Search tips
Search criteria

Results 1-25 (589980)

Clipboard (0)

Related Articles

1.  Activation and modulation of human α4β2 nicotinic acetylcholine receptors by the neonicotinoids clothianidin and imidacloprid 
Journal of neuroscience research  2011;89(8):1295-1301.
Neonicotinoids are synthetic, nicotine-derived insecticides used for agricultural and household pest control. While highly effective at activating insect nicotinic receptors, many neonicotinoids are also capable of directly activating and/or modulating the activation of vertebrate nicotinic receptors. In this study, we have investigated the actions of the neonicotinoids clothianidin (CTD) and imidacloprid (IMI) on human neuronal α4β2 nicotinic acetylcholine receptors. The data demonstrate that the compounds are weak agonists of the human receptors with relative peak currents of 1–4 % of the response to 1 mM acetylcholine (ACh). Coapplication of IMI strongly inhibited currents elicited by ACh. From Schild plot analysis, we estimate that the affinity of IMI to the human α4β2 receptor is 18 µM. The application of low concentrations of CTD potentiated responses to low concentrations of ACh, suggesting that receptors occupied by one ACh and one CTD molecule have a higher gating efficacy than receptors with one ACh bound. Interestingly, subunit stoichiometry affected inhibition by CTD, with (α4)2(β2)3 receptors significantly more strongly inhibited than the (α4)3(β2)2 receptors.
PMCID: PMC3668458  PMID: 21538459
nicotinic receptor; neonicotinoid; insecticide
2.  Neonicotinoid Binding, Toxicity and Expression of Nicotinic Acetylcholine Receptor Subunits in the Aphid Acyrthosiphon pisum 
PLoS ONE  2014;9(5):e96669.
Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI), thiamethoxam (TMX) and clothianidin (CLT). Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16±0.04 nM and 41.7±5.9 nM) and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008±0.002 nM and 1.135±0.213 nM). Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml) and TMX (LC50 = 0.034 µg/ml) were more toxic than CLT (LC50 = 0.118 µg/ml). The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumβ1 expressions levels, whereas Apisumβ2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies.
PMCID: PMC4011867  PMID: 24801634
3.  Crystal Structure of Lymnaea stagnalis AChBP Complexed with the Potent nAChR Antagonist DHβE Suggests a Unique Mode of Antagonism 
PLoS ONE  2012;7(8):e40757.
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels that belong to the Cys-loop receptor superfamily. These receptors are allosteric proteins that exist in different conformational states, including resting (closed), activated (open), and desensitized (closed) states. The acetylcholine binding protein (AChBP) is a structural homologue of the extracellular ligand-binding domain of nAChRs. In previous studies, the degree of the C-loop radial extension of AChBP has been assigned to different conformational states of nAChRs. It has been suggested that a closed C-loop is preferred for the active conformation of nAChRs in complex with agonists whereas an open C-loop reflects an antagonist-bound (closed) state. In this work, we have determined the crystal structure of AChBP from the water snail Lymnaea stagnalis (Ls) in complex with dihydro-β-erythroidine (DHβE), which is a potent competitive antagonist of nAChRs. The structure reveals that binding of DHβE to AChBP imposes closure of the C-loop as agonists, but also a shift perpendicular to previously observed C-loop movements. These observations suggest that DHβE may antagonize the receptor via a different mechanism compared to prototypical antagonists and toxins.
PMCID: PMC3425559  PMID: 22927902
4.  A Structural and Mutagenic Blueprint for Molecular Recognition of Strychnine and d-Tubocurarine by Different Cys-Loop Receptors 
PLoS Biology  2011;9(3):e1001034.
Cys-loop receptors (CLR) are pentameric ligand-gated ion channels that mediate fast excitatory or inhibitory transmission in the nervous system. Strychnine and d-tubocurarine (d-TC) are neurotoxins that have been highly instrumental in decades of research on glycine receptors (GlyR) and nicotinic acetylcholine receptors (nAChR), respectively. In this study we addressed the question how the molecular recognition of strychnine and d-TC occurs with high affinity and yet low specificity towards diverse CLR family members. X-ray crystal structures of the complexes with AChBP, a well-described structural homolog of the extracellular domain of the nAChRs, revealed that strychnine and d-TC adopt multiple occupancies and different ligand orientations, stabilizing the homopentameric protein in an asymmetric state. This introduces a new level of structural diversity in CLRs. Unlike protein and peptide neurotoxins, strychnine and d-TC form a limited number of contacts in the binding pocket of AChBP, offering an explanation for their low selectivity. Based on the ligand interactions observed in strychnine- and d-TC-AChBP complexes we performed alanine-scanning mutagenesis in the binding pocket of the human α1 GlyR and α7 nAChR and showed the functional relevance of these residues in conferring high potency of strychnine and d-TC, respectively. Our results demonstrate that a limited number of ligand interactions in the binding pocket together with an energetic stabilization of the extracellular domain are key to the poor selective recognition of strychnine and d-TC by CLRs as diverse as the GlyR, nAChR, and 5-HT3R.
