Search tips
Search criteria

Results 1-25 (1206737)

Clipboard (0)

Related Articles

1.  Allele-Specific Chromatin Immunoprecipitation Studies Show Genetic Influence on Chromatin State in Human Genome 
PLoS Genetics  2007;3(5):e81.
Several recent studies have shown a genetic influence on gene expression variation, including variation between the two chromosomes within an individual and variation between individuals at the population level. We hypothesized that genetic inheritance may also affect variation in chromatin states. To test this hypothesis, we analyzed chromatin states in 12 lymphoblastoid cells derived from two Centre d'Etude du Polymorphisme Humain families using an allele-specific chromatin immunoprecipitation (ChIP-on-chip) assay with Affymetrix 10K SNP chip. We performed the allele-specific ChIP-on-chip assays for the 12 lymphoblastoid cells using antibodies targeting at RNA polymerase II and five post-translation modified forms of the histone H3 protein. The use of multiple cell lines from the Centre d'Etude du Polymorphisme Humain families allowed us to evaluate variation of chromatin states across pedigrees. These studies demonstrated that chromatin state clustered by family. Our results support the idea that genetic inheritance can determine the epigenetic state of the chromatin as shown previously in model organisms. To our knowledge, this is the first demonstration in humans that genetics may be an important factor that influences global chromatin state mediated by histone modification, the hallmark of the epigenetic phenomena.
Author Summary
Human health and disease are determined by an interaction between genetic background and environmental exposures. Both normal development and disease are mediated by epigenetic regulation of gene expression. The epigenetic regulation causes heritable changes in gene expression, which is not associated with DNA sequence changes. Instead, it is mediated by chemical modification of DNA such as DNA methylation or by protein modifications such as histone acetylation and methylation. Although much has been known about epigenetic inheritance during development, little is known about the influence of the genetic background on epigenetic processes such as histone modifications. In this report the authors studied five histone modifications on a genome-wide level in cells from different families. Global epigenetic states, as measured by these histone modifications, showed a similar pattern for cells derived from the same family. This study demonstrates that genetic inheritance may be an important factor influencing global chromatin states mediated by histone modifications in humans. These observations illustrate the importance of integrating genetic and epigenetic information into studies of human health and complex diseases.
PMCID: PMC1868950  PMID: 17511522
2.  Role of DNA Methylation and Epigenetic Silencing of HAND2 in Endometrial Cancer Development 
PLoS Medicine  2013;10(11):e1001551.
TB filled in by Laureen
Please see later in the article for the Editors' Summary
Endometrial cancer incidence is continuing to rise in the wake of the current ageing and obesity epidemics. Much of the risk for endometrial cancer development is influenced by the environment and lifestyle. Accumulating evidence suggests that the epigenome serves as the interface between the genome and the environment and that hypermethylation of stem cell polycomb group target genes is an epigenetic hallmark of cancer. The objective of this study was to determine the functional role of epigenetic factors in endometrial cancer development.
Methods and Findings
Epigenome-wide methylation analysis of >27,000 CpG sites in endometrial cancer tissue samples (n = 64) and control samples (n = 23) revealed that HAND2 (a gene encoding a transcription factor expressed in the endometrial stroma) is one of the most commonly hypermethylated and silenced genes in endometrial cancer. A novel integrative epigenome-transcriptome-interactome analysis further revealed that HAND2 is the hub of the most highly ranked differential methylation hotspot in endometrial cancer. These findings were validated using candidate gene methylation analysis in multiple clinical sample sets of tissue samples from a total of 272 additional women. Increased HAND2 methylation was a feature of premalignant endometrial lesions and was seen to parallel a decrease in RNA and protein levels. Furthermore, women with high endometrial HAND2 methylation in their premalignant lesions were less likely to respond to progesterone treatment. HAND2 methylation analysis of endometrial secretions collected using high vaginal swabs taken from women with postmenopausal bleeding specifically identified those patients with early stage endometrial cancer with both high sensitivity and high specificity (receiver operating characteristics area under the curve = 0.91 for stage 1A and 0.97 for higher than stage 1A). Finally, mice harbouring a Hand2 knock-out specifically in their endometrium were shown to develop precancerous endometrial lesions with increasing age, and these lesions also demonstrated a lack of PTEN expression.
HAND2 methylation is a common and crucial molecular alteration in endometrial cancer that could potentially be employed as a biomarker for early detection of endometrial cancer and as a predictor of treatment response. The true clinical utility of HAND2 DNA methylation, however, requires further validation in prospective studies.
Please see later in the article for the Editors' Summary
Editors' Summary
Cancer, which is responsible for 13% of global deaths, can develop anywhere in the body, but all cancers are characterized by uncontrolled cell growth and reduced cellular differentiation (the process by which unspecialized cells such as “stem” cells become specialized during development, tissue repair, and normal cell turnover). Genetic alterations—changes in the sequence of nucleotides (DNA's building blocks) in specific genes—are required for this cellular transformation and subsequent cancer development (carcinogenesis). However, recent evidence suggests that epigenetic modifications—reversible, heritable changes in gene function that occur in the absence of nucleotide sequence changes—may also be involved in carcinogenesis. For example, the addition of methyl groups to a set of genes called stem cell polycomb group target genes (PCGTs; polycomb genes control the expression of their target genes by modifying their DNA or associated proteins) is one of the earliest molecular changes in human cancer development, and increasing evidence suggests that hypermethylation of PCGTs is an epigenetic hallmark of cancer.
Why Was This Study Done?
The methylation of PCGTs, which is triggered by age and by environmental factors that are associated with cancer development, reduces cellular differentiation and leads to the accumulation of undifferentiated cells that are susceptible to cancer development. It is unclear, however, whether epigenetic modifications have a causal role in carcinogenesis. Here, the researchers investigate the involvement of epigenetic factors in the development of endometrial (womb) cancer. The risk of endometrial cancer (which affects nearly 50,000 women annually in the United States) is largely determined by environmental and lifestyle factors. Specifically, the risk of this cancer is increased in women in whom estrogen (a hormone that drives cell proliferation in the endometrium) is functionally dominant over progesterone (a hormone that inhibits endometrial proliferation and causes cell differentiation); obese women and women who have taken estrogen-only hormone replacement therapies fall into this category. Thus, endometrial cancer is an ideal model in which to study whether epigenetic mechanisms underlie carcinogenesis.
What Did the Researchers Do and Find?
