PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1349418)

Clipboard (0)
None

Related Articles

1.  Suicidal Autointegration of Sleeping Beauty and piggyBac Transposons in Eukaryotic Cells 
PLoS Genetics  2014;10(3):e1004103.
Transposons are discrete segments of DNA that have the distinctive ability to move and replicate within genomes across the tree of life. ‘Cut and paste’ DNA transposition involves excision from a donor locus and reintegration into a new locus in the genome. We studied molecular events following the excision steps of two eukaryotic DNA transposons, Sleeping Beauty (SB) and piggyBac (PB) that are widely used for genome manipulation in vertebrate species. SB originates from fish and PB from insects; thus, by introducing these transposons to human cells we aimed to monitor the process of establishing a transposon-host relationship in a naïve cellular environment. Similarly to retroviruses, neither SB nor PB is capable of self-avoidance because a significant portion of the excised transposons integrated back into its own genome in a suicidal process called autointegration. Barrier-to-autointegration factor (BANF1), a cellular co-factor of certain retroviruses, inhibited transposon autointegration, and was detected in higher-order protein complexes containing the SB transposase. Increasing size sensitized transposition for autointegration, consistent with elevated vulnerability of larger transposons. Both SB and PB were affected similarly by the size of the transposon in three different assays: excision, autointegration and productive transposition. Prior to reintegration, SB is completely separated from the donor molecule and followed an unbiased autointegration pattern, not associated with local hopping. Self-disruptive autointegration occurred at similar frequency for both transposons, while aberrant, pseudo-transposition events were more frequently observed for PB.
Author Summary
Transposons (“jumping genes”) are ubiquitous, mobile genetic elements that make up significant fraction of genomes, and are best described as molecular parasites. During ‘cut and paste’ transposition, the excised transposon relocates from one genomic location to another. Here we focus on the molecular events following excision of two eukaryotic DNA transposons, Sleeping Beauty and piggyBac. Both transposons are primarily used in a cellular environment that is different from their original hosts, thereby offering a new model to study host-parasite interaction in higher organisms. In the last decade, they have been developed into a technology platform for vertebrate genetics, including gene discovery, transgenesis, gene therapy and stem cell manipulation. Despite the wide range of their application, relatively little is known about their molecular mechanism in vertebrates. We show that these elements are not capable of self-avoidance, as a significant portion of the excised transposons integrates into its own genome in a suicidal process. Despite mechanistic differences, both transposons are affected similarly, and larger transposons are particularly vulnerable. We propose that transposons might recruit phylogenetically conserved cellular factors in a new host that protects against self-disruption. Suboptimal conditions in a new environment could generate abnormal, genotoxic transposition reactions, and should be monitored.
doi:10.1371/journal.pgen.1004103
PMCID: PMC3952818  PMID: 24625543
2.  Transposon-mediated Genome Manipulations in Vertebrates 
Nature methods  2009;6(6):415-422.
Transposable elements are segments of DNA with the unique ability to move about in the genome. This inherent feature can be exploited to harness these elements as gene vectors for diverse genome manipulations. Transposon-based genetic strategies have been established in vertebrate species over the last decade, and current progress in this field indicates that transposable elements will serve as indispensable tools in the genetic toolkit of vertebrate models. In particular, transposons can be applied as vectors for somatic and germline transgenesis, and as insertional mutagens in both loss-of-function and gain-of-function forward mutagenesis screens. The major advantage of using transposons as genetic tools is that they facilitate analysis of gene function in an easy, controlled and scalable manner. Transposon-based technologies are beginning to be exploited to link sequence information to gene functions in vertebrate models. In this article, we provide an overview of transposon-based methods used in vertebrate model organisms, and highlight the most important considerations concerning genetic applications of the transposon systems.
doi:10.1038/nmeth.1332
PMCID: PMC2867038  PMID: 19478801
Transposon; transgenesis; insertional mutagenesis; chromosome engineering
3.  Genome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy 
BMC Biotechnology  2011;11:28.
Background
DNA transposons have emerged as indispensible tools for manipulating vertebrate genomes with applications ranging from insertional mutagenesis and transgenesis to gene therapy. To fully explore the potential of two highly active DNA transposons, piggyBac and Tol2, as mammalian genetic tools, we have conducted a side-by-side comparison of the two transposon systems in the same setting to evaluate their advantages and disadvantages for use in gene therapy and gene discovery.
Results
We have observed that (1) the Tol2 transposase (but not piggyBac) is highly sensitive to molecular engineering; (2) the piggyBac donor with only the 40 bp 3'-and 67 bp 5'-terminal repeat domain is sufficient for effective transposition; and (3) a small amount of piggyBac transposases results in robust transposition suggesting the piggyBac transpospase is highly active. Performing genome-wide target profiling on data sets obtained by retrieving chromosomal targeting sequences from individual clones, we have identified several piggyBac and Tol2 hotspots and observed that (4) piggyBac and Tol2 display a clear difference in targeting preferences in the human genome. Finally, we have observed that (5) only sites with a particular sequence context can be targeted by either piggyBac or Tol2.
Conclusions
The non-overlapping targeting preference of piggyBac and Tol2 makes them complementary research tools for manipulating mammalian genomes. PiggyBac is the most promising transposon-based vector system for achieving site-specific targeting of therapeutic genes due to the flexibility of its transposase for being molecularly engineered. Insights from this study will provide a basis for engineering piggyBac transposases to achieve site-specific therapeutic gene targeting.
doi:10.1186/1472-6750-11-28
PMCID: PMC3078864  PMID: 21447194
4.  The bandit, a New DNA Transposon from a Hookworm—Possible Horizontal Genetic Transfer between Host and Parasite 
Background
An enhanced understanding of the hookworm genome and its resident mobile genetic elements should facilitate understanding of the genome evolution, genome organization, possibly host-parasite co-evolution and horizontal gene transfer, and from a practical perspective, development of transposon-based transgenesis for hookworms and other parasitic nematodes.
