PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (942603)

Clipboard (0)
None

Related Articles

1.  Dysfunctional KEAP1–NRF2 Interaction in Non-Small-Cell Lung Cancer 
PLoS Medicine  2006;3(10):e420.
Background
Nuclear factor erythroid-2 related factor 2 (NRF2) is a redox-sensitive transcription factor that positively regulates the expression of genes encoding antioxidants, xenobiotic detoxification enzymes, and drug efflux pumps, and confers cytoprotection against oxidative stress and xenobiotics in normal cells. Kelch-like ECH-associated protein 1 (KEAP1) negatively regulates NRF2 activity by targeting it to proteasomal degradation. Increased expression of cellular antioxidants and xenobiotic detoxification enzymes has been implicated in resistance of tumor cells against chemotherapeutic drugs.
Methods and Findings
Here we report a systematic analysis of the KEAP1 genomic locus in lung cancer patients and cell lines that revealed deletion, insertion, and missense mutations in functionally important domains of KEAP1 and a very high percentage of loss of heterozygosity at 19p13.2, suggesting that biallelic inactivation of KEAP1 in lung cancer is a common event. Sequencing of KEAP1 in 12 cell lines and 54 non-small-cell lung cancer (NSCLC) samples revealed somatic mutations in KEAP1 in a total of six cell lines and ten tumors at a frequency of 50% and 19%, respectively. All the mutations were within highly conserved amino acid residues located in the Kelch or intervening region domain of the KEAP1 protein, suggesting that these mutations would likely abolish KEAP1 repressor activity. Evaluation of loss of heterozygosity at 19p13.2 revealed allelic losses in 61% of the NSCLC cell lines and 41% of the tumor samples. Decreased KEAP1 activity in cancer cells induced greater nuclear accumulation of NRF2, causing enhanced transcriptional induction of antioxidants, xenobiotic metabolism enzymes, and drug efflux pumps.
Conclusions
This is the first study to our knowledge to demonstrate that biallelic inactivation of KEAP1 is a frequent genetic alteration in NSCLC. Loss of KEAP1 function leading to constitutive activation of NRF2-mediated gene expression in cancer suggests that tumor cells manipulate the NRF2 pathway for their survival against chemotherapeutic agents.
Biallelic inactivation ofKEAP1, a frequent genetic alteration in NSCLC, is associated with activation of the NRF2 pathway which leads to expression of genes that contribute to resistance against chemotherapeutic drugs.
Editors' Summary
Background.
Lung cancer is the most common cause of cancer-related death worldwide. More than 150,000 people in the US alone die every year from this disease, which can be split into two basic types—small cell lung cancer and non-small-cell lung cancer (NSCLC). Four out of five lung cancers are NSCLCs, but both types are mainly caused by smoking. Exposure to chemicals in smoke produces changes (or mutations) in the genetic material of the cells lining the lungs that cause the cells to grow uncontrollably and to move around the body. In more than half the people who develop NSCLC, the cancer has spread out of the lungs before it is diagnosed, and therefore can't be removed surgically. Stage IV NSCLC, as this is known, is usually treated with chemotherapy—toxic chemicals that kill the fast-growing cancer cells. However, only 2% of people with stage IV NSCLC are still alive two years after their diagnosis, mainly because their cancer cells become resistant to chemotherapy. They do this by making proteins that destroy cancer drugs (detoxification enzymes) or that pump them out of cells (efflux pumps) and by making antioxidants, chemicals that protect cells against the oxidative damage caused by many chemotherapy agents.
Why Was This Study Done?
To improve the outlook for patients with lung cancer, researchers need to discover exactly how cancer cells become resistant to chemotherapy drugs. Detoxification enzymes, efflux pumps, and antioxidants normally protect cells from environmental toxins and from oxidants produced by the chemical processes of life. Their production is regulated by nuclear factor erythroid-2 related factor 2 (NRF2). The activity of this transcription factor (a protein that controls the expression of other proteins) is controlled by the protein Kelch-like ECH-associated protein 1 (KEAP1). KEAP1 holds NRF2 in the cytoplasm of the cell (the cytoplasm surrounds the cell's nucleus, where the genetic material is stored) when no oxidants are present and targets it for destruction. When oxidants are present, KEAP1 no longer interacts with NRF2, which moves into the nucleus and induces the expression of the proteins that protect the cell against oxidants and toxins. In this study, the researchers investigated whether changes in KEAP1 might underlie the drug resistance seen in lung cancer.
What Did the Researchers Do and Find?
The researchers looked carefully at the gene encoding KEAP1 in tissue taken from lung tumors and in several lung cancer cell lines—tumor cells that have been grown in a laboratory. They found mutations in parts of KEAP1 known to be important for its function in half the cell lines and a fifth of the tumor samples. They also found that about half of the samples had lost part of one copy of the KEAP1 gene—cells usually have two copies of each gene. Five of the six tumors with KEAP1 mutations had also lost one copy of KEAP1—geneticists call this biallelic inactivation. This means that these tumors should have no functional KEAP1. When the researchers checked this by staining the tumors for NRF2, they found that the tumor cells had more NRF2 than normal cells and that it accumulated in the nucleus. In addition, the tumor cells made more detoxification enzymes, efflux proteins, and antioxidants than normal cells. Finally, the researchers showed that lung cancer cells with KEAP1 mutations were more resistant to chemotherapy drugs than normal lung cells were.
What Do These Findings Mean?
These results indicate that biallelic inactivation of KEAP1 is a frequent genetic alteration in NSCLC and suggest that the loss of KEAP1 activity is one way that lung tumors can increase their NRF2 activity and develop resistance to chemotherapeutic drugs. More lung cancer samples need to be examined to confirm this result, and similar studies need to be done in other cancers to see whether loss of KEAP1 activity is a common mechanism by which tumors become resistant to chemotherapy. If such studies confirm that high NRF2 activity (either through mutation or by some other route) is often associated with a poor tumor response to chemotherapy, then the development of NRF2 inhibitors might help to improve treatment outcomes in patients with chemotherapy-resistant tumors.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030420.
US National Cancer Institute information on lung cancer and on cancer treatment
MedlinePlus entries on small cell lung cancer and NSCLC Cancer Research UK information on lung cancer
Wikipedia entries on lung cancer and chemotherapy (note that Wikipedia is a free online encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0030420
PMCID: PMC1584412  PMID: 17020408
2.  KPNA6 (Importin α7)-Mediated Nuclear Import of Keap1 Represses the Nrf2-Dependent Antioxidant Response ▿  
Molecular and Cellular Biology  2011;31(9):1800-1811.