The researchers collected data on genome-wide DNA methylation at cytosine- and guanine-rich sites in endometrial cancers and normal endometrium and integrated this information with the human interactome and transcriptome (all the physical interactions between proteins and all the genes expressed, respectively, in a cell) using an algorithm called Functional Epigenetic Modules (FEM). This analysis identified HAND2 as the hub of the most highly ranked differential methylation hotspot in endometrial cancer. HAND2 is a progesterone-regulated stem cell PCGT. It encodes a transcription factor that is expressed in the endometrial stroma (the connective tissue that lies below the epithelial cells in which most endometrial cancers develop) and that suppresses the production of the growth factors that mediate the growth-inducing effects of estrogen on the endometrial epithelium. The researchers hypothesized, therefore, that epigenetic deregulation of HAND2 could be a key step in endometrial cancer development. In support of this hypothesis, the researchers report that HAND2 methylation was increased in premalignant endometrial lesions (cancer-prone, abnormal-looking tissue) compared to normal endometrium, and was associated with suppression of HAND2 expression. Moreover, a high level of endometrial HAND2 methylation in premalignant lesions predicted a poor response to progesterone treatment (which stops the growth of some endometrial cancers), and analysis of HAND2 methylation in endometrial secretions collected from women with postmenopausal bleeding (a symptom of endometrial cancer) accurately identified individuals with early stage endometrial cancer. Finally, mice in which the Hand2 gene was specifically deleted in the endometrium developed precancerous endometrial lesions with age.
What Do These Findings Mean?
These and other findings identify HAND2 methylation as a common, key molecular alteration in endometrial cancer. These findings need to be confirmed in more women, and studies are needed to determine the immediate molecular and cellular consequences of HAND2 silencing in endometrial stromal cells. Nevertheless, these results suggest that HAND2 methylation could potentially be used as a biomarker for the early detection of endometrial cancer and for predicting treatment response. More generally, these findings support the idea that methylation of HAND2 (and, by extension, the methylation of other PCGTs) is not a passive epigenetic feature of cancer but is functionally involved in cancer development, and provide a framework for identifying other genes that are epigenetically regulated and functionally important in carcinogenesis.
Additional Information
Please access these websites via the online version of this summary at
The US National Cancer Institute provides information on all aspects of cancer and has detailed information about endometrial cancer for patients and professionals (in English and Spanish)
The not-for-profit organization American Cancer Society provides information on cancer and how it develops and specific information on endometrial cancer (in several languages)
The UK National Health Service Choices website includes an introduction to cancer, a page on endometrial cancer, and a personal story about endometrial cancer
The not-for-profit organization Cancer Research UK provides general information about cancer and specific information about endometrial cancer
Wikipedia has a page on cancer epigenetics (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The Eve Appeal charity that supported this research provides useful information on gynecological cancers
PMCID: PMC3825654  PMID: 24265601
3.  DNA Methylation Analysis of Chromosome 21 Gene Promoters at Single Base Pair and Single Allele Resolution 
PLoS Genetics  2009;5(3):e1000438.
Differential DNA methylation is an essential epigenetic signal for gene regulation, development, and disease processes. We mapped DNA methylation patterns of 190 gene promoter regions on chromosome 21 using bisulfite conversion and subclone sequencing in five human cell types. A total of 28,626 subclones were sequenced at high accuracy using (long-read) Sanger sequencing resulting in the measurement of the DNA methylation state of 580427 CpG sites. Our results show that average DNA methylation levels are distributed bimodally with enrichment of highly methylated and unmethylated sequences, both for amplicons and individual subclones, which represent single alleles from individual cells. Within CpG-rich sequences, DNA methylation was found to be anti-correlated with CpG dinucleotide density and GC content, and methylated CpGs are more likely to be flanked by AT-rich sequences. We observed over-representation of CpG sites in distances of 9, 18, and 27 bps in highly methylated amplicons. However, DNA sequence alone is not sufficient to predict an amplicon's DNA methylation status, since 43% of all amplicons are differentially methylated between the cell types studied here. DNA methylation in promoter regions is strongly correlated with the absence of gene expression and low levels of activating epigenetic marks like H3K4 methylation and H3K9 and K14 acetylation. Utilizing the single base pair and single allele resolution of our data, we found that i) amplicons from different parts of a CpG island frequently differ in their DNA methylation level, ii) methylation levels of individual cells in one tissue are very similar, and iii) methylation patterns follow a relaxed site-specific distribution. Furthermore, iv) we identified three cases of allele-specific DNA methylation on chromosome 21. Our data shed new light on the nature of methylation patterns in human cells, the sequence dependence of DNA methylation, and its function as epigenetic signal in gene regulation. Further, we illustrate genotype–epigenotype interactions by showing novel examples of allele-specific methylation.
Author Summary
Epigenetics is defined as the inheritance of changes in gene function without changing the DNA sequence. Epigenetic signals comprise methylation of cytosine bases of the DNA and chemical modifications of the histone proteins. DNA methylation plays important roles in development and disease processes. To investigate the biological role of DNA methylation, we analyzed DNA methylation patterns of 190 gene promoter regions on chromosome 21 in five human cell types. Our results show that average DNA methylation levels are distributed bimodally with enrichment of highly methylated and unmethylated sequences, indicating that DNA methylation acts in a switch-like manner. Consistent with the well-established role of DNA methylation in gene silencing, we found DNA methylation in promoter regions strongly correlated with absence of gene expression and low levels of additional activating epigenetic marks. Although methylation levels of individual cells in one tissue are very similar, we observed differences in DNA methylation when comparing different cell types in 43% of all regions analyzed. This finding is in agreement with a role of DNA methylation in cellular development. We identified three cases of genes that are differentially methylated in both alleles that illustrate the tight interplay of genetic and epigenetic processes.
PMCID: PMC2653639  PMID: 19325872
4.  Decoding the Epigenetic Language of Plant Development 
Molecular Plant  2010;3(4):719-728.
Epigenetics refers to the study of heritable changes in gene expression or cellular phenotype without changes in DNA sequence. Epigenetic regulation of gene expression is accomplished by DNA methylation, histone modifications, histone variants, chromatin remodeling, and may involve small RNAs. DNA methylation at cytosine is carried out by enzymes called DNA Methyltransferases and is involved in many cellular processes, such as silencing of transposable elements and pericentromeric repeats, X-chromosome inactivation and genomic imprinting, etc. Histone modifications refer to posttranslational covalent attachment of chemical groups onto histones such as phosphorylation, acetylation, and methylation, etc. Histone variants, the non-canonical histones with amino acid sequences divergent from canonical histones, can have different epigenetic impacts on the genome from canonical histones. Higher-order chromatin structures maintained or modified by chromatin remodeling proteins also play important roles in regulating gene expression. Small non-coding RNAs play various roles in the regulation of gene expression at pre- as well as posttranscriptional levels. A special issue of Molecular Plant on ‘Epigenetics and Plant Development’ (Volume 4, Number 2, 2009) published a variety of articles covering many aspects of epigenetic regulation of plant development. We have tried here to present a bird's-eye view of these credible efforts towards understanding the mysterious world of epigenetics. The majority of the articles are about the chromatin modifying proteins, including histone modifiers, histone variants, and chromatin remodeling proteins that regulate various developmental processes, such as flowering time, vernalization, stem cell maintenance, and response to hormonal and environmental stresses, etc. Regulation of expression of seed transcriptome, involvement of direct tandem repeat elements in the PHE1 imprinting in addition to PcG proteins activity, paramutation, and epigenetic barriers in species hybridization are described well. The last two papers are about the Pol V-mediated heterochromatin formation independent of the 24nt-siRNA and the effect of genome position and tissue type on epigenetic regulation of gene expression. These findings not only further our current understanding of epigenetic mechanisms involved in many biological phenomena, but also pave the path for the future work, by raising many new questions that are discussed in the following lines.