Methodology/Principal Findings
A novel mariner-like element (MLE) was characterized from the genome of the dog hookworm, Ancylostoma caninum, and termed bandit. The consensus sequence of the bandit transposon was 1,285 base pairs (bp) in length. The new transposon was flanked by perfect terminal inverted repeats of 32 nucleotides in length with a common target site duplication TA, and it encoded an open reading frame (ORF) of 342 deduced amino acid residues. Phylogenetic comparisons confirmed that the ORF encoded a mariner-like transposase, which included conserved catalytic domains, and that the bandit transposon belonged to the cecropia subfamily of MLEs. The phylogenetic analysis also indicated that the Hsmar1 transposon from humans was the closest known relative of bandit, and that bandit and Hsmar1 constituted a clade discrete from the Tc1 subfamily of MLEs from the nematode Caenorhabditis elegans. Moreover, homology models based on the crystal structure of Mos1 from Drosophila mauritiana revealed closer identity in active site residues of the catalytic domain including Ser281, Lys289 and Asp293 between bandit and Hsmar1 than between Mos1 and either bandit or Hsmar1. The entire bandit ORF was amplified from genomic DNA and a fragment of the bandit ORF was amplified from RNA, indicating that this transposon is actively transcribed in hookworms.
Conclusions/Significance
A mariner-like transposon termed bandit has colonized the genome of the hookworm A. caninum. Although MLEs exhibit a broad host range, and are identified in other nematodes, the closest phylogenetic relative of bandit is the Hsmar1 element of humans. This surprising finding suggests that bandit was transferred horizontally between hookworm parasites and their mammalian hosts.
Author Summary
Because of its importance to public health, the hookworm parasite has become the focus of increased research over the past decade—research that will ultimately decipher its genetic code. We now report a gene from hookworm chromosomes known as a transposon. Transposons are genes that can move around in the genome and even between genomes of different species. We named the hookworm transposon bandit because hookworms are “thieves” that steal the blood of their hosts, leading to protein deficiency anemia. The bandit transposon is a close relative of a well studied assemblage of transposons, the mariner-like elements, known from the chromosomes of many other organisms. The founding member of this group—the mariner transposon—was isolated originally from a fruit fly; mariner has been harnessed in the laboratory as a valuable gene therapy tool. Likewise, it may be feasible to employ the bandit transposon for genetic manipulation of hookworms and functional genomics to investigate the importance of hookworm genes as new intervention targets. Finally, bandit may have transferred horizontally from primates to hookworm or vice versa in the relatively recent evolutionary history of the hookworm–human host–parasite relationship.
doi:10.1371/journal.pntd.0000035
PMCID: PMC2041818  PMID: 17989781
5.  Harnessing a High Cargo-Capacity Transposon for Genetic Applications in Vertebrates 
PLoS Genetics  2006;2(11):e169.
Viruses and transposons are efficient tools for permanently delivering foreign DNA into vertebrate genomes but exhibit diminished activity when cargo exceeds 8 kilobases (kb). This size restriction limits their molecular genetic and biotechnological utility, such as numerous therapeutically relevant genes that exceed 8 kb in size. Furthermore, a greater payload capacity vector would accommodate more sophisticated cis cargo designs to modulate the expression and mutagenic risk of these molecular therapeutics. We show that the Tol2 transposon can efficiently integrate DNA sequences larger than 10 kb into human cells. We characterize minimal sequences necessary for transposition (miniTol2) in vivo in zebrafish and in vitro in human cells. Both the 8.5-kb Tol2 transposon and 5.8-kb miniTol2 engineered elements readily function to revert the deficiency of fumarylacetoacetate hydrolase in an animal model of hereditary tyrosinemia type 1. Together, Tol2 provides a novel nonviral vector for the delivery of large genetic payloads for gene therapy and other transgenic applications.
Synopsis
Mobile genetic elements (transposons) are effective vehicles for the delivery of foreign DNA for gene therapy and gene discovery applications. Their utility in vertebrates has been, however, limited to relatively few known elements with high activity, including the engineered element Sleeping Beauty (SB) and the naturally occurring fish transposon, Tol2. The authors explore and systematically unlock some of the potential of Tol2, characterizing a minimal set of transposon sequences required for gene transfer by the Tol2-encoding enzyme, transposase. The authors further demonstrate full activity of this “mini” element in human tissue culture cells and in the treatment of a mouse model of tyrosinemia. Tol2 demonstrates high cargo-capacity, readily transferring large (at least 10,000 base pairs) DNA sequences, an ability that opens the door to an array of molecular genetic approaches in vertebrates previously difficult or impossible using prior tools.
doi:10.1371/journal.pgen.0020169
PMCID: PMC1635535  PMID: 17096595
6.  Genome-wide analysis of Tol2 transposon reintegration in zebrafish 
BMC Genomics  2009;10:418.
Background
Tol2, a member of the hAT family of transposons, has become a useful tool for genetic manipulation of model animals, but information about its interactions with vertebrate genomes is still limited. Furthermore, published reports on Tol2 have mainly been based on random integration of the transposon system after co-injection of a plasmid DNA harboring the transposon and a transposase mRNA. It is important to understand how Tol2 would behave upon activation after integration into the genome.
Results
We performed a large-scale enhancer trap (ET) screen and generated 338 insertions of the Tol2 transposon-based ET cassette into the zebrafish genome. These insertions were generated by remobilizing the transposon from two different donor sites in two transgenic lines. We found that 39% of Tol2 insertions occurred in transcription units, mostly into introns. Analysis of the transposon target sites revealed no strict specificity at the DNA sequence level. However, Tol2 was prone to target AT-rich regions with weak palindromic consensus sequences centered at the insertion site.