The transcription factor Nrf2 has emerged as a master regulator of cellular redox homeostasis. As an adaptive response to oxidative stress, Nrf2 activates the transcription of a battery of genes encoding antioxidants, detoxification enzymes, and xenobiotic transporters by binding the cis-antioxidant response element in the promoter regions of genes. The magnitude and duration of inducible Nrf2 signaling is delicately controlled at multiple levels by Keap1, which targets Nrf2 for redox-sensitive ubiquitin-mediated degradation in the cytoplasm and exports Nrf2 from the nucleus. However, it is not clear how Keap1 gains access to the nucleus. In this study, we show that Keap1 is constantly shuttling between the nucleus and the cytoplasm under physiological conditions. The nuclear import of Keap1 requires its C-terminal Kelch domain and is independent of Nrf1 and Nrf2. We have determined that importin α7, also known as karyopherin α6 (KPNA6), directly interacts with the Kelch domain of Keap1. Overexpression of KPNA6 facilitates Keap1 nuclear import and attenuates Nrf2 signaling, whereas knockdown of KPNA6 slows down Keap1 nuclear import and enhances the Nrf2-mediated adaptive response induced by oxidative stress. Furthermore, KPNA6 accelerates the clearance of Nrf2 protein from the nucleus during the postinduction phase, therefore promoting restoration of the Nrf2 protein to basal levels. These findings demonstrate that KPNA6-mediated Keap1 nuclear import plays an essential role in modulating the Nrf2-dependent antioxidant response and maintaining cellular redox homeostasis.
doi:10.1128/MCB.05036-11
PMCID: PMC3133232  PMID: 21383067
3.  Keap1 Controls Postinduction Repression of the Nrf2-Mediated Antioxidant Response by Escorting Nuclear Export of Nrf2▿  
Molecular and Cellular Biology  2007;27(18):6334-6349.
The transcription factor Nrf2 regulates cellular redox homeostasis. Under basal conditions, Keap1 recruits Nrf2 into the Cul3-containing E3 ubiquitin ligase complex for ubiquitin conjugation and subsequent proteasomal degradation. Oxidative stress triggers activation of Nrf2 through inhibition of E3 ubiquitin ligase activity, resulting in increased levels of Nrf2 and transcriptional activation of Nrf2-dependent genes. In this study, we identify Keap1 as a key postinduction repressor of Nrf2 and demonstrate that a nuclear export sequence (NES) in Keap1 is required for termination of Nrf2-antioxidant response element (ARE) signaling by escorting nuclear export of Nrf2. We provide evidence that ubiquitination of Nrf2 is carried out in the cytosol. Furthermore, we show that Keap1 nuclear translocation is independent of Nrf2 and the Nrf2-Keap1 complex does not bind the ARE. Collectively, our results suggest the following mechanism of postinduction repression: upon recovery of cellular redox homeostasis, Keap1 translocates into the nucleus to dissociate Nrf2 from the ARE. The Nrf2-Keap1 complex is then transported out of the nucleus by the NES in Keap1. Once in the cytoplasm, the Keap1-Nrf2 complex associates with the E3 ubiquitin ligase, resulting in degradation of Nrf2 and termination of the Nrf2 signaling pathway. Hence, postinduction repression of the Nrf2-mediated antioxidant response is controlled by the nuclear export function of Keap1 in alliance with the cytoplasmic ubiquitination and degradation machinery.
doi:10.1128/MCB.00630-07
PMCID: PMC2099624  PMID: 17636022
4.  Cross-Regulations among NRFs and KEAP1 and Effects of their Silencing on Arsenic-Induced Antioxidant Response and Cytotoxicity in Human Keratinocytes 
Environmental Health Perspectives  2012;120(4):583-589.
Background: Nuclear factor E2-related factors (NRFs), including NRF2 and NRF1, play critical roles in mediating the cellular adaptive response to oxidative stress. Human exposure to inorganic arsenic, a potent oxidative stressor, causes various dermal disorders, including hyperkeratosis and skin cancer.
Objective: We investigated the cross-regulations among NRF2, NRF1, and KEAP1, a cullin-3–adapter protein that allows NRF2 to be ubiquinated and degraded by the proteasome complex, in arsenic-induced antioxidant responses.
Results: In human keratinocyte HaCaT cells, selective knockdown (KD) of NRF2 by lentiviral short hairpin RNAs (shRNAs) significantly reduced the expression of many antioxidant enzymes and sensitized the cells to acute cytotoxicity of inorganic arsenite (iAs3+). In contrast, silencing KEAP1 led to a dramatic resistance to iAs3+-induced apoptosis. Pretreatment of HaCaT cells with NRF2 activators, such as tert-butylhydroquinone, protects the cells against acute iAs3+ toxicity in an NRF2-dependent fashion. Consistent with the negative regulatory role of KEAP1 in NRF2 activation, KEAP1-KD cells exhibited enhanced transcriptional activity of NRF2 under nonstressed conditions. However, deficiency in KEAP1 did not facilitate induction of NRF2-target genes by iAs3+. In addition, NRF2 silencing reduced the expression of KEAP1 at transcription and protein levels but increased the protein expression of NRF1 under the iAs3+-exposed condition. In contrast, silencing KEAP1 augmented protein accumulation of NRF2 under basal and iAs3+-exposed conditions, whereas the iAs3+-induced protein accumulation of NRF1 was attenuated in KEAP1-KD cells.
Conclusions: Our studies suggest that NRF2, KEAP1, and NRF1 are coordinately involved in the regulation of the cellular adaptive response to iAs3+-induced oxidative stress.
doi:10.1289/ehp.1104580
PMCID: PMC3339469  PMID: 22476201
antioxidant response; arsenic; cytotoxicity; KEAP1; keratinocyte; NRF1; NRF2
5.  Transcription Factor Nrf2-Mediated Antioxidant Defense System in the Development of Diabetic Retinopathy 
Purpose.
Increase in reactive oxygen species (ROS) is one of the major retinal metabolic abnormalities associated with the development of diabetic retinopathy. NF-E2–related factor 2 (Nrf2), a redox sensitive factor, provides cellular defenses against the cytotoxic ROS. In stress conditions, Nrf2 dissociates from its cytosolic inhibitor, Kelch like-ECH-associated protein 1 (Keap1), and moves to the nucleus to regulate the transcription of antioxidant genes including the catalytic subunit of glutamylcysteine ligase (GCLC), a rate-limiting reduced glutathione (GSH) biosynthesis enzyme. Our aim is to understand the role of Nrf2-Keap1-GCLC in the development of diabetic retinopathy.
Methods.
Effect of diabetes on Nrf2-Keap1-GCLC pathway, and subcellular localization of Nrf2 and its binding with Keap1 was investigated in the retina of streptozotocin-induced diabetic rats. The binding of Nrf2 at GCLC was quantified by chromatin immunoprecipitation technique. The results were confirmed in isolated retinal endothelial cells, and also in the retina from human donors with diabetic retinopathy.