Author Summary
Ligand-gated ion channels play an important role in fast electrochemical signaling in the brain. Cys-loop receptors are a class of pentameric ligand-gated ion channels that are activated by specific neurotransmitters, including acetylcholine (ACh), serotonin (5-HT), glycine (Gly), and γ-aminobutyric acid (GABA). Each type of cys-loop receptor contains an extracellular domain that specifically recognizes only one of these four neurotransmitters and opens an ion-conducting channel pore upon ligand binding. In this study, we investigated the poor specificity with which two potent neurotoxic inhibitors, namely strychnine and d-tubocurarine, are recognized by different cys-loop receptors. Using X-ray crystallography we solved 3-dimensional structures of strychnine or d-tubocurarine in complex with ACh binding protein (AChBP), a well-recognized structural homolog of the nicotinic ACh receptor. Based on ligand-receptor interactions observed in AChBP structures we designed mutant GlyR and α7 nAChR to identify hot spots in the binding pocket of these receptors that define potent inhibition by strychnine and d-tubocurarine, respectively. Combined, our results offer detailed understanding of the molecular recognition of antagonists that have high affinity but poor specificity for different cys-loop receptors.
PMCID: PMC3066128  PMID: 21468359
5.  Virtual Screening Against α-Cobratoxin 
Journal of biomolecular screening  2009;14(9):1109-1118.
α-Cobratoxin (Cbtx), the neurotoxin isolated from the venom of the Thai cobra Naja kaouthia, causes paralysis by preventing acetylcholine (ACh) binding to nicotinic acetylcholine receptors (nAChRs). In the current study, the region of the Cbtx molecule that is directly involved in binding to nAChRs is used as the target for anticobratoxin drug design. The crystal structure (1YI5) of Cbtx in complex with the acetylcholine binding protein (AChBP), a soluble homolog of the extracellular binding domain of nAChRs, was selected to prepare an α-cobratoxin active binding site for docking. The amino acid residues (Ser182-Tyr192) of the AChBP structure, the binding site of Cbtx, were used as the positive control to validate the prepared Cbtx active binding site (root mean square deviation < 1.2 Å). Virtual screening of the National Cancer Institute diversity set, a library of 1990 compounds with nonredundant pharmacophore profiles, using AutoDock against the Cbtx active site, revealed 39 potential inhibitor candidates. The adapted in vitro radioligand competition assays using [3H]epibatidine and [125I]bungarotoxin against the AChBPs from the marine species, Aplysia californica (Ac), and from the freshwater snails, Lymnaea stagnalis (Ls) and Bolinus truncates (Bt), revealed 4 compounds from the list of inhibitor candidates that had micromolar to nanomolar interferences for the toxin binding to AChBPs. Three hits (NSC42258, NSC121865, and NSC134754) can prolong the survival time of the mice if administered 30 min before injection with Cbtx, but only NSC121865 and NSC134754 can prolong the survival time if injected immediately after injection with Cbtx. These inhibitors serve as novel templates/scaffolds for the development of more potent and specific anticobratoxin.
PMCID: PMC3191909  PMID: 19734437
α-cobratoxin; virtual screening; docking; neurotoxin; nicotinic acetylcholine receptor
6.  Nicotine-Like Effects of the Neonicotinoid Insecticides Acetamiprid and Imidacloprid on Cerebellar Neurons from Neonatal Rats 
PLoS ONE  2012;7(2):e32432.
Acetamiprid (ACE) and imidacloprid (IMI) belong to a new, widely used class of pesticide, the neonicotinoids. With similar chemical structures to nicotine, neonicotinoids also share agonist activity at nicotinic acetylcholine receptors (nAChRs). Although their toxicities against insects are well established, their precise effects on mammalian nAChRs remain to be elucidated. Because of the importance of nAChRs for mammalian brain function, especially brain development, detailed investigation of the neonicotinoids is needed to protect the health of human children. We aimed to determine the effects of neonicotinoids on the nAChRs of developing mammalian neurons and compare their effects with nicotine, a neurotoxin of brain development.
Methodology/Principal Findings
Primary cultures of cerebellar neurons from neonatal rats allow for examinations of the developmental neurotoxicity of chemicals because the various stages of neurodevelopment—including proliferation, migration, differentiation, and morphological and functional maturation—can be observed in vitro. Using these cultures, an excitatory Ca2+-influx assay was employed as an indicator of neural physiological activity. Significant excitatory Ca2+ influxes were evoked by ACE, IMI, and nicotine at concentrations greater than 1 µM in small neurons in cerebellar cultures that expressed the mRNA of the α3, α4, and α7 nAChR subunits. The firing patterns, proportion of excited neurons, and peak excitatory Ca2+ influxes induced by ACE and IMI showed differences from those induced by nicotine. However, ACE and IMI had greater effects on mammalian neurons than those previously reported in binding assay studies. Furthermore, the effects of the neonicotinoids were significantly inhibited by the nAChR antagonists mecamylamine, α-bungarotoxin, and dihydro-β-erythroidine.
This study is the first to show that ACE, IMI, and nicotine exert similar excitatory effects on mammalian nAChRs at concentrations greater than 1 µM. Therefore, the neonicotinoids may adversely affect human health, especially the developing brain.
