borgio, Abdulazeez Sayyed, Amein Al-Ali, Sadananda Acharya
P28 Clinical, neuroimaging and cytogenetic study of a patient with microcephaly capillary malformation syndrome
Maha S. Zaki, Hala T. El-Bassyouni, Marwa I. Shehab
P29 Altered expression of CD200R1 on dendritic cells of patients with inflammatory bowel diseases: in silico investigations and clinical evaluations
Mohammed F. Elshal, Kaleemuddin M., Alia M. Aldahlawi, Omar Saadah,
J. Philip McCoy
P30 Development of real time PCR diagnostic protocol specific for the Saudi Arabian H1N1 viral strains
Adel E El-Tarras, Nabil S Awad, Abdulla A Alharthi, Mohamed M M Ibrahim
P31 Identification of novel genetic variations affecting Osteoarthritis patients
Haneen S Alsehli, Ashraf Dallol, Abdullah M Gari, Mohammed M Abbas, Roaa A Kadam, Mazen M. Gari, Mohmmed H Alkaff, Adel M Abuzenadah, Mamdooh A Gari
P32 An integrated database of GWAS SNVs and their evolutionary properties
Heba Abusamra, Sajjad Karim, Hend F Nour eldin, Elham M Alhathli, Nada Salem, Sudhir Kumar, Mohammed H Al-Qahtani
P33 Familial hypercholesterolemia in Saudi Arabia: prime time for a national registry and genetic analysis
Fatima A. Moradi, Omran M. Rashidi, Zuhier A. Awan
P34 Comparative genomics and network-based analyses of early hepatocellular carcinoma
Ibrahim Hamza Kaya, Olfat Al-Harazi, Dilek Colak
P35 A TALEN-based oncolytic viral vector approach to knock out ABCB1 gene mediated chemoresistance in cancer stem cells
Nabila A Alkousi, Takis Athanasopoulos
P36 Cartilage differentiation and gene expression of synovial fluid mesenchymal stem cells derived from osteoarthritis patients
Afnan O Bahmaid, Etimad A Alhwait, Mamdooh A Gari, Haneen S Alsehli, Mohammed M Abbas, Mohammed H Alkaf, Roaa Kadam, Ashraf Dallol, Gauthaman Kalamegam
P37 E-GRASP: Adding an evolutionary component to the genome-wide repository of associations (GRASP) resource
Hend F Nour Eldin, Sajjad Karim, Heba Abusamra, Elham Alhathli, Nada Salem, Mohammed H Al-Qahtani, Sudhir Kumar
P38 Screening of AGL gene mutation in Saudi family with glycogen storage disease Type III
Salma N Alsayed, Fawziah H Aljohani, Samaher M Habeeb, Rawan A Almashali, Sulman Basit, Samia M Ahmed
P39 High throughput proteomic data suggest modulation of cAMP dependent protein kinase A and mitochondrial function in infertile patients with varicocele
Rakesh Sharma, Ashok Agarwal, Damayanthi Durairajanayagam, Luna Samanta, Muhammad Abu-Elmagd, Adel M. Abuzenadah, Edmund S. Sabanegh, Mourad Assidi, Mohammed Al-Qahtani
P40 Significant protein profile alterations in men with primary and secondary infertility
Ashok Agarwal, Rakesh Sharma, Luna Samanta, Damayanthi Durairajanayagam, Mourad Assidi, Muhammad Abu-Elmagd, Mohammed Al-Qahtani, Adel M. Abuzenadah, Edmund S. Sabanegh
P41 Spermatozoa maturation in infertile patients involves compromised expression of heat shock proteins
Luna Samanta, Ashok Agarwal, Rakesh Sharma, Zhihong Cui, Mourad Assidi, Adel M. Abuzenadah, Muhammad Abu-Elmagd, Mohammed Al-Qahtani
P42 Array comparative genomic hybridization approach to search genomic answers for spontaneous recurrent abortion in Saudi Arabia
Alaa A Alboogmi, Nuha A Alansari, Maha M Al-Quaiti, Fai T Ashgan, Afnan Bandah, Hasan S Jamal, Abdullraheem Rozi, Zeenat Mirza, Adel M Abuzenadah, Sajjad Karim, Mohammed H Al-Qahtani
P43 Global gene expression profiling of Saudi kidney cancer patients
Sajjad Karim, Hans-Juergen Schulten, Ahmad J Al Sayyad, Hasan MA Farsi, Jaudah A Al-Maghrabi, Zeenat Mirza, Reem Alotibi, Alaa Al-Ahmadi, Nuha A Alansari, Alaa A Albogmi, Maha M Al-Quaiti, Fai T Ashgan, Afnan Bandah, Mohammed H Al-Qahtani
P44 Downregulated StAR gene and male reproductive dysfunction caused by nifedipine and ethosuximide
Rasha A Ebiya, Samia M Darwish, Metwally M. Montaser
P45 Clustering based gene expression feature selection method: A computational approach to enrich the classifier efficiency of differentially expressed genes
Heba Abusamra, Vladimir B. Bajic
P46 Prognostic significance of Osteopontin expression profile in colorectal carcinoma
Jaudah Al-Maghrabi, Wafaey Gomaa, Mehenaz Hanbazazh, Mahmoud Al-Ahwal, Asia Al-Harbi, Wejdan Al-Qahtani, Saher Hakamy, Ghali Baba, Abdelbaset Buhmeida, Mohammed Al-Qahtani
P47 High Glypican-3 expression pattern predicts longer disease-specific survival in colorectal carcinoma
Jaudah Al-Maghrabi, Abdullah Al-Harbi, Mahmoud Al-Ahwal, Asia Al-Harbi, Wejdan Al-Qahtani, Sahar Hakamy, Ghalia Baba, Abdelbaset Buhmeida, Mohammed Al-Qahtani
P48 An evolutionary re-assessment of GWAS single nucleotide variants implicated in the Cholesterol traits
Elham M Alhathli, Sajjad Karim, Nada Salem, Hend Nour Eldin, Heba Abusamra, Sudhir Kumar, Mohammed H Al-Qahtani
P49 Derivation and characterization of human Wharton’s jelly stem cells (hWJSCs) in vitro for future therapeutic applications
Aisha A Alyamani, Gauthaman Kalamegam, Etimad A Alhwait, Mamdooh A Gari, Mohammed M Abbas, Mohammed H Alkaf, Haneen S Alsehli, Roaa A Kadam, Mohammed Al-Qahtani
P50 Attitudes of healthcare students toward biomedical research in the post-genomic era
Rawan Gadi, Abdelbaset Buhmeida, Mourad Assidi , Adeel Chaudhary, Leena Merdad
P51 Evaluation of the immunomodulatory effects of thymoquinone on human bone marrow mesenchymal stem cells (BM-MSCs) from osteoarthritic patients
Saadiah M Alfakeeh, Etimad A Alhwait, Mamdooh A Gari, Mohammed M Abbas, Mohammed H Alkaf, Haneen S Alsehli, Roaa Kadam, Gauthaman Kalamegam
P52 Implication of IL-10 and IL-28 polymorphism with successful anti-HCV therapy and viral clearance
Rubi Ghazala, Shilu Mathew, M.Haroon Hamed, Mourad Assidi, Mohammed Al-Qahtani, Ishtiaq Qadri
P53 Selection of flavonoids against obesity protein (FTO) using in silico and in vitro approaches
Shilu Mathew, Lobna Mira, Manal Shaabad, Shireen Hussain, Mourad Assidi, Muhammad Abu-Elmagd, Mohammed Al-Qahtani
P54 Computational selection and in vitro validation of flavonoids as new antidepressant agents
Shilu Mathew, Manal Shaabad, Lobna Mira, Shireen Hussain, Mourad Assidi, Muhammad Abu-Elmagd, Mohammed Al-Qahtani
P55 In Silico prediction and prioritization of aging candidate genes associated with
progressive telomere shortening
Ahmed Rebai, Mourad Assidi, Abdelbaset Buhmeida, Muhammad Abu-Elmagd, Ashraf Dallol, Jerry W Shay
P56 Identification of new cancer testis antigen genes in diverse types of malignant human tumour cells
Mikhlid H Almutairi
P57 More comprehensive forensic genetic marker analyses for accurate human remains identification using massively parallel sequencing (MPS)
Angie Ambers, Jennifer Churchill, Jonathan King, Monika Stoljarova, Harrell Gill-King, Mourad Assidi, Muhammad Abu-Elmagd, Abdelbaset Buhmeida, Muhammad Al-Qatani, Bruce Budowle
P58 Flow cytometry approach towards treatment men infertility in Saudi Arabia
Muhammad Abu-Elmagd, Farid Ahmed, Ashraf Dallol, Mourad Assidi, Taha Abo Almagd, Sahar Hakamy, Ashok Agarwal, Muhammad Al-Qahtani, Adel Abuzenadah
P59 Tissue microarray based validation of CyclinD1 expression in renal cell carcinoma of Saudi kidney patients
Sajjad Karim, Hans-Juergen Schulten, Ahmad J Al Sayyad, Hasan MA Farsi, Jaudah A Al-Maghrabi, Abdelbaset Buhmaida, Zeenat Mirza, Reem Alotibi, Alaa Al-Ahmadi, Nuha A Alansari, Alaa A Albogmi, Maha M Al-Quaiti, Fai T Ashgan, Afnan Bandah, Mohammed H Al-Qahtani
P60 Assessment of gold nanoparticles in molecular diagnostics and DNA damage studies
Rukhsana Satar, Mahmood Rasool, Waseem Ahmad, Nazia Nazam, Mohamad I Lone, Muhammad I Naseer, Mohammad S Jamal, Syed K Zaidi, Peter N Pushparaj, Mohammad A Jafri, Shakeel A Ansari, Mohammed H Alqahtani
P61 Surfing the biospecimen management and processing workflow at CEGMR Biobank
Hanan Bashier, Abrar Al Qahtani, Shilu Mathew, Amal M. Nour, Heba Alkhatabi, Adel M. Abu Zenadah, Abdelbaset Buhmeida, Mourad Assidi, Muhammed Al Qahtani
P62 Autism Spectrum Disorder: knowledge, attitude and awareness in Jeddah, Kingdom of Saudi Arabia
Muhammad Faheem, Shilu Mathew, Shiny Mathew, Peter Natesan Pushparaj, Mohammad H. Al-Qahtani
P63 Simultaneous genetic screening of the coagulation pathway genes using the Thromboscan targeted sequencing panel
Hani A. Alhadrami, Ashraf Dallol, Adel Abuzenadah
P64 Genome wide array comparative genomic hybridization analysis in patients with syndromic congenital heart defects
Ibtessam R. Hussein, Adeel G. Chaudhary, Rima S Bader, Randa Bassiouni, Maha Alquaiti, Fai Ashgan, Hans Schulten, Mohamed Nabil Alama, Mohammad H. Al Qahtani
