PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1142825)

Clipboard (0)
None

Related Articles

1.  Combining Information from Common Type 2 Diabetes Risk Polymorphisms Improves Disease Prediction 
PLoS Medicine  2006;3(10):e374.
Background
A limited number of studies have assessed the risk of common diseases when combining information from several predisposing polymorphisms. In most cases, individual polymorphisms only moderately increase risk (~20%), and they are thought to be unhelpful in assessing individuals' risk clinically. The value of analyzing multiple alleles simultaneously is not well studied. This is often because, for any given disease, very few common risk alleles have been confirmed.
Methods and Findings
Three common variants (Lys23 of KCNJ11, Pro12 of PPARG, and the T allele at rs7903146 of TCF7L2) have been shown to predispose to type 2 diabetes mellitus across many large studies. Risk allele frequencies ranged from 0.30 to 0.88 in controls. To assess the combined effect of multiple susceptibility alleles, we genotyped these variants in a large case-control study (3,668 controls versus 2,409 cases). Individual allele odds ratios (ORs) ranged from 1.14 (95% confidence interval [CI], 1.05 to 1.23) to 1.48 (95% CI, 1.36 to 1.60). We found no evidence of gene-gene interaction, and the risks of multiple alleles were consistent with a multiplicative model. Each additional risk allele increased the odds of type 2 diabetes by 1.28 (95% CI, 1.21 to 1.35) times. Participants with all six risk alleles had an OR of 5.71 (95% CI, 1.15 to 28.3) compared to those with no risk alleles. The 8.1% of participants that were double-homozygous for the risk alleles at TCF7L2 and Pro12Ala had an OR of 3.16 (95% CI, 2.22 to 4.50), compared to 4.3% with no TCF7L2 risk alleles and either no or one Glu23Lys or Pro12Ala risk alleles.
Conclusions
Combining information from several known common risk polymorphisms allows the identification of population subgroups with markedly differing risks of developing type 2 diabetes compared to those obtained using single polymorphisms. This approach may have a role in future preventative measures for common, polygenic diseases.
Combining information from several known common risk polymorphisms allows the identification of subgroups of the population with markedly differing risks of developing type 2 diabetes.
Editors' Summary
Background.
Diabetes is an important and increasingly common global health problem; the World Health Organization has estimated that about 170 million people currently have diabetes worldwide. One particular form, type 2 diabetes, develops when cells in the body become unable to respond to a hormone called insulin. Insulin is normally released by the pancreas and controls the ability of body cells to take in glucose (sugar). Therefore, when cells become insensitive to insulin as in people with type 2 diabetes, glucose levels in the body are not well controlled and may become dangerously high in the blood. These high levels can have long-term damaging effects on various organs in the body, particularly the eyes, nerves, heart, and kidneys. There are many different factors that affect whether someone is likely to develop type 2 diabetes. These factors can be broadly grouped into two categories: environmental and genetic. Environmental factors such as obesity, a diet high in sugar, and a sedentary lifestyle are all risk factors for developing type 2 diabetes in later life. Genetically, a number of variants in many different genes may affect the risk of developing the disease. Generally, these gene variants are common in human populations but each gene variant only mildly increases the risk that a person possessing it will get type 2 diabetes.
Why Was This Study Done?
The investigators performing this study wanted to understand how different gene variants combine to affect an individual's risk of getting type 2 diabetes. That is, if a person carries many different variants, does their overall risk increase a lot or only a little?
What Did the Researchers Do and Find?
First, the researchers surveyed the published reports to identify those gene variants for which there was strong evidence of an association with type 2 diabetes. They found mutations in three genes that had been shown reproducibly to be associated with type 2 diabetes in different studies: PPARG (whose product is involved in regulation of fat tissue), KCNJ11 (whose product is involved in insulin production), and TCF7L2 (whose product is thought to be involved in controlling sugar levels). Then, they compared two groups of white people in the UK: 2,409 people with type 2 diabetes (“cases”), and 3,668 people from the general population (“controls”). The researchers compared the two groups to see which individuals possessed which gene variants, and did statistical testing to work out to what extent having particular combinations of the gene variants affected an individual's chance of being a “case” versus a “control.” Their results showed that in the groups studied, having an ever-increasing number of gene variants increased the risk of developing diabetes. The risk that someone with none of the gene variants would develop type 2 diabetes was about 2%, while the chance for someone with all gene variants was about10%.
What Do These Findings Mean?
These results show that the risk of developing type 2 diabetes is greater if an individual possesses all of the gene variants that were examined in this study. The analysis also suggests that using information on all three variants, rather than just one, is likely to be more accurate in predicting future risk. How this genetic information should be used alongside other well-known preventative measures such as altered lifestyle requires further study.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030374.
NHS Direct patient information on diabetes
National Diabetes Information Clearinghouse information on type 2 diabetes
World Health Organization Diabetes Programme
Centers for Disease ControlDiabetes Public Health Resource
doi:10.1371/journal.pmed.0030374
PMCID: PMC1584415  PMID: 17020404
2.  Gene-Lifestyle Interaction and Type 2 Diabetes: The EPIC InterAct Case-Cohort Study 
PLoS Medicine  2014;11(5):e1001647.
In this study, Wareham and colleagues quantified the combined effects of genetic and lifestyle factors on risk of T2D in order to inform strategies for prevention. The authors found that the relative effect of a type 2 diabetes genetic risk score is greater in younger and leaner participants, and the high absolute risk associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Please see later in the article for the Editors' Summary
Background
Understanding of the genetic basis of type 2 diabetes (T2D) has progressed rapidly, but the interactions between common genetic variants and lifestyle risk factors have not been systematically investigated in studies with adequate statistical power. Therefore, we aimed to quantify the combined effects of genetic and lifestyle factors on risk of T2D in order to inform strategies for prevention.
Methods and Findings
The InterAct study includes 12,403 incident T2D cases and a representative sub-cohort of 16,154 individuals from a cohort of 340,234 European participants with 3.99 million person-years of follow-up. We studied the combined effects of an additive genetic T2D risk score and modifiable and non-modifiable risk factors using Prentice-weighted Cox regression and random effects meta-analysis methods. The effect of the genetic score was significantly greater in younger individuals (p for interaction  = 1.20×10−4). Relative genetic risk (per standard deviation [4.4 risk alleles]) was also larger in participants who were leaner, both in terms of body mass index (p for interaction  = 1.50×10−3) and waist circumference (p for interaction  = 7.49×10−9). Examination of absolute risks by strata showed the importance of obesity for T2D risk. The 10-y cumulative incidence of T2D rose from 0.25% to 0.89% across extreme quartiles of the genetic score in normal weight individuals, compared to 4.22% to 7.99% in obese individuals. We detected no significant interactions between the genetic score and sex, diabetes family history, physical activity, or dietary habits assessed by a Mediterranean diet score.
Conclusions
The relative effect of a T2D genetic risk score is greater in younger and leaner participants. However, this sub-group is at low absolute risk and would not be a logical target for preventive interventions. The high absolute risk associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Worldwide, more than 380 million people currently have diabetes, and the condition is becoming increasingly common. Diabetes is characterized by high levels of glucose (sugar) in the blood. Blood sugar levels are usually controlled by insulin, a hormone released by the pancreas after meals (digestion of food produces glucose). In people with type 2 diabetes (the commonest type of diabetes), blood sugar control fails because the fat and muscle cells that normally respond to insulin by removing excess sugar from the blood become less responsive to insulin. Type 2 diabetes can often initially be controlled with diet and exercise (lifestyle changes) and with antidiabetic drugs such as metformin and sulfonylureas, but patients may eventually need insulin injections to control their blood sugar levels. Long-term complications of diabetes, which include an increased risk of heart disease and stroke, reduce the life expectancy of people with diabetes by about ten years compared to people without diabetes.
Why Was This Study Done?
Type 2 diabetes is thought to originate from the interplay between genetic and lifestyle factors. But although rapid progress is being made in understanding the genetic basis of type 2 diabetes, it is not known whether the consequences of adverse lifestyles (for example, being overweight and/or physically inactive) differ according to an individual's underlying genetic risk of diabetes. It is important to investigate this question to inform strategies for prevention. If, for example, obese individuals with a high level of genetic risk have a higher risk of developing diabetes than obese individuals with a low level of genetic risk, then preventative strategies that target lifestyle interventions to obese individuals with a high genetic risk would be more effective than strategies that target all obese individuals. In this case-cohort study, researchers from the InterAct consortium quantify the combined effects of genetic and lifestyle factors on the risk of type 2 diabetes. A case-cohort study measures exposure to potential risk factors in a group (cohort) of people and compares the occurrence of these risk factors in people who later develop the disease with those who remain disease free.
What Did the Researchers Do and Find?
The InterAct study involves 12,403 middle-aged individuals who developed type 2 diabetes after enrollment (incident cases) into the European Prospective Investigation into Cancer and Nutrition (EPIC) and a sub-cohort of 16,154 EPIC participants. The researchers calculated a genetic type 2 diabetes risk score for most of these individuals by determining which of 49 gene variants associated with type 2 diabetes each person carried, and collected baseline information about exposure to lifestyle risk factors for type 2 diabetes. They then used various statistical approaches to examine the combined effects of the genetic risk score and lifestyle factors on diabetes development. The effect of the genetic score was greater in younger individuals than in older individuals and greater in leaner participants than in participants with larger amounts of body fat. The absolute risk of type 2 diabetes, expressed as the ten-year cumulative incidence of type 2 diabetes (the percentage of participants who developed diabetes over a ten-year period) increased with increasing genetic score in normal weight individuals from 0.25% in people with the lowest genetic risk scores to 0.89% in those with the highest scores; in obese people, the ten-year cumulative incidence rose from 4.22% to 7.99% with increasing genetic risk score.
What Do These Findings Mean?
These findings show that in this middle-aged cohort, the relative association with type 2 diabetes of a genetic risk score comprised of a large number of gene variants is greatest in individuals who are younger and leaner at baseline. This finding may in part reflect the methods used to originally identify gene variants associated with type 2 diabetes, and future investigations that include other genetic variants, other lifestyle factors, and individuals living in other settings should be undertaken to confirm this finding. Importantly, however, this study shows that young, lean individuals with a high genetic risk score have a low absolute risk of developing type 2 diabetes. Thus, this sub-group of individuals is not a logical target for preventative interventions. Rather, suggest the researchers, the high absolute risk of type 2 diabetes associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001647.
The US National Diabetes Information Clearinghouse provides information about diabetes for patients, health-care professionals and the general public, including detailed information on diabetes prevention (in English and Spanish)
The UK National Health Service Choices website provides information for patients and carers about type 2 diabetes and about living with diabetes; it also provides people's stories about diabetes
The charity Diabetes UK provides detailed information for patients and carers in several languages, including information on healthy lifestyles for people with diabetes
The UK-based non-profit organization Healthtalkonline has interviews with people about their experiences of diabetes
The Genetic Landscape of Diabetes is published by the US National Center for Biotechnology Information
More information on the InterAct study is available
MedlinePlus provides links to further resources and advice about diabetes and diabetes prevention (in English and Spanish)
doi:10.1371/journal.pmed.1001647
PMCID: PMC4028183  PMID: 24845081
3.  The Effect of Elevated Body Mass Index on Ischemic Heart Disease Risk: Causal Estimates from a Mendelian Randomisation Approach 
PLoS Medicine  2012;9(5):e1001212.
A Mendelian randomization analysis conducted by Børge G. Nordestgaard and colleagues using data from observational studies supports a causal relationship between body mass index and risk for ischemic heart disease.
Background
Adiposity, assessed as elevated body mass index (BMI), is associated with increased risk of ischemic heart disease (IHD); however, whether this is causal is unknown. We tested the hypothesis that positive observational associations between BMI and IHD are causal.
Methods and Findings
In 75,627 individuals taken from two population-based and one case-control study in Copenhagen, we measured BMI, ascertained 11,056 IHD events, and genotyped FTO(rs9939609), MC4R(rs17782313), and TMEM18(rs6548238). Using genotypes as a combined allele score in instrumental variable analyses, the causal odds ratio (OR) between BMI and IHD was estimated and compared with observational estimates. The allele score-BMI and the allele score-IHD associations used to estimate the causal OR were also calculated individually. In observational analyses the OR for IHD was 1.26 (95% CI 1.19–1.34) for every 4 kg/m2 increase in BMI. A one-unit allele score increase associated with a 0.28 kg/m2 (95 CI% 0.20–0.36) increase in BMI and an OR for IHD of 1.03 (95% CI 1.01–1.05) (corresponding to an average 1.68 kg/m2 BMI increase and 18% increase in the odds of IHD for those carrying all six BMI increasing alleles). In instrumental variable analysis using the same allele score the causal IHD OR for a 4 kg/m2 increase in BMI was 1.52 (95% CI 1.12–2.05).