PMCID: PMC3290564  PMID: 22393406
7.  Generation of Candidate Ligands for Nicotinic Acetylcholine Receptors via In Situ Click Chemistry with a Soluble Acetylcholine Binding Protein Template 
Nicotinic acetylcholine receptors (nAChRs), being responsible for mediating key physiological functions, are ubiquitous in the central and peripheral nervous systems. As members of the Cys loop ligand-gated ion channel family, neuronal nA-ChRs are pentameric, composed of various permutations of α (α2 to α10) and β (β2 to β4) subunits forming functional heteromeric or homomeric receptors. Diversity in nAChR subunit composition complicates development of selective ligands for specific subtypes, since the five binding sites reside at the subunit interfaces. The acetylcholine binding protein (AChBP), a soluble extracellular domain homologue secreted by mollusks, serves as a general structural surrogate for the nAChRs. In this work, homomeric AChBPs from Lymnaea and Aplysia snails were used as in situ templates for the generation of novel and potent ligands that selectively bind to these proteins. The cycloaddition reaction between building block azides and alkynes to form stable 1,2,3-triazoles generated the leads. The extent of triazole formation on the AChBP template correlated with the affinity of the triazole product at the nicotinic ligand binding site. Instead of the in situ protein-templated azide-alkyne cycloaddition reaction occurring at a localized, sequestered enzyme active center as previously shown, we demonstrate that the in situ reaction can take place at subunit interfaces of an oligomeric protein and can thus be used as a tool for identification of novel candidate nAChR ligands. The crystal structure of one of the in situ formed triazole–AChBP complexes shows binding poses and molecular determinants of interactions predicted from structures of known agonists and antagonists. Hence, the click chemistry approach with an in situ template of a receptor provides a novel synthetic avenue for generating candidate agonists and antagonists for ligand-gated ion channels.
PMCID: PMC3618991  PMID: 22394239
8.  Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae 
BMC Neuroscience  2011;12:51.
Myzus persicae is a globally important aphid pest with a history of developing resistance to insecticides. Unusually, neonicotinoids have remained highly effective as control agents despite nearly two decades of steadily increasing use. In this study, a clone of M. persicae collected from southern France was found, for the first time, to exhibit sufficiently strong resistance to result in loss of the field effectiveness of neonicotinoids.
Bioassays, metabolism and gene expression studies implied the presence of two resistance mechanisms in the resistant clone, one based on enhanced detoxification by cytochrome P450 monooxygenases, and another unaffected by a synergist that inhibits detoxifying enzymes. Binding of radiolabeled imidacloprid (a neonicotinoid) to whole body membrane preparations showed that the high affinity [3H]-imidacloprid binding site present in susceptible M. persicae is lost in the resistant clone and the remaining lower affinity site is altered compared to susceptible clones. This confers a significant overall reduction in binding affinity to the neonicotinoid target: the nicotinic acetylcholine receptor (nAChR). Comparison of the nucleotide sequence of six nAChR subunit (Mpα1-5 and Mpβ1) genes from resistant and susceptible aphid clones revealed a single point mutation in the loop D region of the nAChR β1 subunit of the resistant clone, causing an arginine to threonine substitution (R81T).
Previous studies have shown that the amino acid at this position within loop D is a key determinant of neonicotinoid binding to nAChRs and this amino acid change confers a vertebrate-like character to the insect nAChR receptor and results in reduced sensitivity to neonicotinoids. The discovery of the mutation at this position and its association with the reduced affinity of the nAChR for imidacloprid is the first example of field-evolved target-site resistance to neonicotinoid insecticides and also provides further validation of exisiting models of neonicotinoid binding and selectivity for insect nAChRs.
PMCID: PMC3121619  PMID: 21627790
9.  Marine Natural Products Acting on the Acetylcholine-Binding Protein and Nicotinic Receptors: From Computer Modeling to Binding Studies and Electrophysiology 
Marine Drugs  2014;12(4):1859-1875.
For a small library of natural products from marine sponges and ascidians, in silico docking to the Lymnaea stagnalis acetylcholine-binding protein (AChBP), a model for the ligand-binding domains of nicotinic acetylcholine receptors (nAChRs), was carried out and the possibility of complex formation was revealed. It was further experimentally confirmed via competition with radioiodinated α-bungarotoxin ([125I]-αBgt) for binding to AChBP of the majority of analyzed compounds. Alkaloids pibocin, varacin and makaluvamines С and G had relatively high affinities (Ki 0.5–1.3 μM). With the muscle-type nAChR from Torpedo californica ray and human neuronal α7 nAChR, heterologously expressed in the GH4C1 cell line, no competition with [125I]-αBgt was detected in four compounds, while the rest showed an inhibition. Makaluvamines (Ki ~ 1.5 μM) were the most active compounds, but only makaluvamine G and crambescidine 359 revealed a weak selectivity towards muscle-type nAChR. Rhizochalin, aglycone of rhizochalin, pibocin, makaluvamine G, monanchocidin, crambescidine 359 and aaptamine showed inhibitory activities in electrophysiology experiments on the mouse muscle and human α7 nAChRs, expressed in Xenopus laevis oocytes. Thus, our results confirm the utility of the modeling studies on AChBPs in a search for natural compounds with cholinergic activity and demonstrate the presence of the latter in the analyzed marine biological sources.
PMCID: PMC4012456  PMID: 24686559
marine natural compounds; acetylcholine-binding protein; nicotinic acetylcholine receptors; computer modeling; radioligand assay; electrophysiology
10.  Tryptophan Fluorescence Reveals Conformational Changes in the Acetylcholine Binding Protein* 
The Journal of biological chemistry  2002;277(44):41299-41302.