P65 Toxocogenetic evaluation of 1, 2-Dichloroethane in bone marrow, blood and cells of immune system using conventional, molecular and flowcytometric approaches
Mohammad I Lone, Nazia Nizam, Waseem Ahmad, Mohammad A Jafri, Mahmood Rasool, Shakeel A Ansari, Muhammed H Al-Qahtani
P66 Molecular cytogenetic diagnosis of sexual development disorders in newborn: A case of ambiguous genitalia
Eradah Alshihri, Muhammad Abu-Elmagd, Lina Alharbi, Mourad Assidi, Mohammed Al-Qahtani
P67 Identification of disease specific gene expression clusters and pathways in hepatocellular carcinoma using In Silico methodologies
Shilu Mathew, Peter Pushparaj Natesan, Muhammed Al Qahtani
P68 Human Wharton’s Jelly stem cell conditioned medium inhibits primary ovarian cancer cells in vitro: Identification of probable targets and mechanisms using systems biology
Gauthaman Kalamegam, Peter Natesan Pushparaj, Fazal Khan, Roaa Kadam, Farid Ahmed, Mourad Assidi, Khalid Hussain Wali Sait, Nisreen Anfinan, Mohammed Al Qahtani
P69 Mutation spectrum of ASPM (Abnormal Spindle-like, Microcephaly-associated) gene in Saudi Arabian population
Muhammad I Naseer, Adeel G Chaudhary, Mohammad S Jamal, Shilu Mathew, Lobna S Mira, Peter N Pushparaj, Shakeel A Ansari, Mahmood Rasool, Mohammed H AlQahtani
P70 Identification and characterization of novel genes and mutations of primary microcephaly in Saudi Arabian population
Muhammad I Naseer, Adeel G Chaudhary, Shilu Mathew, Lobna S Mira, Mohammad S Jamal, Sameera Sogaty, Randa I Bassiouni, Mahmood Rasool, Mohammed H AlQahtani
P71 Molecular genetic analysis of hereditary nonpolyposis colorectal cancer (Lynch Syndrome) in Saudi Arabian population
Mahmood Rasool, Shakeel A Ansari, Mohammad S Jamal, Peter N Pushparaj, Abdulrahman MS Sibiani, Waseem Ahmad, Abdelbaset Buhmeida, Mohammad A Jafri, Mohiuddin K Warsi, Muhammad I Naseer, Mohammed H Al-Qahtani
P72 Function predication of hypothetical proteins from genome database of chlamydia trachomatis
Rubi, Kundan Kumar, Ahmad AT Naqvi, Faizan Ahmad, Md I Hassan, Mohammad S Jamal, Mahmood Rasool, Mohammed H AlQahtani
P73 Transcription factors as novel molecular targets for skin cancer
Ashraf Ali, Jummanah Jarullah, Mahmood Rasool, Abdelbasit Buhmeida, Shahida Khan, Ghufrana Abdussami, Maryam Mahfooz, Mohammad A Kamal, Ghazi A Damanhouri, Mohammad S Jamal
P74 An In Silico analysis of Plumbagin binding to apoptosis executioner: Caspase-3 and Caspase-7
Bushra Jarullah, Jummanah Jarullah, Mohammad SS Jarullah, Ashraf Ali, Mahmood Rasool, Mohammad S Jamal
P75 Single cell genomics applications for preimplantation genetic screening optimization: Comparative analysis of whole genome amplification technologies
Mourad Assidi, Muhammad Abu-Elmagd, Osama Bajouh, Peter Natesan Pushparaj, Mohammed Al-Qahtani, Adel Abuzenadah
P76 ZFP36 regulates miRs-34a in anti-IgM triggered immature B cells
Mohammad S Jamal, Jummanah Jarullah, Abdulah EA Mathkoor, Hashim MA Alsalmi, Anas MM Oun, Ghazi A Damanhauri, Mahmood Rasool, Mohammed H AlQahtani
P77 Identification of a novel mutation in the STAMBP gene in a family with microcephaly-capillary malformation syndrome
Muhammad I. Naseer, Mahmood Rasool, Sameera Sogaty, Adeel G. Chudhary, Yousif A. Abutalib, Daniele Merico, Susan Walker, Christian R. Marshall, Mehdi Zarrei, Stephen W. Scherer, Mohammad H. Al-Qahtani
P78 Copy number variations in Saudi patients with intellectual disability and epilepsy
Muhammad I. Naseer, Muhammad Faheem, Adeel G. Chaudhary, Mahmood Rasool, Gauthaman Kalamegam, Fai Talal Ashgan, Mourad Assidi, Farid Ahmed, Syed Kashif Zaidi, Mohammed M. Jan, Mohammad H. Al-Qahtani
P79 Prognostic significance of CD44 expression profile in colorectal carcinoma
Maryam Al-Zahrani, Sahira Lary, Sahar Hakamy, Ashraf Dallol, Mahmoud Al-Ahwal, Jaudah Al-Maghrabi, Emmanuel Dermitzakis, Adel Abuzenadah, Abdelbaset Buhmeida, Mohammed Al-Qahtani
P80 Association of the endothelial nitric oxide synthase (eNOS) gene G894T polymorphism with hypertension risk and complications
Abeer A Al-refai, Mona Saleh, Rehab I Yassien, Mahmmoud Kamel, Rabab M Habeb
P81 SNPs array to screen genetic variation among diabetic patients
Najlaa Filimban, Ashraf Dallol, Nadia Ghannam, Mohammed Al-Qahtani, Adel Mohammed Abuzenadah
P82 Detection and genotyping of Helicobacter pylori among gastric cancer patients from Saudi Arabian population
Fehmida Bibi, Sana Akhtar, Esam I. Azhar, Muhammad Yasir, Muhammad I. Nasser, Asif A. Jiman-Fatani, Ali Sawan
P83 Antimicrobial drug resistance and molecular detection of susceptibility to Fluoroquinolones among clinical isolates of Salmonella species from Jeddah-Saudi Arabia
Ruaa A Lahzah, Asho Ali
P84 Identification of the toxic and virulence nature of MAP1138c protein of Mycobacterium avium subsp. paratuberculosis
Syed A Hassan, Seyed E Hasnain, Iftikhar A Tayubi, Hamza A Abujabal, Alaa O Magrabi
P85 In vitro and in silico evaluation of miR137 in human breast cancer
Fazal Khan, Gauthaman Kalamegam, Peter Natesan Pushparaj, Adel Abuzenada, Taha Abduallah Kumosani, Elie Barbour, Mohammed Al-Qahtani
P86 Auruka gene is over-expressed in Saudi breast cancer
Manal Shabaad, Shilu Mathew, Ashraf Dallol, Adnan Merdad, Abdelbaset Buhmeida, Mohammed Al-Qahtani
P87 The potential of immunogenomics in personalized healthcare
Mourad Assidi, Muhammad Abu-Elmagd, Kalamegam Gauthaman, Mamdooh Gari, Adeel Chaudhary, Adel Abuzenadah, Peter Natesan Pushparaj, Mohammed Al-Qahtani
P88 In Silico physiochemical and structural characterization of a putative ORF MAP0591 and its implication in the pathogenesis of Mycobacterium paratuberculosis in ruminants and humans
Syed A Hassan, Iftikhar A Tayubi, Hani MA Aljahdali
P89 Effects of heat shock on human bone marrow mesenchymal stem cells (BM-MSCs): Implications in regenerative medicine
Reham Al Nono, Mamdooh Gari, Haneen Alsehli, Farid Ahmed, Mohammed Abbas, Gauthaman Kalamegam, Mohammed Al-Qahtani
P90 In Silico analyses of the molecular targets of Resveratrol unravels its importance in mast cell mediated allergic responses
Shilu Mathew, Fazal Khan, Mahmood Rasool, Mohammed Sarwar Jamal, Muhammad Imran Naseer, Zeenat Mirza, Sajjad Karim, Shakeel Ansari, Mourad Assidi, Gauthaman Kalamegam, Mamdooh Gari, Adeel Chaudhary, Adel Abuzenadah, Peter Natesan Pushparaj, Mohammed Al-Qahtani
P91 Effects of environmental particulate matter on bone-marrow mesenchymal stem cells
Muhammad Abu-Elmagd, Gauthaman Kalamegam, Roaa Kadam, Mansour A Alghamdi, Magdy Shamy, Max Costa, Mamdouh I Khoder, Mourad Assidi, Peter Natesan Pushparaj, Mamdooh Gari, Mohammed Al-Qahtani
P92 Distinctive charge clusters in human virus proteomes
Najla Kharrat, Sabrine Belmabrouk, Rania Abdelhedi, Riadh Benmarzoug, Mourad Assidi, Mohammed H. Al Qahtani, Ahmed Rebai
P93 In vitro experimental model and approach in identification of new biomarkers of inflammatory forms of arthritis
Ghazi Dhamanhouri, Peter Natesan Pushparaj, Abdelwahab Noorwali, Mohammad Khalid Alwasiyah, Afnan Bahamaid, Saadiah Alfakeeh, Aisha Alyamani, Haneen Alsehli, Mohammed Abbas, Mamdooh Gari, Ali Mobasheri, Gauthaman Kalamegam, Mohammed Al-Qahtani
P94 Molecular docking of GABAA receptor subunit γ-2 with novel anti-epileptic compounds
Muhammad Faheem, Shilu Mathew, Peter Natesan Pushparaj, Mohammad H. Al-Qahtani
P95 Breast cancer knowledge, awareness, and practices among Saudi females residing in Jeddah
Shilu Mathew, Muhammad Faheem, Shiny Mathew, Peter Natesan Pushparaj, Mohammad H. Al-Qahtani
P96 Anti-inflammatory role of Sesamin by Attenuation of Iba1/TNF-α/ICAM-1/iNOS signaling in Diabetic Retinopathy
Mohammad Sarwar Jamal, Syed Kashif Zaidi, Raziuddin Khan, Kanchan Bhatia, Mohammed H. Al-Qahtani, Saif Ahmad
P97 Identification of drug lead molecule against vp35 protein of Ebola virus: An In-Silico approach
Iftikhar AslamTayubi, Manish Tripathi, Syed Asif Hassan, Rahul Shrivastava
P98 An approach to personalized medicine from SNP-calling through disease analysis using whole exome-sequencing of three sub-continental populations
Iftikhar A Tayubi, Syed Hassan, Hamza A.S Abujabal
P99 Low versus high frequency of Glucose –6 – Phosphate Dehydrogenase (G6PD) deficiency in urban against tribal population of Gujarat – A signal to natural selection
Ishani Shah, Bushra Jarullah, Mohammad S Jamal, Jummanah Jarullah
P100 Spontaneous preterm birth and single nucleotide gene polymorphisms: a recent update