PMCID: PMC2910553  PMID: 20663898
Chromatin structure and remodeling; epigenetics; gene silencing; flowering
5.  A Position Effect on the Heritability of Epigenetic Silencing 
PLoS Genetics  2008;4(10):e1000216.
In animals and yeast, position effects have been well documented. In animals, the best example of this process is Position Effect Variegation (PEV) in Drosophila melanogaster. In PEV, when genes are moved into close proximity to constitutive heterochromatin, their expression can become unstable, resulting in variegated patches of gene expression. This process is regulated by a variety of proteins implicated in both chromatin remodeling and RNAi-based silencing. A similar phenomenon is observed when transgenes are inserted into heterochromatic regions in fission yeast. In contrast, there are few examples of position effects in plants, and there are no documented examples in either plants or animals for positions that are associated with the reversal of previously established silenced states. MuDR transposons in maize can be heritably silenced by a naturally occurring rearranged version of MuDR. This element, Muk, produces a long hairpin RNA molecule that can trigger DNA methylation and heritable silencing of one or many MuDR elements. In most cases, MuDR elements remain inactive even after Muk segregates away. Thus, Muk-induced silencing involves a directed and heritable change in gene activity in the absence of changes in DNA sequence. Using classical genetic analysis, we have identified an exceptional position at which MuDR element silencing is unstable. Muk effectively silences the MuDR element at this position. However, after Muk is segregated away, element activity is restored. This restoration is accompanied by a reversal of DNA methylation. To our knowledge, this is the first documented example of a position effect that is associated with the reversal of epigenetic silencing. This observation suggests that there are cis-acting sequences that alter the propensity of an epigenetically silenced gene to remain inactive. This raises the interesting possibility that an important feature of local chromatin environments may be the capacity to erase previously established epigenetic marks.
Author Summary
Epigenetics involves the heritable alteration of gene activity without changes in DNA sequence. Although clearly a repository for heritable information, what makes epigenetic states distinct is that they are far more labile than those associated with DNA sequence. The epigenetic landscape of eukaryotic genomes is far from uniform. Vast stretches of them are effectively epigenetically silenced, while other regions are largely active. The experiments described here suggest that the propensity to maintain heritable epigenetic states can vary depending on position within the genome. Because transposable elements, or transposons, move from place to place within the genome, they make an ideal probe for differences in epigenetic states at various positions. Our model system uses a single transposon, MuDR in maize, and a variant of MuDR, Mu killer (Muk). When MuDR and Muk are combined genetically, MuDR elements become epigenetically silenced, and they generally remain so even after Muk is lost in subsequent generations. However, we have identified a particular position at which the MuDR element reactivates after Muk is lost. These data show that there are some parts of the maize genome that are either competent to erase epigenetic silencing or are incapable of maintaining it. These results suggest that erasure of heritable information may be an important component of epigenetic regulation.
PMCID: PMC2563033  PMID: 18846225
6.  Epigenetics and airways disease 
Respiratory Research  2006;7(1):21.
Epigenetics is the term used to describe heritable changes in gene expression that are not coded in the DNA sequence itself but by post-translational modifications in DNA and histone proteins. These modifications include histone acetylation, methylation, ubiquitination, sumoylation and phosphorylation. Epigenetic regulation is not only critical for generating diversity of cell types during mammalian development, but it is also important for maintaining the stability and integrity of the expression profiles of different cell types. Until recently, the study of human disease has focused on genetic mechanisms rather than on non-coding events. However, it is becoming increasingly clear that disruption of epigenetic processes can lead to several major pathologies, including cancer, syndromes involving chromosomal instabilities, and mental retardation. Furthermore, the expression and activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in the airways of patients with respiratory disease. The development of new diagnostic tools might reveal other diseases that are caused by epigenetic alterations. These changes, despite being heritable and stably maintained, are also potentially reversible and there is scope for the development of 'epigenetic therapies' for disease.
PMCID: PMC1382219  PMID: 16460559
7.  Epigenetics and the Transition from Acute to Chronic Pain 
Pain medicine (Malden, Mass.)  2012;13(11):1474-1490.
To review the epigenetic modifications involved in the transition from acute to chronic pain and to identify potential targets for the development of novel, individualized pain therapeutics.
Epigenetics is the study of heritable modifications in gene expression and phenotype that do not require a change in genetic sequence to manifest their effects. Environmental toxins, medications, diet, and psychological stresses can alter epigenetic processes such as DNA methylation, histone acetylation, and RNA interference. Since epigenetic modifications potentially play an important role in inflammatory cytokine metabolism, steroid responsiveness, and opioid sensitivity, they are likely key factors in the development of chronic pain. Although our knowledge of the human genetic code and disease-associated polymorphisms has grown significantly in the past decade, we have not yet been able to elucidate the mechanisms that lead to the development of persistent pain after nerve injury or surgery.
Focused literature review
Significant laboratory and clinical data support the notion that epigenetic modifications are affected by the environment and lead to differential gene expression. Similar to mechanisms involved in the development of cancer, neurodegenerative disease, and inflammatory disorders, the literature endorses an important potential role for epigenetics in chronic pain.
Epigenetic analysis may identify mechanisms critical to the development of chronic pain after injury, and may provide new pathways and target mechanisms for future drug development and individualized medicine.
PMCID: PMC3501579  PMID: 22978429
Epigenetics; Pain; DNA Methylation; Histone Deacetylase Inhibitors; RNA interference
8.  Selenite reactivates silenced genes by modifying DNA methylation and histones in prostate cancer cells 
Carcinogenesis  2008;29(11):2175-2181.