The recent characterization of an acetylcholine binding protein (AChBP) from the fresh water snail, Lymnaea stagnalis, shows it to be a structural homolog of the extracellular domain of the nicotinic acetylcholine receptor (nAChR). To ascertain whether the AChBP exhibits the recognition properties and functional states of the nAChR, we have expressed the protein in milligram quantities from a synthetic cDNA transfected into human embryonic kidney (HEK) cells. The protein secreted into the medium shows a pentameric rosette structure with ligand stoichiometry approximating five sites per pentamer. Surprisingly, binding of acetylcholine, selective agonists, and antagonists ranging from small alkaloids to larger peptides results in substantial quenching of the intrinsic tryptophan fluorescence. Using stopped-flow techniques, we demonstrate rapid rates of association and dissociation of agonists and slow rates for the α-neurotoxins. Since agonist binding occurs in millisecond time frames, and the α-neurotoxins may induce a distinct conformational state for the AChBP-toxin complex, the snail protein shows many of the properties expected for receptor recognition of interacting ligands. Thus, the marked tryptophan quenching not only documents the importance of aromatic residues in ligand recognition, but establishes that the AChBP will be a useful functional as well as structural surrogate of the nicotinic receptor.
PMCID: PMC3191908  PMID: 12235129
11.  A virtual screening study of the acetylcholine binding protein using a relaxed-complex approach 
The nicotinic acetylcholine receptor (nAChR) is a member of the ligand-gated ion channel family and is implicated in many neurological events. Yet, the receptor is difficult to target without high-resolution structures. In contrast, the structure of the acetylcholine binding protein (AChBP) has been solved to high resolution, and it serves as a surrogate structure of the extra-cellular domain in nAChR. Here we conduct a virtual screening study of the AChBP using the relaxed-complex method, which involves a combination of molecular dynamics simulations (to achieve receptor structures) and ligand docking. The library screened through comes from the National Cancer Institute, and its ligands show great potential for binding AChBP in various manners. These ligands mimic the known binders of AChBP; a significant subset docks well against all species of the protein and some distinguish between the various structures. These novel ligands could serve as potential pharmaceuticals in the AChBP/nAChR systems.
PMCID: PMC2684879  PMID: 19186108
acetylcholine binding protein; nicotinic acetylcholine receptor; relaxed-complex; molecular dynamics; docking; virtual screening
12.  Galanthamine and non-competitive inhibitor binding to ACh-binding protein: evidence for a binding site on non α-subunit interfaces of heteromeric neuronal nicotinic receptors 
Journal of molecular biology  2007;369(4):895-901.
Rapid neurotransmission is mediated through a superfamily of Cys-loop receptors, that includes the nicotinic acetylcholine (nAChR), γ-aminobutyric-acid (GABAA/C), serotonin (5-HT3) and glycine receptors. A class of ligands, including galanthamine, local anesthetics and certain toxins, interact with nAChRs non-competitively. Suggested modes of action include blockade of the ion-channel, modulation from as yet undefined extracellular sites, stabilization of desensitized states, and association with annular or boundary lipid. Alignment of mammalian Cys-loop receptors show aromatic residues, found in the acetylcholine or ligand binding pocket of nAChRs, are conserved in all subunit interfaces of neuronal nAChRs, including subunit interfaces that are not formed by α subunits on the principal side of the transmitter binding site. The amino terminal domain containing the ligand recognition site is homologous to the soluble acetylcholine binding protein (AChBP) from mollusks, an established structural and functional surrogate. Herein we assess ligand specificity and employ X-ray crystallography with AChBP to demonstrate ligand interactions at subunit interfaces lacking vicinal cysteines (i.e., the non-α subunit interfaces in nAChRs). Non-competitive nicotinic ligands bind AChBP with high affinity (KD’s of 0.015 to 6 μM). We mutated the vicinal cysteines in loop C of AChBP to mimic the non-alpha subunit interfaces of neuronal nAChRs and other Cys loop receptors. Classical nicotinic agonists show a 10 to 40-fold reduction in binding affinity, whereas binding of ligands known to be non-competitive are not affected. X-ray structures of cocaine and galanthamine bound to AChBP (1.8 and 2.9 Å resolution respectively) reveal interactions deep within the subunit interface and the absence of a contact surface with the tip of loop C. Hence, in addition to channel blocking, non-competitive interactions with heteromeric neuronal nAChR appear to occur at the non-alpha subunit interface, a site presumed to be similar to that of modulating benzodiazepines on GABAA receptors.
PMCID: PMC2031909  PMID: 17481657
non-competitive inhibitors; nicotinic acetylcholine receptors; acetylcholine binding protein; benzodiazepine; galanthamine; cocaine
13.  AChBP-targeted α-conotoxin correlates distinct binding orientations with nAChR subtype selectivity 
The EMBO Journal  2007;26(16):3858-3867.
Neuronal nAChRs are a diverse family of pentameric ion channels with wide distribution throughout cells of the nervous and immune systems. However, the role of specific subtypes in normal and pathological states remains poorly understood due to the lack of selective probes. Here, we used a binding assay based on acetylcholine-binding protein (AChBP), a homolog of the nicotinic acetylcholine ligand-binding domain, to discover a novel α-conotoxin (α-TxIA) in the venom of Conus textile. α-TxIA bound with high affinity to AChBPs from different species and selectively targeted the α3β2 nAChR subtype. A co-crystal structure of Ac-AChBP with the enhanced potency analog TxIA(A10L), revealed a 20° backbone tilt compared to other AChBP–conotoxin complexes. This reorientation was coordinated by a key salt bridge formed between Arg5 (TxIA) and Asp195 (Ac-AChBP). Mutagenesis studies, biochemical assays and electrophysiological recordings directly correlated the interactions observed in the co-crystal structure to binding affinity at AChBP and different nAChR subtypes. Together, these results establish a new pharmacophore for the design of novel subtype-selective ligands with therapeutic potential in nAChR-related diseases.