Results.
Diabetes increased retinal Nrf2 and its binding with Keap1, but decreased DNA-binding activity of Nrf2 and also its binding at the promoter region of GCLC. Similar impairments in Nrf2-Keap1-GCLC were observed in the endothelial cells exposed to high glucose and in the retina from donors with diabetic retinopathy. In retinal endothelial cells, glucose-induced impairments in Nrf2-GCLC were prevented by Nrf2 inducer tBHQ and also by Keap1-siRNA.
Conclusions.
Due to increased binding of Nrf2 with Keap1, its translocation to the nucleus is compromised contributing to the decreased GSH levels. Thus, regulation of Nrf2-Keap1 by pharmacological or molecular means could serve as a potential adjunct therapy to combat oxidative stress and inhibit the development of diabetic retinopathy.
Diabetes increases retinal Nrf2 levels, but decreases its DNA binding activity. Due to increased binding of Nrf2 with its inhibitor, the recruitment of Nrf2 at the promoter of GCLC, a rate-limiting enzyme in GSH biosynthesis, is decreased, resulting in subnormal antioxidant defense system.
doi:10.1167/iovs.13-11598
PMCID: PMC3676188  PMID: 23633659
antioxidant defense; diabetic retinopathy; Nrf2
6.  Distinct Cysteine Residues in Keap1 Are Required for Keap1-Dependent Ubiquitination of Nrf2 and for Stabilization of Nrf2 by Chemopreventive Agents and Oxidative Stress 
Molecular and Cellular Biology  2003;23(22):8137-8151.
A common feature of diverse chemopreventive agents is the ability to activate expression of a genetic program that protects cells from reactive chemical species that, if left unchecked, would cause mutagenic DNA damage. The bZIP transcription factor Nrf2 has emerged as a key regulator of this cancer-preventive genetic program. Nrf2 is normally sequestered in the cytoplasm by a protein known as Keap1. Chemopreventive agents allow Nrf2 to escape from Keap1-mediated repression, although the molecular mechanism(s) responsible for activation of Nrf2 is not understood. In this report, we demonstrate that Keap1 does not passively sequester Nrf2 in the cytoplasm but actively targets Nrf2 for ubiquitination and degradation by the proteosome under basal culture conditions. We have identified two critical cysteine residues in Keap1, C273 and C288, that are required for Keap1-dependent ubiquitination of Nrf2. Both sulforaphane, a chemopreventive isothiocyanate, and oxidative stress enable Nrf2 to escape Keap1-dependent degradation, leading to stabilization of Nrf2, increased nuclear localization of Nrf2, and activation of Nrf2-dependent cancer-protective genes. We have identified a third cysteine residue in Keap1, C151, that is uniquely required for inhibition of Keap1-dependent degradation of Nrf2 by sulforaphane and oxidative stress. This cysteine residue is also required for a novel posttranslational modification to Keap1 that is induced by oxidative stress. We propose that Keap1 is a component of a novel E3 ubiquitin ligase complex that is specifically targeted for inhibition by both chemopreventive agents and oxidative stress.
doi:10.1128/MCB.23.22.8137-8151.2003
PMCID: PMC262403  PMID: 14585973
7.  SCF/β-TrCP Promotes Glycogen Synthase Kinase 3-Dependent Degradation of the Nrf2 Transcription Factor in a Keap1-Independent Manner▿  
Molecular and Cellular Biology  2011;31(6):1121-1133.
Regulation of transcription factor Nrf2 (NF-E2-related factor 2) involves redox-sensitive proteasomal degradation via the E3 ubiquitin ligase Keap1/Cul3. However, Nrf2 is controlled by other mechanisms that have not yet been elucidated. We now show that glycogen synthase kinase 3 (GSK-3) phosphorylates a group of Ser residues in the Neh6 domain of mouse Nrf2 that overlap with an SCF/β-TrCP destruction motif (DSGIS, residues 334 to 338) and promotes its degradation in a Keap1-independent manner. Nrf2 was stabilized by GSK-3 inhibitors in Keap1-null mouse embryo fibroblasts. Similarly, an Nrf2ΔETGE mutant, which cannot be degraded via Keap1, accumulated when GSK-3 activity was blocked. Phosphorylation of a Ser cluster in the Neh6 domain of Nrf2 stimulated its degradation because a mutant Nrf2ΔETGE 6S/6A protein, lacking these Ser residues, exhibited a longer half-life than Nrf2ΔETGE. Moreover, Nrf2ΔETGE 6S/6A was insensitive to β-TrCP regulation and exhibited lower levels of ubiquitination than Nrf2ΔETGE. GSK-3β enhanced ubiquitination of Nrf2ΔETGE but not that of Nrf2ΔETGE 6S/6A. The Nrf2ΔETGE protein but not Nrf2ΔETGE 6S/6A coimmunoprecipitated with β-TrCP, and this association was enhanced by GSK-3β. Our results show for the first time that Nrf2 is targeted by GSK-3 for SCF/β-TrCP-dependent degradation. We propose a “dual degradation” model to describe the regulation of Nrf2 under different pathophysiological conditions.
doi:10.1128/MCB.01204-10
PMCID: PMC3067901  PMID: 21245377
8.  Regulation of Nrf2 – An update 
Free radical biology & medicine  2013;66:10.1016/j.freeradbiomed.2013.02.008.
Nrf2:INrf2 (Keap1) are cellular sensors of oxidative and electrophilic stress. Nrf2 is a nuclear factor that controls the expression and coordinated induction of a battery of genes which encode detoxifying enzymes, drug transporters (MRPs), anti-apoptotic proteins and proteasomes. In the basal state, Nrf2 is constantly degraded in the cytoplasm by its inhibitor, INrf2. INrf2 functions as an adapter for Cul3/Rbx1 E3 ubiquitin ligase mediated degradation of Nrf2. Chemicals including antioxidants, tocopherols including α-tocopherol (vitamin E), phytochemicals and radiations antagonize the Nrf2:INrf2 interaction and leads to the stabilization and activation of Nrf2. The signaling events involve pre-induction, induction and post-induction responses that tightly control Nrf2 activation and repression back to the basal state. Oxidative/electrophilic signals activate unknown tyrosine kinase(s) in a pre-induction response which phosphorylates specific residues on Nrf2 negative-regulators, INrf2, Fyn and Bach1, leading to their nuclear export, ubiquitination and degradation. This prepares nuclei for unhindered import of Nrf2. Oxidative/electrophilic modification of INrf2cysteine151 followed by PKC phosphorylation of Nrf2serine40 in the induction response results in the escape or release of Nrf2 from INrf2. Nrf2 is thus stabilized and translocates to the nucleus resulting in a coordinated activation of gene expression. This is followed by a post-induction response that controls the ‘switching off’ of Nrf2-activated gene expression. GSK3β under the control of AKT and PI3K, phosphorylates Fyn leading to Fyn nuclear localization. Fyn phosphorylates Nrf2Y568 resulting in nuclear export and degradation of Nrf2. The activation and repression of Nrf2 provides protection against oxidative/electrophilic stress and associated diseases, including cancer. However, deregulation of INrf2 and Nrf2 due to mutations may lead to nuclear accumulation of Nrf2 that reduces apoptosis and promotes oncogenesis and drug resistance.