DNA hypermethylation is a common epigenetic alteration in human prostate cancer and is considered to contribute to development of this disease. Accumulating data suggest that dietary factors may alter cancer risk by modifications of epigenetic processes in the cell. The present study was designed to investigate whether selenium (Se) would alter epigenetic events to regulate methylation-silenced genes in human prostate cancer cells. DNA methylation, histone modifications and gene expression were studied in LNCaP cells after selenite treatment using polymerase chain reaction, western blot analysis, chromatin immunoprecipitation assay and enzymatic activity assay. Our study shows that selenite treatment caused partial promoter DNA demethylation and reexpression of the π-class glutathione-S-transferase (GSTP1) in LNCaP cells in a dose- and time-dependent manner. Selenite treatment decreased messenger RNA levels of DNA methyltransferases (DNMTs) 1 and 3A and protein levels of DNMT1. Selenite also decreased histone deacetylase activity and increased levels of acetylated lysine 9 on histone H3 (H3-Lys 9), but decreased levels of methylated H3-Lys 9. Selenite treatment reduced levels of DNMT1 and methylated H3-Lys 9 associated with the GSTP1 promoter, but increased levels of acetylated H3-Lys 9 associated with this promoter. Additionally, selenite treatment decreased general DNA methylation and caused partial promoter demethylation and reexpression of the tumor suppressor adenomatous polyposis coli and cellular stress response 1, a gene involving tumor growth and metastasis. Our study demonstrates that Se can epigenetically modulate DNA and histones to activate methylation-silenced genes. These epigenetic modifications may contribute to cancer prevention by Se.
PMCID: PMC2722860  PMID: 18676679
9.  Epigenetic abnormalities in cardiac hypertrophy and heart failure 
Epigenetics refers to the heritable regulation of gene expression through modification of chromosomal components without an alteration in the nucleotide sequence of the genome. Such modifications include methylation of genomic DNA as well as acetylation, methylation, phosphorylation, ubiquitination, and SUMOylation of core histone proteins. Recent genetic and biochemical analyses indicate that epigenetic changes play an important role in the development of cardiac hypertrophy and heart failure, with dysregulation in histone acetylation status, in particular, shown to be directly linked to an impaired contraction ability of cardiac myocytes. Although such epigenetic changes should eventually lead to alterations in the expression of genes associated with the affected histones, little information is yet available on the genes responsible for the development of heart failure. Current efforts of our and other groups have focused on deciphering the network of genes which are under abnormal epigenetic regulation in failed hearts. To this end, coupling chromatin immunoprecipitation to high-throughput profiling systems is being applied to cardiac myocytes in normal as well as affected hearts. The results of these studies should not only improve our understanding of the molecular basis for cardiac hypertrophy/heart failure but also provide essential information that will facilitate the development of new epigenetics-based therapies.
PMCID: PMC2698246  PMID: 19568876
Cardiac hypertrophy; Chromatin immunoprecipitation; Heart failure; Histone acetylation; Subtraction
10.  Epigenetics: the link between nature and nurture 
Molecular aspects of medicine  2012;34(4):753-764.
While the eukaryotic genome is the same throughout all somatic cells in an organism, there are specific structures and functions that discern one type of cell from another. These differences are due to the cell's unique gene expression patterns that are determined during cellular differentiation. Interestingly, these cell-specific gene expression patterns can be affected by an organism's environment throughout its lifetime leading to phenotypical changes that have the potential of altering risk of some diseases. Both cell-specific gene expression signatures and environment mediated changes in expression patterns can be explained by a complex network of modifications to the DNA, histone proteins and degree of DNA packaging called epigenetic marks. Several areas of research have formed to study these epigenetic modifications, including DNA methylation, histone modifications, chromatin remodeling and microRNA (miRNA). The original definition of epigenetics incorporates inheritable but reversible phenomena that affect gene expression without altering base pairs. Even though not all of the above listed epigenetic traits have demonstrated heritability, they can all alter gene transcription without modification to the underlying genetic sequence. Because these epigenetic patterns can also be affected by an organism's environment, they serve as an important bridge between life experiences and phenotypes. Epigenetic patterns may change throughout ones lifespan, by an early life experience, environmental exposure or nutritional status. Epigenetic signatures influenced by the environment may determine our appearance, behavior, stress response, disease susceptibility, and even longevity. The interaction between types of epigenetic modifications in response to environmental factors and how environmental cues affect epigenetic patterns will further elucidate how gene transcription can be affectively altered.
PMCID: PMC3515707  PMID: 22906839
epigenetics; DNA methylation; histone modification; chromatin remodeling; microRNA; nutrition; environment
11.  Double Strand Breaks Can Initiate Gene Silencing and SIRT1-Dependent Onset of DNA Methylation in an Exogenous Promoter CpG Island 
PLoS Genetics  2008;4(8):e1000155.
Chronic exposure to inducers of DNA base oxidation and single and double strand breaks contribute to tumorigenesis. In addition to the genetic changes caused by this DNA damage, such tumors often contain epigenetically silenced genes with aberrant promoter region CpG island DNA hypermethylation. We herein explore the relationships between such DNA damage and epigenetic gene silencing using an experimental model in which we induce a defined double strand break in an exogenous promoter construct of the E-cadherin CpG island, which is frequently aberrantly DNA hypermethylated in epithelial cancers. Following the onset of repair of the break, we observe recruitment to the site of damage of key proteins involved in establishing and maintaining transcriptional repression, namely SIRT1, EZH2, DNMT1, and DNMT3B, and the appearance of the silencing histone modifications, hypoacetyl H4K16, H3K9me2 and me3, and H3K27me3. Although in most cells selected after the break, DNA repair occurs faithfully with preservation of activity of the promoter, a small percentage of the plated cells demonstrate induction of heritable silencing. The chromatin around the break site in such a silent clone is enriched for most of the above silent chromatin proteins and histone marks, and the region harbors the appearance of increasing DNA methylation in the CpG island of the promoter. During the acute break, SIRT1 appears to be required for the transient recruitment of DNMT3B and subsequent methylation of the promoter in the silent clones. Taken together, our data suggest that normal repair of a DNA break can occasionally cause heritable silencing of a CpG island–containing promoter by recruitment of proteins involved in silencing. Furthermore, with contribution of the stress-related protein SIRT1, the break can lead to the onset of aberrant CpG island DNA methylation, which is frequently associated with tight gene silencing in cancer.
Author Summary
Human cancers contain epigenetic changes as well as DNA mutations that play a role in abnormal silencing of tumor suppressor genes. In contrast to DNA mutations that change the sequence of DNA, epigenetic changes cause abnormal silencing of genes through DNA methylation via the addition of methyl groups to DNA and through modifications to the associated chromatin proteins. One important event in tumor initiation and progression is the exposure of cells to DNA damage during events such as chronic inflammation and carcinogen exposure. We hypothesized that such damage may play a role in producing chromatin alterations, which could initiate epigenetic silencing of tumor suppressor genes. Here we show, using an exogenous gene promoter model, that key proteins involved in epigenetic silencing are recruited to the DNA near a double strand break. Occasionally, sustained localization of these proteins to the gene promoter leads to silencing of the associated gene and to the seeding and spreading of DNA methylation within the promoter that further stabilizes the silencing. This finding suggests that DNA damage may directly contribute to the large number of epigenetically silenced genes in tumors.