Conclusion
Our systematic analysis of sequential remobilizations of the Tol2 transposon from two independent sites within a vertebrate genome has revealed properties such as a tendency to integrate into transcription units and into AT-rich palindrome-like sequences. This information will influence the development of various applications involving DNA transposons and Tol2 in particular.
doi:10.1186/1471-2164-10-418
PMCID: PMC2753552  PMID: 19737393
7.  Transgenesis in Xenopus using the Sleeping Beauty transposon system 
Transposon-based integration systems have been widely used for genetic manipulation of invertebrate and plant model systems. In the past decade, these powerful tools have begun to be used in vertebrates for transgenesis, insertional mutagenesis and gene therapy applications. Sleeping Beauty (SB) is a member of Tc1/mariner class of transposases and is derived from an inactive form of the gene isolated from Atlantic salmon. SB has been used extensively in human cell lines and in whole animal vertebrate model systems such as the mouse, rat and zebrafish. In this study, we describe the use of SB in the diploid frog Xenopus tropicalis to generate stable transgenic lines. SB transposon transgenes integrate into the X. tropicalis genome by a non-canonical process and are passed through the germline. We compare the activity of SB in this model organism with that of Tol2, a hAT (hobo, Ac1, TAM)-like transposon system.
doi:10.1002/dvdy.21994
PMCID: PMC2848081  PMID: 19517568
Transposon; Xenopus tropicalis; Xenopus laevis; Sleeping Beauty; SB10; SB11; transgenics; green fluorescent protein; GFP
8.  Gene Mutations and Genomic Rearrangements in the Mouse as a Result of Transposon Mobilization from Chromosomal Concatemers 
PLoS Genetics  2006;2(9):e156.
Previous studies of the Sleeping Beauty (SB) transposon system, as an insertional mutagen in the germline of mice, have used reverse genetic approaches. These studies have led to its proposed use for regional saturation mutagenesis by taking a forward-genetic approach. Thus, we used the SB system to mutate a region of mouse Chromosome 11 in a forward-genetic screen for recessive lethal and viable phenotypes. This work represents the first reported use of an insertional mutagen in a phenotype-driven approach. The phenotype-driven approach was successful in both recovering visible and behavioral mutants, including dominant limb and recessive behavioral phenotypes, and allowing for the rapid identification of candidate gene disruptions. In addition, a high frequency of recessive lethal mutations arose as a result of genomic rearrangements near the site of transposition, resulting from transposon mobilization. The results suggest that the SB system could be used in a forward-genetic approach to recover interesting phenotypes, but that local chromosomal rearrangements should be anticipated in conjunction with single-copy, local transposon insertions in chromosomes. Additionally, these mice may serve as a model for chromosome rearrangements caused by transposable elements during the evolution of vertebrate genomes.
Synopsis
Perhaps the greatest challenge for biomedical research in the post-genomics era will be to assign functions to the human set of ~25,000 genes. The classical method for discovering the gene function is mutation. Thus, technologies that can mutate genes in mammalian genetic models like the mouse are under development in hopes of creating an efficient method to complete this task. One such technology, the Sleeping Beauty (SB) transposon system, was developed for this purpose in 2001. This mobile DNA element is highly active in transgenic mice and has been shown to disrupt mouse genes efficiently. Geurts et al. describe a novel attempt to use the SB transposon in a forward-genetic screen using an insertional mutagen, the first attempt of its kind. They discovered that the process of transposon mobilization in mouse chromosomes can lead to dramatic effects on local genomic sequences. Indeed, transposons like SB can cause genomic rearrangements including deletions, inversions and translocations, involving tens of thousands to tens of millions of base pairs. This discovery has important implications for using transposable elements for mouse germline mutagenesis and, at the same time, may provide a model for studying genomic rearrangements that have helped shape vertebrate genomes during evolution.
doi:10.1371/journal.pgen.0020156
PMCID: PMC1584263  PMID: 17009875
9.  DNA transposon-based gene vehicles - scenes from an evolutionary drive 
DNA transposons are primitive genetic elements which have colonized living organisms from plants to bacteria and mammals. Through evolution such parasitic elements have shaped their host genomes by replicating and relocating between chromosomal loci in processes catalyzed by the transposase proteins encoded by the elements themselves. DNA transposable elements are constantly adapting to life in the genome, and self-suppressive regulation as well as defensive host mechanisms may assist in buffering ‘cut-and-paste’ DNA mobilization until accumulating mutations will eventually restrict events of transposition. With the reconstructed Sleeping Beauty DNA transposon as a powerful engine, a growing list of transposable elements with activity in human cells have moved into biomedical experimentation and preclinical therapy as versatile vehicles for delivery and genomic insertion of transgenes. In this review, we aim to link the mechanisms that drive transposon evolution with the realities and potential challenges we are facing when adapting DNA transposons for gene transfer. We argue that DNA transposon-derived vectors may carry inherent, and potentially limiting, traits of their mother elements. By understanding in detail the evolutionary journey of transposons, from host colonization to element multiplication and inactivation, we may better exploit the potential of distinct transposable elements. Hence, parallel efforts to investigate and develop distinct, but potent, transposon-based vector systems will benefit the broad applications of gene transfer. Insight and clever optimization have shaped new DNA transposon vectors, which recently debuted in the first DNA transposon-based clinical trial. Learning from an evolutionary drive may help us create gene vehicles that are safer, more efficient, and less prone for suppression and inactivation.
doi:10.1186/1423-0127-20-92
PMCID: PMC3878927  PMID: 24320156
10.  Somatic Mutagenesis with a Sleeping Beauty Transposon System Leads to Solid Tumor Formation in Zebrafish 
PLoS ONE  2011;6(4):e18826.