Conclusions
For every 4 kg/m2 increase in BMI, observational estimates suggested a 26% increase in odds for IHD while causal estimates suggested a 52% increase. These data add evidence to support a causal link between increased BMI and IHD risk, though the mechanism may ultimately be through intermediate factors like hypertension, dyslipidemia, and type 2 diabetes. This work has important policy implications for public health, given the continuous nature of the BMI-IHD association and the modifiable nature of BMI. This analysis demonstrates the value of observational studies and their ability to provide unbiased results through inclusion of genetic data avoiding confounding, reverse causation, and bias.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Ischemic heart disease (IHD; also known as coronary heart disease) is the leading cause of death among adults in developed countries. In the US alone, IHD kills nearly half a million people every year. With age, fatty deposits (atherosclerotic plaques) build up in the walls of the coronary arteries, the blood vessels that supply the heart with oxygen and nutrients. The resultant reduction in the heart's blood supply causes shortness of breath, angina (chest pains that are usually relieved by rest), and potentially fatal heart attacks (myocardial infarctions). Risk factors for IHD include smoking, high blood pressure (hypertension), abnormal amounts of cholesterol and other fat in the blood (dyslipidemia), type 2 diabetes, and being overweight or obese (having excess body fat). Treatments for IHD include lifestyle changes (for example, losing weight) and medications that lower blood pressure and blood cholesterol levels. The narrowed arteries can also be widened using a device called a stent or surgically bypassed.
Why Was This Study Done?
Prospective observational studies have shown an association between a high body mass index (BMI, a measure of body fat that is calculated by dividing a person's weight in kilograms by their height in meters squared; a BMI greater than 30 kg/m2 indicates obesity) and an increased risk of IHD. Observational studies, which ask whether people who are exposed to a suspected risk factor develop a specific disease more often than people who are not exposed to the risk factor, cannot prove, however, that changes in BMI/adiposity cause IHD. Obese individuals may share other characteristics that cause both IHD and obesity (confounding) or, rather than obesity causing IHD, IHD may cause obesity (reverse causation). Here, the researchers use “Mendelian randomization” to examine whether elevations in BMI across the lifecourse have a causal impact on IHD risk. Three common genetic variants—FTO(rs9939609), MC4R(rs17782313), and TMEM18(rs6548238)—which have the largest single genetic variant associations with BMI were used in this study. Given that gene variants are inherited essentially randomly with respect to conventional confounding factors and are not subject reverse causation, use of these as instruments (or proxy measures) for variation in BMI as a risk factor (as opposed to measuring BMI directly) allows researchers to comment on whether obesity is causally involved in IHD.
What Did the Researchers Do and Find?
The researchers analyzed data from two population-based studies in which adults were physically examined and answered a lifestyle questionnaire before being followed to see how many developed IDH. They also analyzed data from a case-control study on IDH (in a case-control study, people with a disease are matched with similar people without the disease and the occurrence of risk factors in the patients and controls is compared). Overall, the researchers measured the BMI of 75,627 white individuals, among whom 11,056 already had IDH or developed it, and determined which of the BMI-increasing genetic variants each participant carried. On the basis of the observational data, every 4 kg/m2 increase in BMI increased the odds of IDH by 26% (an odds ratio of 1.26). Using a score derived from the combination of the three genetic variants, the researchers confirmed an association between each BMI increasing allele and both BMI (as expected) and IHD (0.28 kg/m2 and an odds ratio for IHD of 1.03, respectively). On average, compared to people carrying no BMI-increasing gene variants, people carrying six BMI-increasing gene variants had a 1.68 kg/m2 increase in BMI and an 18% increase in IHD risk. To extend this and to essentially reassess the original, observational, relationship between BMI and IHD risk, an “instrumental variable analysis” was used to examine the causal effect of a lifetime change in BMI on the risk of IDH. In this, it was found that for every 4 kg/m2 increase in BMI increased the odds of IDH by 52%.
What Do These Findings Mean?
These findings support a causal link between increased BMI and IDH risk, although it may be that BMI affects IDH through intermediate factors such as hypertension, dyslipidemia, and diabetes. The findings also show that observational studies into the impact of elevated BMI on IHD risk were consistent with this, but also that the inclusion of genetic data increases the value of observational studies by making it possible to avoid issues such as confounding and reverse causation. Finally, these findings and those of recent, observational studies have important implications for public-health policy because they show that the association between BMI (which is modifiable by lifestyle changes) and IHD is continuous. That is, any increase in BMI increases the risk of IHD; there is no threshold below which a BMI increase has no effect on IDH risk. Thus, public-health policies that aim to reduce BMI by even moderate levels could substantially reduce the occurrence of IDH in populations.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001212.
The American Heart Association provides information about IHD and tips on keeping the heart healthy, including weight management; it also provides personal stories about IHD
The UK National Health Service Choices website provides information about IHD, including information on prevention and personal stories about IHD
Information is available from the British Heart Foundation on heart disease and keeping the heart healthy
The US National Heart Lung and Blood Institute also provides information on IHD (in English and Spanish)
MedlinePlus provides links to many other sources of information on IHD (in English and Spanish)
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.1001212
PMCID: PMC3341326  PMID: 22563304
4.  Mendelian Randomization Study of B-Type Natriuretic Peptide and Type 2 Diabetes: Evidence of Causal Association from Population Studies 
PLoS Medicine  2011;8(10):e1001112.
Using mendelian randomization, Roman Pfister and colleagues demonstrate a potentially causal link between low levels of B-type natriuretic peptide (BNP), a hormone released by damaged hearts, and the development of type 2 diabetes.
Background
Genetic and epidemiological evidence suggests an inverse association between B-type natriuretic peptide (BNP) levels in blood and risk of type 2 diabetes (T2D), but the prospective association of BNP with T2D is uncertain, and it is unclear whether the association is confounded.
Methods and Findings
We analysed the association between levels of the N-terminal fragment of pro-BNP (NT-pro-BNP) in blood and risk of incident T2D in a prospective case-cohort study and genotyped the variant rs198389 within the BNP locus in three T2D case-control studies. We combined our results with existing data in a meta-analysis of 11 case-control studies. Using a Mendelian randomization approach, we compared the observed association between rs198389 and T2D to that expected from the NT-pro-BNP level to T2D association and the NT-pro-BNP difference per C allele of rs198389. In participants of our case-cohort study who were free of T2D and cardiovascular disease at baseline, we observed a 21% (95% CI 3%–36%) decreased risk of incident T2D per one standard deviation (SD) higher log-transformed NT-pro-BNP levels in analysis adjusted for age, sex, body mass index, systolic blood pressure, smoking, family history of T2D, history of hypertension, and levels of triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. The association between rs198389 and T2D observed in case-control studies (odds ratio = 0.94 per C allele, 95% CI 0.91–0.97) was similar to that expected (0.96, 0.93–0.98) based on the pooled estimate for the log-NT-pro-BNP level to T2D association derived from a meta-analysis of our study and published data (hazard ratio = 0.82 per SD, 0.74–0.90) and the difference in NT-pro-BNP levels (0.22 SD, 0.15–0.29) per C allele of rs198389. No significant associations were observed between the rs198389 genotype and potential confounders.
Conclusions
Our results provide evidence for a potential causal role of the BNP system in the aetiology of T2D. Further studies are needed to investigate the mechanisms underlying this association and possibilities for preventive interventions.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Worldwide, nearly 250 million people have diabetes, and this number is increasing rapidly. Diabetes is characterized by dangerous amounts of sugar (glucose) in the blood. Blood sugar levels are normally controlled by insulin, a hormone that the pancreas releases after meals (digestion of food produces glucose). In people with type 2 diabetes (the most common form of diabetes), blood sugar control fails because the fat and muscle cells that usually respond to insulin by removing sugar from the blood become insulin resistant. Type 2 diabetes can be controlled with diet and exercise, and with drugs that help the pancreas make more insulin or that make cells more sensitive to insulin. The long-term complications of diabetes, which include kidney failure and an increased risk of cardiovascular problems such as heart disease and stroke, reduce the life expectancy of people with diabetes by about 10 years compared to people without diabetes.
Why Was This Study Done?
Because the causes of type 2 diabetes are poorly understood, it is hard to devise ways to prevent the condition. Recently, B-type natriuretic peptide (BNP, a hormone released by damaged hearts) has been implicated in type 2 diabetes development in cross-sectional studies (investigations in which data are collected at a single time point from a population to look for associations between an illness and potential risk factors). Although these studies suggest that high levels of BNP may protect against type 2 diabetes, they cannot prove a causal link between BNP levels and diabetes because the study participants with low BNP levels may share some another unknown factor (a confounding factor) that is the real cause of both diabetes and altered BNP levels. Here, the researchers use an approach called “Mendelian randomization” to examine whether reduced BNP levels contribute to causing type 2 diabetes. It is known that a common genetic variant (rs198389) within the genome region that encodes BNP is associated with a reduced risk of type 2 diabetes. Because gene variants are inherited randomly, they are not subject to confounding. So, by investigating the association between BNP gene variants that alter NT-pro-BNP (a molecule created when BNP is being produced) levels and the development of type 2 diabetes, the researchers can discover whether BNP is causally involved in this chronic condition.
What Did the Researchers Do and Find?
The researchers analyzed the association between blood levels of NT-pro-BNP at baseline in 440 participants of the EPIC-Norfolk study (a prospective population-based study of lifestyle factors and the risk of chronic diseases) who subsequently developed diabetes and in 740 participants who did not develop diabetes. In this prospective case-cohort study, the risk of developing type 2 diabetes was associated with lower NT-pro-BNP levels. They also genotyped (sequenced) rs198389 in the participants of three case-control studies of type 2 diabetes (studies in which potential risk factors for type 2 diabetes were examined in people with type 2 diabetes and matched controls living in the East of England), and combined these results with those of eight similar published case-control studies. Finally, the researchers showed that the association between rs198389 and type 2 diabetes measured in the case-control studies was similar to the expected association calculated from the association between NT-pro-BNP level and type 2 diabetes obtained from the prospective case-cohort study and the association between rs198389 and BNP levels obtained from the EPIC-Norfolk study and other published studies.
What Do These Findings Mean?
The results of this Mendelian randomization study provide evidence for a causal, protective role of the BNP hormone system in the development of type 2 diabetes. That is, these findings suggest that low levels of BNP are partly responsible for the development of type 2 diabetes. Because the participants in all the individual studies included in this analysis were of European descent, these findings may not be generalizable to other ethnicities. Moreover, they provide no explanation of how alterations in the BNP hormone system might affect the development of type 2 diabetes. Nevertheless, the demonstration of a causal link between the BNP hormone system and type 2 diabetes suggests that BNP may be a potential target for interventions designed to prevent type 2 diabetes, particularly since the feasibility of altering BNP levels with drugs has already been proven in patients with cardiovascular disease.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001112.
The International Diabetes Federation provides information about all aspects of diabetes
The US National Diabetes Information Clearinghouse provides detailed information about diabetes for patients, health-care professionals, and the general public (in English and Spanish)
The UK National Health Service Choices website also provides information for patients and carers about type 2 diabetes and includes people's stories about diabetes
MedlinePlus provides links to further resources and advice about diabetes (in English and Spanish)
Wikipedia has pages on BNP and on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The charity Healthtalkonline has interviews with people about their experiences of diabetes; the charity Diabetes UK has a further selection of stories from people with diabetes
doi:10.1371/journal.pmed.1001112
PMCID: PMC3201934  PMID: 22039354
5.  Genetic Markers of Adult Obesity Risk Are Associated with Greater Early Infancy Weight Gain and Growth 
PLoS Medicine  2010;7(5):e1000284.
Ken Ong and colleagues genotyped children from the ALSPAC birth cohort and showed an association between greater early infancy gains in weight and length and genetic markers for adult obesity risk.
Background
Genome-wide studies have identified several common genetic variants that are robustly associated with adult obesity risk. Exploration of these genotype associations in children may provide insights into the timing of weight changes leading to adult obesity.
Methods and Findings
Children from the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort were genotyped for ten genetic variants previously associated with adult BMI. Eight variants that showed individual associations with childhood BMI (in/near: FTO, MC4R, TMEM18, GNPDA2, KCTD15, NEGR1, BDNF, and ETV5) were used to derive an “obesity-risk-allele score” comprising the total number of risk alleles (range: 2–15 alleles) in each child with complete genotype data (n = 7,146). Repeated measurements of weight, length/height, and body mass index from birth to age 11 years were expressed as standard deviation scores (SDS). Early infancy was defined as birth to age 6 weeks, and early infancy failure to thrive was defined as weight gain between below the 5th centile, adjusted for birth weight. The obesity-risk-allele score showed little association with birth weight (regression coefficient: 0.01 SDS per allele; 95% CI 0.00–0.02), but had an apparently much larger positive effect on early infancy weight gain (0.119 SDS/allele/year; 0.023–0.216) than on subsequent childhood weight gain (0.004 SDS/allele/year; 0.004–0.005). The obesity-risk-allele score was also positively associated with early infancy length gain (0.158 SDS/allele/year; 0.032–0.284) and with reduced risk of early infancy failure to thrive (odds ratio  = 0.92 per allele; 0.86–0.98; p = 0.009).