doi:10.1016/j.freeradbiomed.2013.02.008
PMCID: PMC3773280  PMID: 23434765
Nrf2; INrf2(Keap1); Antioxidants; Vitamins; Phytochemicals; ROS; Signaling; Regulation; Chemoprotection; Oncogenesis
9.  Keap1 Is a Redox-Regulated Substrate Adaptor Protein for a Cul3-Dependent Ubiquitin Ligase Complex 
Molecular and Cellular Biology  2004;24(24):10941-10953.
The bZIP transcription factor Nrf2 controls a genetic program that protects cells from oxidative damage and maintains cellular redox homeostasis. Keap1, a BTB-Kelch protein, is the major upstream regulator of Nrf2 and controls both the subcellular localization and steady-state levels of Nrf2. In this report, we demonstrate that Keap1 functions as a substrate adaptor protein for a Cul3-dependent E3 ubiquitin ligase complex. Keap1 assembles into a functional E3 ubiquitin ligase complex with Cul3 and Rbx1 that targets multiple lysine residues located in the N-terminal Neh2 domain of Nrf2 for ubiquitin conjugation both in vivo and in vitro. Keap1-dependent ubiquitination of Nrf2 is inhibited following exposure of cells to quinone-induced oxidative stress and sulforaphane, a cancer-preventive isothiocyanate. A mutant Keap1 protein containing a single cysteine-to-serine substitution at residue 151 within the BTB domain of Keap1 is markedly resistant to inhibition by either quinone-induced oxidative stress or sulforaphane. Inhibition of Keap1-dependent ubiquitination of Nrf2 correlates with decreased association of Keap1 with Cul3. Neither quinone-induced oxidative stress nor sulforaphane disrupts association between Keap1 and Nrf2. Our results suggest that the ability of Keap1 to assemble into a functional E3 ubiquitin ligase complex is the critical determinant that controls steady-state levels of Nrf2 in response to cancer-preventive compounds and oxidative stress.
doi:10.1128/MCB.24.24.10941-10953.2004
PMCID: PMC533977  PMID: 15572695
10.  Promoter DNA demethylation of Keap1 gene in diabetic cardiomyopathy 
Researches have shown that the onset of diabetes is closely associated with oxidative stress and the chronic exposure leads to the development of complications such as diabetic cardiomyopathy. One of the central adaptive responses against the oxidative stresses is the activation of the nuclear transcriptional factor, NF-E2-related factor 2 (Nrf2), which then activates more than 20 different antioxidative enzymes. Kelch-like ECH associated protein 1 (Keap1) targets and binds to Nrf2 for proteosomal degradation. The aim of the present study was to investigate the status of Nrf2 mediated antioxidant system in myocardial biopsies of non-diabetic (NDM) and type-2 diabetic (DM-T2) cardiomyopathy patients. The western blot analysis of antioxidant proteins, real-time PCR analysis of Nrf2/Keap1 gene and bisulphate DNA sequencing analysis to study the methylation status of the CpG islands of Keap1 promoter DNA were performed. The immunoblot analysis showed the decreased level of antioxidant proteins other than Keap1 in the diabetic cardiopathy patients. Similarly, mRNA levels of Keap1 showed 5-fold increase in diabetic patients. Further analysis on promoter region of Keap1 gene revealed 80% demethylation in diabetic patients. Altogether, our results indicated that demethylation of the CpG islands in the Keap1 promoter will activate the expression of Keap1 protein, which then increases the targeting of Nrf2 for proteosomal degradation. Decreased Nrf2 activity represses the transcription of many antioxidant enzyme genes and alters the redox-balance up on diabetes. Thus, our study clearly demonstrates the failure of Nrf2 mediated antioxidant system revealed in biopsies of diabetic cardiomyopathy.
PMCID: PMC4313971
Nrf2; antioxidant system; CpG islands; bisulphate sequencing
11.  Phosphorylation of Nrf2 at Multiple Sites by MAP Kinases Has a Limited Contribution in Modulating the Nrf2-Dependent Antioxidant Response 
PLoS ONE  2009;4(8):e6588.
The bZIP transcription factor Nrf2 has emerged as a pivotal regulator of intracellular redox homeostasis by controlling the expression of many endogenous antioxidants and phase II detoxification enzymes. Upon oxidative stress, Nrf2 is induced at protein levels through redox-sensitive modifications on cysteine residues of Keap1, a component of the E3 ubiquitin ligase that targets Nrf2 for ubiquitin-dependent degradation. The mitogen activated protein kinases (MAPKs) have previously been proposed to regulate Nrf2 in response to oxidative stress. However, the exact role of MAPKs and the underlying molecular mechanism remain poorly defined. Here we report the first evidence that Nrf2 is phosphorylated in vivo by MAPKs. We have identified multiple serine/threonine residues as major targets of MAPK-mediated phosphorylation. Combined alanine substitution on those residues leads to a moderate decrease in the transcriptional activity of Nrf2, most likely due to a slight reduction in its nuclear accumulation. More importantly, Nrf2 protein stability, primarily controlled by Keap1, is not altered by Nrf2 phosphorylation in vivo. These data indicate that direct phosphorylation of Nrf2 by MAPKs has limited contribution in modulating Nrf2 activity. We suggest that MAPKs regulate the Nrf2 signaling pathway mainly through indirect mechanisms.
doi:10.1371/journal.pone.0006588
PMCID: PMC2719090  PMID: 19668370
12.  Nrf2 Enhances Cholangiocyte Expansion in Pten-Deficient Livers 
Molecular and Cellular Biology  2014;34(5):900-913.