Large-scale sequencing of human cancer genomes and mouse transposon-induced tumors has identified a vast number of genes mutated in different cancers. One of the outstanding challenges in this field is to determine which genes, when mutated, contribute to cellular transformation and tumor progression. To identify new and conserved genes that drive tumorigenesis we have developed a novel cancer model in a distantly related vertebrate species, the zebrafish, Danio rerio. The Sleeping Beauty (SB) T2/Onc transposon system was adapted for somatic mutagenesis in zebrafish. The carp ß-actin promoter was cloned into T2/Onc to create T2/OncZ. Two transgenic zebrafish lines that contain large concatemers of T2/OncZ were isolated by injection of linear DNA into the zebrafish embryo. The T2/OncZ transposons were mobilized throughout the zebrafish genome from the transgene array by injecting SB11 transposase RNA at the 1-cell stage. Alternatively, the T2/OncZ zebrafish were crossed to a transgenic line that constitutively expresses SB11 transposase. T2/OncZ transposon integration sites were cloned by ligation-mediated PCR and sequenced on a Genome Analyzer II. Between 700–6800 unique integration events in individual fish were mapped to the zebrafish genome. The data show that introduction of transposase by transgene expression or RNA injection results in an even distribution of transposon re-integration events across the zebrafish genome. SB11 mRNA injection resulted in neoplasms in 10% of adult fish at ∼10 months of age. T2/OncZ-induced zebrafish tumors contain many mutated genes in common with human and mouse cancer genes. These analyses validate our mutagenesis approach and provide additional support for the involvement of these genes in human cancers. The zebrafish T2/OncZ cancer model will be useful for identifying novel and conserved genetic drivers of human cancers.
doi:10.1371/journal.pone.0018826
PMCID: PMC3080878  PMID: 21533036
11.  Passport, a native Tc1 transposon from flatfish, is functionally active in vertebrate cells 
Nucleic Acids Research  2009;37(4):1239-1247.
The Tc1/mariner family of DNA transposons is widespread across fungal, plant and animal kingdoms, and thought to contribute to the evolution of their host genomes. To date, an active Tc1 transposon has not been identified within the native genome of a vertebrate. We demonstrate that Passport, a native transposon isolated from a fish (Pleuronectes platessa), is active in a variety of vertebrate cells. In transposition assays, we found that the Passport transposon system improved stable cellular transgenesis by 40-fold, has an apparent preference for insertion into genes, and is subject to overproduction inhibition like other Tc1 elements. Passport represents the first vertebrate Tc1 element described as both natively intact and functionally active, and given its restricted phylogenetic distribution, may be contemporaneously active. The Passport transposon system thus complements the available genetic tools for the manipulation of vertebrate genomes, and may provide a unique system for studying the infiltration of vertebrate genomes by Tc1 elements.
doi:10.1093/nar/gkn1025
PMCID: PMC2651795  PMID: 19136468
12.  Selection and characterization of a promoter for expression of single-copy recombinant genes in Gram-positive bacteria 
BMC Biotechnology  2005;5:3.
Background
In the past ten years there has been a growing interest in engineering Gram-positive bacteria for biotechnological applications, including vaccine delivery and production of recombinant proteins. Usually, bacteria are manipulated using plasmid expression vectors. The major limitation of this approach is due to the fact that recombinant plasmids are often lost from the bacterial culture upon removal of antibiotic selection. We have developed a genetic system based on suicide vectors on conjugative transposons allowing stable integration of recombinant DNA into the chromosome of transformable and non-transformable Gram-positive bacteria.
Results
The aim of this work was to select a strong chromosomal promoter from Streptococcus gordonii to improve this genetic system making it suitable for expression of single-copy recombinant genes. To achieve this task, a promoterless gene encoding a chloramphenicol acetyltransferase (cat), was randomly integrated into the S. gordonii chromosome and transformants were selected for chloramphenicol resistance. Three out of eighteen chloramphenicol resistant transformants selected exhibited 100% stability of the phenotype and only one of them, GP215, carried the cat gene integrated as a single copy. A DNA fragment of 600 base pairs exhibiting promoter activity was isolated from GP215 and sequenced. The 5' end of its corresponding mRNA was determined by primer extention analysis and the putative -10 and a -35 regions were identified. To study the possibility of using this promoter (PP) for single copy heterologous gene expression, we created transcriptional fusions of PP with genes encoding surface recombinant proteins in a vector capable of integrating into the conjugative transposon Tn916. Surface recombinant proteins whose expression was controlled by the PP promoter were detected in Tn916-containing strains of S. gordonii and Bacillus subtilis after single copy chromosomal integration of the recombinant insertion vectors into the resident Tn916. The surface recombinant protein synthesized under the control of PP was also detected in Enterococcus faecalis after conjugal transfer of a recombinant Tn916 containing the transcriptional fusion.
Conclusion
We isolated and characterized a S. gordonii chromosomal promoter. We demonstrated that this promoter can be used to direct expression of heterologous genes in different Gram-positive bacteria, when integrated in a single copy into the chromosome.
doi:10.1186/1472-6750-5-3
PMCID: PMC548306  PMID: 15651989
13.  The expanding universe of transposon technologies for gene and cell engineering 
Mobile DNA  2010;1:25.
Transposable elements can be viewed as natural DNA transfer vehicles that, similar to integrating viruses, are capable of efficient genomic insertion. The mobility of class II transposable elements (DNA transposons) can be controlled by conditionally providing the transposase component of the transposition reaction. Thus, a DNA of interest (be it a fluorescent marker, a small hairpin (sh)RNA expression cassette, a mutagenic gene trap or a therapeutic gene construct) cloned between the inverted repeat sequences of a transposon-based vector can be used for stable genomic insertion in a regulated and highly efficient manner. This methodological paradigm opened up a number of avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture, the production of germline transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species, and therapy of genetic disorders in humans. Sleeping Beauty (SB) was the first transposon shown to be capable of gene transfer in vertebrate cells, and recent results confirm that SB supports a full spectrum of genetic engineering including transgenesis, insertional mutagenesis, and therapeutic somatic gene transfer both ex vivo and in vivo. The first clinical application of the SB system will help to validate both the safety and efficacy of this approach. In this review, we describe the major transposon systems currently available (with special emphasis on SB), discuss the various parameters and considerations pertinent to their experimental use, and highlight the state of the art in transposon technology in diverse genetic applications.
doi:10.1186/1759-8753-1-25
PMCID: PMC3016246  PMID: 21138556
14.  Transposon Express, a software application to report the identity of insertions obtained by comprehensive transposon mutagenesis of sequenced genomes: analysis of the preference for in vitro Tn5 transposition into GC-rich DNA 
Nucleic Acids Research  2004;32(14):e113.