Conclusions
The use of robust genetic markers identified greater early infancy gains in weight and length as being on the pathway to adult obesity risk in a contemporary birth cohort.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
The proportion of overweight and obese children is increasing across the globe. In the US, the Surgeon General estimates that, compared with 1980, twice as many children and three times the number of adolescents are now overweight. Worldwide, 22 million children under five years old are considered by the World Health Organization to be overweight.
Being overweight or obese in childhood is associated with poor physical and mental health. In addition, childhood obesity is considered a major risk factor for adult obesity, which is itself a major risk factor for cancer, heart disease, diabetes, osteoarthritis, and other chronic conditions.
The most commonly used measure of whether an adult is a healthy weight is body mass index (BMI), defined as weight in kilograms/(height in metres)2. However, adult categories of obese (>30) and overweight (>25) BMI are not directly applicable to children, whose BMI naturally varies as they grow. BMI can be used to screen children for being overweight and or obese but a diagnosis requires further information.
Why Was This Study Done?
As the numbers of obese and overweight children increase, a corresponding rise in future numbers of overweight and obese adults is also expected. This in turn is expected to lead to an increasing incidence of poor health. As a result, there is great interest among health professionals in possible pathways between childhood and adult obesity. It has been proposed that certain periods in childhood may be critical for the development of obesity.
In the last few years, ten genetic variants have been found to be more common in overweight or obese adults. Eight of these have also been linked to childhood BMI and/or obesity. The authors wanted to identify the timing of childhood weight changes that may be associated with adult obesity. Knowledge of obesity risk genetic variants gave them an opportunity to do so now, without following a set of children to adulthood.
What Did the Researchers Do and Find?
The authors analysed data gathered from a subset of 7,146 singleton white European children enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC) study, which is investigating associations between genetics, lifestyle, and health outcomes for a group of children in Bristol whose due date of birth fell between April 1991 and December 1992. They used knowledge of the children's genetic makeup to find associations between an obesity risk allele score—a measure of how many of the obesity risk genetic variants a child possessed—and the children's weight, height, BMI, levels of body fat (at nine years old), and rate of weight gain, up to age 11 years.
They found that, at birth, children with a higher obesity risk allele score were not any heavier, but in the immediate postnatal period they were less likely to be in the bottom 5% of the population for weight gain (adjusted for birthweight), often termed “failure to thrive.” At six weeks of age, children with a higher obesity risk allele score tended to be longer and heavier, even allowing for weight at birth.
After six weeks of age, the obesity risk allele score was not associated with any further increase in length/height, but it was associated with a more rapid weight gain between birth and age 11 years. BMI is derived from height and weight measurements, and the association between the obesity risk allele score and BMI was weak between birth and age three-and-a-half years, but after that age the association with BMI increased rapidly. By age nine, children with a higher obesity risk allele score tended to be heavier and taller, with more fat on their bodies.
What Do These Findings Mean?
The combined obesity allele risk score is associated with higher rates of weight gain and adult obesity, and so the authors conclude that weight gain and growth even in the first few weeks after birth may be the beginning of a pathway of greater adult obesity risk.
A study that tracks a population over time can find associations but it cannot show cause and effect. In addition, only a relatively small proportion (1.7%) of the variation in BMI at nine years of age is explained by the obesity risk allele score.
The authors' method of finding associations between childhood events and adult outcomes via genetic markers of risk of disease as an adult has a significant advantage: the authors did not have to follow the children themselves to adulthood, so their findings are more likely to be relevant to current populations. Despite this, this research does not yield advice for parents how to reduce their children's obesity risk. It does suggest that “failure to thrive” in the first six weeks of life is not simply due to a lack of provision of food by the baby's caregiver but that genetic factors also contribute to early weight gain and growth.
The study looked at the combined obesity risk allele score and the authors did not attempt to identify which individual alleles have greater or weaker associations with weight gain and overweight or obesity. This would require further research based on far larger numbers of babies and children. The findings may also not be relevant to children in other types of setting because of the effects of different nutrition and lifestyles.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000284.
Further information is available on the ALSPAC study
The UK National Health Service and other partners provide guidance on establishing a healthy lifestyle for children and families in their Change4Life programme
The International Obesity Taskforce is a global network of expertise and the advocacy arm of the International Association for the Study of Obesity. It works with the World Health Organization, other NGOs, and stakeholders and provides information on overweight and obesity
The Centers for Disease Control and Prevention (CDC) in the US provide guidance and tips on maintaining a healthy weight, including BMI calculators in both metric and Imperial measurements for both adults and children. They also provide BMI growth charts for boys and girls showing how healthy ranges vary for each sex at with age
The Royal College of Paediatrics and Child Health provides growth charts for weight and length/height from birth to age 4 years that are based on WHO 2006 growth standards and have been adapted for use in the UK
The CDC Web site provides information on overweight and obesity in adults and children, including definitions, causes, and data
The CDC also provide information on the role of genes in causing obesity.
The World Health Organization publishes a fact sheet on obesity, overweight and weight management, including links to childhood overweight and obesity
Wikipedia includes an article on childhood obesity (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.1000284
PMCID: PMC2876048  PMID: 20520848
6.  Mendelian Randomization Studies Do Not Support a Role for Raised Circulating Triglyceride Levels Influencing Type 2 Diabetes, Glucose Levels, or Insulin Resistance 
Diabetes  2011;60(3):1008-1018.
OBJECTIVE
The causal nature of associations between circulating triglycerides, insulin resistance, and type 2 diabetes is unclear. We aimed to use Mendelian randomization to test the hypothesis that raised circulating triglyceride levels causally influence the risk of type 2 diabetes and raise normal fasting glucose levels and hepatic insulin resistance.
RESEARCH DESIGN AND METHODS
We tested 10 common genetic variants robustly associated with circulating triglyceride levels against the type 2 diabetes status in 5,637 case and 6,860 control subjects and four continuous outcomes (reflecting glycemia and hepatic insulin resistance) in 8,271 nondiabetic individuals from four studies.
RESULTS
Individuals carrying greater numbers of triglyceride-raising alleles had increased circulating triglyceride levels (SD 0.59 [95% CI 0.52–0.65] difference between the 20% of individuals with the most alleles and the 20% with the fewest alleles). There was no evidence that the carriers of greater numbers of triglyceride-raising alleles were at increased risk of type 2 diabetes (per weighted allele odds ratio [OR] 0.99 [95% CI 0.97–1.01]; P = 0.26). In nondiabetic individuals, there was no evidence that carriers of greater numbers of triglyceride-raising alleles had increased fasting insulin levels (SD 0.00 per weighted allele [95% CI −0.01 to 0.02]; P = 0.72) or increased fasting glucose levels (0.00 [−0.01 to 0.01]; P = 0.88). Instrumental variable analyses confirmed that genetically raised circulating triglyceride levels were not associated with increased diabetes risk, fasting glucose, or fasting insulin and, for diabetes, showed a trend toward a protective association (OR per 1-SD increase in log10 triglycerides: 0.61 [95% CI 0.45–0.83]; P = 0.002).
CONCLUSIONS
Genetically raised circulating triglyceride levels do not increase the risk of type 2 diabetes or raise fasting glucose or fasting insulin levels in nondiabetic individuals. One explanation for our results is that raised circulating triglycerides are predominantly secondary to the diabetes disease process rather than causal.
doi:10.2337/db10-1317
PMCID: PMC3046819  PMID: 21282362
7.  The Effect of Chromosome 9p21 Variants on Cardiovascular Disease May Be Modified by Dietary Intake: Evidence from a Case/Control and a Prospective Study 
PLoS Medicine  2011;8(10):e1001106.
Ron Do and colleagues find that a prudent diet high in raw vegetables may modify the increased genetic risk of cardiovascular disease conferred by the chromosome 9p21 SNP.
Background
One of the most robust genetic associations for cardiovascular disease (CVD) is the Chromosome 9p21 region. However, the interaction of this locus with environmental factors has not been extensively explored. We investigated the association of 9p21 with myocardial infarction (MI) in individuals of different ethnicities, and tested for an interaction with environmental factors.
Methods and Findings
We genotyped four 9p21 SNPs in 8,114 individuals from the global INTERHEART study. All four variants were associated with MI, with odds ratios (ORs) of 1.18 to 1.20 (1.85×10−8≤p≤5.21×10−7). A significant interaction (p = 4.0×10−4) was observed between rs2383206 and a factor-analysis-derived “prudent” diet pattern score, for which a major component was raw vegetables. An effect of 9p21 on MI was observed in the group with a low prudent diet score (OR = 1.32, p = 6.82×10−7), but the effect was diminished in a step-wise fashion in the medium (OR = 1.17, p = 4.9×10−3) and high prudent diet scoring groups (OR = 1.02, p = 0.68) (p = 0.014 for difference). We also analyzed data from 19,129 individuals (including 1,014 incident cases of CVD) from the prospective FINRISK study, which used a closely related dietary variable. In this analysis, the 9p21 risk allele demonstrated a larger effect on CVD risk in the groups with diets low or average for fresh vegetables, fruits, and berries (hazard ratio [HR] = 1.22, p = 3.0×10−4, and HR = 1.35, p = 4.1×10−3, respectively) compared to the group with high consumption of these foods (HR = 0.96, p = 0.73) (p = 0.0011 for difference). The combination of the least prudent diet and two copies of the risk allele was associated with a 2-fold increase in risk for MI (OR = 1.98, p = 2.11×10−9) in the INTERHEART study and a 1.66-fold increase in risk for CVD in the FINRISK study (HR = 1.66, p = 0.0026).
Conclusions
The risk of MI and CVD conferred by Chromosome 9p21 SNPs appears to be modified by a prudent diet high in raw vegetables and fruits.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Cardiovascular diseases (CVDs)—diseases that affect the heart and/or the blood vessels—are a leading cause of illness and death worldwide. In the United States, for example, the leading cause of death is coronary heart disease, a CVD in which narrowing of the heart's blood vessels by fatty deposits slows the blood supply to the heart and may eventually cause a heart attack (myocardial infarction, or MI); the third leading cause of death in the US is stroke, a CVD in which the brain's blood supply is interrupted. Environmental factors such as diet, physical activity, and smoking alter a person's risk of developing CVD. In addition, certain genetic variants (alterations in the DNA that forms the body's blueprint; DNA is packed into structures called chromosomes) alter the risk of developing CVD and are passed from parent to child. Thus, in CVD, as in most common diseases, both genetics and the environment play a role.
Why Was This Study Done?
Recent studies have identified several genetic variants that are associated with an increased risk of developing CVD. One of the most robust of these genetic associations is a cluster of single nucleotide polymorphisms (SNPs, differences in a single DNA building block) in a chromosomal region (locus) called 9p21. So far, this association has been mainly studied in European populations. Moreover, the interaction of this locus with environmental factors has not been extensively studied. A better understanding of how 9p21 variants affect CVD risk in people of different ethnicities and of the interaction between this locus and environmental factors could allow the development of targeted strategies for the prevention of CVD. In this study, the researchers investigate the association of 9p21 risk variants with CVD in people of different ethnicities and test for an interaction between this locus and environmental factors.
What Did the Researchers Do and Find?
The researchers assessed four 9p21 SNPs in people enrolled in the INTERHEART study, a global retrospective case-control study that investigated potential MI risk factors by comparing people who had had an acute non-fatal MI with similar people without heart disease. All four SNP risk variants increased the risk of MI by about a fifth. However, the effect of the SNPs on MI was influenced by the “prudent” diet pattern score of the INTERHEART participants, a score that includes fresh fruit and vegetable intake as recorded in food frequency questionnaires. That is, the risk of MI in people carrying SNP risk variants was influenced by their diet. The strongest interaction was seen with an SNP called rs2383206, but although rs2383206 carriers who ate a diet poor in fruits and vegetables had a higher risk of MI than people with a similar diet who did not carry this SNP, rs2383206 carriers and non-carriers who ate a fruit- and vegetable-rich diet had a comparable MI risk. Overall, the combination of the least “prudent” diet and two copies of the risk variant (human cells contain two complete sets of chromosomes) was associated with a two-fold increase in risk for MI in the INTERHEART study. Additionally, data collected in the FINRISK study, which characterized healthy individuals living in Finland at baseline and then followed them to see whether they developed CVD, revealed a similar interaction between diet and 9p21 SNPs.
What Do These Findings Mean?