Ishfaq A Sheikh, Ejaz Ahmad, Mohammad S Jamal, Mohd Rehan, Muhammad Abu-Elmagd, Iftikhar A Tayubi, Samera F AlBasri, Osama S Bajouh, Rola F Turki, Adel M Abuzenadah, Ghazi A Damanhouri, Mohd A Beg, Mohammed Al-Qahtani
P101 Prevalence of congenital heart diseases among Down syndrome cases in Saudi Arabia: role of molecular genetics in the pathogenesis
Sahar AF Hammoudah, Khalid M AlHarbi, Lama M El-Attar, Ahmed MZ Darwish
P102 Combinatorial efficacy of specific pathway inhibitors in breast cancer cells
Sara M Ibrahim, Ashraf Dallol, Hani Choudhry, Adel Abuzenadah, Jalaludden Awlia, Adeel Chaudhary, Farid Ahmed, Mohammed Al-Qahtani
P103 MiR-143 and miR-145 cluster as potential replacement medicine for the treatment of cancer
Mohammad A Jafri, Muhammad Abu-Elmagd, Mourad Assidi, Mohammed Al-Qahtani
P104 Metagenomic profile of gut microbiota during pregnancy in Saudi population
Imran khan, Muhammad Yasir, Esam I. Azhar, Sameera Al-basri, Elie Barbour, Taha Kumosani
P105 Exploration of anticancer targets of selected metabolites of Phoenix dactylifera L. using systems biological approaches
Fazal Khan, Gauthaman Kalamegam, Peter Natesan Pushparaj, Adel Abuzenada, Taha Abduallah Kumosani, Elie Barbour
P106 CD226 and CD40 gene polymorphism in susceptibility to Juvenile rheumatoid arthritis in Egyptian patients
Heba M. EL Sayed, Eman A. Hafez
P107 Paediatric exome sequencing in autism spectrum disorder ascertained in Saudi families
Hans-Juergen Schulten, Aisha Hassan Elaimi, Ibtessam R Hussein, Randa Ibrahim Bassiouni, Mohammad Khalid Alwasiyah, Richard F Wintle, Adeel Chaudhary, Stephen W Scherer, Mohammed Al-Qahtani
P108 Crystal structure of the complex formed between Phospholipase A2 and the central core hydrophobic fragment of Alzheimer’s β- amyloid peptide: a reductionist approach
Zeenat Mirza, Vikram Gopalakrishna Pillai, Sajjad Karim, Sujata Sharma, Punit Kaur, Alagiri Srinivasan, Tej P Singh, Mohammed Al-Qahtani
P109 Differential expression profiling between meningiomas from female and male patients
Reem Alotibi, Alaa Al-Ahmadi, Fatima Al-Adwani, Deema Hussein, Sajjad Karim, Mona Al-Sharif, Awatif Jamal, Fahad Al-Ghamdi, Jaudah Al-Maghrabi, Saleh S Baeesa, Mohammed Bangash, Adeel Chaudhary, Hans-Juergen Schulten, Mohammed Al-Qahtani
P110 Neurospheres as models of early brain development and therapeutics
Muhammad Faheem, Peter Natesan Pushparaj, Shilu Mathew, Taha Abdullah Kumosani, Gauthaman Kalamegam, Mohammed Al-Qahtani
P111 Identification of a recurrent causative missense mutation p.(W577C) at the LDLR exon 12 in familial hypercholesterolemia affected Saudi families
Faisal A Al-Allaf, Zainularifeen Abduljaleel, Abdullah Alashwal, Mohiuddin M. Taher, Abdellatif Bouazzaoui, Halah Abalkhail, Faisal A. Ba-Hammam, Mohammad Athar
P112 Epithelial ovarian carcinoma (EOC): Systems oncological approach to identify diagnostic, prognostic and therapeutic biomarkers
Gauthaman Kalamegam, Peter Natesan Pushparaj, Muhammad Abu-Elmagd, Farid Ahmed Khalid HussainWali Sait, Nisreen Anfinan, Mamdooh Gari, Adeel Chaudhary, Adel Abuzenadah, Mourad Assidi, Mohammed Al-Qahtani
P113 Crohn’s disease phenotype in northern Tunisian population
Naira Ben Mami, Yosr Z Haffani, Mouna Medhioub, Lamine Hamzaoui, Ameur Cherif, Msadok Azouz
P114 Establishment of In Silico approaches to decipher the potential toxicity and mechanism of action of drug candidates and environmental agents
Gauthaman Kalamegam, Fazal Khan, Shilu Mathew, Mohammed Imran Nasser, Mahmood Rasool, Farid Ahmed, Peter Natesan Pushparaj, Mohammed Al-Qahtani
P115 1q Gain predicts poor prognosis marker for young breast cancer patients
Shereen A Turkistany, Lina M Al-harbi, Ashraf Dallol, Jamal Sabir, Adeel Chaudhary, Adel Abuzenadah
P116 Disorders of sex chromosomes in a diagnostic genomic medicine unit in Saudi Arabia: Prevalence, diagnosis and future guidelines
Basmah Al-Madoudi, Bayan Al-Aslani, Khulud Al-Harbi, Rwan Al-Jahdali, Hanadi Qudaih, Emad Al Hamzy, Mourad Assidi, Mohammed Al Qahtani
P117 Combination of WYE354 and Sunitinib demonstrate synergistic inhibition of acute myeloid leukemia in vitro
Asad M Ilyas, Youssri Ahmed, Mamdooh Gari, Farid Ahmed, Mohammed Alqahtani
P118 Integrated use of evolutionary information in GWAS reveals important SNPs in Asthma
Nada Salem, Sajjad Karim, Elham M Alhathli, Heba Abusamra, Hend F Nour Eldin, Mohammed H Al-Qahtani, Sudhir Kumar
P119 Assessment of BRAF, IDH1, IDH2, and EGFR mutations in a series of primary brain tumors
Fatima Al-Adwani, Deema Hussein, Mona Al-Sharif, Awatif Jamal, Fahad Al-Ghamdi, Jaudah Al-Maghrabi, Saleh S Baeesa, Mohammed Bangash, Adeel Chaudhary, Mohammed Al-Qahtani, Hans-Juergen Schulten
P120 Expression profiles distinguish oligodendrogliomas from glioblastoma multiformes with or without oligodendroglioma component
Alaa Alamandi, Reem Alotibi, Deema Hussein, Sajjad Karim, Jaudah Al-Maghrabi, Fahad Al-Ghamdi, Awatif Jamal, Saleh S Baeesa, Mohammed Bangash, Adeel Chaudhary, Hans-Juergen Schulten, Mohammed Al-Qahtani
P121 Hierarchical clustering in thyroid goiters and hyperplastic lesions
Ohoud Subhi, Nadia Bagatian, Sajjad Karim, Adel Al-Johari, Osman Abdel Al-Hamour, Hosam Al-Aradati, Abdulmonem Al-Mutawa, Faisal Al-Mashat, Jaudah Al-Maghrabi, Hans-Juergen Schulten, Mohammad Al-Qahtani
P122 Differential expression analysis in thyroiditis and papillary thyroid carcinomas with or without coexisting thyroiditis
Nadia Bagatian, Ohoud Subhi, Sajjad Karim, Adel Al-Johari, Osman Abdel Al-Hamour, Abdulmonem Al-Mutawa, Hosam Al-Aradati, Faisal Al-Mashat, Mohammad Al-Qahtani, Hans-Juergen Schulten, Jaudah Al-Maghrabi
P123 Metagenomic analysis of waste water microbiome in Sausdi Arabia
Muhammad W shah, Muhammad Yasir, Esam I Azhar, Saad Al-Masoodi
P124 Molecular characterization of Helicobacter pylori from faecal samples of Tunisian patients with gastric cancer
Yosr Z Haffani, Msadok Azouz, Emna Khamla, Chaima Jlassi, Ahmed S. Masmoudi, Ameur Cherif, Lassaad Belbahri
P125 Diagnostic application of the oncoscan© panel for the identification of hereditary cancer syndrome
Shadi Al-Khayyat, Roba Attas, Atlal Abu-Sanad, Mohammed Abuzinadah, Adnan MerdadAshraf Dallol, Adeel Chaudhary, Mohammed Al-Qahtani, Adel Abuzenadah
P126 Characterization of clinical and neurocognitive features in a family with a novel OGT gene missense mutation c. 1193G > A/ (p. Ala319Thr)
Habib Bouazzi, Carlos Trujillo, Mohammad Khalid Alwasiyah, Mohammed Al-Qahtani
P127 Case report: a rare homozygous deletion mutation of TMEM70 gene associated with 3-Methylglutaconic Aciduria and cataract in a Saudi patient
Maha Alotaibi, Rami Nassir
P128 Isolation and purification of antimicrobial milk proteins
Ishfaq A Sheikh, Mohammad A Kamal, Essam H Jiffri, Ghulam M Ashraf, Mohd A Beg
P129 Integrated analysis reveals association of ATP8B1 gene with colorectal cancer
Mohammad A Aziz, Rizwan Ali, Mahmood Rasool, Mohammad S Jamal, Nusaibah samman, Ghufrana Abdussami, Sathish Periyasamy, Mohiuddin K Warsi, Mohammed Aldress, Majed Al Otaibi, Zeyad Al Yousef, Mohamed Boudjelal, Abdelbasit Buhmeida, Mohammed H Al-Qahtani, Ibrahim AlAbdulkarim
P130 Implication of IL-10 and IL-28 polymorphism with successful anti-HCV therapy and viral clearance
Rubi Ghazala, Shilu Mathew, M. Haroon Hamed, Mourad Assidi, Mohammed Al-Qahtani, Ishtiaq Qadri
P131 Interactions of endocrine disruptor di-(2-ethylhexyl) phthalate (DEHP) and its metabolite mono-2-ethylhexyl phthalate (MEHP) with progesterone receptor
Ishfaq A Sheikh, Muhammad Abu-Elmagd, Rola F Turki, Ghazi A Damanhouri, Mohd A. Beg
P132 Association of HCV nucleotide polymorphism in the development of hepatocellular carcinoma
Mohd Suhail, Abid Qureshi, Adil Jamal, Peter Natesan Pushparaj, Mohammad Al-Qahtani, Ishtiaq Qadri
P133 Gene expression profiling by DNA microarrays in colon cancer treated with chelidonine alkaloid
Mahmoud Z El-Readi, Safaa Y Eid, Michael Wink
P134 Successful in vitro fertilization after eight failed trials
Ahmed M. Isa, Lulu Alnuaim, Johara Almutawa, Basim Abu-Rafae, Saleh Alasiri, Saleh Binsaleh
P135 Genetic sensitivity analysis using SCGE, cell cycle and mitochondrial membrane potential in OPs stressed leukocytes in Rattus norvegicus through flow cytometric input
Nazia Nazam, Mohamad I Lone, Waseem Ahmad, Shakeel A Ansari, Mohamed H Alqahtani
doi:10.1186/s12864-016-2858-0
PMCID: PMC4959372  PMID: 27454254
6.  A de novo transcriptome analysis shows that modulation of the JAK-STAT signaling pathway by salmonid alphavirus subtype 3 favors virus replication in macrophage/dendritic-like TO-cells 
BMC Genomics  2016;17:390.