Keap1-Nrf2 system plays a central role in the stress response. While Keap1 ubiquitinates Nrf2 for degradation under unstressed conditions, this Keap1 activity is abrogated in response to oxidative or electrophilic stresses, leading to Nrf2 stabilization and coordinated activation of cytoprotective genes. We recently found that nuclear accumulation of Nrf2 is significantly increased by simultaneous deletion of Pten and Keap1, resulting in the stronger activation of Nrf2 target genes. To clarify the impact of the cross talk between the Keap1-Nrf2 and Pten–phosphatidylinositide 3-kinase–Akt pathways on the liver pathophysiology, in this study we have conducted closer analysis of liver-specific Pten::Keap1 double-mutant mice (Pten::Keap1-Alb mice). The Pten::Keap1-Alb mice were lethal by 1 month after birth and displayed severe hepatomegaly with abnormal expansion of ductal structures comprising cholangiocytes in a Nrf2-dependent manner. Long-term observation of Pten::Keap1-Alb::Nrf2+/− mice revealed that the Nrf2-heterozygous mice survived beyond 1 month but developed polycystic liver fibrosis by 6 months. Gsk3 directing the Keap1-independent degradation of Nrf2 was heavily phosphorylated and consequently inactivated by the double deletion of Pten and Keap1 genes. Thus, liver-specific disruption of Keap1 and Pten augments Nrf2 activity through inactivation of Keap1-dependent and -independent degradation of Nrf2 and establishes the Nrf2-dependent molecular network promoting the hepatomegaly and cholangiocyte expansion.
doi:10.1128/MCB.01384-13
PMCID: PMC4023823  PMID: 24379438
13.  Targeted Deletion of Nrf2 Impairs Lung Development and Oxidant Injury in Neonatal Mice 
Antioxidants & Redox Signaling  2012;17(8):1066-1082.
Abstract
Aims: Nrf2 is an essential transcription factor for protection against oxidant disorders. However, its role in organ development and neonatal disease has received little attention. Therapeutically administered oxygen has been considered to contribute to bronchopulmonary dysplasia (BPD) in prematurity. The current study was performed to determine Nrf2-mediated molecular events during saccular-to-alveolar lung maturation, and the role of Nrf2 in the pathogenesis of hyperoxic lung injury using newborn Nrf2-deficient (Nrf2−/−) and wild-type (Nrf2+/+) mice. Results: Pulmonary basal expression of cell cycle, redox balance, and lipid/carbohydrate metabolism genes was lower while lymphocyte immunity genes were more highly expressed in Nrf2−/− neonates than in Nrf2+/+ neonates. Hyperoxia-induced phenotypes, including mortality, arrest of saccular-to-alveolar transition, and lung edema, and inflammation accompanying DNA damage and tissue oxidation were significantly more severe in Nrf2−/− neonates than in Nrf2+/+ neonates. During lung injury pathogenesis, Nrf2 orchestrated expression of lung genes involved in organ injury and morphology, cellular growth/proliferation, vasculature development, immune response, and cell–cell interaction. Bioinformatic identification of Nrf2 binding motifs and augmented hyperoxia-induced inflammation in genetically deficient neonates supported Gpx2 and Marco as Nrf2 effectors. Innovation: This investigation used lung transcriptomics and gene targeted mice to identify novel molecular events during saccular-to-alveolar stage transition and to elucidate Nrf2 downstream mechanisms in protection from hyperoxia-induced injury in neonate mouse lungs. Conclusion: Nrf2 deficiency augmented lung injury and arrest of alveolarization caused by hyperoxia during the newborn period. Results suggest a therapeutic potential of specific Nrf2 activators for oxidative stress-associated neonatal disorders including BPD. Antioxid. Redox Signal. 00, 000–000.
doi:10.1089/ars.2011.4288
PMCID: PMC3423869  PMID: 22400915
14.  Disruption of the Transcription Factor Nrf2 Promotes Pro-Oxidative Dendritic Cells That Stimulate Th2-Like Immunoresponsiveness upon Activation by Ambient Particulate Matter 
Oxidative stress is important in dendritic cell (DC) activation. Environmental particulate matter (PM) directs pro-oxidant activities that may alter DC function. Nuclear erythroid 2 p45-related factor 2 (Nrf2) is a redox-sensitive transcription factor that regulates expression of antioxidant and detoxification genes. Oxidative stress and defective antioxidant responses may contribute to the exacerbations of asthma. We hypothesized that PM would impart differential responses by Nrf2 wild-type DCs as compared with Nrf2−/− DCs. We found that the deletion of Nrf2 affected important constitutive functions of both bone marrow-derived and highly purified myeloid lung DCs such as the secretion of inflammatory cytokines and their ability to take up exogenous Ag. Stimulation of Nrf2−/− DCs with PM augmented oxidative stress and cytokine production as compared with resting or Nrf2+/+ DCs. This was associated with the enhanced induction of Nrf2-regulated antioxidant genes. In contrast to Nrf2+/+ DCs, coincubation of Nrf2−/− DCs with PM and the antioxidant N-acetyl cysteine attenuated PM-induced up-regulation of CD80 and CD86. Our studies indicate a previously underappreciated role of Nrf2 in innate immunity and suggest that deficiency in Nrf2-dependent pathways may be involved in susceptibility to the adverse health effects of air pollution in part by promoting Th2 cytokine responses in the absence of functional Nrf2. Moreover, our studies have uncovered a hierarchal response to oxidative stress in terms of costimulatory molecule expression and cytokine secretion in DCs and suggest an important role of heightened oxidative stress in proallergic Th2-mediated immune responses orchestrated by DCs.
PMCID: PMC3086516  PMID: 18802057
15.  Nrf2 Signaling and Cell Survival 
Nrf2:INrf2 acts as a sensor for oxidative/electrophilic stress. INrf2 serves as an adaptor to link Nrf2 to the ubiquitin ligase Cul3-Rbx1 complex that ubiquitinate and degrade Nrf2. Under basal conditions, cytosolic INrf2/Cul3-Rbx1 is constantly degrading Nrf2. When a cell encounters stress Nrf2 dissociates from the INrf2 and translocates into the nucleus. Oxidative/electrophilic stress induced modification of INrf2Cysteine151 and/or protein kinase C (PKC)-mediated phosporylation of Nrf2Serine40 controls Nrf2 release from INrf2 followed by stabilization and nuclear translocation of Nrf2. Nrf2 binds to the antioxidant response element (ARE) and activates a myriad of genes that protect cells against oxidative/electrophilic stress and neoplasia. A delayed response of oxidative/electrophilic stress activates GSK-3β that phosphorylates Fyn at unknown threonine residue(s). Phosphorylated Fyn translocates to the nucleus and phosphorylates Nrf2Tyrosine568 that leads to nuclear export and degradation of Nrf2. Prothymosin-α mediated nuclear translocation of INrf2 also degrades nuclear Nrf2. The degradation of Nrf2 both in cytosol and nuclear compartments rapidly brings down its levels to normal resulting in suppression of Nrf2 downstream gene expression. An autoregulatory loop between Nrf2 and INrf2 controls their cellular abundance. Nrf2 regulates INrf2 by controlling its transcription, and INrf2 controls Nrf2 by degrading it. In conclusion, switching on and off of Nrf2 combined with promoting an autoregulatory loop between them regulates activation/deactivation of defensive genes leading to protection of cells against adverse effects of oxidative and electrophilic stress and promote cell survival.