These findings suggest that the risk of CVD conferred by chromosome 9p21 SNPs may be influenced by diet in multiple ethnic groups. Importantly, they suggest that the deleterious effect of 9p21 SNPs on CVD might be mitigated by consuming a diet rich in fresh fruits and vegetables. The accuracy of these findings may be affected by recall bias in the INTERHEART study (that is, some people may not have remembered their diet accurately) and by the small number of CVD cases in the FINRISK study. Nevertheless, these findings suggest that gene–environment interactions are important drivers of CVD, and they raise the possibility that a sound diet can mediate the effects of 9p21 SNPs.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001106.
The American Heart Association provides information about many types of cardiovascular disease for patients, caregivers, and professionals and tips on keeping the heart healthy
The UK National Health Service Choices website provides information about cardiovascular disease and stroke
Information is available from the British Heart Foundation on heart disease and keeping the heart healthy
The US National Heart Lung and Blood Institute provides information on a wide range of cardiovascular diseases
MedlinePlus provides links to many other sources of information on heart diseases, vascular diseases, and stroke (in English and Spanish)
The US Centers for Disease Control and Prevention has a simple fact sheet on gene-environment interactions; the US National Institute of Environmental Health Sciences provides links to other information on gene-environment interactions
More information is available on the INTERHEART study and on the FINRISK study
doi:10.1371/journal.pmed.1001106
PMCID: PMC3191151  PMID: 22022235
8.  Association Analysis of Variation in/Near FTO, CDKAL1, SLC30A8, HHEX, EXT2, IGF2BP2, LOC387761, and CDKN2B With Type 2 Diabetes and Related Quantitative Traits in Pima Indians 
Diabetes  2009;58(2):478-488.
OBJECTIVE—In recent genome-wide association studies, variants in CDKAL1, SLC30A8, HHEX, EXT2, IGF2BP2, CDKN2B, LOC387761, and FTO were associated with risk for type 2 diabetes in Caucasians. We investigated the association of these single nucleotide polymorphisms (SNPs) and some additional tag SNPs with type 2 diabetes and related quantitative traits in Pima Indians.
RESEARCH DESIGN AND METHODS—Forty-seven SNPs were genotyped in 3,501 Pima Indians informative for type 2 diabetes and BMI, among whom 370 had measures of quantitative traits.
RESULTS—FTO provided the strongest evidence for replication, where SNPs were associated with type 2 diabetes (odds ratio = 1.20 per copy of the risk allele, P = 0.03) and BMI (P = 0.002). None of the other previously reported SNPs were associated with type 2 diabetes; however, associations were found between CDKAL1 and HHEX variants and acute insulin response (AIR), where the Caucasian risk alleles for type 2 diabetes were associated with reduced insulin secretion in normoglycemic Pima Indians. Multiallelic analyses of carrying risk alleles for multiple genes showed correlations between number of risk alleles and type 2 diabetes and impaired insulin secretion in normoglycemic subjects (P = 0.006 and 0.0001 for type 2 diabetes and AIR, respectively), supporting the hypothesis that many of these genes influence diabetes risk by affecting insulin secretion.
CONCLUSIONS—Variation in FTO impacts BMI, but the implicated common variants in the other genes did not confer a significant risk for type 2 diabetes in Pima Indians. However, confidence intervals for their estimated effects were consistent with the small effects reported in Caucasians, and the multiallelic “genetic risk profile” identified in Caucasians is associated with diminished early insulin secretion in Pima Indians.
doi:10.2337/db08-0877
PMCID: PMC2628623  PMID: 19008344
9.  Genetic Variants of Diabetes Risk and Incident Cardiovascular Events in Chronic Coronary Artery Disease 
PLoS ONE  2011;6(1):e16341.
Objective
To determine whether information from genetic risk variants for diabetes is associated with cardiovascular events incidence.
Methods
From the about 30 known genes associated with diabetes, we genotyped single-nucleotide polymorphisms at the 10 loci most associated with type-2 diabetes in 425 subjects from the MASS-II Study, a randomized study in patients with multi-vessel coronary artery disease. The combined genetic information was evaluated by number of risk alleles for diabetes. Performance of genetic models relative to major cardiovascular events incidence was analyzed through Kaplan-Meier curve comparison and Cox Hazard Models and the discriminatory ability of models was assessed for cardiovascular events by calculating the area under the ROC curve.
Results
Genetic information was able to predict 5-year incidence of major cardiovascular events and overall-mortality in non-diabetic individuals, even after adjustment for potential confounders including fasting glycemia. Non-diabetic individuals with high genetic risk had a similar incidence of events then diabetic individuals (cumulative hazard of 33.0 versus 35.1% of diabetic subjects). The addition of combined genetic information to clinical predictors significantly improved the AUC for cardiovascular events incidence (AUC = 0.641 versus 0.610).
Conclusions
Combined information of genetic variants for diabetes risk is associated to major cardiovascular events incidence, including overall mortality, in non-diabetic individuals with coronary artery disease.
Clinical Trial Registration Information
Medicine, Angioplasty, or Surgery Study (MASS II). Unique identifier: ISRCTN66068876 URL.
doi:10.1371/journal.pone.0016341
PMCID: PMC3024434  PMID: 21283728
10.  Mendelian Randomization Studies do not Support a Role for Raised Circulating Triglyceride Levels influencing Type 2 Diabetes, Glucose Levels, or Insulin Resistance 
Diabetes  2011;60(3):1008-1018.
Objective
The causal nature of associations between circulating triglycerides, insulin resistance and type 2 diabetes is unclear. We aimed to use Mendelian randomization to test the hypothesis that raised circulating triglyceride levels causally influence the risk of type 2 diabetes, raised normal fasting glucose levels, and hepatic insulin resistance.
Research design and methods
We tested 10 common genetic variants robustly associated with circulating triglyceride levels against type 2 diabetes status in 5637 cases, 6860 controls, and four continuous outcomes (reflecting glycemia and hepatic insulin resistance) in 8271 non-diabetic individuals from four studies.
Results
Individuals carrying greater numbers of triglyceride-raising alleles had increased circulating triglyceride levels (0.59 SD [95% CI: 0.52, 0.65] difference between the 20% of individuals with the most alleles and the 20% with the fewest alleles). There was no evidence that carriers of greater numbers of triglyceride-raising alleles were at increased risk of type 2 diabetes (per weighted allele odds ratio (OR) 0.99 [95% CI: 0.97, 1.01]; P = 0.26). In non-diabetic individuals, there was no evidence that carriers of greater numbers of triglyceride-raising alleles had increased fasting insulin levels (0.00 SD per weighted allele [95% CI: −0.01, 0.02]; P = 0.72) or increased fasting glucose levels (0.00 SD per weighted allele [95% CI: −0.01, 0.01]; P = 0.88). Instrumental variable analyses confirmed that genetically raised circulating triglyceride levels were not associated with increased diabetes risk, fasting glucose or fasting insulin, and, for diabetes, showed a trend towards a protective association (OR per 1 SD increase in log10-triglycerides: 0.61 [95% CI: 0.45, 0.83]; P = 0.002).
Conclusion
Genetically raised circulating triglyceride levels do not increase the risk of type 2 diabetes, or raise fasting glucose or fasting insulin levels in non-diabetic individuals. One explanation for our results is that raised circulating triglycerides are predominantly secondary to the diabetes disease process rather than causal.
doi:10.2337/db10-1317
PMCID: PMC3046819  PMID: 21282362
11.  Inflammation, Insulin Resistance, and Diabetes—Mendelian Randomization Using CRP Haplotypes Points Upstream 
PLoS Medicine  2008;5(8):e155.
Background
Raised C-reactive protein (CRP) is a risk factor for type 2 diabetes. According to the Mendelian randomization method, the association is likely to be causal if genetic variants that affect CRP level are associated with markers of diabetes development and diabetes. Our objective was to examine the nature of the association between CRP phenotype and diabetes development using CRP haplotypes as instrumental variables.
Methods and Findings
We genotyped three tagging SNPs (CRP + 2302G > A; CRP + 1444T > C; CRP + 4899T > G) in the CRP gene and measured serum CRP in 5,274 men and women at mean ages 49 and 61 y (Whitehall II Study). Homeostasis model assessment-insulin resistance (HOMA-IR) and hemoglobin A1c (HbA1c) were measured at age 61 y. Diabetes was ascertained by glucose tolerance test and self-report. Common major haplotypes were strongly associated with serum CRP levels, but unrelated to obesity, blood pressure, and socioeconomic position, which may confound the association between CRP and diabetes risk. Serum CRP was associated with these potential confounding factors. After adjustment for age and sex, baseline serum CRP was associated with incident diabetes (hazard ratio = 1.39 [95% confidence interval 1.29–1.51], HOMA-IR, and HbA1c, but the associations were considerably attenuated on adjustment for potential confounding factors. In contrast, CRP haplotypes were not associated with HOMA-IR or HbA1c (p = 0.52–0.92). The associations of CRP with HOMA-IR and HbA1c were all null when examined using instrumental variables analysis, with genetic variants as the instrument for serum CRP. Instrumental variables estimates differed from the directly observed associations (p = 0.007–0.11). Pooled analysis of CRP haplotypes and diabetes in Whitehall II and Northwick Park Heart Study II produced null findings (p = 0.25–0.88). Analyses based on the Wellcome Trust Case Control Consortium (1,923 diabetes cases, 2,932 controls) using three SNPs in tight linkage disequilibrium with our tagging SNPs also demonstrated null associations.
Conclusions
Observed associations between serum CRP and insulin resistance, glycemia, and diabetes are likely to be noncausal. Inflammation may play a causal role via upstream effectors rather than the downstream marker CRP.
Using a Mendelian randomization approach, Eric Brunner and colleagues show that the associations between serum C-reactive protein and insulin resistance, glycemia, and diabetes are likely to be noncausal.
Editors' Summary
Background.
Diabetes—a common, long-term (chronic) disease that causes heart, kidney, nerve, and eye problems and shortens life expectancy—is characterized by high levels of sugar (glucose) in the blood. In people without diabetes, blood sugar levels are controlled by the hormone insulin. Insulin is released by the pancreas after eating and “instructs” insulin-responsive muscle and fat cells to take up the glucose from the bloodstream that is produced by the digestion of food. In the early stages of type 2 diabetes (the commonest type of diabetes), the muscle and fat cells become nonresponsive to insulin (a condition called insulin resistance), and blood sugar levels increase. The pancreas responds by making more insulin—people with insulin resistance have high blood levels of both insulin and glucose. Eventually, however, the insulin-producing cells in the pancreas start to malfunction, insulin secretion decreases, and frank diabetes develops.
Why Was This Study Done?
Globally, about 200 million people have diabetes, but experts believe this number will double by 2030. Ways to prevent or delay the onset of diabetes are, therefore, urgently needed. One major risk factor for insulin resistance and diabetes is being overweight. According to one theory, increased body fat causes mild, chronic tissue inflammation, which leads to insulin resistance. Consistent with this idea, people with higher than normal amounts of the inflammatory protein C-reactive protein (CRP) in their blood have a high risk of developing diabetes. If inflammation does cause diabetes, then drugs that inhibit CRP might prevent diabetes. However, simply measuring CRP and determining whether the people with high levels develop diabetes cannot prove that CRP causes diabetes. Those people with high blood levels of CRP might have other unknown factors in common (confounding factors) that are the real causes of diabetes. In this study, the researchers use “Mendelian randomization” to examine whether increased blood CRP causes diabetes. Some variants of CRP (the gene that encodes CRP) increase the amount of CRP in the blood. Because these variants are inherited randomly, there is no likelihood of confounding factors, and an association between these variants and the development of insulin resistance and diabetes indicates, therefore, that increased CRP levels cause diabetes.
What Did the Researchers Do and Find?
The researchers measured blood CRP levels in more than 5,000 people enrolled in the Whitehall II study, which is investigating factors that affect disease development. They also used the “homeostasis model assessment-insulin resistance” (HOMA-IR) method to estimate insulin sensitivity from blood glucose and insulin measurements, and measured levels of hemoglobin A1c (HbA1c, hemoglobin with sugar attached—a measure of long-term blood sugar control) in these people. Finally, they looked at three “single polynucleotide polymorphisms” (SNPs, single nucleotide changes in a gene's DNA sequence; combinations of SNPs that are inherited as a block are called haplotypes) in CRP in each study participant. Common haplotypes of CRP were related to blood serum CRP levels and, as previously reported, increased blood CRP levels were associated with diabetes and with HOMA-IR and HbA1c values indicative of insulin resistance and poor blood sugar control, respectively. By contrast, CRP haplotypes were not related to HOMA-IR or HbA1c values. Similarly, pooled analysis of CRP haplotypes and diabetes in Whitehall II and another large study on health determinants (the Northwick Park Heart Study II) showed no association between CRP variants and diabetes risk. Finally, data from the Wellcome Trust Case Control Consortium also showed no association between CRP haplotypes and diabetes risk.
