Search tips
Search criteria

Results 1-25 (756379)

Clipboard (0)

Related Articles

1.  Crown Plasticity and Competition for Canopy Space: A New Spatially Implicit Model Parameterized for 250 North American Tree Species 
PLoS ONE  2007;2(9):e870.
Canopy structure, which can be defined as the sum of the sizes, shapes and relative placements of the tree crowns in a forest stand, is central to all aspects of forest ecology. But there is no accepted method for deriving canopy structure from the sizes, species and biomechanical properties of the individual trees in a stand. Any such method must capture the fact that trees are highly plastic in their growth, forming tessellating crown shapes that fill all or most of the canopy space.
Methodology/Principal Findings
We introduce a new, simple and rapidly-implemented model–the Ideal Tree Distribution, ITD–with tree form (height allometry and crown shape), growth plasticity, and space-filling, at its core. The ITD predicts the canopy status (in or out of canopy), crown depth, and total and exposed crown area of the trees in a stand, given their species, sizes and potential crown shapes. We use maximum likelihood methods, in conjunction with data from over 100,000 trees taken from forests across the coterminous US, to estimate ITD model parameters for 250 North American tree species. With only two free parameters per species–one aggregate parameter to describe crown shape, and one parameter to set the so-called depth bias–the model captures between-species patterns in average canopy status, crown radius, and crown depth, and within-species means of these metrics vs stem diameter. The model also predicts much of the variation in these metrics for a tree of a given species and size, resulting solely from deterministic responses to variation in stand structure.
This new model, with parameters for US tree species, opens up new possibilities for understanding and modeling forest dynamics at local and regional scales, and may provide a new way to interpret remote sensing data of forest canopies, including LIDAR and aerial photography.
PMCID: PMC1964803  PMID: 17849000
2.  How Stand Productivity Results from Size- and Competition-Dependent Growth and Mortality 
PLoS ONE  2011;6(12):e28660.
A better understanding of the relationship between stand structure and productivity is required for the development of: a) scalable models that can accurately predict growth and yield dynamics for the world's forests; and b) stand management regimes that maximize wood and/or timber yield, while maintaining structural and species diversity.
We develop a cohort-based canopy competition model (“CAIN”), parameterized with inventory data from Ontario, Canada, to examine the relationship between stand structure and productivity. Tree growth, mortality and recruitment are quantified as functions of diameter and asymmetric competition, using a competition index (CAIh) defined as the total projected area of tree crowns at a given tree's mid-crown height. Stand growth, mortality, and yield are simulated for inventoried stands, and also for hypothetical stands differing in total volume and tree size distribution.
For a given diameter, tree growth decreases as CAIh increases, whereas the probability of mortality increases. For a given CAIh, diameter growth exhibits a humped pattern with respect to diameter, whereas mortality exhibits a U-shaped pattern reflecting senescence of large trees. For a fixed size distribution, stand growth increases asymptotically with total density, whereas mortality increases monotonically. Thus, net productivity peaks at an intermediate volume of 100–150 m3/ha, and approaches zero at 250 m3/ha. However, for a fixed stand volume, mortality due to senescence decreases if the proportion of large trees decreases as overall density increases. This size-related reduction in mortality offsets the density-related increase in mortality, resulting in a 40% increase in yield.
Size-related variation in growth and mortality exerts a profound influence on the relationship between stand structure and productivity. Dense stands dominated by small trees yield more wood than stands dominated by fewer large trees, because the relative growth rate of small trees is higher, and because they are less likely to die.
PMCID: PMC3236764  PMID: 22174861
3.  Common allometric response of open-grown leader shoots to tree height in co-occurring deciduous broadleaved trees 
Annals of Botany  2011;108(7):1279-1286.
Background and Aims
Morphology of crown shoots changes with tree height. The height of forest trees is usually correlated with the light environment and this makes it difficult to separate the effects of tree size and of light conditions on the morphological plasticity of crown shoots. This paper addresses the tree-height dependence of shoot traits under full-light conditions where a tree crown is not shaded by other crowns.