PMCID: PMC1952216  PMID: 17660751
acetylcholine binding protein; conotoxin; cys-loop receptor; ion channel; nicotinic acetylcholine receptors
14.  Design of New α-Conotoxins: From Computer Modeling to Synthesis of Potent Cholinergic Compounds 
Marine Drugs  2011;9(10):1698-1714.
A series of 14 new analogs of α-conotoxin PnIA Conus pennaceus was synthesized and tested for binding to the human α7 nicotinic acetylcholine receptor (nAChR) and acetylcholine-binding proteins (AChBP) Lymnaea stagnalis and Aplysia californica. Based on computer modeling and the X-ray structure of the A. californica AChBP complex with the PnIA[A10L, D14K] analog [1], single and multiple amino acid substitutions were introduced in α-conotoxin PnIA aimed at compounds of higher affinity and selectivity. Three analogs, PnIA[L5H], PnIA[A10L, D14K] and PnIA[L5R, A10L, D14R], have high affinities for AChBPs or α7 nAChR, as found in competition with radioiodinated α-bungarotoxin. That is why we prepared radioiodinated derivatives of these α-conotoxins, demonstrated their specific binding and found that among the tested synthetic analogs, most had almost 10-fold higher affinity in competition with radioactive α-conotoxins as compared to competition with radioactive α-bungarotoxin. Thus, radioiodinated α-conotoxins are a more sensitive tool for checking the activity of novel α-conotoxins and other compounds quickly dissociating from the receptor complexes.
PMCID: PMC3210602  PMID: 22072993
α-conotoxin analogs; nicotinic acetylcholine receptors; acetylcholine-binding proteins; computer modeling; radioligand analysis
15.  Development of a Solid-Phase Receptor-Based Assay for the Detection of Cyclic Imines Using a Microsphere-Flow Cytometry System 
Analytical chemistry  2013;85(4):2340-2347.
Biologically active macrocycles containing a cyclic imine were isolated for the first time from aquaculture sites in Nova Scotia, Canada, during the 1990s. These compounds display a “fast-acting” toxicity in the traditional mouse bioassay for lipophilic marine toxins. Our work aimed at developing receptor-based detection method for spirolides using a microsphere/flow cytometry Luminex system. For the assay two alternatives were considered as binding proteins, the Torpedo marmorata nicotinic acetylcholine receptor (nAChR) and the Lymnaea stagnalis acetylcholine binding protein (Ls-AChBP). A receptor-based inhibition assay was developed using the immobilization of nAChR or Ls-AChBP on the surface of carboxylated microspheres and the competition of cyclic imines with biotin-α-bungarotoxin (α-BTX) for binding to these proteins. The amount of biotin-α-BTX bound to the surface of the microspheres was quantified using phycoerythrin (PE)-labeled streptavidin and the fluorescence was analyzed in a Luminex 200 system. AChBP and nAChR bound to 13-desmethyl spirolide C efficiently; however the cross-reactivity profile of the nAChR for spirolides and gymnodimine more closely matched the relative toxic potencies reported for these toxins. The nAChR was selected for further assay development. A simple sample preparation protocol consisting of an extraction with acetone yielded a final extract with no matrix interference on the nAChR/microsphere-based assay for mussels, scallops and clams. This cyclic imine detection method allowed the detection of 13-desmethyl spirolide C in the range of 10–6000 μg/kg of shellfish meat, displaying a higher sensitivity and wider dynamic range than other receptor-based assays previously published. This microsphere-based assay provides a rapid, sensitive and easily performed screening method that could be multiplexed for the simultaneous detection of several marine toxins.
PMCID: PMC3597463  PMID: 23343192
microsphere-based assay; marine phycotoxins; spirolide; gymnodimine; nicotinic acetylcholine receptor; acetylcholine binding protein; α-bungarotoxin
16.  Blockade of Neuronal α7-nAChR by α-Conotoxin ImI Explained by Computational Scanning and Energy Calculations 
PLoS Computational Biology  2011;7(3):e1002011.
α-Conotoxins potently inhibit isoforms of nicotinic acetylcholine receptors (nAChRs), which are essential for neuronal and neuromuscular transmission. They are also used as neurochemical tools to study nAChR physiology and are being evaluated as drug leads to treat various neuronal disorders. A number of experimental studies have been performed to investigate the structure-activity relationships of conotoxin/nAChR complexes. However, the structural determinants of their binding interactions are still ambiguous in the absence of experimental structures of conotoxin-receptor complexes. In this study, the binding modes of α-conotoxin ImI to the α7-nAChR, currently the best-studied system experimentally, were investigated using comparative modeling and molecular dynamics simulations. The structures of more than 30 single point mutants of either the conotoxin or the receptor were modeled and analyzed. The models were used to explain qualitatively the change of affinities measured experimentally, including some nAChR positions located outside the binding site. Mutational energies were calculated using different methods that combine a conformational refinement procedure (minimization with a distance dependent dielectric constant or explicit water, or molecular dynamics using five restraint strategies) and a binding energy function (MM-GB/SA or MM-PB/SA). The protocol using explicit water energy minimization and MM-GB/SA gave the best correlations with experimental binding affinities, with an R2 value of 0.74. The van der Waals and non-polar desolvation components were found to be the main driving force for binding of the conotoxin to the nAChR. The electrostatic component was responsible for the selectivity of the various ImI mutants. Overall, this study provides novel insights into the binding mechanism of α-conotoxins to nAChRs and the methodological developments reported here open avenues for computational scanning studies of a rapidly expanding range of wild-type and chemically modified α-conotoxins.