What Do These Findings Mean?
Together, these findings suggest that increased blood CRP levels are not responsible for the development of insulin resistance or diabetes, at least in European populations. It may be that there is a causal relationship between CRP levels and diabetes risk in other ethnic populations—further Mendelian randomization studies are needed to discover whether this is the case. For now, though, these findings suggest that drugs targeted against CRP are unlikely to prevent or delay the onset of diabetes. However, they do not discount the possibility that proteins involved earlier in the inflammatory process might cause diabetes and might thus represent good drug targets for diabetes prevention.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050155.
This study is further discussed in a PLoS Medicine Perspective by Bernard Keavney
The MedlinePlus encyclopedia provides information about diabetes and about C-reactive protein (in English and Spanish)
US National Institute of Diabetes and Digestive and Kidney Diseases provides patient information on all aspects of diabetes, including information on insulin resistance (in English and Spanish)
The International Diabetes Federation provides information about diabetes, including information on the global diabetes epidemic
The US Centers for Disease Control and Prevention provides information for the public and professionals on all aspects of diabetes (in English and Spanish)
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.0050155
PMCID: PMC2504484  PMID: 18700811
12.  PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 Are Associated with Type 2 Diabetes in a Chinese Population 
PLoS ONE  2009;4(10):e7643.
Background
Recent advance in genetic studies added the confirmed susceptible loci for type 2 diabetes to eighteen. In this study, we attempt to analyze the independent and joint effect of variants from these loci on type 2 diabetes and clinical phenotypes related to glucose metabolism.
Methods/Principal Findings
Twenty-one single nucleotide polymorphisms (SNPs) from fourteen loci were successfully genotyped in 1,849 subjects with type 2 diabetes and 1,785 subjects with normal glucose regulation. We analyzed the allele and genotype distribution between the cases and controls of these SNPs as well as the joint effects of the susceptible loci on type 2 diabetes risk. The associations between SNPs and type 2 diabetes were examined by logistic regression. The associations between SNPs and quantitative traits were examined by linear regression. The discriminative accuracy of the prediction models was assessed by area under the receiver operating characteristic curves. We confirmed the effects of SNPs from PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 on risk for type 2 diabetes, with odds ratios ranging from 1.114 to 1.406 (P value range from 0.0335 to 1.37E-12). But no significant association was detected between SNPs from WFS1, FTO, JAZF1, TSPAN8-LGR5, THADA, ADAMTS9, NOTCH2-ADAM30 and type 2 diabetes. Analyses on the quantitative traits in the control subjects showed that THADA SNP rs7578597 was association with 2-h insulin during oral glucose tolerance tests (P = 0.0005, empirical P = 0.0090). The joint effect analysis of SNPs from eleven loci showed the individual carrying more risk alleles had a significantly higher risk for type 2 diabetes. And the type 2 diabetes patients with more risk allele tended to have earlier diagnostic ages (P = 0.0006).
Conclusions/Significance
The current study confirmed the association between PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 and type 2 diabetes. These type 2 diabetes risk loci contributed to the disease additively.
doi:10.1371/journal.pone.0007643
PMCID: PMC2763267  PMID: 19862325
13.  Polygenic Risk Variants for Type 2 Diabetes Susceptibility Modify Age at Diagnosis in Monogenic HNF1A Diabetes 
Diabetes  2009;59(1):266-271.
OBJECTIVE
Mutations in the HNF1A gene are the most common cause of maturity-onset diabetes of the young (MODY). There is a substantial variation in the age at diabetes diagnosis, even within families where diabetes is caused by the same mutation. We investigated the hypothesis that common polygenic variants that predispose to type 2 diabetes might account for the difference in age at diagnosis.
RESEARCH DESIGN AND METHODS
Fifteen robustly associated type 2 diabetes variants were successfully genotyped in 410 individuals from 203 HNF1A-MODY families, from two study centers in the U.K. and Norway. We assessed their effect on the age at diagnosis both individually and in a combined genetic score by summing the number of type 2 diabetes risk alleles carried by each patient.
RESULTS
We confirmed the effects of environmental and genetic factors known to modify the age at HNF1A-MODY diagnosis, namely intrauterine hyperglycemia (−5.1 years if present, P = 1.6 × 10−10) and HNF1A mutation position (−5.2 years if at least two isoforms affected, P = 1.8 × 10−2). Additionally, our data showed strong effects of sex (females diagnosed 3.0 years earlier, P = 6.0 × 10−4) and age at study (0.3 years later diagnosis per year increase in age, P = 4.7 × 10−38). There were no strong individual single nucleotide polymorphism effects; however, in the combined genetic score model, each additional risk allele was associated with 0.35 years earlier diabetes diagnosis (P = 5.1 × 10−3).
CONCLUSIONS
We show that type 2 diabetes risk variants of modest effect sizes reduce the age at diagnosis in HNF1A-MODY. This is one of the first studies to demonstrate that clinical characteristics of a monogenic disease can be modified by common polygenic variants.
doi:10.2337/db09-0555
PMCID: PMC2797932  PMID: 19794065
14.  Genetics of Ischaemic Stroke among Persons of Non-European Descent: A Meta-Analysis of Eight Genes Involving ∼ 32,500 Individuals 
PLoS Medicine  2007;4(4):e131.
Background
Ischaemic stroke in persons of European descent has a genetic basis, but whether the stroke-susceptibility alleles, the strength of any association, and the extent of their attributable risks are the same in persons of non-European descent remains unanswered. Whether ethnicity itself has a relevant or substantial contribution on those effect estimates is controversial. Comparative analyses between the ethnic groups may allow general conclusions to be drawn about polygenic disorders.
Methods and Findings
We performed a literature-based systematic review of genetic association studies in stroke in persons of non-European descent. Odds ratios (ORs) and 95% confidence intervals (CIs) were determined for each gene–disease association using fixed and random effect models. We further performed a comparative genetic analysis across the different ethnic groups (including persons of European descent derived from our previous meta-analysis) to determine if genetic risks varied by ethnicity. Following a review of 500 manuscripts, eight candidate gene variants were analysed among 32,431 individuals (12,883 cases and 19,548 controls), comprising mainly Chinese, Japanese, and Korean individuals. Of the eight candidate genes studied, three were associated with ischaemic stroke: the angiotensin I converting enzyme (ACE) insertion/deletion (I/D) polymorphism with a mean OR of 1.90 (95% CI 1.23–2.93) in the Chinese and 1.74 (95% CI 0.88–3.42) in the Japanese; the summary OR for the C677T variant of 5,10-methylenetetrahydrofolate reductase (MTHFR) was 1.18 (95% CI 0.90–1.56) in Chinese and 1.34 (95% CI 0.87–2.06) in Koreans; and the pooled OR for the apolipoprotein E (APOE) gene was 2.18 (95% CI 1.52–3.13) in Chinese and 1.51 (95% CI 0.93–2.45) in Japanese. Comparing the commonly investigated stroke genes among the Asian groups against studies in persons of European descent, we found an absence of any substantial qualitative or quantitative interaction for ORs by ethnicity. However, the number of individuals recruited per study in the studies of persons of non-European descent was significantly smaller compared to studies of persons of European descent, despite a similar number of studies conducted per gene.
Conclusions
These data suggest that genetic associations studied to date for ischaemic stroke among persons of non-European descent are similar to those for persons of European descent. Claims of differences in genetic effects among different ethnic populations for complex disorders such as stroke may be overstated. However, due to the limited number of gene variants evaluated, the relatively smaller number of individuals included in the meta-analyses of persons of non-European descent in stroke, and the possibility of publication bias, the existence of allele variants with differential effects by ethnicity cannot be excluded.
This meta-analysis found that genetic associations so far studied for ischemic stroke among non-Europeans are similar to those found for persons of European descent.
Editors' Summary
Background.
A stroke occurs when the blood supply to part of the brain is interrupted, either because a blood vessel supplying the brain becomes blocked or because one ruptures. Strokes are a substantial cause of death and disability worldwide, with most of the burden affecting people living in developed countries. Most strokes fall into a category termed ischemic stroke. This type is caused by blockages in the blood vessels supplying the brain, which can happen when there is a buildup of fatty deposits or clots within the blood vessels. Many of the risk factors for this particular type of stroke are affected by an individual's behavior, including for example smoking, high blood pressure, diabetes, inactivity, and so on. In addition, variations in an individual's genetic makeup might affect his or her chance of having a stroke. Previous research studies have shown that variants in many different genes are likely to be involved in determining the overall risk of having a stroke, each variant contributing in a small way to the risk.
Why Was This Study Done?
The group performing this study had previously carried out a systematic review of existing research, looking specifically at the genetics of ischemic stroke among people of European origin (often called “Caucasians”). However, it was not obvious whether the genetic risk factors for stroke they found would be the same for people from a different ethnic background. Therefore the research group wanted to find out what the genetic risk factors were for stroke among people of non-European origin and to compare these findings with those of their previous systematic review. This research might help to find out whether the genetic risk factors for stroke were different in people from different parts of the world.
What Did the Researchers Do and Find?
As a starting point, these researchers wanted to find all the different studies that had already been carried out examining the effect of genetic risk factors on stroke among people of non-European origin. To do this, searches were carried out of electronic databases using a particular set of terms. All resulting studies that involved genetic research in people of non-European origin and in which strokes were confirmed by brain scanning were then evaluated in more detail. The findings of different studies were combined if at least three studies were available for the same genetic variant. Eventually 60 studies were found that looked at the association between eight specific gene variants and stroke. The only data that could be included in a combined analysis came from Chinese, Japanese, and Korean populations. Three of the eight gene variants were associated with an increased risk of stroke. Those three gene variants were ACE I/D (a variant in the gene coding for angiotensin 1-converting enzyme, which is involved in controlling blood pressure); a variant in MTHFR (which codes for the enzyme methylenetetrahydrofolate reductase, and which converts certain amino acids within cells); and a variant in the gene APOE, which codes for a protein that plays a role in breaking down fats. The researchers then compared their findings from this study with the findings of a previous systematic review they had carried out among people of European origin. Overall, each gene studied seemed to have a similar effect in the different populations, with the exception of APOE, which seemed to be associated with stroke in the Asian studies but not in the studies from people of non-European origin. The researchers also found that generally the Asian studies suggested a slightly greater effect of each gene variant than the studies in people of non-European origin did.
What Do These Findings Mean?
These findings suggest that, with the possible exception of APOE, similar gene variants play a role in determining stroke risk in people of European origin and Asian populations. Although generally the studies examined here suggested a slightly greater effect of these gene variants in Asian populations, this is not necessarily a real finding. This greater effect may just be due to small-study bias. Small-study bias describes the observation that small research studies are more likely to produce a false positive result than are large research studies. Therefore, future studies that examine the genetic basis of stroke should recruit much larger numbers of participants from populations made up of people of non-European origin than has previously been the case.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040131.
Health Encyclopedia entry on stroke from NHS Direct (UK National Health Service patient information)
Stroke Information page from the National Institute of Neurological Disorders and Stroke (provided by the US National Institutes of Health)
The Stroke Association, a UK charity funding this study
Information from the World Health Organization on the distribution and burden of stroke worldwide
The WHO has a world atlas of heart disease and stroke
doi:10.1371/journal.pmed.0040131
PMCID: PMC1876409  PMID: 17455988
15.  Combined Analyses of 20 Common Obesity Susceptibility Variants 
Diabetes  2010;59(7):1667-1673.
OBJECTIVE
Genome-wide association studies and linkage studies have identified 20 validated genetic variants associated with obesity and/or related phenotypes. The variants are common, and they individually exhibit small-to-modest effect sizes.
RESEARCH DESIGN AND METHODS
In this study we investigate the combined effect of these variants and their ability to discriminate between normal weight and overweight/obese individuals. We applied receiver operating characteristics (ROC) curves, and estimated the area under the ROC curve (AUC) as a measure of the discriminatory ability. The analyses were performed cross-sectionally in the population-based Inter99 cohort where 1,725 normal weight, 1,519 overweight, and 681 obese individuals were successfully genotyped for all 20 variants.
RESULTS
When combining all variants, the 10% of the study participants who carried more than 22 risk-alleles showed a significant increase in probability of being both overweight with an odds ratio of 2.00 (1.47–2.72), P = 4.0 × 10−5, and obese with an OR of 2.62 (1.76–3.92), P = 6.4 × 10−7, compared with the 10% of the study participants who carried less than 14 risk-alleles. Discrimination ability for overweight and obesity, using the 20 single nucleotide polymorphisms (SNPs), was determined to AUCs of 0.53 and 0.58, respectively. When combining SNP data with conventional nongenetic risk factors of obesity, the discrimination ability increased to 0.64 for overweight and 0.69 for obesity. The latter is significantly higher (P < 0.001) than for the nongenetic factors alone (AUC = 0.67).