PMCID: PMC2491723  PMID: 18704159
12.  Epigenetic mechanisms of pulmonary hypertension 
Pulmonary Circulation  2011;1(3):347-356.
Epigenetics refers to changes in phenotype and gene expression that occur without alterations in DNA sequence. Epigenetic modifications of the genome can be acquired de novo and are potentially heritable. This review focuses on the emerging recognition of a role for epigenetics in the development of pulmonary arterial hypertension (PAH). Lessons learned from the epigenetics in cancer and neurodevelopmental diseases, such as Prader-Willi syndrome, can be applied to PAH. These syndromes suggest that there is substantial genetic and epigenetic cross-talk such that a single phenotype can result from a genetic cause, an epigenetic cause, or a combined abnormality. There are three major mechanisms of epigenetic regulation, including methylation of CpG islands, mediated by DNA methyltransferases, modification of histone proteins, and microRNAs. There is substantial interaction between these epigenetic mechanisms. Recently, it was discovered that there may be an epigenetic component to PAH. In PAH there is downregulation of superoxide dismutase 2 (SOD2) and normoxic activation of hypoxia inducible factor (HIF-1α). This decrease in SOD2 results from methylation of CpG islands in SOD2 by lung DNA methyltransferases. The partial silencing of SOD2 alters redox signaling, activates HIF-1α) and leads to excessive cell proliferation. The same hyperproliferative epigenetic abnormality occurs in cancer. These epigenetic abnormalities can be therapeutically reversed. Epigenetic mechanisms may mediate gene-environment interactions in PAH and explain the great variability in susceptibility to stimuli such as anorexigens, virus, and shunts. Epigenetics may be relevant to the female predisposition to PAH and the incomplete penetrance of BMPR2 mutations in familial PAH.
PMCID: PMC3224426  PMID: 22140624
CpG islands; DNA methyl transferases; histone acetylation; small inhibitor RNA; superoxide dismutase 2
13.  Epigenetic Regulation of a Murine Retrotransposon by a Dual Histone Modification Mark 
PLoS Genetics  2010;6(4):e1000927.
Large fractions of eukaryotic genomes contain repetitive sequences of which the vast majority is derived from transposable elements (TEs). In order to inactivate those potentially harmful elements, host organisms silence TEs via methylation of transposon DNA and packaging into chromatin associated with repressive histone marks. The contribution of individual histone modifications in this process is not completely resolved. Therefore, we aimed to define the role of reversible histone acetylation, a modification commonly associated with transcriptional activity, in transcriptional regulation of murine TEs. We surveyed histone acetylation patterns and expression levels of ten different murine TEs in mouse fibroblasts with altered histone acetylation levels, which was achieved via chemical HDAC inhibition with trichostatin A (TSA), or genetic inactivation of the major deacetylase HDAC1. We found that one LTR retrotransposon family encompassing virus-like 30S elements (VL30) showed significant histone H3 hyperacetylation and strong transcriptional activation in response to TSA treatment. Analysis of VL30 transcripts revealed that increased VL30 transcription is due to enhanced expression of a limited number of genomic elements, with one locus being particularly responsive to HDAC inhibition. Importantly, transcriptional induction of VL30 was entirely dependent on the activation of MAP kinase pathways, resulting in serine 10 phosphorylation at histone H3. Stimulation of MAP kinase cascades together with HDAC inhibition led to simultaneous phosphorylation and acetylation (phosphoacetylation) of histone H3 at the VL30 regulatory region. The presence of the phosphoacetylation mark at VL30 LTRs was linked with full transcriptional activation of the mobile element. Our data indicate that the activity of different TEs is controlled by distinct chromatin modifications. We show that activation of a specific mobile element is linked to a dual epigenetic mark and propose a model whereby phosphoacetylation of histone H3 is crucial for full transcriptional activation of VL30 elements.
Author Summary
The majority of genomic sequences in higher eukaryotes do not contain protein coding genes. Large fractions are covered by repetitive sequences, many of which are derived from transposable elements (TEs). These selfish genes, only containing sequences necessary for self-propagation, can multiply and change their location within the genome, threatening host genome integrity and provoking mutational bursts. Therefore host organisms have evolved a diverse repertoire of defence mechanisms to counteract and silence these genomic parasites. One way is to package DNA sequences containing TEs into transcriptionally inert heterochromatin, which is partly achieved via chemical modification of the packaging proteins associated with DNA, the histones. To better understand the contribution of histone acetylation in the activation of TEs, we treated mouse fibroblasts with a specific histone deacetylase inhibitor. By monitoring the expression of ten different types of murine mobile elements, we identified a defined subset of VL30 transposons specifically reactivated upon increased histone acetylation. Importantly, phosphorylation of histone H3, a modification that is triggered by stress, is required for acetylation-dependent activation of VL30 elements. We present a model where concomitant histone phosphorylation and acetylation cooperate in the transcriptional induction of VL30 elements.
PMCID: PMC2861705  PMID: 20442873
14.  Epigenomic Modifications Predict Active Promoters and Gene Structure in Toxoplasma gondii 
PLoS Pathogens  2007;3(6):e77.
Mechanisms of gene regulation are poorly understood in Apicomplexa, a phylum that encompasses deadly human pathogens like Plasmodium and Toxoplasma. Initial studies suggest that epigenetic phenomena, including histone modifications and chromatin remodeling, have a profound effect upon gene expression and expression of virulence traits. Using the model organism Toxoplasma gondii, we characterized the epigenetic organization and transcription patterns of a contiguous 1% of the T. gondii genome using custom oligonucleotide microarrays. We show that methylation and acetylation of histones H3 and H4 are landmarks of active promoters in T. gondii that allow us to deduce the position and directionality of gene promoters with >95% accuracy. These histone methylation and acetylation “activation” marks are strongly associated with gene expression. We also demonstrate that the pattern of histone H3 arginine methylation distinguishes certain promoters, illustrating the complexity of the histone modification machinery in Toxoplasma. By integrating epigenetic data, gene prediction analysis, and gene expression data from the tachyzoite stage, we illustrate feasibility of creating an epigenomic map of T. gondii tachyzoite gene expression. Further, we illustrate the utility of the epigenomic map to empirically and biologically annotate the genome and show that this approach enables identification of previously unknown genes. Thus, our epigenomics approach provides novel insights into regulation of gene expression in the Apicomplexa. In addition, with its compact genome, genetic tractability, and discrete life cycle stages, T. gondii provides an important new model to study the evolutionarily conserved components of the histone code.