Comprehensive mutant libraries can be readily constructed by transposon mutagenesis. To systematically mutagenise the genome of the Gram-positive bacterium Streptomyces coelicolor A3(2), we have employed high-throughput shuttle transposon mutagenesis of a cosmid library prepared in Escherichia coli. The location of transposon insertions is determined using automated procedures for cosmid isolation and DNA sequencing. However, a major bottleneck was the subsequent analysis of DNA sequence files. To overcome this limitation, a software application, Transposon Express, was written to allow the rapid location of transposon insertions in a sequenced genome (available at http://www.swan.ac.uk/genetics/dyson/InstallTE). Transposon Express determines the identity both of a disrupted open reading frame (ORF), and the short target site duplication created by transposition. Transposon Express also reports the orientation of the transposon and can therefore predict transcriptional coupling between an upstream promoter and a promoter-less reporter gene carried by the transposon. Analysis of a large dataset of independent insertions created using a Tn5-based transposon revealed an insertional preference for GC-rich streptomycete DNA compared to E.coli vector DNA. In addition to demonstrating the value of Transposon Express as a generic tool supporting genome-wide transposon mutagenesis programs, these data provide insight into target site selection by Tn5.
doi:10.1093/nar/gnh112
PMCID: PMC514396  PMID: 15308758
15.  Global Mapping of Transposon Location 
PLoS Genetics  2006;2(12):e212.
Transposable genetic elements are ubiquitous, yet their presence or absence at any given position within a genome can vary between individual cells, tissues, or strains. Transposable elements have profound impacts on host genomes by altering gene expression, assisting in genomic rearrangements, causing insertional mutations, and serving as sources of phenotypic variation. Characterizing a genome's full complement of transposons requires whole genome sequencing, precluding simple studies of the impact of transposition on interindividual variation. Here, we describe a global mapping approach for identifying transposon locations in any genome, using a combination of transposon-specific DNA extraction and microarray-based comparative hybridization analysis. We use this approach to map the repertoire of endogenous transposons in different laboratory strains of Saccharomyces cerevisiae and demonstrate that transposons are a source of extensive genomic variation. We also apply this method to mapping bacterial transposon insertion sites in a yeast genomic library. This unique whole genome view of transposon location will facilitate our exploration of transposon dynamics, as well as defining bases for individual differences and adaptive potential.
Synopsis
Transposons, or mobile DNA sequences—first described by Barbara McClintock—are interesting and important residents of all genomes. They are involved in gene creation and regulation, chromosome evolution, and generation of mutations, events that can occur on hugely varying time scales, from millions of years to mere days in the lab. Some transposons have even been “tamed” by geneticists for use as tools for marking genes and making mutations. In yeast, genome sequencing has given us a snapshot of transposons present in one strain at one particular time. The authors developed a method to easily, accurately, and globally track transposons in order to study how their locations change in different strains or during an experiment. The method involves finding pieces of DNA that contain the ends of transposons along with neighboring DNA and attaching these segments to magnetic beads. A magnet is then used to separate the selected DNAs away from the rest of the genome. The transposon-associated DNA is labeled with dyes and applied to a microarray, a glass slide with over 40,000 unique sequence features of yeast DNA attached. Each feature that lights up with the dye marks a transposon location. This new technique allows investigators to easily identify specific strains, to accurately monitor mobile portions of the genome, and to determine the role of transposons in phenotypic differences.
doi:10.1371/journal.pgen.0020212
PMCID: PMC1698948  PMID: 17173485
16.  Transposon-mediated BAC transgenesis in zebrafish and mice 
BMC Genomics  2009;10:477.
Background
Bacterial artificial chromosomes (BACs) are among the most widely used tools for studies of gene regulation and function in model vertebrates, yet methods for predictable delivery of BAC transgenes to the genome are currently limited. This is because BAC transgenes are usually microinjected as naked DNA into fertilized eggs and are known to integrate as multi-copy concatamers in the genome. Although conventional methods for BAC transgenesis have been very fruitful, complementary methods for generating single copy BAC integrations would be desirable for many applications.
Results
We took advantage of the precise cut-and-paste behavior of a natural transposon, Tol2, to develop a new method for BAC transgenesis. In this new method, the minimal sequences of the Tol2 transposon were used to deliver precisely single copies of a ~70 kb BAC transgene to the zebrafish and mouse genomes. We mapped the BAC insertion sites in the genome by standard PCR methods and confirmed transposase-mediated integrations.
Conclusion
The Tol2 transposon has a surprisingly large cargo capacity that can be harnessed for BAC transgenesis. The precise delivery of single-copy BAC transgenes by Tol2 represents a useful complement to conventional BAC transgenesis, and could aid greatly in the production of transgenic fish and mice for genomics projects, especially those in which single-copy integrations are desired.
doi:10.1186/1471-2164-10-477
PMCID: PMC2768751  PMID: 19832998
17.  Enzymatic engineering of the porcine genome with transposons and recombinases 
BMC Biotechnology  2007;7:42.
Background
Swine is an important agricultural commodity and biomedical model. Manipulation of the pig genome provides opportunity to improve production efficiency, enhance disease resistance, and add value to swine products. Genetic engineering can also expand the utility of pigs for modeling human disease, developing clinical treatment methodologies, or donating tissues for xenotransplantation. Realizing the full potential of pig genetic engineering requires translation of the complete repertoire of genetic tools currently employed in smaller model organisms to practical use in pigs.
Results
Application of transposon and recombinase technologies for manipulation of the swine genome requires characterization of their activity in pig cells. We tested four transposon systems- Sleeping Beauty, Tol2, piggyBac, and Passport in cultured porcine cells. Transposons increased the efficiency of DNA integration up to 28-fold above background and provided for precise delivery of 1 to 15 transgenes per cell. Both Cre and Flp recombinase were functional in pig cells as measured by their ability to remove a positive-negative selection cassette from 16 independent clones and over 20 independent genomic locations. We also demonstrated a Cre-dependent genetic switch capable of eliminating an intervening positive-negative selection cassette and activating GFP expression from episomal and genome-resident transposons.