Background
The Janus kinase (Jak) and signaling transducer activator of transcription (Stat) pathway mediates the signaling of genes required for cellular development and homeostasis. To elucidate the effect of type I IFN on the Jak/stat pathway in salmonid alphavirus subtype 3 (SAV3) infected macrophage/dendritic like TO-cells derived from Atlantic salmon (Salmo salar L) headkidney leukocytes, we used a differential transcriptome analysis by RNA-seq and the Kyoto encyclopedia of genes and genomes (KEGGs) pathway analysis to generate a repertoire of de novo assembled genes from type I IFN treated and non-treated TO-cells infected with SAV3.
Results
Concurrent SAV3 infection with type I IFN treatment of TO-cells suppressed SAV3 structural protein (SP) expression by 2log10 at 2 days post infection compared to SAV3 infection without IFN treatment which paved way to evaluating the impact of type I IFN on expression of Jak/stat pathway genes in SAV3 infected TO-cells. In the absence of type I IFN treatment, SAV3 downregulated several Jak/stat pathway genes that included type I and II receptor genes, Jak2, tyrosine kinase 2 (Tyk2), Stat3 and Stat5 pointing to possible failure to activate the Jak/stat signaling pathway and inhibition of signal transducers caused by SAV3 infection. Although the suppressor of cytokine signaling (SOCS) genes 1 and 3 were upregulated in the IFN treated cells, only SOCS3 was downregulated in the SAV3 infected cells which points to inhibition of SOCS3 by SAV3 infection in TO-cells.
Conclusion
Data presented in this study shows that SAV3 infection downregulates several genes of the Jak/stat pathway, which could be an immune evasion strategy, used to block the transcription of antiviral genes that would interfere with SAV3 replication in TO-cells. Overall, we have shown that combining de novo assembly with pathway based transcriptome analyses provides a contextual approach to understanding the molecular networks of genes that form the Jak/stat pathway in TO-cells infected by SAV3.
doi:10.1186/s12864-016-2739-6
PMCID: PMC4878077  PMID: 27215196
7.  Safety, Tolerability, and Immunogenicity of Interferons 
Pharmaceuticals  2010;3(4):1162-1186.
Interferons (IFNs) are class II cytokines that are key components of the innate immune response to virus infection. Three IFN sub-families, type I, II, and III IFNs have been identified in man, Recombinant analogues of type I IFNs, in particular IFNα2 and IFNβ1, have found wide application for the treatment of chronic viral hepatitis and remitting relapsing multiple sclerosis respectively. Type II IFN, or IFN gamma, is used principally for the treatment of chronic granulomatous disease, while the recently discovered type III IFNs, also known as IFN lambda or IL-28/29, are currently being evaluated for the treatment of chronic viral hepatitis. IFNs are in general well tolerated and the most common adverse events observed with IFNα or IFNβ therapy are “flu-like” symptoms such as fever, headache, chills, and myalgia. Prolonged treatment is associated with more serious adverse events including leucopenia, thrombocytopenia, increased hepatic transaminases, and neuropsychiatric effects. Type I IFNs bind to high-affinity cell surface receptors, composed of two transmembrane polypeptides IFNAR1 and IFNAR2, resulting in activation of the Janus kinases Jak1 and Tyk2, phosphorylation and activation of the latent cytoplasmic signal transducers and activators of transcription (STAT1) and STAT2, formation of a transcription complex together with IRF9, and activation of a specific set of genes that encode the effector molecules responsible for mediating the biological activities of type I IFNs. Systemic administration of type I IFN results in activation of IFN receptors present on essentially all types of nucleated cells, including neurons and hematopoietic stem cells, in addition to target cells. This may well explain the wide spectrum of IFN associated toxicities. Recent reports suggest that certain polymorphisms in type I IFN signaling molecules are associated with IFN-induced neutropenia and thrombocytopenia in patients with chronic hepatitis C. IFNγ binds to a cell-surface receptor composed of two transmembrane polypeptides IFGR1 and IFGR2 resulting in activation of the Janus kinases Jak1 and Jak2, phosphorylation of STAT1, formation of STAT1 homodimers, and activation of a specific set of genes that encode the effector molecules responsible for mediating its biological activity. In common with type I IFNs, IFNγ receptors are ubiquitous and a number of the genes activated by IFNγ are also activated by type I IFNs that may well account for a spectrum of toxicities similar to that associated with type I IFNs including “flu-like” symptoms, neutropenia, thrombocytopenia, and increased hepatic transaminases. Although type III IFNs share the major components of the signal transduction pathway and activate a similar set of IFN-stimulated genes (ISGs) as type I IFNs, distribution of the IFNλ receptor is restricted to certain cell types suggesting that IFNλ therapy may be associated with a reduced spectrum of toxicities relative to type I or type II IFNs. Repeated administration of recombinant IFNs can cause in a break in immune tolerance to self-antigens in some patients resulting in the production of neutralizing antibodies (NABs) to the recombinant protein homologue. Appearance of NABs is associated with reduced pharmacokinetics, pharmacodynamics, and a reduced clinical response. The lack of cross-neutralization of IFNβ by anti-IFNα NABs and vice versa, undoubtedly accounts for the apparent lack of toxicity associated with the presence of anti-IFN NABs with the exception of relatively mild infusion/injection reactions.
doi:10.3390/ph3041162
PMCID: PMC4034027
cytokines; interferons; interleukins; innate immunity; Toll-like receptors
8.  Dual Modulation of Type I Interferon Response by Bluetongue Virus 
Journal of Virology  2014;88(18):10792-10802.
ABSTRACT
Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus that causes an economically important disease in ruminants. BTV infection is a strong inducer of type I interferon (IFN-I) in multiple cell types. It has been shown recently that BTV and, more specifically, the nonstructural protein NS3 of BTV are able to modulate the IFN-I synthesis pathway. However, nothing is known about the ability of BTV to counteract IFN-I signaling. Here, we investigated the effect of BTV on the IFN-I response pathway and, more particularly, the Janus tyrosine kinase (JAK)/signal transducer and activator of transcription protein (STAT) signaling pathway. We found that BTV infection triggered the expression of IFN-stimulated genes (ISGs) in A549 cells. However, when BTV-infected cells were stimulated with external IFN-I, we showed that activation of the IFN-stimulated response element (ISRE) promoter and expression of ISGs were inhibited. We found that this inhibition involved two different mechanisms that were dependent on the time of infection. After overnight infection, BTV blocked specifically the phosphorylation and nuclear translocation of STAT1. This inhibition correlated with the redistribution of STAT1 in regions adjacent to the nucleus. At a later time point of infection, BTV was found to interfere with the activation of other key components of the JAK/STAT pathway and to induce the downregulation of JAK1 and TYK2 protein expression. Overall, our study indicates for the first time that BTV is able to interfere with the JAK/STAT pathway to modulate the IFN-I response.
IMPORTANCE Bluetongue virus (BTV) causes a severe disease in ruminants and has an important impact on the livestock economy in areas of endemicity such as Africa. The emergence of strains, such as serotype 8 in Europe in 2006, can lead to important economic losses due to commercial restrictions and prophylactic measures. It has been known for many years that BTV is a strong inducer of type I interferon (IFN-I) in vitro and in vivo in multiple cell types. However, the ability of BTV to interact with the IFN-I system remains unclear. Here, we report that BTV is able to modulate the IFN-I response by interfering with the Janus tyrosine kinase (JAK)/signal transducer and activator of transcription protein (STAT) signaling pathway. These findings contribute to knowledge of how BTV infection interferes with the host's innate immune response and becomes pathogenic. This will also be important for the design of efficacious vaccine candidates.
doi:10.1128/JVI.01235-14
PMCID: PMC4178850  PMID: 25008919
9.  Influenza Virus Non-Structural Protein 1 (NS1) Disrupts Interferon Signaling 
PLoS ONE  2010;5(11):e13927.