Author Summary
Apicomplexan parasites, including Toxoplasma gondii, are responsible for a variety of deadly infections, but little is understood about how these important pathogens regulate gene expression. Initial studies suggest that alterations in chromatin structure regulate expression of virulence traits. To understand the relationship of chromatin remodeling and transcriptional regulation in T. gondii, we characterized the histone modifications and gene expression of a contiguous 1% of the T. gondii genome using custom DNA oligonucleotide microarrays. We found that active promoters have a characteristic pattern of histone modifications that correlates strongly with active gene expression in tachyzoites. These data, integrated with prior gene predictions, enable more accurate annotation of the genome and discovery of new genes. Further, these studies illustrate the power of an integrated epigenomic approach to illuminate the role of the “histone code” in regulation of gene expression in the Apicomplexa.
PMCID: PMC1891328  PMID: 17559302
15.  Epigenetic Control of Cytokine Gene Expression: Regulation of the TNF/LT Locus and T Helper Cell Differentiation 
Advances in immunology  2013;118:37-128.
Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal “tails” of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The “histone code” defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages.
PMCID: PMC4118600  PMID: 23683942
16.  Epigenetics in liver disease 
Hepatology (Baltimore, Md.)  2014;60(4):1418-1425.
Epigenetics is a term that encompasses a variety of regulatory processes that are able to crosstalk in order to influence gene expression and cell phenotype in response to environmental cues. A deep understanding of epigenetics offers the potential for fresh insights into the basis for complex chronic diseases and improved diagnostic and prognostic tools. Moreover, as epigenetic modifications are highly plastic and responsive to the environment, there is much excitement around the theme of epigenetic therapeutics, including not only new drugs but also more informed patient advice on lifestyle choices and their impact on pathology. This review briefly explains the molecular nature of the individual regulatory process that constitute epigenetics, including DNA methylation, histone modifications, chromatin remodeling, transcriptional control, and noncoding RNAs. The ways in which these epigenetic mechanisms influence liver physiology and disease will be considered in detail, particularly in the context of cancer, fibrosis, and nonalcoholic steatohepatitis. The current limitations associated with epigenetic profiling and therapeutics in liver disease are discussed, as is the intriguing possibility that environmental-induced epigenetic changes may become stable and heritable. Conclusion: The aim of the review is to inform hepatologists of the emerging key epigenetic ideas of relevance to liver diseases that are highly likely to form a component of patient management and care in the next decade. (Hepatology 2014;60:1418–1425)
PMCID: PMC4258082  PMID: 24633972
17.  Epigenetic Gene Regulation in Stem Cells and Correlation to Cancer 
Through the classic study of genetics, much has been learned about the regulation and progression of human disease. Specifically, cancer has been defined as a disease driven by genetic alterations, including mutations in tumor-suppressor genes and oncogenes, as well as chromosomal abnormalities. However, the study of normal human development has identified that in addition to classical genetics, regulation of gene expression is also modified by ‘epigenetic’ alterations including chromatin remodeling and histone variants, DNA methylation, the regulation of polycomb group proteins and the epigenetic function of non-coding RNA. These changes are modifications inherited both during meiosis and mitosis, yet they do not result in alterations of the actual DNA sequence. A number of biological questions are directly influenced by epigenetics, such as how does a cell know when to divide, differentiate or remain quiescent, and more importantly, what happens when these pathways become altered? Do these alterations lead to the development and/or progression of cancer? This review will focus on summarizing the limited current literature involving epigenetic alterations in the context of human cancer stems cells (CSCs). The extent to which epigenetic changes define cell fate, identity, and phenotype are still under intense investigation, and many questions remain largely unanswered. Before discussing epigenetic gene silencing in CSCs, the different classifications of stem cells and their properties will be introduced. This will be followed by an introduction to the different epigenetic mechanisms Finally, there will be a discussion of the current knowledge of epigenetic modifications in stem cells, specifically what is known from rodent systems and established cancer cell lines, and how they are leading us to understand human stem cells.
PMCID: PMC2706282  PMID: 19443100
epigenetics; embryonic stem cells; normal and cancerous adult stem/progenitor cells
18.  Effect of Dynamic DNA Methylation and Histone Acetylation on cPouV Expression in Differentiation of Chick Embryonic Germ Cells 
Stem Cells and Development  2013;22(20):2725-2735.
As a crucial pluripotency-related factor, the epigenetic regulation of Oct4 has been studied intensively in mammalians. However, its dynamic changes of DNA methylation and histone modification in avians remain poorly understood. In the present study, we first described the alterations of DNA methylation and histone acetylation in the promoter of chicken PouV (cPouV; the homologue of Oct4 in avian) during chick embryonic germ (EG) cell differentiation. The epigenetic modification analysis showed that DNA methylation in the cPouV promoter increased obviously, while histone acetylation decreased dramatically detected by chromatin immunoprecipitation assay in the process of differentiation. Gene expression analysis detection indicated that the levels of DNA methyltransferase 3a (Dnmt 3a), Dnmt 3b, and histone deacetylase 3 (HDAC 3) transcripts were significantly high, whereas the relative abundance of Dnmt 1, histone acetyltransferase (HAT), and cPouV mRNA was significantly decreased during the conversion of EG to embryoid body-like structures (EBs), which was correlated with the increased level of methylation and reduced level of H3 acetylation. Moreover, in vitro methylation assay indicated that the reporter gene was remarkably inhibited by the methylated promoter of cPouV. To further understand the effect of epigenetic modifiers on cPouV expression, we performed an analysis of EB cells treated with trichostatin A (TSA), Aza-2′-deoxycytidine (Aza), or TSA plus Aza (TSA/Aza). We observed that the effect of TSA/Aza is more sensitive to the reactivation of cPouV compared with TSA or Aza, indicating that these epigenetic inhibitors can function synergistically to facilitate the reprogramming process. The present study provided evidences that a critical role for cPouV activation/repression by DNA methylation and/or histone modifications is involved in the pluripotency maintenance and differentiation process of chick EG.
PMCID: PMC3787397  PMID: 23750509
19.  A Novel Selective LSD1/KDM1A Inhibitor Epigenetically Blocks Herpes Simplex Virus Lytic Replication and Reactivation from Latency 
mBio  2013;4(1):e00558-12.