Conclusion
We have demonstrated for the first time that transposons and recombinases are capable of mobilizing DNA into and out of the porcine genome in a precise and efficient manner. This study provides the basis for developing transposon and recombinase based tools for genetic engineering of the swine genome.
doi:10.1186/1472-6750-7-42
PMCID: PMC1939997  PMID: 17640337
18.  Generating libraries of iTol2-end insertions at BAC ends using loxP and lox511 Tn10 transposons 
BMC Genomics  2011;12:351.
Background
Bacterial Artificial Chromosomes (BACs) have been widely used as transgenes in vertebrate model systems such as mice and zebrafish, for a variety of studies. BAC transgenesis has been a powerful tool to study the function of the genome, and gene regulation by distal cis-regulatory elements. Recently, BAC transgenesis in both mice and zebrafish was further facilitated by development of the transposon-mediated method using the Tol2 element. Tol2 ends, in the inverted orientation and flanking a 1 kb spacer DNA (iTol2), were introduced into the BAC DNA within the bacterial host using recombination of homologous sequences. Here we describe experiments designed to determine if a simpler and more flexible system could modify BACs so that they would be suitable for transgenesis into zebrafish or mouse embryos using the Tol2 transposase.
Results
A new technique was developed to introduce recognition sequences for the Tol2 transposase into BACs in E. coli using the Tn10 transposon vector system. We constructed pTnloxP-iTol2kan and pTnlox511-iTol2kan to introduce the loxP or lox511 site and iTol2 cassette, containing the Tol2 cis-sequences in the inverted orientation, into BACs that have loxP and lox511 sites flanking genomic DNA inserts by Tn10-mediated transposition. The procedure enables rapid generation of a large collection of BACs ready for transgenesis with the iTol2 cassette at the new end of a progressively truncated genomic insert via lox-Cre recombination. The iTol2 ends are efficiently recognized by the Tol2 transposase, and the BACs readily integrate into zebrafish chromosomes.
Conclusion
The new technology described here can rapidly introduce iTol2 ends at a BAC end of choice, and simultaneously generate a large collection of BACs with progressive deletions of the genomic DNA from that end in a single experiment. This procedure should be applicable to a wider variety of BACs containing lox sites flanking the genomic DNA insert, including those with sequence repeats. The libraries of iTol2 inserted BACs with truncations from an end should facilitate studies on the impact of distal cis-regulatory sequences on gene function, as well as standard BAC transgenesis with precisely trimmed genes in zebrafish or mouse embryos using Tol2 transposition.
doi:10.1186/1471-2164-12-351
PMCID: PMC3146455  PMID: 21736732
19.  Excision of Sleeping Beauty transposons: parameters and applications to gene therapy 
The journal of gene medicine  2004;6(5):574-583.
A major problem in gene therapy is the determination of the rates at which gene transfer has occurred. Our work has focused on applications of the Sleeping Beauty (SB) transposon system as a non-viral vector for gene therapy. Excision of a transposon from a donor molecule and its integration into a cellular chromosome are catalyzed by SB transposase. In this study, we used a plasmid-based excision assay to study the excision step of transposition. We used the excision assay to evaluate the importance of various sequences that border the sites of excision inside and outside the transposon in order to determine the most active sequences for transposition from a donor plasmid. These findings together with our previous results in transposase binding to the terminal repeats suggest that the sequences in the transposon-junction of SB are involved in steps subsequent to DNA binding but before excision, and that they may have a role in transposase–transposon interaction. We found that SB transposons leave characteristically different footprints at excision sites in different cell types, suggesting that alternative repair machineries operate in concert with transposition. Most importantly, we found that the rates of excision correlate with the rates of transposition. We used this finding to assess transposition in livers of mice that were injected with the SB transposon and transposase. The excision assay appears to be a relatively quick and easy method to optimize protocols for delivery of genes in SB transposons to mammalian chromosomes in living animals.
doi:10.1002/jgm.486
PMCID: PMC1865527  PMID: 15133768
footprint; mouse liver; Tc1/mariner; terminal repeats; transposition
20.  Transcribed Tc1-like transposons in salmonid fish 
BMC Genomics  2005;6:107.
Background
Mobile genetic elements comprise a substantial fraction of vertebrate genomes. These genes are considered to be deleterious, and in vertebrates they are usually inactive. High throughput sequencing of salmonid fish cDNA libraries has revealed a large number of transposons, which remain transcribed despite inactivation of translation. This article reports on the structure and potential role of these genes.
Results
A search of EST showed the ratio of transcribed transposons in salmonid fish (i.e., 0.5% of all unique cDNA sequences) to be 2.4–32 times greater than in other vertebrate species, and 68% of these genes belonged to the Tc1-family of DNA transposons. A phylogenetic analysis of reading frames indicate repeated transposition of distantly related genes into the fish genome over protracted intervals of evolutionary time. Several copies of two new DNA transposons were cloned. These copies showed relatively little divergence (11.4% and 1.9%). The latter gene was transcribed at a high level in rainbow trout tissues, and was present in genomes of many phylogenetically remote fish species. A comparison of synonymous and non-synonymous divergence revealed remnants of divergent evolution in the younger gene, while the older gene evolved in a neutral mode. From a 1.2 MB fragment of genomic DNA, the salmonid genome contains approximately 105 Tc1-like sequences, the major fraction of which is not transcribed. Our microarray studies showed that transcription of rainbow trout transposons is activated by external stimuli, such as toxicity, stress and bacterial antigens. The expression profiles of Tc1-like transposons gave a strong correlation (r2 = 0.63–0.88) with a group of genes implicated in defense response, signal transduction and regulation of transcription.