Author Summary
Conotoxins are peptide toxins extracted from the venom of carnivorous marine cone snails. Members of the α-conotoxin subfamily potently block nicotinic acetylcholine receptors (nAChRs), which are involved in signal transmission between two neurons or between neurons and muscle fibers. nAChRs are important pharmacological targets due to their involvement in the transmission of pain stimuli and also in numerous neurone diseases and disorders. Their potency and specificity have led to the development of α-conotoxins as drug leads, and also to their use in the investigation of the role of nAChRs in various physiological processes. The most studied conotoxin/nAChR system, ImI/α7, was modeled in this study, and several computational methods were tested for their ability to explain the perturbations observed experimentally after introducing single point mutations into either ImI or the α7 receptor. The aim of this study was to establish a theoretical basis to rapidly identify new α-conotoxin mutants that might have improved specificity and affinity for a given receptor subtype. Furthermore, hundreds of thousands of conotoxins are predicted to exist, and computational methods are needed to help streamline the discovery of their molecular targets.
PMCID: PMC3048385  PMID: 21390272
17.  Spectroscopic Analysis of Benzylidene Anabaseine Complexes with Acetylcholine Binding Proteins as Models for Ligand–Nicotinic Receptor Interactions† 
Biochemistry  2006;45(29):8894-8902.
The discovery of the acetylcholine binding proteins (AChBPs) has provided critical soluble surrogates for examining structure and ligand interactions with nicotinic receptors and related pentameric ligand-gated ion channels. The multiple marine and freshwater sources of AChBP constitute a protein family with substantial sequence divergence and selectivity in ligand recognition for analyzing structure–activity relationships. The purification of AChBP in substantial quantities in the absence of a detergent enables one to conduct spectroscopic studies of the ligand–AChBP complexes. To this end, we have examined the interaction of a congeneric series of benzylidene-ring substituted anabaseines with AChBPs from Lymnaea, Aplysia, and Bulinus species and correlated their binding energetics with spectroscopic changes associated with ligand binding. The anabaseines display agonist activity on the α7 nicotinic receptor, a homomeric receptor with sequences similar to those of the AChBPs. Substituted anabaseines show absorbance and fluorescence properties sensitive to the protonation state, relative permittivity (dielectric constant), and the polarizability of the surrounding solvent or the proximal residues in the binding site. Absorbance difference spectra reveal that a single protonation state of the ligand binds to AChBP and that the bound ligand experiences a solvent environment with a high degree of polarizability. Changes in the fluorescence quantum yield of the bound ligand reflect the rigidification of the ring system of the bound ligand. Hence, the spectral properties of the bound ligand allow a description of the electronic character of the bound state of the ligand within its aromatic binding pocket and provide information complementary to that of crystal structures in defining the determinants of interaction.
PMCID: PMC3222595  PMID: 16846232
18.  Acetylcholine Promotes Binding of α-Conotoxin MII for α3β2 Nicotinic Acetylcholine Receptors 
α-Conotoxin MII (α-CTxMII) is a 16 amino acid peptide with the sequence GCCSNPVCHLEHSNLC containing disulfide bonds between Cys2-Cys8 and Cys3-Cys16. This peptide, isolated from the venom of the marine cone snail Conus magus, is a potent and selective antagonist of neuronal nicotinic acetylcholine receptors (nAChRs). To evaluate the impact of channel-ligand interactions on ligand binding affinity, homology models of the heteropentameric α3β2-nAChR were constructed. The models were created in MODELLER using crystal structures of the Torpedo marmorata-nAChR (Tm-nAChR, PDB ID: 2BG9) and the Aplysia californica-acetylcholine binding protein (Ac-AChBP, PDB ID: 2BR8) as templates for the α3 and β2 subunit isoforms derived from rat neuronal nAChR primary amino acid sequences. Molecular docking calculations were performed with AutoDock to evaluate interactions of the heteropentameric nAChR homology models with the ligands acetylcholine (ACh) and α-CTxMII. The nAChR homology models described here bind ACh with commensurate binding energies to previously reported systems, and identify critical interactions that facilitate both ACh and α-CTxMII ligand binding. The docking calculations revealed an increased binding affinity of the α3β2-nAChR for α-CTxMII with ACh bound to the receptor, which was confirmed through two-electrode voltage clamp experiments on oocytes from Xenopus laevis. These findings provide insights into the inhibition and mechanism of electrostatically driven antagonist properties of the α-CTxMIIs on nAChRs.
PMCID: PMC4035485  PMID: 24420650
AutoDock; Conotoxin; Homology Modeling; Nicotinic Acetylcholine Receptor; Two-Electrode Voltage Clamp
19.  Molecular Recognition of the Neurotransmitter Acetylcholine by an Acetylcholine Binding Protein Reveals Determinants of Binding to Nicotinic Acetylcholine Receptors 
PLoS ONE  2014;9(3):e91232.