doi:10.1016/j.taap.2009.06.009
PMCID: PMC2837794  PMID: 19538984
Nrf; INrf2 (keap1); Oxidative/electrophilic stress; Defensive gene expression; Cell signaling; Cell survival
16.  Roles Nrf2 Plays in Myeloid Cells and Related Disorders 
The Keap1-Nrf2 system protects animals from oxidative and electrophilic stresses. Nrf2 is a transcription factor that induces the expression of genes essential for detoxifying reactive oxygen species (ROS) and cytotoxic electrophiles. Keap1 is a stress sensor protein that binds to and ubiquitinates Nrf2 under unstressed conditions, leading to the rapid proteasomal degradation of Nrf2. Upon exposure to stress, Keap1 is modified and inactivated, which allows Nrf2 to accumulate and activate the transcription of a battery of cytoprotective genes. Antioxidative and detoxification activities are important for many types of cells to avoid DNA damage and cell death. Accumulating lines of recent evidence suggest that Nrf2 is also required for the primary functions of myeloid cells, which include phagocytosis, inflammation regulation, and ROS generation for bactericidal activities. In fact, results from several mouse models have shown that Nrf2 expression in myeloid cells is required for the proper regulation of inflammation, antitumor immunity, and atherosclerosis. Moreover, several molecules generated upon inflammation activate Nrf2. Although ROS detoxification mediated by Nrf2 is assumed to be required for anti-inflammation, the entire picture of the Nrf2-mediated regulation of myeloid cell primary functions has yet to be elucidated. In this review, we describe the Nrf2 inducers characteristic of myeloid cells and the contributions of Nrf2 to diseases.
doi:10.1155/2013/529219
PMCID: PMC3684031  PMID: 23819012
17.  Molecular Mechanisms of Nrf2-Mediated Antioxidant Response 
Molecular carcinogenesis  2009;48(2):91-104.
Nrf2 is the key transcription factor regulating the antioxidant response. Nrf2 signaling is repressed by Keap1 at basal condition and induced by oxidative stress. Keap1 is recently identified as a Cullin 3-dependent substrate adaptor protein. A two-sites binding “hinge & latch” model vividly depicts how Keap1 can efficiently present Nrf2 as substrate for ubiquitination. Oxidative perturbation can impede Keap1-mediated Nrf2 ubiquitination but fail to disrupt Nrf2/Keap1 binding. Nrf2 per se is a redox-sensitive transcripon factor. A new Nrf2-mediated redox signaling model is proposed based on these new discoveries. Free floating Nrf2 protein functions as a redox-sensitive probe. Keap1 instead functions as a gate keeper to control the availability of Nrf2 probes and thus regulates the overall sensitivity of the redox signaling.
doi:10.1002/mc.20465
PMCID: PMC2631094  PMID: 18618599
Nrf2; Keap1; redox
18.  Direct interaction between Nrf2 and p21Cip1/WAF1 upregulates the Nrf2-mediated antioxidant response 
Molecular cell  2009;34(6):663-673.
Summary
In response to oxidative stress, Nrf2 and p21 Cip1/WAF1 are both upregulated to protect cells from oxidative damage. Nrf2 is constantly ubiquitinated by a Keap1 dimer that interacts with a weak-binding 29DLG motif and a strong-binding 79ETGE motif in Nrf2, resulting in degradation of Nrf2. Modification of the redox-sensitive cysteine residues on Keap1 disrupts the Keap1-29DLG binding, leading to diminished Nrf2 ubiquitination and activation of the antioxidant response. However, the underlying mechanism by which p21 protects cells from oxidative damage remains unclear. Here, we present molecular and genetic evidence suggesting that the antioxidant function of p21 is mediated through activation of Nrf2 by stabilizing the Nrf2 protein. The 154KRR motif in p21 directly interacts with the 29DLG and 79ETGE motifs in Nrf2, and thus, competes with Keap1 for Nrf2 binding, compromising ubiquitination of Nrf2. Furthermore, the physiological significance of our findings was demonstrated in vivo using p21-deficient mice.
doi:10.1016/j.molcel.2009.04.029
PMCID: PMC2714804  PMID: 19560419
19.  Genetic or Pharmacologic Amplification of Nrf2 Signaling Inhibits Acute Inflammatory Liver Injury in Mice 
Oxidative stress-mediated destruction of normal parenchymal cells during hepatic inflammatory responses contributes to the pathogenesis of immune-mediated hepatitis and is implicated in the progression of acute inflammatory liver injury to chronic inflammatory liver disease. The transcription factor NF-E2-related factor 2 (Nrf2) regulates the expression of a battery of antioxidative enzymes and Nrf2 signaling can be activated by small-molecule drugs that disrupt Keap1-mediated repression of Nrf2 signaling. Therefore, genetic and pharmacologic approaches were used to activate Nrf2 signaling to assess protection against inflammatory liver injury. Profound increases in ind of cell death were observed in both Nrf2 wild-type (Nrf2-WT) mice and Nrf2-disrupted (Nrf2-KO) mice 24-hr following intravenous injection of concanavalin A (12.5 mg/kg, ConA), a model for T cell-mediated acute inflammatory liver injury. However, hepatocyte-specific conditional Keap1 null (Alb-Cre:Keap1flox/−, cKeap1-KO) mice with constitutively enhanced expression of Nrf2-regulated antioxidative genes as well as Nrf2-WT mice but not Nrf2-KO mice pretreated with three daily doses of a triterpenoid that potently activates Nrf2 (30 µmole/kg, CDDO-Im) were highly resistant to ConA-mediated inflammatory liver injury. CDDO-Im pretreatment of both Nrf2-WT and Nrf2-KO mice resulted in equivalent suppression of serum pro-inflammatory soluble proteins suggesting that the hepatoprotection afforded by CDDO-Im pretreatment of Nrf2-WT mice but not Nrf2-KO mice was not due to suppression of systemic pro-inflammatory signaling, but instead was due to activation of Nrf2 signaling in the liver. Enhanced hepatic expression of Nrf2-regulated antioxidative genes inhibited inflammation-mediated oxidative stress, thereby preventing hepatocyte necrosis. Attenuation of hepatocyte death in cKeap1-KO mice and CDDO-Im pretreated Nrf2-WT mice resulted in decreased late-phase pro-inflammatory gene expression in the liver thereby diminishing the sustained influx of inflammatory cells initially stimulated by the ConA challenge. Taken together, these results clearly illustrate that targeted cytoprotection of hepatocytes through Nrf2 signaling during inflammation prevents the amplification of inflammatory responses in the liver.