Conclusion
Salmonid genomes contain a large quantity of transcribed mobile genetic elements. Divergent or neutral evolution within genomes and lateral transmission can account for the diversity and sustained persistence of Tc1-like transposons in lower vertebrates. A small part of transposons remain transcribed and their transcription is enhanced by responses to acute conditions.
doi:10.1186/1471-2164-6-107
PMCID: PMC1192797  PMID: 16095544
21.  Generating and manipulating transgenic animals using transposable elements 
Transposable elements, or transposons, have played a significant role in the history of biological research. They have had a major influence on the structure of genomes during evolution, they can cause mutations, and their study led to the concept of so-called "selfish DNA". In addition, transposons have been manipulated as useful gene transfer vectors. While primarily restricted to use in invertebrates, prokaryotes, and plants, it is now clear that transposon technology and biology are just as relevant to the study of vertebrate species. Multiple transposons now have been shown to be active in vertebrates and they can be used for germline transgenesis, somatic cell transgenesis/gene therapy, and random germline insertional mutagenesis. The sophistication of these applications and the number of active elements are likely to increase over the next several years. This review covers the vertebrate-active retrotransposons and transposons that have been well studied and adapted for use as gene transfer agents. General considerations and predictions about the future utility of transposon technology are discussed.
doi:10.1186/1477-7827-1-80
PMCID: PMC280724  PMID: 14613544
22.  Enhancement of Sleeping Beauty Transposition by CpG Methylation: Possible Role of Heterochromatin Formation 
Molecular and Cellular Biology  2004;24(9):4004-4018.
The Sleeping Beauty (SB) transposase is the most active transposase in vertebrate cells, and the SB transposon system has been used as a tool for insertional mutagenesis and gene delivery. Previous studies have indicated that the frequency of chromosomal transposition is considerably higher in mouse germ cells than in mouse embryonic stem cells, suggesting the existence of unknown mechanisms that regulate SB transposition. Here, we demonstrated that CpG methylation of the transposon region enhances SB transposition. The transposition efficiencies of a methylated transposon and an unmethylated transposon which had been targeted in the same genomic loci by recombination-mediated cassette exchange in mouse erythroleukemia cells were compared, and at least a 100-fold increase was observed in the methylated transposon. CpG methylation also enhanced transposition from plasmids into the genome. Chromatin immunoprecipitation assays revealed that histone H3 methylated at lysine-9, a hallmark of condensed heterochromatin, was enriched at the methylated transposon, whereas the unmethylated transposon formed a relaxed euchromatin structure, as evidenced by enrichment of acetylated histone H3 and reporter gene expression. Possible roles of heterochromatin formation in the transposition reaction are discussed. Our findings indicate a novel relationship between CpG methylation and transposon mobilization.
doi:10.1128/MCB.24.9.4004-4018.2004
PMCID: PMC387741  PMID: 15082793
23.  Technology transfer from worms and flies to vertebrates: transposition-based genome manipulations and their future perspectives 
Genome Biology  2007;8(Suppl 1):S1.
To meet the increasing demand of linking sequence information to gene function in vertebrate models, genetic modifications must be introduced and their effects analyzed in an easy, controlled, and scalable manner. In the mouse, only about 10% (estimate) of all genes have been knocked out, despite continuous methodologic improvement and extensive effort. Moreover, a large proportion of inactivated genes exhibit no obvious phenotypic alterations. Thus, in order to facilitate analysis of gene function, new genetic tools and strategies are currently under development in these model organisms. Loss of function and gain of function mutagenesis screens based on transposable elements have numerous advantages because they can be applied in vivo and are therefore phenotype driven, and molecular analysis of the mutations is straightforward. At present, laboratory harnessing of transposable elements is more extensive in invertebrate models, mostly because of their earlier discovery in these organisms. Transposons have already been found to facilitate functional genetics research greatly in lower metazoan models, and have been applied most comprehensively in Drosophila. However, transposon based genetic strategies were recently established in vertebrates, and current progress in this field indicates that transposable elements will indeed serve as indispensable tools in the genetic toolkit for vertebrate models. In this review we provide an overview of transposon based genetic modification techniques used in higher and lower metazoan model organisms, and we highlight some of the important general considerations concerning genetic applications of transposon systems.
doi:10.1186/gb-2007-8-s1-s1
PMCID: PMC2106849  PMID: 18047686
24.  The essential genome of a bacterium 
This study reports the essential Caulobacter genome at 8 bp resolution determined by saturated transposon mutagenesis and high-throughput sequencing. This strategy is applicable to full genome essentiality studies in a broad class of bacterial species.
The essential Caulobacter genome was determined at 8 bp resolution using hyper-saturated transposon mutagenesis coupled with high-throughput sequencing.Essential protein-coding sequences comprise 90% of the essential genome; the remaining 10% comprising essential non-coding RNA sequences, gene regulatory elements and essential genome replication features.Of the 3876 annotated open reading frames (ORFs), 480 (12.4%) were essential ORFs, 3240 (83.6%) were non-essential ORFs and 156 (4.0%) were ORFs that severely impacted fitness when mutated.The essential elements are preferentially positioned near the origin and terminus of the Caulobacter chromosome.This high-resolution strategy is applicable to high-throughput, full genome essentiality studies and large-scale genetic perturbation experiments in a broad class of bacterial species.
The regulatory events that control polar differentiation and cell-cycle progression in the bacterium Caulobacter crescentus are highly integrated, and they have to occur in the proper order (McAdams and Shapiro, 2011). Components of the core regulatory circuit are largely known. Full discovery of its essential genome, including non-coding, regulatory and coding elements, is a prerequisite for understanding the complete regulatory network of this bacterial cell. We have identified all the essential coding and non-coding elements of the Caulobacter chromosome using a hyper-saturated transposon mutagenesis strategy that is scalable and can be readily extended to obtain rapid and accurate identification of the essential genome elements of any sequenced bacterial species at a resolution of a few base pairs.
We engineered a Tn5 derivative transposon (Tn5Pxyl) that carries at one end an inducible outward pointing Pxyl promoter (Christen et al, 2010). We showed that this transposon construct inserts into the genome randomly where it can activate or disrupt transcription at the site of integration, depending on the insertion orientation. DNA from hundred of thousands of transposon insertion sites reading outward into flanking genomic regions was parallel PCR amplified and sequenced by Illumina paired-end sequencing to locate the insertion site in each mutant strain (Figure 1). A single sequencing run on DNA from a mutagenized cell population yielded 118 million raw sequencing reads. Of these, >90 million (>80%) read outward from the transposon element into adjacent genomic DNA regions and the insertion site could be mapped with single nucleotide resolution. This yielded the location and orientation of 428 735 independent transposon insertions in the 4-Mbp Caulobacter genome.