Type I interferons (IFNs) function as the first line of defense against viral infections by modulating cell growth, establishing an antiviral state and influencing the activation of various immune cells. Viruses such as influenza have developed mechanisms to evade this defense mechanism and during infection with influenza A viruses, the non-structural protein 1 (NS1) encoded by the virus genome suppresses induction of IFNs-α/β. Here we show that expression of avian H5N1 NS1 in HeLa cells leads to a block in IFN signaling. H5N1 NS1 reduces IFN-inducible tyrosine phosphorylation of STAT1, STAT2 and STAT3 and inhibits the nuclear translocation of phospho-STAT2 and the formation of IFN-inducible STAT1:1-, STAT1:3- and STAT3:3- DNA complexes. Inhibition of IFN-inducible STAT signaling by NS1 in HeLa cells is, in part, a consequence of NS1-mediated inhibition of expression of the IFN receptor subunit, IFNAR1. In support of this NS1-mediated inhibition, we observed a reduction in expression of ifnar1 in ex vivo human non-tumor lung tissues infected with H5N1 and H1N1 viruses. Moreover, H1N1 and H5N1 virus infection of human monocyte-derived macrophages led to inhibition of both ifnar1 and ifnar2 expression. In addition, NS1 expression induces up-regulation of the JAK/STAT inhibitors, SOCS1 and SOCS3. By contrast, treatment of ex vivo human lung tissues with IFN-α results in the up-regulation of a number of IFN-stimulated genes and inhibits both H5N1 and H1N1 virus replication. The data suggest that NS1 can directly interfere with IFN signaling to enhance viral replication, but that treatment with IFN can nevertheless override these inhibitory effects to block H5N1 and H1N1 virus infections.
doi:10.1371/journal.pone.0013927
PMCID: PMC2978095  PMID: 21085662
10.  An interferon-beta promoter reporter assay for high throughput identification of compounds against multiple RNA viruses 
Antiviral research  2014;107:56-65.
Virus infection of host cells is sensed by innate pattern recognition receptors (PRRs) and induces production of type I interferons (IFNs) and other inflammatory cytokines. These cytokines orchestrate the elimination of the viruses but are occasionally detrimental to the hosts. The outcomes and pathogenesis of viral infection are largely determined by the specific interaction between the viruses and their host cells. Therefore, compounds that either inhibit viral infection or modulate virus-induced cytokine response should be considered as candidates for managing virus infection. The aim of the study was to identify compounds in both categories, using a single cell-based assay. Our screening platform is a HEK293 cell-based reporter assay where the expression of a firefly luciferase is under the control of a human IFN-β promoter. We have demonstrated that infection of the reporter cell line with a panel of RNA viruses activated the reporter gene expression that correlates quantitatively with the levels of virus replication and progeny virus production, and could be inhibited in a dose-dependent manner by known antiviral compound or inhibitors of PRR signal transduction pathways. Using Dengue virus as an example, a pilot screening of a small molecule library consisting of 26,900 compounds proved the concept that the IFN-β promoter reporter assay can serve as a convenient high throughput screening platform for simultaneous discovery of antiviral and innate immune response modulating compounds. A representative antiviral compound from the pilot screening, 1-(6-ethoxybenzo[d]thiazol-2-yl)-3-(3-methoxyphenyl) urea, was demonstrated to specifically inhibit several viruses belonging to the family of flaviviridae.
doi:10.1016/j.antiviral.2014.04.010
PMCID: PMC4143146  PMID: 24792753
high throughput assay; antiviral; innate immune modulator; dengue virus
11.  Type III Interferon Induces Distinct SOCS1 Expression Pattern that Contributes to Delayed but Prolonged Activation of Jak/STAT Signaling Pathway: Implications for Treatment Non-Response in HCV Patients 
PLoS ONE  2015;10(7):e0133800.
Suppressor of cytokine signaling 1 (SOCS1) has long been thought to block type I interferon signaling. However, IFN-λ, a type III IFN with limited receptor expression in hepatic cells, efficiently inhibits HCV (Hepatitis C virus) replication in vivo with potentially less side effects than IFN-α. Previous studies demonstrated that type I and type III activated Janus kinase/signal transducer and activator of transcription (Jak/STAT) signaling pathway differently, with delayed but prolonged activation by IFN-λ stimulation compared to IFNα/β. However, the molecular mechanisms underlying this observation is not well understood. Here, we found that there are distinct differences in SOCS1 expression patterns in Huh-7.5.1 cells following stimulation with IFN-α and IFN-λ. IFN-λ induced a faster but shorter expression of SOCS1. Furthermore, we confirmed that SOCS1 over-expression abrogates anti-HCV effect of both IFN-α and IFN-λ, leading to increased HCV RNA replication in both HCV replicon cells and JFH1 HCV culture system. In line with this, SOCS1 over-expression inhibited STAT1 phosphorylation, attenuated IFN-stimulated response elements (ISRE) reporter activity, and blocked IFN-stimulated genes (ISGs) expression. Finally, we measured SOCS1 mRNA expression levels in peripheral blood mononuclear cells (PBMCs) with or without IFN-α treatment from 48 chronic hepatitis C patients and we found the baseline SOCS1 expression levels are higher in treatment non-responders than in responders before IFN-α treatment. Taken together, SOCS1 acts as a suppressor for both type I and type III IFNs and is negatively associated with sustained virological response (SVR) to IFN-based therapy in patients with HCV. More importantly, faster but shorter induction of SOCS1 by IFN-λ may contribute to delayed but prolonged activation of IFN signaling and ISG expression kinetics by type III IFN.
doi:10.1371/journal.pone.0133800
PMCID: PMC4508043  PMID: 26193702
12.  Alpha/Beta Interferon and Gamma Interferon Synergize To Inhibit the Replication of Herpes Simplex Virus Type 1 
Journal of Virology  2002;76(22):11541-11550.
In vivo evidence suggests that T-cell-derived gamma interferon (IFN-γ) can directly inhibit the replication of herpes simplex virus type 1 (HSV-1). However, IFN-γ is a weak inhibitor of HSV-1 replication in vitro. We have found that IFN-γ synergizes with the innate IFNs (IFN-α and -β) to potently inhibit HSV-1 replication in vitro and in vivo. Treatment of Vero cells with either IFN-β or IFN-γ inhibits HSV-1 replication by <20-fold, whereas treatment with both IFN-β and IFN-γ inhibits HSV-1 replication by ∼1,000-fold. Treatment with IFN-β and IFN-γ does not prevent HSV-1 entry into Vero cells, and the inhibitory effect can be overcome by increasing the multiplicity of HSV-1 infection. The capacity of IFN-β and IFN-γ to synergistically inhibit HSV-1 replication is not virus strain specific and has been observed in three different cell types. For two of the three virus strains tested, IFN-β and IFN-γ inhibit HSV-1 replication with a potency that approaches that achieved by a high dose of acyclovir. Pretreatment of mouse eyes with IFN-β and IFN-γ reduces HSV-1 replication to nearly undetectable levels, prevents the development of disease, and reduces the latent HSV-1 genome load per trigeminal ganglion by ∼200-fold. Thus, simultaneous activation of IFN-α/β receptors and IFN-γ receptors appears to render cells highly resistant to the replication of HSV-1. Because IFN-α or IFN-β is produced by most cells as an innate response to virus infection, the results imply that IFN-γ secreted by T cells may provide a critical second signal that potently inhibits HSV-1 replication in vivo.
doi:10.1128/JVI.76.22.11541-11550.2002
PMCID: PMC136787  PMID: 12388715
13.  Emodin potentiates the antiproliferative effect of interferon α/β by activation of JAK/STAT pathway signaling through inhibition of the 26S proteasome 
Oncotarget  2015;7(4):4664-4679.
The 26S proteasome is a negative regulator of type I interferon (IFN-α/β) signaling. Inhibition of the 26S proteasome by small molecules may be a new strategy to enhance the efficacy of type I IFNs and reduce their side effects. Using cell-based screening assay for new 26S proteasome inhibitors, we found that emodin, a natural anthraquinone, was a potent inhibitor of the human 26S proteasome. Emodin preferably inhibited the caspase-like and chymotrypsin-like activities of the human 26S proteasome and increased the ubiquitination of endogenous proteins in cells. Computational modeling showed that emodin exhibited an orientation/conformation favorable to nucleophilic attack in the active pocket of the β1, β2, and β5 subunits of the 26S proteasome. Emodin increased phosphorylation of STAT1, decreased phosphorylation of STAT3 and increased endogenous gene expression stimulated by IFN-α. Emodin inhibited IFN-α-stimulated ubiquitination and degradation of type I interferon receptor 1 (IFNAR1). Emodin also sensitized the antiproliferative effect of IFN-α in HeLa cervical carcinoma cells and reduced tumor growth in Huh7 hepatocellular carcinoma-bearing mice. These results suggest that emodin potentiates the antiproliferative effect of IFN-α by activation of JAK/STAT pathway signaling through inhibition of 26S proteasome-stimulated IFNAR1 degradation. Therefore, emodin warrants further investigation as a new means to enhance the efficacy of IFN-α/β.
doi:10.18632/oncotarget.6616
PMCID: PMC4826234  PMID: 26683360
emodin; interferon; JAK/STAT; 26S proteasome
14.  Identification of a small molecule yeast TORC1 inhibitor with a flow cytometry-based multiplex screen 
ACS Chemical Biology  2012;7(4):715-722.