CONCLUSIONS
The discriminative value of the 20 validated common obesity variants is at present time sparse and too weak for clinical utility, however, they add to increase the discrimination ability of conventional nongenetic risk factors.
doi:10.2337/db09-1042
PMCID: PMC2889766  PMID: 20110568
16.  Physical Activity Attenuates the Genetic Predisposition to Obesity in 20,000 Men and Women from EPIC-Norfolk Prospective Population Study 
PLoS Medicine  2010;7(8):e1000332.
Shengxu Li and colleagues use data from a large prospective observational cohort to examine the extent to which a genetic predisposition toward obesity may be modified by living a physically active lifestyle.
Background
We have previously shown that multiple genetic loci identified by genome-wide association studies (GWAS) increase the susceptibility to obesity in a cumulative manner. It is, however, not known whether and to what extent this genetic susceptibility may be attenuated by a physically active lifestyle. We aimed to assess the influence of a physically active lifestyle on the genetic predisposition to obesity in a large population-based study.
Methods and Findings
We genotyped 12 SNPs in obesity-susceptibility loci in a population-based sample of 20,430 individuals (aged 39–79 y) from the European Prospective Investigation of Cancer (EPIC)-Norfolk cohort with an average follow-up period of 3.6 y. A genetic predisposition score was calculated for each individual by adding the body mass index (BMI)-increasing alleles across the 12 SNPs. Physical activity was assessed using a self-administered questionnaire. Linear and logistic regression models were used to examine main effects of the genetic predisposition score and its interaction with physical activity on BMI/obesity risk and BMI change over time, assuming an additive effect for each additional BMI-increasing allele carried. Each additional BMI-increasing allele was associated with 0.154 (standard error [SE] 0.012) kg/m2 (p = 6.73×10−37) increase in BMI (equivalent to 445 g in body weight for a person 1.70 m tall). This association was significantly (pinteraction = 0.005) more pronounced in inactive people (0.205 [SE 0.024] kg/m2 [p = 3.62×10−18; 592 g in weight]) than in active people (0.131 [SE 0.014] kg/m2 [p = 7.97×10−21; 379 g in weight]). Similarly, each additional BMI-increasing allele increased the risk of obesity 1.116-fold (95% confidence interval [CI] 1.093–1.139, p = 3.37×10−26) in the whole population, but significantly (pinteraction = 0.015) more in inactive individuals (odds ratio [OR] = 1.158 [95% CI 1.118–1.199; p = 1.93×10−16]) than in active individuals (OR = 1.095 (95% CI 1.068–1.123; p = 1.15×10−12]). Consistent with the cross-sectional observations, physical activity modified the association between the genetic predisposition score and change in BMI during follow-up (pinteraction = 0.028).
Conclusions
Our study shows that living a physically active lifestyle is associated with a 40% reduction in the genetic predisposition to common obesity, as estimated by the number of risk alleles carried for any of the 12 recently GWAS-identified loci.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
In the past few decades, the global incidence of obesity—defined as a body mass index (BMI, a simple index of weight-for-height that uses the weight in kilograms divided by the square of the height in meters) of 30 and over, has increased so much that this growing public health concern is now commonly referred to as the “obesity epidemic.” Once considered prevalent only in high-income countries, obesity is an increasing health problem in low- and middle-income countries, particularly in urban settings. In 2005, at least 400 million adults world-wide were obese, and the projected figure for 2015 is a substantial increase of 300 million to around 700 million. Childhood obesity is also a growing concern. Contributing factors to the obesity epidemic are a shift in diet to an increased intake of energy-dense foods that are high in fat and sugars and a trend towards decreased physical activity due to increasingly sedentary lifestyles.
However, genetics are also thought to play a critical role as genetically predisposed individuals may be more prone to obesity if they live in an environment that has abundant access to energy-dense food and labor-saving devices.
Why Was This Study Done?
Although recent genetic studies (genome-wide association studies) have identified 12 alleles (a DNA variant that is located at a specific position on a specific chromosome) associated with increased BMI, there has been no convincing evidence of the interaction between genetics and lifestyle. In this study the researchers examined the possibility of such an interaction by assessing whether individuals with a genetic predisposition to increased obesity risk could modify this risk by increasing their daily physical activity.
What Did the Researchers Do and Find?
The researchers used a population-based cohort study of 25,631 people living in Norwich, UK (The EPIC-Norfolk study) and identified individuals who were 39 to 79 years old during a health check between 1993 and 1997. The researchers invited these people to a second health examination. In total, 20,430 individuals had baseline data available, of which 11,936 had BMI data at the second health check. The researchers used genotyping methods and then calculated a genetic predisposition score for each individual and their occupational and leisure-time physical activities were assessed by using a validated self-administered questionnaire. Then, the researchers used modeling techniques to examine the main effects of the genetic predisposition score and its interaction with physical activity on BMI/obesity risk and BMI change over time. The researchers found that each additional BMI-increasing allele was associated with an increase in BMI equivalent to 445 g in body weight for a person 1.70 m tall and that the size of this effect was greater in inactive people than in active people. In individuals who have a physically active lifestyle, this increase was only 379 g/allele, or 36% lower than in physically inactive individuals in whom the increase was 592 g/allele. Furthermore, in the total sample each additional obesity-susceptibility allele increased the odds of obesity by 1.116-fold. However, the increased odds per allele for obesity risk were 40% lower in physically active individuals (1.095 odds/allele) compared to physically inactive individuals (1.158 odds/allele).
What Do These Findings Mean?
The findings of this study indicate that the genetic predisposition to obesity can be reduced by approximately 40% by having a physically active lifestyle. The findings of this study suggest that, while the whole population benefits from increased physical activity levels, individuals who are genetically predisposed to obesity would benefit more than genetically protected individuals. Furthermore, these findings challenge the deterministic view of the genetic predisposition to obesity that is often held by the public, as they show that even the most genetically predisposed individuals will benefit from adopting a healthy lifestyle. The results are limited by participants self-reporting their physical activity levels, which is less accurate than objective measures of physical activity.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000332.
This study relies on the results of previous genome-wide association studies The National Human Genome Research Institute provides an easy-to-follow guide to understanding such studies
The International Association for the Study of Obesity aims to improve global health by promoting the understanding of obesity and weight-related diseases through scientific research and dialogue
The International Obesity Taskforce is the research-led think tank and advocacy arm of the International Association for the Study of Obesity
The Global Alliance for the Prevention of Obesity and Related Chronic Disease is a global action program that addresses the issues surrounding the prevention of obesity
The National Institutes of Health has its own obesity task force, which includes 26 institutes
doi:10.1371/journal.pmed.1000332
PMCID: PMC2930873  PMID: 20824172
17.  Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study 
Objectives To assess the performance of a panel of common single nucleotide polymorphisms (genotypes) associated with type 2 diabetes in distinguishing incident cases of future type 2 diabetes (discrimination), and to examine the effect of adding genetic information to previously validated non-genetic (phenotype based) models developed to estimate the absolute risk of type 2 diabetes.
Design Workplace based prospective cohort study with three 5 yearly medical screenings.
Participants 5535 initially healthy people (mean age 49 years; 33% women), of whom 302 developed new onset type 2 diabetes over 10 years.
Outcome measures Non-genetic variables included in two established risk models—the Cambridge type 2 diabetes risk score (age, sex, drug treatment, family history of type 2 diabetes, body mass index, smoking status) and the Framingham offspring study type 2 diabetes risk score (age, sex, parental history of type 2 diabetes, body mass index, high density lipoprotein cholesterol, triglycerides, fasting glucose)—and 20 single nucleotide polymorphisms associated with susceptibility to type 2 diabetes. Cases of incident type 2 diabetes were defined on the basis of a standard oral glucose tolerance test, self report of a doctor’s diagnosis, or the use of anti-diabetic drugs.
Results A genetic score based on the number of risk alleles carried (range 0-40; area under receiver operating characteristics curve 0.54, 95% confidence interval 0.50 to 0.58) and a genetic risk function in which carriage of risk alleles was weighted according to the summary odds ratios of their effect from meta-analyses of genetic studies (area under receiver operating characteristics curve 0.55, 0.51 to 0.59) did not effectively discriminate cases of diabetes. The Cambridge risk score (area under curve 0.72, 0.69 to 0.76) and the Framingham offspring risk score (area under curve 0.78, 0.75 to 0.82) led to better discrimination of cases than did genotype based tests. Adding genetic information to phenotype based risk models did not improve discrimination and provided only a small improvement in model calibration and a modest net reclassification improvement of about 5% when added to the Cambridge risk score but not when added to the Framingham offspring risk score.
Conclusion The phenotype based risk models provided greater discrimination for type 2 diabetes than did models based on 20 common independently inherited diabetes risk alleles. The addition of genotypes to phenotype based risk models produced only minimal improvement in accuracy of risk estimation assessed by recalibration and, at best, a minor net reclassification improvement. The major translational application of the currently known common, small effect genetic variants influencing susceptibility to type 2 diabetes is likely to come from the insight they provide on causes of disease and potential therapeutic targets.
doi:10.1136/bmj.b4838
PMCID: PMC2806945  PMID: 20075150
18.  Stratifying Type 2 Diabetes Cases by BMI Identifies Genetic Risk Variants in LAMA1 and Enrichment for Risk Variants in Lean Compared to Obese Cases 
Perry, John R. B. | Voight, Benjamin F. | Yengo, Loïc | Amin, Najaf | Dupuis, Josée | Ganser, Martha | Grallert, Harald | Navarro, Pau | Li, Man | Qi, Lu | Steinthorsdottir, Valgerdur | Scott, Robert A. | Almgren, Peter | Arking, Dan E. | Aulchenko, Yurii | Balkau, Beverley | Benediktsson, Rafn | Bergman, Richard N. | Boerwinkle, Eric | Bonnycastle, Lori | Burtt, Noël P. | Campbell, Harry | Charpentier, Guillaume | Collins, Francis S. | Gieger, Christian | Green, Todd | Hadjadj, Samy | Hattersley, Andrew T. | Herder, Christian | Hofman, Albert | Johnson, Andrew D. | Kottgen, Anna | Kraft, Peter | Labrune, Yann | Langenberg, Claudia | Manning, Alisa K. | Mohlke, Karen L. | Morris, Andrew P. | Oostra, Ben | Pankow, James | Petersen, Ann-Kristin | Pramstaller, Peter P. | Prokopenko, Inga | Rathmann, Wolfgang | Rayner, William | Roden, Michael | Rudan, Igor | Rybin, Denis | Scott, Laura J. | Sigurdsson, Gunnar | Sladek, Rob | Thorleifsson, Gudmar | Thorsteinsdottir, Unnur | Tuomilehto, Jaakko | Uitterlinden, Andre G. | Vivequin, Sidonie | Weedon, Michael N. | Wright, Alan F. | Hu, Frank B. | Illig, Thomas | Kao, Linda | Meigs, James B. | Wilson, James F. | Stefansson, Kari | van Duijn, Cornelia | Altschuler, David | Morris, Andrew D. | Boehnke, Michael | McCarthy, Mark I. | Froguel, Philippe | Palmer, Colin N. A. | Wareham, Nicholas J. | Groop, Leif | Frayling, Timothy M. | Cauchi, Stéphane
PLoS Genetics  2012;8(5):e1002741.
Common diseases such as type 2 diabetes are phenotypically heterogeneous. Obesity is a major risk factor for type 2 diabetes, but patients vary appreciably in body mass index. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI<25 Kg/m2) compared to obese cases (BMI≥30 Kg/m2). We performed two case-control genome-wide studies using two accepted cut-offs for defining individuals as overweight or obese. We used 2,112 lean type 2 diabetes cases (BMI<25 kg/m2) or 4,123 obese cases (BMI≥30 kg/m2), and 54,412 un-stratified controls. Replication was performed in 2,881 lean cases or 8,702 obese cases, and 18,957 un-stratified controls. To assess the effects of known signals, we tested the individual and combined effects of SNPs representing 36 type 2 diabetes loci. After combining data from discovery and replication datasets, we identified two signals not previously reported in Europeans. A variant (rs8090011) in the LAMA1 gene was associated with type 2 diabetes in lean cases (P = 8.4×10−9, OR = 1.13 [95% CI 1.09–1.18]), and this association was stronger than that in obese cases (P = 0.04, OR = 1.03 [95% CI 1.00–1.06]). A variant in HMG20A—previously identified in South Asians but not Europeans—was associated with type 2 diabetes in obese cases (P = 1.3×10−8, OR = 1.11 [95% CI 1.07–1.15]), although this association was not significantly stronger than that in lean cases (P = 0.02, OR = 1.09 [95% CI 1.02–1.17]). For 36 known type 2 diabetes loci, 29 had a larger odds ratio in the lean compared to obese (binomial P = 0.0002). In the lean analysis, we observed a weighted per-risk allele OR = 1.13 [95% CI 1.10–1.17], P = 3.2×10−14. This was larger than the same model fitted in the obese analysis where the OR = 1.06 [95% CI 1.05–1.08], P = 2.2×10−16. This study provides evidence that stratification of type 2 diabetes cases by BMI may help identify additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes.