Within non-coding sequences of the Caulobacter genome, we detected 130 non-disruptable DNA segments between 90 and 393 bp long in addition to all essential promoter elements. Among 27 previously identified and validated sRNAs (Landt et al, 2008), three were contained within non-disruptable DNA segments and another three were partially disruptable, that is, insertions caused a notable growth defect. Two additional small RNAs found to be essential are the transfer-messenger RNA (tmRNA) and the ribozyme RNAseP (Landt et al, 2008). In addition to the 8 non-disruptable sRNAs, 29 out of the 130 intergenic essential non-coding sequences contained non-redundant tRNA genes; duplicated tRNA genes were non-essential. We also identified two non-disruptable DNA segments within the chromosomal origin of replication. Thus, we resolved essential non-coding RNAs, tRNAs and essential replication elements within the origin region of the chromosome. An additional 90 non-disruptable small genome elements of currently unknown function were identified. Eighteen of these are conserved in at least one closely related species. Only 2 could encode a protein of over 50 amino acids.
For each of the 3876 annotated open reading frames (ORFs), we analyzed the distribution, orientation, and genetic context of transposon insertions. There are 480 essential ORFs and 3240 non-essential ORFs. In addition, there were 156 ORFs that severely impacted fitness when mutated. The 8-bp resolution allowed a dissection of the essential and non-essential regions of the coding sequences. Sixty ORFs had transposon insertions within a significant portion of their 3′ region but lacked insertions in the essential 5′ coding region, allowing the identification of non-essential protein segments. For example, transposon insertions in the essential cell-cycle regulatory gene divL, a tyrosine kinase, showed that the last 204 C-terminal amino acids did not impact viability, confirming previous reports that the C-terminal ATPase domain of DivL is dispensable for viability (Reisinger et al, 2007; Iniesta et al, 2010). In addition, we found that 30 out of 480 (6.3%) of the essential ORFs appear to be shorter than the annotated ORF, suggesting that these are probably mis-annotated.
Among the 480 ORFs essential for growth on rich media, there were 10 essential transcriptional regulatory proteins, including 5 previously identified cell-cycle regulators (McAdams and Shapiro, 2003; Holtzendorff et al, 2004; Collier and Shapiro, 2007; Gora et al, 2010; Tan et al, 2010) and 5 uncharacterized predicted transcription factors. In addition, two RNA polymerase sigma factors RpoH and RpoD, as well as the anti-sigma factor ChrR, which mitigates rpoE-dependent stress response under physiological growth conditions (Lourenco and Gomes, 2009), were also found to be essential. Thus, a set of 10 transcription factors, 2 RNA polymerase sigma factors and 1 anti-sigma factor are the core essential transcriptional regulators for growth on rich media. To further characterize the core components of the Caulobacter cell-cycle control network, we identified all essential regulatory sequences and operon transcripts. Altogether, the 480 essential protein-coding and 37 essential RNA-coding Caulobacter genes are organized into operons such that 402 individual promoter regions are sufficient to regulate their expression. Of these 402 essential promoters, the transcription start sites (TSSs) of 105 were previously identified (McGrath et al, 2007).
The essential genome features are non-uniformly distributed on the Caulobacter genome and enriched near the origin and the terminus regions. In contrast, the chromosomal positions of the published E. coli essential coding sequences (Rocha, 2004) are preferentially located at either side of the origin (Figure 4A). This indicates that there are selective pressures on chromosomal positioning of some essential elements (Figure 4A).
The strategy described in this report could be readily extended to quickly determine the essential genome for a large class of bacterial species.
Caulobacter crescentus is a model organism for the integrated circuitry that runs a bacterial cell cycle. Full discovery of its essential genome, including non-coding, regulatory and coding elements, is a prerequisite for understanding the complete regulatory network of a bacterial cell. Using hyper-saturated transposon mutagenesis coupled with high-throughput sequencing, we determined the essential Caulobacter genome at 8 bp resolution, including 1012 essential genome features: 480 ORFs, 402 regulatory sequences and 130 non-coding elements, including 90 intergenic segments of unknown function. The essential transcriptional circuitry for growth on rich media includes 10 transcription factors, 2 RNA polymerase sigma factors and 1 anti-sigma factor. We identified all essential promoter elements for the cell cycle-regulated genes. The essential elements are preferentially positioned near the origin and terminus of the chromosome. The high-resolution strategy used here is applicable to high-throughput, full genome essentiality studies and large-scale genetic perturbation experiments in a broad class of bacterial species.
doi:10.1038/msb.2011.58
PMCID: PMC3202797  PMID: 21878915
functional genomics; next-generation sequencing; systems biology; transposon mutagenesis
25.  The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells 
Nucleic Acids Research  2003;31(23):6873-6881.
Members of the Tc1/mariner superfamily of transposable elements isolated from vertebrates are transpositionally inactive due to the accumulation of mutations in their transposase genes. A novel open reading frame-trapping method was used to isolate uninterrupted transposase coding regions from the genome of the frog species Rana pipiens. The isolated clones were ∼90% identical to a predicted transposase gene sequence from Xenopus laevis, but contained an unpredicted, ∼180 bp region encoding the N-terminus of the putative transposase. None of these native genes was found to be active. Therefore, a consensus sequence of the transposase gene was derived. This engineered transposase and the transposon inverted repeats together constitute the components of a novel transposon system that we named Frog Prince (FP). FP has only ∼50% sequence similarity to Sleeping Beauty (SB), and catalyzes efficient cut-and-paste transposition in fish, amphibian and mammalian cell lines. We demonstrate high-efficiency gene trapping in human cells using FP transposition. FP is the most efficient DNA-based transposon from vertebrates described to date, and shows ∼70% higher activity in zebrafish cells than SB. Frog Prince can greatly extend our possibilities for genetic analyses in vertebrates.
doi:10.1093/nar/gkg910
PMCID: PMC290277  PMID: 14627820

Results 1-25 (1349418)