Cellular processes requiring access to the DNA genome are regulated by an overlay of epigenetic modifications, including histone modification and chromatin remodeling. Similar to the cellular host, many nuclear DNA viruses that depend upon the host cell’s transcriptional machinery are also subject to the regulatory impact of chromatin assembly and modification. Infection of cells with alphaherpesviruses (herpes simplex virus [HSV] and varicella-zoster virus [VZV]) results in the deposition of nucleosomes bearing repressive histone H3K9 methylation on the viral genome. This repressive state is modulated by the recruitment of a cellular coactivator complex containing the histone H3K9 demethylase LSD1 to the viral immediate-early (IE) gene promoters. Inhibition of the activity of this enzyme results in increased repressive chromatin assembly and suppression of viral gene expression during lytic infection as well as reactivation from latency in a mouse ganglion explant model. However, available small-molecule LSD1 inhibitors are not originally designed to inhibit LSD1, but rather monoamine oxidases (MAO) in general. Thus, their specificity for and potency to LSD1 is low. In this study, a novel specific LSD1 inhibitor was identified that potently repressed HSV IE gene expression, genome replication, and reactivation from latency. Importantly, the inhibitor also suppressed primary infection of HSV in vivo in a mouse model. Based on common control of a number of DNA viruses by epigenetic modulation, it was also demonstrated that this LSD1 inhibitor blocks initial gene expression of the human cytomegalovirus and adenovirus type 5.
IMPORTANCE  Epigenetic mechanisms, including histone modification and chromatin remodeling, play important regulatory roles in all cellular processes requiring access to the genome. These mechanisms are often altered in disease conditions, including various cancers, and thus represent novel targets for drugs. Similarly, many viral pathogens are regulated by an epigenetic overlay that determines the outcome of infection. Therefore, these epigenetic targets also represent novel antiviral targets. Here, a novel inhibitor was identified with high specificity and potency for the histone demethylase LSD1, a critical component of the herpes simplex virus (HSV) gene expression paradigm. This inhibitor was demonstrated to have potent antiviral potential in both cultured cells and animal models. Thus, in addition to clearly demonstrating the critical role of LSD1 in regulation of HSV infection, as well as other DNA viruses, the data extends the therapeutic potential of chromatin modulation inhibitors from the focused field of oncology to the arena of antiviral agents.
Epigenetic mechanisms, including histone modification and chromatin remodeling, play important regulatory roles in all cellular processes requiring access to the genome. These mechanisms are often altered in disease conditions, including various cancers, and thus represent novel targets for drugs. Similarly, many viral pathogens are regulated by an epigenetic overlay that determines the outcome of infection. Therefore, these epigenetic targets also represent novel antiviral targets. Here, a novel inhibitor was identified with high specificity and potency for the histone demethylase LSD1, a critical component of the herpes simplex virus (HSV) gene expression paradigm. This inhibitor was demonstrated to have potent antiviral potential in both cultured cells and animal models. Thus, in addition to clearly demonstrating the critical role of LSD1 in regulation of HSV infection, as well as other DNA viruses, the data extends the therapeutic potential of chromatin modulation inhibitors from the focused field of oncology to the arena of antiviral agents.
PMCID: PMC3565832  PMID: 23386436
20.  The Role of Multiple Marks in Epigenetic Silencing and the Emergence of a Stable Bivalent Chromatin State 
PLoS Computational Biology  2013;9(7):e1003121.
We introduce and analyze a minimal model of epigenetic silencing in budding yeast, built upon known biomolecular interactions in the system. Doing so, we identify the epigenetic marks essential for the bistability of epigenetic states. The model explicitly incorporates two key chromatin marks, namely H4K16 acetylation and H3K79 methylation, and explores whether the presence of multiple marks lead to a qualitatively different systems behavior. We find that having both modifications is important for the robustness of epigenetic silencing. Besides the silenced and transcriptionally active fate of chromatin, our model leads to a novel state with bivalent (i.e., both active and silencing) marks under certain perturbations (knock-out mutations, inhibition or enhancement of enzymatic activity). The bivalent state appears under several perturbations and is shown to result in patchy silencing. We also show that the titration effect, owing to a limited supply of silencing proteins, can result in counter-intuitive responses. The design principles of the silencing system is systematically investigated and disparate experimental observations are assessed within a single theoretical framework. Specifically, we discuss the behavior of Sir protein recruitment, spreading and stability of silenced regions in commonly-studied mutants (e.g., sas2, dot1) illuminating the controversial role of Dot1 in the systems biology of yeast silencing.
Author Summary
Epigenetics is the study of heritable phenotypic variations that are not caused by changes in the genotype. Silent Information Regulator (SIR) silencing in budding yeast is an important model system for epigenetics. The standard model of silencing relies on feedback, mediated by chromatin modifications (for example, deacetylation of histone residues) which lead to enhanced recruitment of chromatin modifiers. However, the SIR mechanism is not completely understood and it is important to investigate whether as-yet-undiscovered components alter the systems design in a fundamental way. We address this question using minimal models constructed from experimentally known interactions. Rather than building a detailed network model with parameters to fit for quantitative predictions, we build an effective model and study its bifurcation diagram which leads to robust qualitative predictions on the nature of mutants. This minimal modeling delineates a phase space with qualitatively different epigenetic mechanisms and states; some of which arise from drug/genetic perturbations and exhibit large cell-to-cell variation in chromatin marks. Our methodology can be applied to the study of epigenetic chromatin silencing in other model systems, especially Polycomb silencing, and reveals engineering principles that may be of broad relevance.
PMCID: PMC3715441  PMID: 23874171
21.  Vitamin D and the epigenome 
Epigenetic mechanisms play a crucial role in regulating gene expression. The main mechanisms involve methylation of DNA and covalent modifications of histones by methylation, acetylation, phosphorylation, or ubiquitination. The complex interplay of different epigenetic mechanisms is mediated by enzymes acting in the nucleus. Modifications in DNA methylation are performed mainly by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins, while a plethora of enzymes, such as histone acetyltransferases (HATs), histone deacetylases (HDACs), histone methyltransferases (HMTs), and histone demethylases (HDMs) regulate covalent histone modifications. In many diseases, such as cancer, the epigenetic regulatory system is often disturbed. Vitamin D interacts with the epigenome on multiple levels. Firstly, critical genes in the vitamin D signaling system, such as those coding for vitamin D receptor (VDR) and the enzymes 25-hydroxylase (CYP2R1), 1α-hydroxylase (CYP27B1), and 24-hydroxylase (CYP24A1) have large CpG islands in their promoter regions and therefore can be silenced by DNA methylation. Secondly, VDR protein physically interacts with coactivator and corepressor proteins, which in turn are in contact with chromatin modifiers, such as HATs, HDACs, HMTs, and with chromatin remodelers. Thirdly, a number of genes encoding for chromatin modifiers and remodelers, such as HDMs of the Jumonji C (JmjC)-domain containing proteins and lysine-specific demethylase (LSD) families are primary targets of VDR and its ligands. Finally, there is evidence that certain VDR ligands have DNA demethylating effects. In this review we will discuss regulation of the vitamin D system by epigenetic modifications and how vitamin D contributes to the maintenance of the epigenome, and evaluate its impact in health and disease.