Despite extensive studies on nicotinic acetylcholine receptors (nAChRs) and homologues, details of acetylcholine binding are not completely resolved. Here, we report the crystal structure of acetylcholine bound to the receptor homologue acetylcholine binding protein from Lymnaea stagnalis. This is the first structure of acetylcholine in a binding pocket containing all five aromatic residues conserved in all mammalian nAChRs. The ligand-protein interactions are characterized by contacts to the aromatic box formed primarily by residues on the principal side of the intersubunit binding interface (residues Tyr89, Trp143 and Tyr185). Besides these interactions on the principal side, we observe a cation-π interaction between acetylcholine and Trp53 on the complementary side and a water-mediated hydrogen bond from acetylcholine to backbone atoms of Leu102 and Met114, both of importance for anchoring acetylcholine to the complementary side. To further study the role of Trp53, we mutated the corresponding tryptophan in the two different acetylcholine-binding interfaces of the widespread α4β2 nAChR, i.e. the interfaces α4(+)β2(−) and α4(+)α4(−). Mutation to alanine (W82A on the β2 subunit or W88A on the α4 subunit) significantly altered the response to acetylcholine measured by oocyte voltage-clamp electrophysiology in both interfaces. This shows that the conserved tryptophan residue is important for the effects of ACh at α4β2 nAChRs, as also indicated by the crystal structure. The results add important details to the understanding of how this neurotransmitter exerts its action and improves the foundation for rational drug design targeting these receptors.
PMCID: PMC3956608  PMID: 24637639
20.  The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori 
BMC Genomics  2007;8:324.
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic cholinergic transmission in the insect central nervous system. The insect nAChR is the molecular target of a class of insecticides, neonicotinoids. Like mammalian nAChRs, insect nAChRs are considered to be made up of five subunits, coded by homologous genes belonging to the same family. The nAChR subunit genes of Drosophila melanogaster, Apis mellifera and Anopheles gambiae have been cloned previously based on their genome sequences. The silkworm Bombyx mori is a model insect of Lepidoptera, among which are many agricultural pests. Identification and characterization of B. mori nAChR genes could provide valuable basic information for this important family of receptor genes and for the study of the molecular mechanisms of neonicotinoid action and resistance.
We searched the genome sequence database of B. mori with the fruit fly and honeybee nAChRs by tBlastn and cloned all putative silkworm nAChR cDNAs by reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) methods. B. mori appears to have the largest known insect nAChR gene family to date, including nine α-type subunits and three β-type subunits. The silkworm possesses three genes having low identity with others, including one α and two β subunits, α9, β2 and β3. Like the fruit fly and honeybee counterparts, silkworm nAChR gene α6 has RNA-editing sites, and α4, α6 and α8 undergo alternative splicing. In particular, alternative exon 7 of Bmα8 may have arisen from a recent duplication event. Truncated transcripts were found for Bmα4 and Bmα5.
B. mori possesses a largest known insect nAChR gene family characterized to date, including nine α-type subunits and three β-type subunits. RNA-editing, alternative splicing and truncated transcripts were found in several subunit genes, which might enhance the diversity of the gene family.
PMCID: PMC2045683  PMID: 17868469
21.  Structural Characterization of Binding Mode of Smoking Cessation Drugs to Nicotinic Acetylcholine Receptors through Study of Ligand Complexes with Acetylcholine-binding Protein* 
The Journal of Biological Chemistry  2012;287(28):23283-23293.
Background: Cytisine and varenicline are smoking cessation drugs binding to nicotinic receptors (nAChRs).
Results: We studied crystal structures of cytisine and varenicline with AChBP and analyzed binding of α4β2-like or α7-like AChBP mutants to cytisine.
Conclusion: Ligand selectivity relies on residues beyond the binding site primary shell.
Significance: These structures will contribute to designing novel compounds targeting specific nAChR subtypes.
Smoking cessation is an important aim in public health worldwide as tobacco smoking causes many preventable deaths. Addiction to tobacco smoking results from the binding of nicotine to nicotinic acetylcholine receptors (nAChRs) in the brain, in particular the α4β2 receptor. One way to aid smoking cessation is by the use of nicotine replacement therapies or partial nAChR agonists like cytisine or varenicline. Here we present the co-crystal structures of cytisine and varenicline in complex with Aplysia californica acetylcholine-binding protein and use these as models to investigate binding of these ligands binding to nAChRs. This analysis of the binding properties of these two partial agonists provides insight into differences with nicotine binding to nAChRs. A mutational analysis reveals that the residues conveying subtype selectivity in nAChRs reside on the binding site complementary face and include features extending beyond the first shell of contacting residues.
PMCID: PMC3390607  PMID: 22553201
Crystal Structure; Cys-loop Receptors; Ion Channels; Ligand-binding Protein; Nicotinic Acetylcholine Receptors; Acetylcholine-binding Protein; α4β2-selective Ligands; Cytisine; Varenicline
22.  Insights into the Structural Determinants Required for High Affinity Binding of Chiral Cyclopropane-Containing Ligands to α4β2-Nicotinic Acetylcholine Receptors; An Integrated Approach to Behaviorally Active Nicotinic Ligands 
Journal of medicinal chemistry  2012;55(18):8028-8037.