TOR (target of rapamycin) is a serine/threonine kinase, evolutionarily conserved from yeast to human, which functions as a fundamental controller of cell growth. The moderate clinical benefit of rapamycin in mTOR-based therapy of many cancers favors the development of new TOR inhibitors. Here we report a high throughput flow cytometry multiplexed screen using five GFP-tagged yeast clones that represent the readouts of four branches of the TORC1 signaling pathway in budding yeast. Each GFP-tagged clone was differentially color-coded and the GFP signal of each clone was measured simultaneously by flow cytometry, which allows rapid prioritization of compounds that likely act through direct modulation of TORC1 or proximal signaling components. A total of 255 compounds were confirmed in dose-response analysis to alter GFP expression in one or more clones. To validate the concept of the high throughput screen, we have characterized CID 3528206, a small molecule most likely to act on TORC1 as it alters GFP expression in all five GFP clones in an analogous manner to rapamycin. We have shown that CID 3528206 inhibited yeast cell growth, and that CID 3528206 inhibited TORC1 activity both in vitro and in vivo with EC50s of 150 nM and 3.9 μM, respectively. The results of microarray analysis and yeast GFP collection screen further support the notion that CID 3528206 and rapamycin modulate similar cellular pathways. Together, these results indicate that the HTS has identified a potentially useful small molecule for further development of TOR inhibitors.
doi:10.1021/cb200452r
PMCID: PMC3331904  PMID: 22260433
15.  Effect of ethanol on innate antiviral pathways and HCV replication in human liver cells 
Virology Journal  2005;2:89.
Alcohol abuse reduces response rates to IFN therapy in patients with chronic hepatitis C. To model the molecular mechanisms behind this phenotype, we characterized the effects of ethanol on Jak-Stat and MAPK pathways in Huh7 human hepatoma cells, in HCV replicon cell lines, and in primary human hepatocytes. High physiological concentrations of acute ethanol activated the Jak-Stat and p38 MAPK pathways and inhibited HCV replication in several independent replicon cell lines. Moreover, acute ethanol induced Stat1 serine phosphorylation, which was partially mediated by the p38 MAPK pathway. In contrast, when combined with exogenously applied IFN-α, ethanol inhibited the antiviral actions of IFN against HCV replication, involving inhibition of IFN-induced Stat1 tyrosine phosphorylation. These effects of alcohol occurred independently of i) alcohol metabolism via ADH and CYP2E1, and ii) cytotoxic or cytostatic effects of ethanol. In this model system, ethanol directly perturbs the Jak-Stat pathway, and HCV replication.
Infection with Hepatitis C virus is a significant cause of morbidity and mortality throughout the world. With a propensity to progress to chronic infection, approximately 70% of patients with chronic viremia develop histological evidence of chronic liver diseases including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. The situation is even more dire for patients who abuse ethanol, where the risk of developing end stage liver disease is significantly higher as compared to HCV patients who do not drink [1,2].
Recombinant interferon alpha (IFN-α) therapy produces sustained responses (ie clearance of viremia) in 8–12% of patients with chronic hepatitis C [3]. Significant improvements in response rates can be achieved with IFN plus ribavirin combination [4-6] and pegylated IFN plus ribavirin [7,8] therapies. However, over 50% of chronically infected patients still do not clear viremia. Moreover, HCV-infected patients who abuse alcohol have extremely low response rates to IFN therapy [9], but the mechanisms involved have not been clarified.
MAPKs play essential roles in regulation of differentiation, cell growth, and responses to cytokines, chemokines and stress. The core element in MAPK signaling consists of a module of 3 kinases, named MKKK, MKK, and MAPK, which sequentially phosphorylate each other [10]. Currently, four MAPK modules have been characterized in mammalian cells: Extracellular Regulated Kinases (ERK1 and 2), Stress activated/c-Jun N terminal kinase (SAPK/JNK), p38 MAP kinases, and ERK5 [11]. Interestingly, ethanol modulates MAPKs [12]. However, information on how ethanol affects MAPKs in the context of innate antiviral pathways such as the Jak-Stat pathway in human cells is extremely limited.
When IFN-α binds its receptor, two receptor associated tyrosine kinases, Tyk2 and Jak1 become activated by phosphorylation, and phosphorylate Stat1 and Stat2 on conserved tyrosine residues [13]. Stat1 and Stat2 combine with the IRF-9 protein to form the transcription factor interferon stimulated gene factor 3 (ISGF-3), which binds to the interferon stimulated response element (ISRE), and induces transcription of IFN-α-induced genes (ISG). The ISGs mediate the antiviral effects of IFN. The transcriptional activities of Stats 1, 3, 4, 5a, and 5b are also regulated by serine phosphorylation [14]. Phosphorylation of Stat1 on a conserved serine amino acid at position 727 (S727), results in maximal transcriptional activity of the ISGF-3 transcription factor complex [15]. Although cross-talk between p38 MAPK and the Jak-Stat pathway is essential for IFN-induced ISRE transcription, p38 does not participate in IFN induction of Stat1 serine phosphorylation [14,16-19]. However, cellular stress responses induced by stimuli such as ultraviolet light do induce p38 MAPK mediated Stat1 S727 phosphorylation [18].
In the current report, we postulated that alcohol and HCV proteins modulate MAPK and Jak-Stat pathways in human liver cells. To begin to address these issues, we characterized the interaction of acute ethanol on Jak-Stat and MAPK pathways in Huh7 cells, HCV replicon cells lines, and primary human hepatocytes.
doi:10.1186/1743-422X-2-89
PMCID: PMC1318489  PMID: 16324217
HCV; IFN; virus-host interactions; signal transduction; alcohol
16.  Modulation of Gamma Interferon-Induced Major Histocompatibility Complex Class II Gene Expression by Porphyromonas gingivalis Membrane Vesicles 
Infection and Immunity  2002;70(3):1185-1192.
Gamma interferon (IFN-γ)-induced endothelial cells actively participate in initiating immune responses by interacting with CD4+ T cells via class II major histocompatibility complex (MHC) surface glycoproteins. Previously, Porphyromonas gingivalis membrane vesicles were shown to selectively inhibit IFN-γ-induced surface expression of HLA-DR molecules by human umbilical cord vascular endothelial cells. In this study, we demonstrated an absence of HLA-DRα mRNA from IFN-γ-induced cells in the presence of P. gingivalis membrane vesicles by using reverse transcriptase-PCR and Southern blotting. Vesicles also prevented transcription of the gene encoding class II transactivator, a transactivator protein required for IFN-γ-induced expression of MHC class II genes. In addition, the effects of vesicles on IFN-γ signal transduction involving Jak and Stat proteins were characterized by using immunoprecipitation and Western blot analyses. Jak1 and Jak2 proteins could not be detected in endothelial cells treated with membrane vesicles. Consequently, IFN-γ-induced phosphorylation of Jak1, Jak2, and Stat1α proteins was prevented. The class II-inhibitory effect of the membrane vesicles could be eliminated by heating vesicles at 100°C for 30 min or by treating them with a cysteine proteinase inhibitor. This indicates that the cysteine proteinases were most likely responsible for the absence of Jak proteins observed in vesicle-treated cells. The observed increased binding of radiolabeled IFN-γ to vesicle-treated cells suggests that vesicles may also modulate the IFN-γ interactions with the cell surface. However, no evidence was obtained demonstrating that vesicles affected the expression of IFN-γ receptors. Thus, P. gingivalis membrane vesicles apparently inhibited IFN-γ-induced MHC class II by disrupting the IFN-γ signaling transduction pathway. Vesicle-inhibited class II expression also occurred in other IFN-γ-inducible cells. This suggested that the ability of P. gingivalis membrane vesicles to modulate antigen presentation by key cells may be an important mechanism used by this particular bacterium to escape immunosurveillance, thereby favoring its colonization and invasion of host tissues.
doi:10.1128/IAI.70.3.1185-1192.2002
PMCID: PMC127778  PMID: 11854199
17.  Inhibition of the signalling kinase JAK3 alleviates inflammation in monoarthritic rats 
British Journal of Pharmacology  2011;164(1):106-118.
BACKGROUND AND PURPOSE
Many cytokines associated with autoimmune disorders and inflammation have been shown to activate the signalling kinase JAK3, implying that JAK3 plays key roles in the pathogenesis of these diseases. Therefore, investigating the alterations of JAK3 activity and the efficacy of selective JAK3 antagonists in animal models of such disorders is essential to a better understanding of the biology of JAK3 and to assess the potential clinical benefits of JAK3 inhibitors.
EXPERIMENTAL APPROACH
Through high-throughput cell-based screening using the NCI compound library, we identified NSC163088 (berberine chloride) as a novel inhibitor of JAK3. Specificity and efficacy of this compound were investigated in both cellular and animal models.
KEY RESULTS
We show that berberine chloride has selectivity for JAK3 over other JAK kinase members, as well as over other oncogenic kinases such as Src, in various cellular assays. Biochemical and modelling studies strongly suggested that berberine chloride bound directly to the kinase domain of JAK3. Also phospho-JAK3 levels were significantly increased in the synovial tissues of rat joints with acute inflammation, and the treatment of these rats with berberine chloride decreased JAK3 phosphorylation and suppressed the inflammatory responses.
CONCLUSIONS AND IMPLICATIONS
The up-regulation of JAK3/STATs was closely correlated with acute arthritic inflammation and that inhibition of JAK3 activity by JAK3 antagonists, such as berberine chloride, alleviated the inflammation in vivo.
doi:10.1111/j.1476-5381.2011.01353.x
PMCID: PMC3171864  PMID: 21434883
JAK; STAT; inflammation; small molecule inhibitor, berberine, IL-2, IL-3
18.  Signature-Based Small Molecule Screening Identifies Cytosine Arabinoside as an EWS/FLI Modulator in Ewing Sarcoma 
PLoS Medicine  2007;4(4):e122.
Background
The presence of tumor-specific mutations in the cancer genome represents a potential opportunity for pharmacologic intervention to therapeutic benefit. Unfortunately, many classes of oncoproteins (e.g., transcription factors) are not amenable to conventional small-molecule screening. Despite the identification of tumor-specific somatic mutations, most cancer therapy still utilizes nonspecific, cytotoxic drugs. One illustrative example is the treatment of Ewing sarcoma. Although the EWS/FLI oncoprotein, present in the vast majority of Ewing tumors, was characterized over ten years ago, it has never been exploited as a target of therapy. Previously, this target has been intractable to modulation with traditional small-molecule library screening approaches. Here we describe a gene expression–based approach to identify compounds that induce a signature of EWS/FLI attenuation. We hypothesize that screening small-molecule libraries highly enriched for FDA-approved drugs will provide a more rapid path to clinical application.