Author Summary
Individuals with Type 2 diabetes (T2D) can present with variable clinical characteristics. It is well known that obesity is a major risk factor for type 2 diabetes, yet patients can vary considerably—there are many lean diabetes patients and many overweight people without diabetes. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI<25 Kg/m2) compared to obese cases (BMI≥30 Kg/m2). Specifically, as lean T2D patients had lower risk than obese patients, they must have been more genetically susceptible. Using genetic data from multiple genome-wide association studies, we tested genetic markers across the genome in 2,112 lean type 2 diabetes cases (BMI<25 kg/m2), 4,123 obese cases (BMI≥30 kg/m2), and 54,412 healthy controls. We confirmed our results in an additional 2,881 lean cases, 8,702 obese cases, and 18,957 healthy controls. Using these data we found differences in genetic enrichment between lean and obese cases, supporting our original hypothesis. We also searched for genetic variants that may be risk factors only in lean or obese patients and found two novel gene regions not previously reported in European individuals. These findings may influence future study design for type 2 diabetes and provide further insight into the biology of the disease.
doi:10.1371/journal.pgen.1002741
PMCID: PMC3364960  PMID: 22693455
19.  Generalization and Dilution of Association Results from European GWAS in Populations of Non-European Ancestry: The PAGE Study 
PLoS Biology  2013;11(9):e1001661.
A multi-ethnic study demonstrates that the extrapolation of genetic disease risk models from European populations to other ethnicities is compromised more strongly by genetic structure than by environmental or global genetic background in differential genetic risk associations across ethnicities.
The vast majority of genome-wide association study (GWAS) findings reported to date are from populations with European Ancestry (EA), and it is not yet clear how broadly the genetic associations described will generalize to populations of diverse ancestry. The Population Architecture Using Genomics and Epidemiology (PAGE) study is a consortium of multi-ancestry, population-based studies formed with the objective of refining our understanding of the genetic architecture of common traits emerging from GWAS. In the present analysis of five common diseases and traits, including body mass index, type 2 diabetes, and lipid levels, we compare direction and magnitude of effects for GWAS-identified variants in multiple non-EA populations against EA findings. We demonstrate that, in all populations analyzed, a significant majority of GWAS-identified variants have allelic associations in the same direction as in EA, with none showing a statistically significant effect in the opposite direction, after adjustment for multiple testing. However, 25% of tagSNPs identified in EA GWAS have significantly different effect sizes in at least one non-EA population, and these differential effects were most frequent in African Americans where all differential effects were diluted toward the null. We demonstrate that differential LD between tagSNPs and functional variants within populations contributes significantly to dilute effect sizes in this population. Although most variants identified from GWAS in EA populations generalize to all non-EA populations assessed, genetic models derived from GWAS findings in EA may generate spurious results in non-EA populations due to differential effect sizes. Regardless of the origin of the differential effects, caution should be exercised in applying any genetic risk prediction model based on tagSNPs outside of the ancestry group in which it was derived. Models based directly on functional variation may generalize more robustly, but the identification of functional variants remains challenging.
Author Summary
The number of known associations between human diseases and common genetic variants has grown dramatically in the past decade, most being identified in large-scale genetic studies of people of Western European origin. But because the frequencies of genetic variants can differ substantially between continental populations, it's important to assess how well these associations can be extended to populations with different continental ancestry. Are the correlations between genetic variants, disease endpoints, and risk factors consistent enough for genetic risk models to be reliably applied across different ancestries? Here we describe a systematic analysis of disease outcome and risk-factor–associated variants (tagSNPs) identified in European populations, in which we test whether the effect size of a tagSNP is consistent across six populations with significant non-European ancestry. We demonstrate that although nearly all such tagSNPs have effects in the same direction across all ancestries (i.e., variants associated with higher risk in Europeans will also be associated with higher risk in other populations), roughly a quarter of the variants tested have significantly different magnitude of effect (usually lower) in at least one non-European population. We therefore advise caution in the use of tagSNP-based genetic disease risk models in populations that have a different genetic ancestry from the population in which original associations were first made. We then show that this differential strength of association can be attributed to population-dependent variations in the correlation between tagSNPs and the variant that actually determines risk—the so-called functional variant. Risk models based on functional variants are therefore likely to be more robust than tagSNP-based models.
doi:10.1371/journal.pbio.1001661
PMCID: PMC3775722  PMID: 24068893
20.  Perspectives on the Use of Multiple Sclerosis Risk Genes for Prediction 
PLoS ONE  2011;6(12):e26493.
Objective
A recent collaborative genome-wide association study replicated a large number of susceptibility loci and identified novel loci. This increase in known multiple sclerosis (MS) risk genes raises questions about clinical applicability of genotyping. In an empirical set we assessed the predictive power of typing multiple genes. Next, in a modelling study we explored current and potential predictive performance of genetic MS risk models.
Materials and Methods
Genotype data on 6 MS risk genes in 591 MS patients and 600 controls were used to investigate the predictive value of combining risk alleles. Next, the replicated and novel MS risk loci from the recent and largest international genome-wide association study were used to construct genetic risk models simulating a population of 100,000 individuals. Finally, we assessed the required numbers, frequencies, and ORs of risk SNPs for higher discriminative accuracy in the future.
Results
Individuals with 10 to 12 risk alleles had a significantly increased risk compared to individuals with the average population risk for developing MS (OR 2.76 (95% CI 2.02–3.77)). In the simulation study we showed that the area under the receiver operating characteristic curve (AUC) for a risk score based on the 6 SNPs was 0.64. The AUC increases to 0.66 using the well replicated 24 SNPs and to 0.69 when including all replicated and novel SNPs (n = 53) in the risk model. An additional 20 SNPs with allele frequency 0.30 and ORs 1.1 would be needed to increase the AUC to a slightly higher level of 0.70, and at least 50 novel variants with allele frequency 0.30 and ORs 1.4 would be needed to obtain an AUC of 0.85.
Conclusion
Although new MS risk SNPs emerge rapidly, the discriminatory ability in a clinical setting will be limited.
doi:10.1371/journal.pone.0026493
PMCID: PMC3229479  PMID: 22164203
21.  Angiotensin-Converting Enzyme I/D Polymorphism and Preeclampsia Risk: Evidence of Small-Study Bias 
PLoS Medicine  2006;3(12):e520.
Background
Inappropriate activation of the renin–angiotensin system may play a part in the development of preeclampsia. An insertion/deletion polymorphism within the angiotensin-I converting enzyme gene (ACE-I/D) has shown to be reliably associated with differences in angiotensin-converting enzyme (ACE) activity. However, previous studies of the ACE-I/D variant and preeclampsia have been individually underpowered to detect plausible genotypic risks.
Methods and Findings
A prospective case-control study was conducted in 1,711 unrelated young pregnant women (665 preeclamptic and 1,046 healthy pregnant controls) recruited from five Colombian cities. Maternal blood was obtained to genotype for the ACE-I/D polymorphism. Crude and adjusted odds ratio (OR) and 95% confidence interval (CI) using logistic regression models were obtained to evaluate the strength of the association between ACE-I/D variant and preeclampsia risk. A meta-analysis was then undertaken of all published studies to February 2006 evaluating the ACE-I/D variant in preeclampsia. An additive model (per-D-allele) revealed a null association between the ACE-I/D variant and preeclampsia risk (crude OR = 0.95 [95% CI, 0.81–1.10]) in the new case-control study. Similar results were obtained after adjusting for confounders (adjusted per-allele OR = 0.90 [95% CI, 0.77–1.06]) and using other genetic models of inheritance. A meta-analysis (2,596 cases and 3,828 controls from 22 studies) showed a per-allele OR of 1.26 (95% CI, 1.07–1.49). An analysis stratified by study size showed an attenuated OR toward the null as study size increased.
Conclusions
It is highly likely that the observed small nominal increase in risk of preeclampsia associated with the ACE D-allele is due to small-study bias, similar to that observed in cardiovascular disease. Reliable assessment of the origins of preeclampsia using a genetic approach may require the establishment of a collaborating consortium to generate a dataset of adequate size.
The observed small increase in risk of preeclampsia associated with theACE D-allele is likely to be due to small-study bias, a similar result to that observed in cardiovascular disease.
Editors' Summary
Background.
Preeclampsia is a common condition affecting pregnant women worldwide; it is defined as the presence of increased blood pressure, together with protein in the urine. Although in many women preeclampsia may never result in symptoms, other women may experience headaches, problems with their vision, swollen ankles and feet, and other problems. Sometimes, preeclampsia progresses to eclampsia, in which potentially life-threatening seizures result. The causes of preeclampsia are not well understood, but several factors are known to contribute to the risk. These factors include diabetes, high blood pressure prior to pregnancy, obesity, and first pregnancy. There is also the possibility that preeclampsia has, at least in part, a genetic basis; the condition is more likely among women whose relatives have also had it. However, no definite genetic cause has yet been confirmed.
Why Was This Study Done?
A common variant in one particular gene, ACE, which codes for the angiotensin-1 converting enzyme, has been linked with preeclampsia in a number of different studies. The protein encoded by ACE is involved in controlling blood pressure and the balance of fluid and salts in the blood. However, many of the studies supposedly linking ACE and preeclampsia were done on very few participants. Small studies are more likely to generate “false positive” findings. Therefore, a group of investigators from Colombia and the UK wanted to find out whether they could reproduce the supposed link between the ACE gene variant and preeclampsia in a large study, and also to see whether the previous studies could have been “false positives.”
What Did the Researchers Do and Find?
These investigators carried out a case-control study. This means that women with preeclampsia (“cases”) were recruited, and compared with women similar in all other respects but who did not have preeclampsia (“controls”). In total 1,711 pregnant women from five Colombian cities were studied, of whom 665 had preeclampsia and 1,046 did not. Blood was taken from each participant and used for DNA sequencing of the ACE gene. The investigators then did a statistical comparison to see whether there was any association between preeclampsia and possession of a particular variant of the ACE gene. The results showed that there was no such association. Then, the investigators did a literature search to find all previous studies that had examined a possible link between variants of the ACE gene and preeclampsia. They found 22 studies reporting data obtained from 6,424 women (these figures include the results from the investigators' own case-control study described here). The data from all of these studies were then put together into a combined analysis. This combined analysis did suggest a small increase in the risk of preeclampsia in women with one particular variant in the ACE gene. However, this result was more likely in studies with small numbers of participants. Furthermore, the earliest studies done were most likely to show an effect, with the supposed link disappearing as more and more data were collected.
What Do These Findings Mean?
The findings presented here suggest that “small study bias” may explain the discrepancy between the results of the case-control study and the combined analysis. That is, studies involving few participants are less reliable and more likely to produce false-positive results. Therefore, it is possible that the proposed link between ACE gene variants and preeclampsia is a spurious one. The investigators propose that in future, collaborative research networks will be needed to carry out rigorous research on the genetics of preeclampsia. Such initiatives will help to overcome the problem of bias that can arise from small studies.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030520.
Information for patients from NHS Direct (UK National Health Service) about preeclampsia
Medical encyclopedia entry on preeclampsia from MedLine Plus, supplied by the US National Library of Medicine
Information from the World Health Organization and Pan American Health Organization on maternal health in the Americas
doi:10.1371/journal.pmed.0030520
PMCID: PMC1716194  PMID: 17194198
22.  The BARD1 Cys557Ser Variant and Breast Cancer Risk in Iceland 
PLoS Medicine  2006;3(7):e217.
Background
Most, if not all, of the cellular functions of the BRCA1 protein are mediated through heterodimeric complexes composed of BRCA1 and a related protein, BARD1. Some breast-cancer-associated BRCA1 missense mutations disrupt the function of the BRCA1/BARD1 complex. It is therefore pertinent to determine whether variants of BARD1 confer susceptibility to breast cancer. Recently, a missense BARD1 variant, Cys557Ser, was reported to be at increased frequencies in breast cancer families. We investigated the role of the BARD1 Cys557Ser variant in a population-based cohort of 1,090 Icelandic patients with invasive breast cancer and 703 controls. We then used a computerized genealogy of the Icelandic population to study the relationships between the Cys557Ser variant and familial clustering of breast cancer.