doi:10.1093/toxsci/kfn079
PMCID: PMC2435415  PMID: 18417483
Liver inflammation; Nrf2; Keap1; antioxidative enzymes; cytoprotection; triterpenoid
20.  MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism 
NF-E2-related factor 2 (Nrf2) is an important transcription factor involved in antioxidant response. Nrf2 binds antioxidant response elements (ARE) within promoters of genes encoding detoxification enzymes (e.g., NAD (P) H-quinone oxidoreductase 1 (NQO1)) leading to their transcriptional activation. Nrf2 function is regulated post-translationally by its negative regulator Kelch-like ECH-associated protein 1 (Keap1) that binds Nrf2 and induces cytoplasmic Nrf2 degradation. Our present studies provide new evidence that Nrf2 expression can be regulated by a Keap1-independent mechanism. Here, we utilized breast epithelial cells to explore the impact of microRNA (miRNA) on Nrf2 expression. We found that Nrf2 mRNA levels are reversibly correlated with miR-28 expression and that ectopic expression of miR-28 alone reduces Nrf2 mRNA and protein levels. We further investigated the molecular mechanisms by which miR-28 inhibits Nrf2 mRNA expression. Initially, the ability of miR-28 to regulate the 3′ untranslated region (3′UTR) of Nrf2 mRNA was evaluated via luciferase reporter assay. We observed that miR-28 reduces wild-type Nrf2 3′UTR luciferase reporter activity and this repression is eliminated upon mutation of the miR-28 targeting seed sequence within the Nrf2 3′UTR. Moreover, over-expression of miR-28 decreased endogenous Nrf2 mRNA and protein expression. We also explored the impact of miR-28 on Keap1-Nrf2 interactions and found that miR-28 overexpression does not alter Keap1 protein levels and has no effect on the interaction of Keap1 and Nrf2. Our findings, that miR-28 targets the 3′UTR of Nrf2 mRNA and decreases Nrf2 expression, suggest that this miRNA is involved in the regulation of Nrf2 expression in breast epithelial cells.
doi:10.1007/s10549-011-1604-1
PMCID: PMC3752913  PMID: 21638050
Mammary epithelial cells; miR-28; Nrf2; Chemoprevention
21.  Nrf2:INrf2(Keap1) Signaling in Oxidative Stress 
Free radical biology & medicine  2009;47(9):1304-1309.
Nrf2:INrf2(Keap1) are cellular sensors of chemical and radiation induced oxidative and electrophilic stress. Nrf2 is a nuclear transcription factor that controls the expression and coordinated induction of a battery of defensive genes encoding detoxifying enzymes and antioxidant proteins. This is a mechanism of critical importance for cellular protection and cell survival. Nrf2 is retained in the cytoplasm by an inhibitor INrf2. INrf2 functions as an adapter for Cul3/Rbx1 mediated degradation of Nrf2. In response to oxidative/electrophilic stress, Nrf2 is switched on and then off by distinct early and delayed mechanisms. Oxidative/electrophilic modification of INrf2cysteine151 and/or PKC phosphorylation of Nrf2serine40 results in the escape or release of Nrf2 from INrf2. Nrf2 is stabilized and translocates to the nucleus, forms heterodimers with unknown proteins, and binds antioxidant response element (ARE) that leads to coordinated activation of gene expression. It takes less than fifteen minutes from the time of exposure to switch on nuclear import of Nrf2. This is followed by activation of a delayed mechanism that controls switching off of Nrf2 activation of gene expression. GSK3β phosphorylates Fyn at unknown threonine residue(s) leading to nuclear localization of Fyn. Fyn phosphorylates Nrf2tyrosine568 resulting in nuclear export of Nrf2, binding with INrf2 and degradation of Nrf2. The switching on and off of Nrf2 protect cells against free radical damage, prevents apoptosis and promotes cell survival.
doi:10.1016/j.freeradbiomed.2009.07.035
PMCID: PMC2763938  PMID: 19666107
22.  MCRS2 represses the transactivation activities of Nrf1 
BMC Cell Biology  2009;10:9.
Background
Nrf1 [p45 nuclear factor-erythroid 2 (p45 NF-E2)-related factor 1], a member of the CNC-bZIP (CNC basic region leucine zipper) family, is known to be a transcriptional activator by dimerization with distinct partners, such as Maf, FosB, c-Jun, JunD, etc. The transcriptional roles of CNC-bZIP family are demonstrated to be involved in globin gene expression as well as the antioxidant response. For example, CNC-bZIP factors can regulate the expression of detoxification proteins through AREs, such as expression of human gamma-glutamylcysteine synthetases (GCS), glutathione S-transferases (GST), UDP-glucuronosyl transferase (UDP-GT), NADP (H) quinone oxidoreductase (NQOs), etc. To further explore other factor(s) in cells related to the function of Nrf1, we performed a yeast two-hybrid screening assay to identify any Nrf1-interacting proteins. In this study, we isolated a cDNA encoding residues 126–475 of MCRS2 from the HeLa cell cDNA library. Some functions of MCRS1 and its splice variant-MSP58 and MCRS2 have been previously identified, such as transforming, nucleolar sequestration, ribosomal gene regulation, telomerase inhibition activities, etc. Here, we demonstrated MCRS2 can function as a repressor on the Nrf1-mediated transactivation using both in vitro and in vivo systems.
Results
To find other proteins interacting with the CNC bZIP domain of Nrf1, the CNC-bZIP region of Nrf1 was used as a bait in a yeast two-hybrid screening assay. MCRS2, a splicing variant of p78/MCRS1, was isolated as the Nrf1-interacting partner from the screenings. The interaction between Nrf1 and MCRS2 was confirmed in vitro by GST pull-down assays and in vivo by co-immunoprecipitation. Further, the Nrf1-MCRS2 interaction domains were mapped to the residues 354–447 of Nrf1 as well as the residues 314–475 of MCRS2 respectively, by yeast two-hybrid and GST pull-down assays. By immunofluorescence, MCRS2-FLAG was shown to colocalize with HA-Nrf1 in the nucleus and didn't result in the redistribution of Nrf1. This suggested the existence of Nrf1-MCRS2 complex in vivo. To further confirm the biological function, a reporter driven by CNC-bZIP protein binding sites was also shown to be repressed by MCRS2 in a transient transfection assay. An artificial reporter gene activated by LexA-Nrf1 was also specifically repressed by MCRS2.
Conclusion
From the results, we showed MCRS2, a new Nrf1-interacting protein, has a repression effect on Nrf1-mediated transcriptional activation. This was the first ever identified repressor protein related to Nrf1 transactivation.
doi:10.1186/1471-2121-10-9
PMCID: PMC2644286  PMID: 19187526
23.  Nrf2 deficiency impairs the barrier function of mouse esophageal epithelium 
Gut  2013;63(5):711-719.