Methods and Findings
A gene expression signature for the EWS/FLI off state was determined with microarray expression profiling of Ewing sarcoma cell lines with EWS/FLI-directed RNA interference. A small-molecule library enriched for FDA-approved drugs was screened with a high-throughput, ligation-mediated amplification assay with a fluorescent, bead-based detection. Screening identified cytosine arabinoside (ARA-C) as a modulator of EWS/FLI. ARA-C reduced EWS/FLI protein abundance and accordingly diminished cell viability and transformation and abrogated tumor growth in a xenograft model. Given the poor outcomes of many patients with Ewing sarcoma and the well-established ARA-C safety profile, clinical trials testing ARA-C are warranted.
Conclusions
We demonstrate that a gene expression–based approach to small-molecule library screening can identify, for rapid clinical testing, candidate drugs that modulate previously intractable targets. Furthermore, this is a generic approach that can, in principle, be applied to the identification of modulators of any tumor-associated oncoprotein in the rare pediatric malignancies, but also in the more common adult cancers.
Todd Golub and colleagues show that a gene expression-based screen of small-molecule libraries can identify candidate drugs that modulate cancer-associated oncoproteins.
Editors' Summary
Background.
Cancer occurs when cells accumulate genetic changes (mutations) that allow them to divide uncontrollably and to travel throughout the body (metastasize). Chemotherapy, a mainstay of cancer treatments, works by killing rapidly dividing cells. Because some normal tissues also contain dividing cells and are therefore sensitive to chemotherapy drugs, it is hard to treat cancer without causing serious side effects. In recent years, however, researchers have identified some of the mutations that drive the growth of cancer cells. This raises the possibility of designing drugs that kill only cancer cells by specifically targeting “oncoproteins” (the abnormal proteins generated by mutations that transform normal cells into cancer cells). Some “targeted” drugs have already reached the clinic, but unfortunately medicinal chemists do not know how to inhibit the function of many classes of oncoproteins with the small organic molecules that make the best medicines. One oncoprotein in this category is EWS/FLI. This contains part of a protein called EWS fused to part of a transcription factor (a protein that controls cell behavior by telling the cell which proteins to make) called FLI. About 80% of patients with Ewing sarcoma (the second commonest childhood cancer of bone and soft tissue) have the mutation responsible for EWS/FLI expression. Localized Ewing sarcoma can be treated with nontargeted chemotherapy (often in combination with surgery and radiotherapy), but treatment for recurrent or metastatic disease remains very poor.
Why Was This Study Done?
Researchers have known for years that EWS/FLI expression drives the development of Ewing sarcoma by activating the expression of target genes needed for tumor formation. However, EWS/FLI has never been exploited as a target for therapy of this cancer—mainly because traditional approaches used to screen libraries of small molecules do not identify compounds that modulate the activity of transcription factors. In this study, the researchers have used a new gene expression–based, high-throughput screening (GE-HTS) approach to identify compounds that modulate the activity of EWS/FLI.
What Did the Researchers Do and Find?
The researchers used a molecular biology technique called microarray expression profiling to define a 14-gene expression signature that differentiates between Ewing sarcoma cells in which the EWS/FLI fusion protein is active and those in which it is inactive. They then used this signature to screen a library of about 1,000 chemicals (many already approved for other clinical uses) in a “ligation-mediated amplification assay.” For this, the researchers grew Ewing sarcoma cells with the test chemicals, extracted RNA from the cells, and generated a DNA copy of the RNA. They then added two short pieces of DNA (probes) specific for each signature gene to the samples. In samples that expressed a given signature gene, both probes bound and were then ligated (joined together) and amplified. Because one of each probe pair also contained a unique “capture sequence,” the signature genes expressed in each sample were finally identified by adding colored fluorescent beads, each linked to DNA complementary to a different capture sequence. The most active modulator of EWS/FLI activity identified by this GE-HTS approach was cytosine arabinoside (ARA-C). At levels achievable in people, this compound reduced the abundance of EWS/FLI protein in and the viability and cancer-like behavior of Ewing sarcoma cells growing in test tubes. ARA-C treatment also slowed the growth of Ewing sarcoma cells transplanted into mice.
What Do These Findings Mean?
These findings identify ARA-C, which is already used to treat children with some forms of leukemia, as a potent modulator of EWS/FLI activity. More laboratory experiments are needed to discover how ARA-C changes the behavior of Ewing sarcoma cells. Nevertheless, given the poor outcomes currently seen in many patients with Ewing sarcoma and the historical reluctance to test new drugs in children, these findings strongly support the initiation of clinical trials of ARA-C in children with Ewing sarcoma. These results also show that the GE-HTS approach is a powerful way to identify candidate drugs able to modulate the activity of some of the oncoproteins (including transcription factors and other previously intractable targets) that drive cancer development.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040122.
Cancerquest from Emory University, provides information on cancer biology (also includes information in Spanish, Chinese and Russian)
The MedlinePlus encyclopedia has pages on Ewing sarcoma
Information for patients and health professionals on Ewing sarcoma is available from the US National Cancer Institute
Cancerbackup offers information for patients and their parents on Ewing sarcoma
Wikipedia has pages on DNA microarrays and expression profiling (note that Wikipedia is a free online encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0040122
PMCID: PMC1851624  PMID: 17425403
19.  EFTUD2 Is a Novel Innate Immune Regulator Restricting Hepatitis C Virus Infection through the RIG-I/MDA5 Pathway 
Journal of Virology  2015;89(13):6608-6618.
ABSTRACT
The elongation factor Tu GTP binding domain-containing protein 2 (EFTUD2) was identified as an anti-hepatitis C virus (HCV) host factor in our recent genome-wide small interfering RNA (siRNA) screen. In this study, we sought to further determine EFTUD2's role in HCV infection and investigate the interaction between EFTUD2 and other regulators involved in HCV innate immune (RIG-I, MDA5, TBK1, and IRF3) and JAK-STAT1 pathways. We found that HCV infection decreased the expression of EFTUD2 and the viral RNA sensors RIG-I and MDA5 in HCV-infected Huh7 and Huh7.5.1 cells and in liver tissue from in HCV-infected patients, suggesting that HCV infection downregulated EFTUD2 expression to circumvent the innate immune response. EFTUD2 inhibited HCV infection by inducing expression of the interferon (IFN)-stimulated genes (ISGs) in Huh7 cells. However, its impact on HCV infection was absent in both RIG-I knockdown Huh7 cells and RIG-I-defective Huh7.5.1 cells, indicating that the antiviral effect of EFTUD2 is dependent on RIG-I. Furthermore, EFTUD2 upregulated the expression of the RIG-I-like receptors (RLRs) RIG-I and MDA5 to enhance the innate immune response by gene splicing. Functional experiments revealed that EFTUD2-induced expression of ISGs was mediated through interaction of the EFTUD2 downstream regulators RIG-I, MDA5, TBK1, and IRF3. Interestingly, the EFTUD2-induced antiviral effect was independent of the classical IFN-induced JAK-STAT pathway. Our data demonstrate that EFTUD2 restricts HCV infection mainly through an RIG-I/MDA5-mediated, JAK-STAT-independent pathway, thereby revealing the participation of EFTUD2 as a novel innate immune regulator and suggesting a potentially targetable antiviral pathway.
IMPORTANCE Innate immunity is the first line defense against HCV and determines the outcome of HCV infection. Based on a recent high-throughput whole-genome siRNA library screen revealing a network of host factors mediating antiviral effects against HCV, we identified EFTUD2 as a novel innate immune regulator against HCV in the infectious HCV cell culture model and confirmed that its expression in HCV-infected liver tissue is inversely related to HCV infection. Furthermore, we determined that EFTUD2 exerts its antiviral activity mainly through governing its downstream regulators RIG-I and MDA5 by gene splicing to activate IRF3 and induce classical ISG expression independent of the JAT-STAT signaling pathway. This study broadens our understanding of the HCV innate immune response and provides a possible new antiviral strategy targeting this novel regulator of the innate response.
doi:10.1128/JVI.00364-15
PMCID: PMC4468487  PMID: 25878102
20.  Human Genetics in Rheumatoid Arthritis Guides a High-Throughput Drug Screen of the CD40 Signaling Pathway 
PLoS Genetics  2013;9(5):e1003487.
Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS) and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P = 1.4×10−9). Second, we demonstrate that subjects homozygous for the RA risk allele have ∼33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P = 10−9), a finding corroborated by expression quantitative trait loci (eQTL) analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2) and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65), a subunit of the NF-κB transcription factor. Finally, we develop a high-throughput NF-κB luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L) and conduct an HTS of 1,982 chemical compounds and FDA–approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-κB signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel therapies in complex traits such as RA.
Author Summary
A current challenge in human genetics is to follow-up “hits” from genome-wide association studies (GWAS) to guide drug discovery for complex traits. Previously, we identified a common variant in the CD40 locus as associated with risk of rheumatoid arthritis (RA). Here, we fine-map the CD40 signal of association through a combination of dense genotyping and exonic sequencing in large patient collections. Further, we demonstrate that the RA risk allele is a gain-of-function allele that increases the amount of CD40 on the surface of primary human B lymphocyte cells from healthy control individuals. Based on these observations, we develop a high-throughput assay to recapitulate the biology of the RA risk allele in a system suitable for a small molecule drug screen. After a series of primary screens and counter screens, we identify small molecules that inhibit CD40-mediated NF-kB signaling in human B cells. While this is only the first step towards a more comprehensive effort to identify CD40-specific inhibitors that may be used to treat RA, our study demonstrates a successful strategy to progress from a GWAS to a drug screen for complex traits such as RA.
doi:10.1371/journal.pgen.1003487
PMCID: PMC3656093  PMID: 23696745
21.  IFN-λ3 Inhibits HIV Infection of Macrophages through the JAK-STAT Pathway 
PLoS ONE  2012;7(4):e35902.
Background
Interferon lambda 3 (IFN-λ3) is a newly identified cytokine with antiviral activity, and its single nucleotide polymorphisms are strongly associated with the treatment effectiveness and development of chronic hepatitis C virus infection. We thus examined the potential of IFN-λ3 to inhibit HIV replication and the possible mechanisms of the anti-HIV action by IFN-λ3 in human macrophages.