Methods and Findings
The Cys557Ser allele was present at a frequency of 0.028 in patients with invasive breast cancer and 0.016 in controls (odds ratio [OR] = 1.82, 95% confidence interval [CI] 1.11–3.01, p = 0.014). The alleleic frequency was 0.037 in a high-predisposition group of cases defined by having a family history of breast cancer, early onset of breast cancer, or multiple primary breast cancers (OR = 2.41, 95% CI 1.22–4.75, p = 0.015). Carriers of the common Icelandic BRCA2 999del5 mutation were found to have their risk of breast cancer further increased if they also carried the BARD1 variant: the frequency of the BARD1 variant allele was 0.047 (OR = 3.11, 95% CI 1.16–8.40, p = 0.046) in 999del5 carriers with breast cancer. This suggests that the lifetime probability of a BARD1 Cys557Ser/BRCA2 999del5 double carrier developing breast cancer could approach certainty. Cys557Ser carriers, with or without the BRCA2 mutation, had an increased risk of subsequent primary breast tumors after the first breast cancer diagnosis compared to non-carriers. Lobular and medullary breast carcinomas were overrepresented amongst Cys557Ser carriers. We found that an excess of ancestors of contemporary carriers lived in a single county in the southeast of Iceland and that all carriers shared a SNP haplotype, which is suggestive of a founder event. Cys557Ser was found on the same SNP haplotype background in the HapMap Project CEPH sample of Utah residents.
Conclusions
Our findings suggest that BARD1 Cys557Ser is an ancient variant that confers risk of single and multiple primary breast cancers, and this risk extends to carriers of the BRCA2 999del5 mutation.
Editors' Summary
Background.
About 13% of women (one in eight women) will develop breast cancer during their lifetime, but many factors affect the likelihood of any individual woman developing this disease, for example, whether she has had children and at what age, when she started and stopped her periods, and her exposure to certain chemicals or radiation. She may also have inherited a defective gene that affects her risk of developing breast cancer. Some 5%–10% of all breast cancers are familial, or inherited. In 20% of these cases, the gene that is defective is BRCA1 or BRCA2. Inheriting a defective copy of one of these genes greatly increases a woman's risk of developing breast cancer, while researchers think that the other inherited genes that predispose to breast cancer—most of which have not been identified yet—have a much weaker effect. These are described as low-penetrance genes. Inheriting one such gene only slightly increases breast cancer risk; a woman has to inherit several to increase her lifetime risk of cancer significantly.
Why Was This Study Done?
It is important to identify these additional predisposing gene variants because they might provide insights into why breast cancer develops, how to prevent it, and how to treat it. To find low-penetrance genes, researchers do case–control association studies. They find a large group of women with breast cancer (cases) and a similar group of women without cancer (controls), and examine how often a specific gene variant occurs in the two groups. If the variant is found more often in the cases than in the controls, it might be a variant that increases a woman's risk of developing breast cancer.
What Did the Researchers Do and Find?
The researchers involved in this study recruited Icelandic women who had had breast cancer and unaffected women, and looked for a specific variant—the Cys557Ser allele—of a gene called BARD1. They chose BARD1 because the protein it encodes interacts with the protein encoded by BRCA1. Because defects in BRCA1 increase the risk of breast cancer, defects in an interacting protein might have a similar effect. In addition, the Cys557Ser allele has been implicated in breast cancer in other studies. The researchers found that the Cys557Ser allele was nearly twice as common in women with breast cancer as in control women. It was also more common (but not by much) in women who had a family history of breast cancer or who had developed breast cancer more than once. And having the Cys557Ser allele seemed to increase the already high risk of breast cancer in women who had a BRCA2 variant (known as BRCA2 999del5) that accounts for 40% of inherited breast cancer risk in Iceland.
What Do These Findings Mean?
These results indicate that inheriting the BARD1 Cys557Ser allele increases a woman's breast cancer risk but that she is unlikely to have a family history of the disease. Because carrying the Cys557Ser allele only slightly increases a woman's risk of breast cancer, for most women there is no clinical reason to test for this variant. Eventually, when all the low-penetrance genes that contribute to breast cancer risk have been identified, it might be helpful to screen women for the full set to determine whether they are at high risk of developing breast cancer. This will not happen for many years, however, since there might be tens or hundreds of these genes. For women who carry BRCA2 999del5, the situation might be different. It might be worth testing these women for the BARD1 Cys557Ser allele, the researchers explain, because the lifetime probability of developing breast cancer in women carrying both variants might approach 100%. This finding has clinical implications in terms of counseling and monitoring, as does the observation that Cys557Ser carriers have an increased risk of a second, independent breast cancer compared to non-carriers. However, all these findings need to be confirmed in other groups of patients before anyone is routinely tested for the BARD1 Cys557Ser allele.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030217.
• MedlinePlus pages about breast cancer
• Information on breast cancer from the United States National Cancer Institute
• Information on inherited breast cancer from the United States National Human Genome Research Institute
• United States National Cancer Institute information on genetic testing for BRCA1 and BRCA2 variants
• GeneTests pages on the involvement of BRCA1 and BRCA2 in hereditary breast and ovarian cancer
• Cancer Research UK's page on breast cancer statistics
In a population-based cohort of 1090 Icelandic patients, a Cys557Ser missense variant of the BARD1 gene, which interacts with BRCA1, increased the risk of single and multiple primary breast cancers.
doi:10.1371/journal.pmed.0030217
PMCID: PMC1479388  PMID: 16768547
23.  Confirmation of Genetic Associations at ELMO1 in the GoKinD Collection Supports Its Role as a Susceptibility Gene in Diabetic Nephropathy 
Diabetes  2009;58(11):2698-2702.
OBJECTIVE
To examine the association between single nucleotide polymorphisms (SNPs) in the engulfment and cell motility 1 (ELMO1) gene, a locus previously shown to be associated with diabetic nephropathy in two ethnically distinct type 2 diabetic populations, and the risk of nephropathy in type 1 diabetes.
RESEARCH DESIGN AND METHODS
Genotypic data from a genome-wide association scan (GWAS) of the Genetics of Kidneys in Diabetes (GoKinD) study collection were analyzed for associations across the ELMO1 locus. In total, genetic associations were assessed using 118 SNPs and 1,705 individuals of European ancestry with type 1 diabetes (885 normoalbuminuric control subjects and 820 advanced diabetic nephropathy case subjects).
RESULTS
The strongest associations in ELMO1 occurred at rs11769038 (odds ratio [OR] 1.24; P = 1.7 × 10−3) and rs1882080 (OR 1.23; P = 3.2 × 10−3) located in intron 16. Two additional SNPs, located in introns 18 and 20, respectively, were also associated with diabetic nephropathy. No evidence of association for variants previously reported in type 2 diabetes was observed in our collection.
CONCLUSIONS
Using GWAS data from the GoKinD collection, we comprehensively examined evidence of association across the ELMO1 locus. Our investigation marks the third report of associations in ELMO1 with diabetic nephropathy, further establishing its role in the susceptibility of this disease. There is evidence of allelic heterogeneity, contributed by the diverse genetic backgrounds of the different ethnic groups examined. Further investigation of SNPs at this locus is necessary to fully understand the commonality of these associations and the mechanism(s) underlying their role in diabetic nephropathy.
doi:10.2337/db09-0641
PMCID: PMC2768169  PMID: 19651817
24.  Differential Effects of MYH9 and APOL1 Risk Variants on FRMD3 Association with Diabetic ESRD in African Americans 
PLoS Genetics  2011;7(6):e1002150.
Single nucleotide polymorphisms (SNPs) in MYH9 and APOL1 on chromosome 22 (c22) are powerfully associated with non-diabetic end-stage renal disease (ESRD) in African Americans (AAs). Many AAs diagnosed with type 2 diabetic nephropathy (T2DN) have non-diabetic kidney disease, potentially masking detection of DN genes. Therefore, genome-wide association analyses were performed using the Affymetrix SNP Array 6.0 in 966 AA with T2DN and 1,032 non-diabetic, non-nephropathy (NDNN) controls, with and without adjustment for c22 nephropathy risk variants. No associations were seen between FRMD3 SNPs and T2DN before adjusting for c22 variants. However, logistic regression analysis revealed seven FRMD3 SNPs significantly interacting with MYH9—a finding replicated in 640 additional AA T2DN cases and 683 NDNN controls. Contrasting all 1,592 T2DN cases with all 1,671 NDNN controls, FRMD3 SNPs appeared to interact with the MYH9 E1 haplotype (e.g., rs942280 interaction p-value = 9.3E−7 additive; odds ratio [OR] 0.67). FRMD3 alleles were associated with increased risk of T2DN only in subjects lacking two MYH9 E1 risk haplotypes (rs942280 OR = 1.28), not in MYH9 E1 risk allele homozygotes (rs942280 OR = 0.80; homogeneity p-value = 4.3E−4). Effects were weaker stratifying on APOL1. FRMD3 SNPS were associated with T2DN, not type 2 diabetes per se, comparing AAs with T2DN to those with diabetes lacking nephropathy. T2DN-associated FRMD3 SNPs were detectable in AAs only after accounting for MYH9, with differential effects for APOL1. These analyses reveal a role for FRMD3 in AA T2DN susceptibility and accounting for c22 nephropathy risk variants can assist in detecting DN susceptibility genes.
Author Summary
African Americans have high rates of kidney disease attributed to type 2 diabetes mellitus. However, approximately 25% of patients are misclassified and have non-diabetic kidney disease on renal biopsy. The APOL1-MYH9 gene region on chromosome 22 is powerfully associated with non-diabetic kidney diseases in African Americans. Therefore, we tested for interactions between single nucleotide polymorphisms across the genome with APOL1 and MYH9 non-diabetic nephropathy risk variants in African Americans with presumed diabetic nephropathy. Markers in FRMD3, a gene associated with type 1 diabetic nephropathy in Caucasians, appeared to interact with MYH9; however, increased nephropathy risk was seen in diabetic cases lacking two MYH9 risk haplotypes, and protective effects were seen in those with two MYH9 risk haplotypes. Stratified analyses based on the chromosome 22 nephropathy risk haplotypes demonstrated that FRMD3 variants were associated with diabetic nephropathy risk in cases without two MYH9 (or APOL1) risk haplotypes. It appears that African Americans with diabetes and kidney disease who are not chromosome 22 nephropathy risk variant homozygotes are enriched for the presence of diabetic nephropathy and FRMD3 risk alleles. This genetic dissection ultimately allowed for detection of the FRMD3 diabetic nephropathy gene association in a subset of cases enriched for this disorder.
doi:10.1371/journal.pgen.1002150
PMCID: PMC3116917  PMID: 21698141
25.  Common Variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE Genes Are Associated With Type 2 Diabetes and Impaired Fasting Glucose in a Chinese Han Population 
Diabetes  2008;57(10):2834-2842.
OBJECTIVE— Genome-wide association studies have identified common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, HHEX/IDE, EXT2, and LOC387761 loci that significantly increase the risk of type 2 diabetes. We aimed to replicate these observations in a population-based cohort of Chinese Hans and examine the associations of these variants with type 2 diabetes and diabetes-related phenotypes.
RESEARCH DESIGN AND METHODS— We genotyped 17 single nucleotide polymorhisms (SNPs) in 3,210 unrelated Chinese Hans, including 424 participants with type 2 diabetes, 878 with impaired fasting glucose (IFG), and 1,908 with normal fasting glucose.
RESULTS— We confirmed the associations between type 2 diabetes and variants near CDKAL1 (odds ratio 1.49 [95% CI 1.27–1.75]; P = 8.91 × 10−7) and CDKN2A/B (1.31 [1.12–1.54]; P = 1.0 × 10−3). We observed significant association of SNPs in IGF2BP2 (1.17 [1.03–1.32]; P = 0.014) and SLC30A8 (1.12 [1.01–1.25]; P = 0.033) with combined IFG/type 2 diabetes. The SNPs in CDKAL1, IGF2BP2, and SLC30A8 were also associated with impaired β-cell function estimated by homeostasis model assessment of β-cell function. When combined, each additional risk allele from CDKAL1-rs9465871, CDKN2A/B-rs10811661, IGF2BP2-rs4402960, and SLC30A8-rs13266634 increased the risk for type 2 diabetes by 1.24-fold (P = 2.85 × 10−7) or for combined IFG/type 2 diabetes by 1.21-fold (P = 6.31 × 10−11). None of the SNPs in EXT2 or LOC387761 exhibited significant association with type 2 diabetes or IFG. Significant association was observed between the HHEX/IDE SNPs and type 2 diabetes in individuals from Shanghai only (P < 0.013) but not in those from Beijing (P > 0.33).
CONCLUSIONS— Our results indicate that in Chinese Hans, common variants in CDKAL1, CDKN2A/B, IGF2BP2, and SLC30A8 loci independently or additively contribute to type 2 diabetes risk, likely mediated through β-cell dysfunction.
doi:10.2337/db08-0047
PMCID: PMC2551696  PMID: 18633108

Results 1-25 (1142825)