PMCID: PMC4010791  PMID: 24808866
VDR; VDRE; 1,25-dihydroxyvitamin D3; CYP27B1; CYP24A1; DNA methylation; histone modifications; CpG island
22.  Epigenetic modifications in cardiovascular disease 
Basic Research in Cardiology  2012;107(2):245.
Epigenetics represents a phenomenon of altered heritable phenotypic expression of genetic information occurring without changes in DNA sequence. Epigenetic modifications control embryonic development, differentiation and stem cell (re)programming. These modifications can be affected by exogenous stimuli (e.g., diabetic milieu, smoking) and oftentimes culminate in disease initiation. DNA methylation has been studied extensively and represents a well-understood epigenetic mechanism. During this process cytosine residues preceding a guanosine in the DNA sequence are methylated. CpG-islands are short-interspersed DNA sequences with clusters of CG sequences. The abnormal methylation of CpG islands in the promoter region of genes leads to a silencing of genetic information and finally to alteration of biological function. Emerging data suggest that these epigenetic modifications also impact on the development of cardiovascular disease. Histone modifications lead to the modulation of the expression of genetic information through modification of DNA accessibility. In addition, RNA-based mechanisms (e.g., microRNAs and long non-coding RNAs) influence the development of disease. We here outline the recent work pertaining to epigenetic changes in a cardiovascular disease setting.
PMCID: PMC3329881  PMID: 22234702
DNA methylation; CpG islands; microRNAs; Long non-coding RNAs; Cardiovascular disease
23.  Epigenetic contributions in the development of rheumatoid arthritis 
Rheumatoid arthritis (RA) is an autoimmune disease, characterized by chronic inflammation of the joints with severe pain and swelling, joint damage and disability, which leads to joint destruction and loss of function. Despite extensive research efforts, the underlying cause for RA is still unknown and current therapies are more or less effective in controlling symptoms but still fail to cure the disease. In recent years, epigenetic modifications were found to strongly contribute to the development of RA by affecting diverse aspects of the disease and modifying gene expression levels and behavior of several cell types, first and foremost joint resident synovial fibroblasts (SF). RASF are the most common cell type at the site of invasion. Owing to their aggressive, intrinsically activated phenotype, RASF are active contributors in joint damage. RASF are characterized by their ability to secrete cytokines, chemokines and joint-damaging enzymes. Furthermore, these cells are resistant to apoptosis, leading to hyperplasia of the synovium. In addition, RASF have invasive and migratory properties that could lead to spreading of the disease to unaffected joints. Epigenetic modifications, including DNA methylation and post-translational histone modifications, such as histone (de)acetylation, histone methylation and histone sumoylation were identified as regulatory mechanisms in controlling aggressive cell activation in vitro and in disease outcome in animal models in vivo. In the last 5 years, the field of epigenetics in RA has impressively increased. In this review we consider the role of diverse epigenetic modifications in the development of RA, with a special focus on epigenetic modifications in RASF.
PMCID: PMC3674613  PMID: 23164162
24.  Epigenetics 
Journal of Dental Research  2009;88(5):400-408.
Genetic information is encoded not only by the linear sequence of DNA, but also by epigenetic modifications of chromatin structure that include DNA methylation and covalent modifications of the proteins that bind DNA. These “epigenetic marks” alter the structure of chromatin to influence gene expression. Methylation occurs naturally on cytosine bases at CpG sequences and is involved in controlling the correct expression of genes. DNA methylation is usually associated with triggering histone deacetylation, chromatin condensation, and gene silencing. Differentially methylated cytosines give rise to distinct patterns specific for each tissue type and disease state. Such methylation-variable positions (MVPs) are not uniformly distributed throughout our genome, but are concentrated among genes that regulate transcription, growth, metabolism, differentiation, and oncogenesis. Alterations in MVP methylation status create epigenetic patterns that appear to regulate gene expression profiles during cell differentiation, growth, and development, as well as in cancer. Environmental stressors including toxins, as well as microbial and viral exposures, can change epigenetic patterns and thereby effect changes in gene activation and cell phenotype. Since DNA methylation is often retained following cell division, altered MVP patterns in tissues can accumulate over time and can lead to persistent alterations in steady-state cellular metabolism, responses to stimuli, or the retention of an abnormal phenotype, reflecting a molecular consequence of gene-environment interaction. Hence, DNA epigenetics constitutes the main and previously missing link among genetics, disease, and the environment. The challenge in oral biology will be to understand the mechanisms that modify MVPs in oral tissues and to identify those epigenetic patterns that modify disease pathogenesis or responses to therapy.
PMCID: PMC3317936  PMID: 19493882
epigenetics; DNA methylation; gene regulation; infection; inflammation; field effect
25.  The Epigenetic Origin of Aneuploidy 
Current Genomics  2008;9(1):43-50.
Theodore Boveri, eminent German pathologist, observed aneuploidy in cancer cells more than a century ago and suggested that cancer cells derived from a single progenitor cell that acquires the potential for uncontrolled continuous proliferation. Currently, it is well known that aneuploidy is observed in virtually all cancers. Gain and loss of chromosomal material in neoplastic cells is considered to be a process of diversification that leads to survival of the fittest clones. According to Darwin’s theory of evolution, the environment determines the grounds upon which selection takes place and the genetic characteristics necessary for better adaptation. This concept can be applied to the carcinogenesis process, connecting the ability of cancer cells to adapt to different environments and to resist chemotherapy, genomic instability being the driving force of tumor development and progression. What causes this genome instability? Mutations have been recognized for a long time as the major source of genome instability in cancer cells. Nevertheless, an alternative hypothesis suggests that aneuploidy is a primary cause of genome instability rather than solely a simple consequence of the malignant transformation process. Whether genome instability results from mutations or from aneuploidy is not a matter of discussion in this review. It is most likely both phenomena are intimately related; however, we will focus on the mechanisms involved in aneuploidy formation and more specifically on the epigenetic origin of aneuploid cells. Epigenetic inheritance is defined as cellular information—other than the DNA sequence itself—that is heritable during cell division. DNA methylation and histone modifications comprise two of the main epigenetic modifications that are important for many physiological and pathological conditions, including cancer. Aberrant DNA methylation is the most common molecular cancer-cell lesion, even more frequent than gene mutations; tumor suppressor gene silencing by CpG island promoter hypermethylation is perhaps the most frequent epigenetic modification in cancer cells. Epigenetic characteristics of cells may be modified by several factors including environmental exposure, certain nutrient deficiencies, radiation, etc. Some of these alterations have been correlated with the formation of aneuploid cells in vivo. A growing body of evidence suggests that aneuploidy is produced and caused by chromosomal instability. We propose and support in this manuscript that not only genetics but also epigenetics, contribute in a major fashion to aneuploid cell formation.
PMCID: PMC2674307  PMID: 19424483
Aneuploidy; cancer; epigenetics; chromosome instability.

Results 1-25 (1206737)