Objective
As a major cellular defense mechanism, the Nrf2/Keap1 pathway regulates expression of genes involved in detoxification and stress response. Our previous study revealed activation of the Nrf2/Keap1 pathway at the maturation phase during mouse esophageal development, suggesting a potential function in epithelial defense. Here we hypothesize that Nrf2 is involved in the barrier function of esophageal epithelium, and plays a protective role against gastroesophageal reflux disease (GERD).
Design
Human esophageal biopsy samples, mouse surgical models and Nrf2-/- mice were used to assess the role of the Nrf2/Keap1 pathway in esophageal mucosal barrier function. Trans-epithelial electrical resistance (TEER) was measured with mini-Ussing chambers. Hematoxylin and eosin (HE) staining and transmission electron microscopy were used to examine cell morphology, while gene microarray, immunohistochemistry, Western blotting and ChIP analysis were used to assess the expression of pathway genes.
Results
Nrf2 was expressed in normal esophageal epithelium and activated in GERD of both humans and mice. Nrf2 deficiency and gastroesophageal reflux in mice, either alone or in combination, reduced TEER and increased intercellular space diameter in esophageal epithelium. Nrf2 target genes and gene sets associated with oxidoreductase activity, mitochondrial biogenesis and energy production were down-regulated in the esophageal epithelium of Nrf2-/- mice. Consistent with the antioxidative function of Nrf2, a DNA oxidative damage marker (8OHdG) dramatically increased in esophageal epithelial cells of Nrf2-/- mice compared with those of wild-type mice. Interestingly, ATP biogenesis, Cox IV (a mitochondrial protein) and Claudin-4 (Cldn4) expression were down-regulated in the esophageal epithelium of Nrf2-/- mice, suggesting that energy-dependent tight junction integrity was subject to Nrf2 regulation. ChIP analysis confirmed the binding of Nrf2 to Cldn4 promoter.
Conclusion
Nrf2 deficiency impairs esophageal barrier function through disrupting energy-dependent tight junction. Elucidating the role of this pathway in GERD has potential implications for the pathogenesis and therapy of the disease.
doi:10.1136/gutjnl-2012-303731
PMCID: PMC3883925  PMID: 23676441
Nrf2; esophagus; TEER; GERD
24.  Association of Nrf2 Polymorphism Haplotypes with Acute Lung Injury Phenotypes in Inbred Strains of Mice 
Antioxidants & Redox Signaling  2015;22(4):325-338.
Abstract
Aims: Nrf2 is a master transcription factor for antioxidant response element (ARE)-mediated cytoprotective gene induction. A protective role for pulmonary Nrf2 was determined in model oxidative disorders, including hyperoxia-induced acute lung injury (ALI). To obtain additional insights into the function and genetic regulation of Nrf2, we assessed functional single nucleotide polymorphisms (SNPs) of Nrf2 in inbred mouse strains and tested whether sequence variation is associated with hyperoxia susceptibility. Results: Nrf2 SNPs were compiled from publicly available databases and by re-sequencing DNA from inbred strains. Hierarchical clustering of Nrf2 SNPs categorized the strains into three major haplotypes. Hyperoxia susceptibility was greater in haplotypes 2 and 3 strains than in haplotype 1 strains. A promoter SNP −103 T/C adding an Sp1 binding site in haplotype 2 diminished promoter activation basally and under hyperoxia. Haplotype 3 mice bearing nonsynonymous coding SNPs located in (1862 A/T, His543Gln) and adjacent to (1417 T/C, Thr395Ile) the Neh1 domain showed suppressed nuclear transactivation of pulmonary Nrf2 relative to other strains, and overexpression of haplotype 3 Nrf2 showed lower ARE responsiveness than overexpression of haplotype 1 Nrf2 in airway cells. Importantly, we found a significant correlation of Nrf2 haplotypes and hyperoxic lung injury phenotypes. Innovation and Conclusion: The results indicate significant influence of Nrf2 polymorphisms and haplotypes on gene function and hyperoxia susceptibility. Our findings further support Nrf2 as a genetic determinant in ALI pathogenesis and provide useful tools for investigators who use mouse strains classified by Nrf2 haplotypes to elucidate the role for Nrf2 in oxidative disorders. Antioxid. Redox Signal. 22, 325–338.
doi:10.1089/ars.2014.5942
PMCID: PMC4298158  PMID: 25268541
25.  Deficiency in the nuclear factor E2-related factor 2 renders pancreatic β-cells vulnerable to arsenic-induced cell damage 
Toxicology and applied pharmacology  2012;264(3):315-323.
Chronic human exposure to inorganic arsenic (iAs), a potent environmental oxidative stressor, is associated with increased prevalence of Type 2 diabetes, where impairment of pancreatic β-cell function is a key pathogenic factor. Nuclear factor E2-related factor 2 (Nrf2) is a central transcription factor regulating cellular adaptive response to oxidative stress. However, persistent activation of Nrf2 in response to chronic oxidative stress, including inorganic arsenite (iAs3+) exposure, blunts glucose-triggered reactive oxygen species (ROS) signaling and impairs glucose-stimulated insulin secretion (GSIS). In the current study, we found that MIN6 pancreatic β-cells with stable knockdown of Nrf2 (Nrf2-KD) by lentiviral shRNA and pancreatic islets isolated from Nrf2-knockout (Nrf2−/−) mice exhibited reduced expression of several antioxidant and detoxification enzymes in response to acute iAs3+ exposure. As a result, Nrf2-KD MIN6 cells and Nrf2−/− islets were more susceptible to iAs3+ and monomethylarsonous acid (MMA3+)-induced cell damage, as measured by decreased cell viability, augmented apoptosis and morphological change. Pretreatment of MIN6 cells with Nrf2 activator tert-butylhydroquinone protected the cells from iAs3+-induced cell damage in an Nrf2-dependent fashion. In contrast, antioxidant N-acetyl cysteine protected Nrf2-KD MIN6 cells against acute cytotoxicity of iAs3+. The present study demonstrates that Nrf2-mediated antioxidant response is critical in the pancreatic β-cell defense mechanism against acute cytotoxicity by arsenic. The findings here, combined with our previous results on the inhibitory effect of antioxidants on ROS signaling and GSIS, suggest that Nrf2 plays paradoxical roles in pancreatic β-cell dysfunction induced by environmental arsenic exposure.
doi:10.1016/j.taap.2012.09.012
PMCID: PMC3478490  PMID: 23000044
arsenic; diabetes; pancreatic β-cell; islets; Nrf2; oxidative stress; cytotoxicity

Results 1-25 (942603)