Principal Findings
Under different conditions (before, during, and after HIV infection), IFN-λ3 significantly inhibited viral replication in macrophages, which was associated with the induction of multiple antiviral cellular factors (ISG56, MxA, OAS-1, A3G/F and tetherin) and IFN regulatory factors (IRF-1, 3, 5, 7 and 9). This anti-HIV action of IFN-λ3 could be compromised by the JAK-STAT inhibitor. In addition, IFN-λ3 treatment of macrophages induced the expression of toll-like receptor 3 (TLR3) and two key adaptors (MyD88 and TRIF) in type I IFN pathway activation. However, HIV infection compromised IFN-λ3-mediated induction of the key elements in JAK-STAT signaling pathway.
Conclusions
These data indicate that IFN-λ3 exerts its anti-HIV function by activating JAK-STAT pathway-mediated innate immunity in macrophages. Future in vivo studies are necessary in order to explore the potential for developing IFN-λ3-based therapy for HIV disease.
doi:10.1371/journal.pone.0035902
PMCID: PMC3338759  PMID: 22558263
22.  Dietary apigenin potentiates the inhibitory effect of interferon-α on cancer cell viability through inhibition of 26S proteasome-mediated interferon receptor degradation 
Food & Nutrition Research  2016;60:10.3402/fnr.v60.31288.
Background
Type I interferons (IFN-α/β) have broad and potent immunoregulatory and antiproliferative activities. However, it is still known whether the dietary flavonoids exhibit their antiviral and anticancer properties by modulating the function of type I IFNs.
Objective
This study aimed at determining the role of apigenin, a dietary plant flavonoid abundant in common fruits and vegetables, on the type I IFN-mediated inhibition of cancer cell viability.
Design
Inhibitory effect of apigenin on human 26S proteasome, a known negative regulator of type I IFN signaling, was evaluated in vitro. Molecular docking was conducted to know the interaction between apigenin and subunits of 26S proteasome. Effects of apigenin on JAK/STAT pathway, 26S proteasome-mediated interferon receptor stability, and cancer cells viability were also investigated.
Results
Apigenin was identified to be a potent inhibitor of human 26S proteasome in a cell-based assay. Apigenin inhibited the chymotrypsin-like, caspase-like, and trypsin-like activities of the human 26S proteasome and increased the ubiquitination of endogenous proteins in cells. Results from computational modeling of the potential interactions of apigenin with the chymotrypsin site (β5 subunit), caspase site (β1 subunit), and trypsin site (β2 subunit) of the proteasome were consistent with the observed proteasome inhibitory activity. Apigenin enhanced the phosphorylation of signal transducer and activator of transcription proteins (STAT1 and STAT2) and promoted the endogenous IFN-α-regulated gene expression. Apigenin inhibited the IFN-α-stimulated ubiquitination and degradation of type I interferon receptor 1 (IFNAR1). Apigenin also sensitized the inhibitory effect of IFN-α on viability of cervical carcinoma HeLa cells.
Conclusion
These results suggest that apigenin potentiates the inhibitory effect of IFN-α on cancer cell viability by activating JAK/STAT signaling pathway through inhibition of 26S proteasome-mediated IFNAR1 degradation. This may provide a novel mechanism for increasing the efficacy of IFN-α/β.
doi:10.3402/fnr.v60.31288
PMCID: PMC4928072  PMID: 27356910
apigenin; interferon; proteasome; STAT; ubiquitination
23.  Inhibition of TYK2 and JAK1 Ameliorates Imiquimod-Induced Psoriasis-like Dermatitis by Inhibiting IL-22 and the IL-23/IL-17 axis 
Psoriasis is a chronic autoimmune disease affecting the skin and characterized by aberrant keratinocyte proliferation and function. Immune cells infiltrate the skin and release proinflammatory cytokines that play important roles in psoriasis. The Th17 network, including IL-23 and IL-22, has recently emerged as a critical component in the pathogenesis of psoriasis. IL-22 and IL-23 signaling is dependent on the JAK family of protein tyrosine kinases, making Janus kinase (JAK) inhibition an appealing strategy for the treatment of psoriasis. Here we report the activity of SAR-20347, a small molecule inhibitor with specificity for JAK1 and Tyrosine Kinase 2 (TYK2) over other JAK family members. In cellular assays, SAR-20347 dose-dependently (1 nM-10 μM) inhibited JAK1 and/or TYK2 dependent signaling from the IL-12/IL-23, IL-22, and IFN-α receptors. In vivo, TYK2 mutant mice or treatment of wild type mice with SAR-20347 significantly reduced IL-12 induced IFN-γ production and IL-22-dependent Serum Amyloid A (SAA) to similar extents, indicating that in these models, SAR-20347 is probably acting through inhibition of TYK2. In an imiquimod-induced psoriasis model, the administration of SAR-20347 led to a striking decrease in disease pathology, including reduced activation of keratinocytes, and proinflammatory cytokine levels compared to both TYK2 mutant mice and wild type controls. Taken together, these data indicate that targeting both JAK1 and TYK2-mediated cytokine signaling is more effective than TYK2 inhibition alone in reducing psoriasis pathogenesis.
doi:10.4049/jimmunol.1400205
PMCID: PMC4170002  PMID: 25156366
T cells; autoimmunity; psoriasis; cytokines; protein kinases; skin; JAK
24.  Influenza A Virus Inhibits Type I IFN Signaling via NF-κB-Dependent Induction of SOCS-3 Expression 
PLoS Pathogens  2008;4(11):e1000196.
The type I interferon (IFN) system is a first line of defense against viral infections. Viruses have developed various mechanisms to counteract this response. So far, the interferon antagonistic activity of influenza A viruses was mainly observed on the level of IFNβ gene induction via action of the viral non-structural protein 1 (NS1). Here we present data indicating that influenza A viruses not only suppress IFNβ gene induction but also inhibit type I IFN signaling through a mechanism involving induction of the suppressor of cytokine signaling-3 (SOCS-3) protein. Our study was based on the observation that in cells that were infected with influenza A virus and subsequently stimulated with IFNα/β, phosphorylation of the signal transducer and activator of transcription protein 1 (STAT1) was strongly reduced. This impaired STAT1 activation was not due to the action of viral proteins but rather appeared to be induced by accumulation of viral 5′ triphosphate RNA in the cell. SOCS proteins are potent endogenous inhibitors of Janus kinase (JAK)/STAT signaling. Closer examination revealed that SOCS-3 but not SOCS-1 mRNA levels increase in an RNA- and nuclear factor kappa B (NF-κB)-dependent but type I IFN-independent manner early in the viral replication cycle. This direct viral induction of SOCS-3 mRNA and protein expression appears to be relevant for suppression of the antiviral response since in SOCS-3 deficient cells a sustained phosphorylation of STAT1 correlated with elevated expression of type I IFN-dependent genes. As a consequence, progeny virus titers were reduced in SOCS-3 deficient cells or in cells were SOCS-3 expression was knocked-down by siRNA. These data provide the first evidence that influenza A viruses suppress type I IFN signaling on the level of JAK/STAT activation. The inhibitory effect is at least in part due to the induction of SOCS-3 gene expression, which results in an impaired antiviral response.
Author Summary
The type I interferon (IFN) system is one of the most powerful innate defenses against viral pathogens. Most RNA viruses are sensitive to the action of type I IFN. Therefore, these pathogens have evolved strategies to evade this response. For example, influenza viruses express a viral protein, the non-structural protein 1 (NS1), that suppresses production of IFNβ by lowering cellular sensitivity to viral nucleic acid as a pathogen pattern. Here we present data indicating that influenza A viruses are not only capable of suppressing production of the IFNβ gene but also inhibit action of this antiviral cytokine on cells. This occurs by viral induction of a cellular protein, the suppressor of cytokine signaling (SOCS)-3, a potent endogenous inhibitor of IFN signaling. This is a novel mechanism by which influenza viruses inhibit the antiviral response of the host and paves the path to efficient virus replication. This may be especially relevant for influenza viruses that induce high cytokine responses (cytokine burst), such as highly pathogenic avian influenza viruses of the H5N1 subtype. Induction of SOCS-3 expression would allow efficient replication despite high IFN and cytokine levels.
doi:10.1371/journal.ppat.1000196
PMCID: PMC2572141  PMID: 18989459
25.  Targeted inhibition of STATs and IRFs as a potential treatment strategy in cardiovascular disease 
Oncotarget  2016;7(30):48788-48812.
Key factors contributing to early stages of atherosclerosis and plaque development include the pro-inflammatory cytokines Interferon (IFN)α, IFNγ and Interleukin (IL)-6 and Toll-like receptor 4 (TLR4) stimuli. Together, they trigger activation of Signal Transducer and Activator of Transcription (STAT) and Interferon Regulatory Factor (IRF) families. In particular, STAT1, 2 and 3; IRF1 and 8 have recently been recognized as prominent modulators of inflammation, especially in immune and vascular cells during atherosclerosis. Moreover, inflammation-mediated activation of these STATs and IRFs coordinates a platform for synergistic amplification leading to pro-atherogenic responses.
Searches for STAT3-targeting compounds, exploring the pTyr-SH2 interaction area of STAT3, yielded many small molecules including natural products. Only a few inhibitors for other STATs, but none for IRFs, are described. Promising results for several STAT3 inhibitors in recent clinical trials predicts STAT3-inhibiting strategies may find their way to the clinic. However, many of these inhibitors do not seem STAT-specific, display toxicity and are not very potent. This illustrates the need for better models, and screening and validation tools for novel STAT and IRF inhibitors.
This review presents a summary of these findings. It postulates STAT1, STAT2 and STAT3 and IRF1 and IRF8 as interesting therapeutic targets and targeted inhibition could be a potential treatment strategy in CVDs. In addition, it proposes a pipeline approach that combines comparative in silico docking of STAT-SH2 and IRF-DBD models with in vitro STAT and IRF activation inhibition validation, as a novel tool to screen multi-million compound libraries and identify specific inhibitors for STATs and IRFs.
doi:10.18632/oncotarget.9195
PMCID: PMC5217051  PMID: 27166190
STAT; IRF; vascular inflammation; in silico modeling; therapeutic strategy

Results 1-25 (1729455)