Structure-based drug design can potentially accelerate the development of new therapeutics. In this study, a co-crystal structure of the acetylcholine binding protein (AChBP) from Capitella teleta (Ct) in complex with a cyclopropane-containing, selective α4β2-nicotinic acetylcholine receptor (nAChR) partial agonist (compound 5) was acquired. The structural determinants required for ligand binding obtained from this AChBP X-ray structure were used to refine our previous model of the human α4β2-nAChR, thus possibly providing a better understanding of the structure of the human receptor. In order to validate the potential application of the structure of the Ct-AChBP in the engineering of new α4β2-nAChR ligands, homology modeling methods, combined with in silico ADME calculations, were used to design analogs of compound 5. The most promising compound 12, exhibited an improved metabolic stability in comparison to the parent compound 5 while retaining favorable pharmacological parameters together with appropriate behavioral endpoints in the rodent studies.
PMCID: PMC3464052  PMID: 22928944
23.  Ligand-binding domain of an α7-nicotinic receptor chimera and its complex with agonist 
Nature neuroscience  2011;14(10):1253-1259.
The α7 acetylcholine receptor (AChR) mediates pre- and postsynaptic neurotransmission in the central nervous system and is a potential therapeutic target in neurodegenerative, neuropsychiatric and inflammatory disorders. We determined the crystal structure of the extracellular domain of a receptor chimera constructed from the human α7 AChR and Lymnaea stagnalis acetylcholine binding protein (AChBP), which shares 64% sequence identity and 71% similarity with native α7. We also determined the structure with bound epibatidine, a potent AChR agonist. Comparison of the structures revealed molecular rearrangements and interactions that mediate agonist recognition and early steps in signal transduction in α7 AChRs. The structures further revealed a ring of negative charge within the central vestibule, poised to contribute to cation selectivity. Structure-guided mutational studies disclosed distinctive contributions to agonist recognition and signal transduction in α7 AChRs. The structures provide a realistic template for structure-aided drug design and for defining structure–function relationships of α7 AChRs.
PMCID: PMC3489043  PMID: 21909087
24.  Targeted Molecular Dynamics Study of C-Loop Closure and Channel Gating in Nicotinic Receptors 
PLoS Computational Biology  2006;2(9):e134.
The initial coupling between ligand binding and channel gating in the human α7 nicotinic acetylcholine receptor (nAChR) has been investigated with targeted molecular dynamics (TMD) simulation. During the simulation, eight residues at the tip of the C-loop in two alternating subunits were forced to move toward a ligand-bound conformation as captured in the crystallographic structure of acetylcholine binding protein (AChBP) in complex with carbamoylcholine. Comparison of apo- and ligand-bound AChBP structures shows only minor rearrangements distal from the ligand-binding site. In contrast, comparison of apo and TMD simulation structures of the nAChR reveals significant changes toward the bottom of the ligand-binding domain. These structural rearrangements are subsequently translated to the pore domain, leading to a partly open channel within 4 ns of TMD simulation. Furthermore, we confirmed that two highly conserved residue pairs, one located near the ligand-binding pocket (Lys145 and Tyr188), and the other located toward the bottom of the ligand-binding domain (Arg206 and Glu45), are likely to play important roles in coupling agonist binding to channel gating. Overall, our simulations suggest that gating movements of the α7 receptor may involve relatively small structural changes within the ligand-binding domain, implying that the gating transition is energy-efficient and can be easily modulated by agonist binding/unbinding.
Nicotinic acetylcholine receptors are ligand-gated ion channels responsible for neurotransmitter-mediated signal transduction at synapses throughout the central and peripheral nervous systems. Binding of neurotransmitter molecules to subunit interfaces in the N-terminal extracellular domain induces structural rearrangements of the membrane-spanning domain permitting the influx of cations. A full understanding of how the conformational changes propagate from the ligand-binding site to the pore domain is of great interest to biologists, yet remains to be established. Using a special simulation technique known as targeted molecular dynamics, Cheng and colleagues probed the early stages of ligand-induced conformational rearrangements that may lead to channel opening. During the simulation, Cheng et al. observed a sequence of conformational changes that stem from the ligand-binding site to the transmembrane domain resulting in a wider channel. From these results, they suggest that gating movements may entail only small structural changes in the ligand-binding domain, implying that channel gating is energy-efficient and can readily be modulated by the binding/unbinding of agonist molecules.
PMCID: PMC1584325  PMID: 17009865
25.  Efficient Expression of Acetylcholine-Binding Protein from Aplysia californica in Bac-to-Bac System 
BioMed Research International  2014;2014:691480.
The Bac-to-Bac baculovirus expression system can efficiently produce recombinant proteins, but the system may have to be optimized to achieve high-level expression for different candidate proteins. We reported here the efficient expression of acetylcholine-binding proteins from sea hares Aplysia californica (Ac-AChBP) and a convenient method to monitor protein expression level in this expression system. Three key factors affecting expression of Ac-AChBP were optimized for maximizing the yield, which included the cell density, volume of the infecting baculovirus inoculums, and the culturing time of postinfection. We have found it to reach a high yield of ∼5 mg/L, which needs 55 h incubation after infection at the cell density of 2 × 106 cells/mL with an inoculum volume ratio of 1 : 100. The optimized expression system in this study was also applied for expressing another protein Ls-AChBP from Lymnaea stagnalis successfully. Therefore, this established method is helpful to produce high yields of AChBP proteins for X-ray crystallographic structural and functional studies.
PMCID: PMC4127255  PMID: 25136612

Results 1-25 (589980)