Focus is given to relationships between tree height and top-shoot traits, which include the shoot's leaf-blades and non-leafy mass, its total leaf-blade area and the length and basal diameter of the shoot's stem. We examine the allometric characteristics of open-grown current-year leader shoots at the tops of forest tree crowns up to 24 m high and quantify their responses to tree height in 13 co-occurring deciduous hardwood species in a cool-temperate forest in northern Japan.
Key Results
Dry mass allocated to leaf blades in a leader shoot increased with tree height in all 13 species. Specific leaf area decreased with tree height. Stem basal area was almost proportional to total leaf area in a leader shoot, where the proportionality constant did not depend on tree height, irrespective of species. Stem length for a given stem diameter decreased with tree height.
In the 13 species observed, height-dependent changes in allometry of leader shoots were convergent. This finding suggests that there is a common functional constraint in tree-height development. Under full-light conditions, leader shoots of tall trees naturally experience more severe water stress than those of short trees. We hypothesize that the height dependence of shoot allometry detected reflects an integrated response to height-associated water stress, which contributes to successful crown expansion and height gain.
PMCID: PMC3197456  PMID: 21914698
Allometry; current-year leader shoot; hierarchical Bayesian model; pipe model; tree height; water stress
4.  Leaf Life Span Plasticity in Tropical Seedlings Grown under Contrasting Light Regimes 
Annals of Botany  2006;97(2):245-255.
• Background and Aims The phenotypic plasticity of leaf life span in response to low resource conditions has a potentially large impact on the plant carbon budget, notably in evergreen species not subject to seasonal leaf shedding, but has rarely been well documented. This study evaluates the plasticity of leaf longevity, in terms of its quantitative importance to the plant carbon balance under limiting light.
• Methods Seedlings of four tropical tree species with contrasting light requirements (Alstonia scholaris, Hevea brasiliensis, Durio zibethinus and Lansium domesticum) were grown under three light regimes (full sunlight, 45 % sunlight and 12 % sunlight). Their leaf dynamics were monitored over 18 months.
• Results All species showed a considerable level of plasticity with regard to leaf life span: over the range of light levels explored, the ratio of the range to the mean value of life span varied from 29 %, for the least plastic species, to 84 %, for the most. The common trend was for leaf life span to increase with decreasing light intensity. The plasticity apparent in leaf life span was similar in magnitude to the plasticity observed in specific leaf area and photosynthetic rate, implying that it has a significant impact on carbon gain efficiency when plants acclimate to different light regimes. In all species, median survival time was negatively correlated with leaf photosynthetic capacity (or its proxy, the nitrogen content per unit area) and leaf emergence rate.
• Conclusions Longer leaf life spans under low light are likely to be a consequence of slower ageing as a result of a slower photosynthetic metabolism.
PMCID: PMC2803358  PMID: 16299004
Alstonia scholaris; carbon balance; Durio zibethinus; Hevea brasiliensis; Lansium domesticum; leaf life span; light; plasticity
5.  Responses of Crown Development to Canopy Openings by Saplings of Eight Tropical Submontane Forest Tree Species in Indonesia: A Comparison with Cool-temperate Trees 
Annals of Botany  2006;97(4):559-569.
• Background and Aims Growth in trunk height in canopy openings is important for saplings. How saplings increase height growth in canopy openings may relate to crown architectural constraints. Responses of crown development to canopy openings in relation to trunk height growth were studied for saplings (0·2–2·5 m tall) of eight tropical submontane forest tree species in Indonesia. The results of this study were also compared with those of temperate trees in northern Japan.
• Methods The crown architecture differed among the eight tropical species, i.e. they had sparsely to highly developed branching structures. Crown allometry was compared among the eight species in each canopy condition (closed canopy or canopy openings), and between closed canopy and canopy openings within a species. A general linear regression model was used to analyse how each species increases height growth rate in canopy openings. Crown allometry and its plasticity were compared between tropical and temperate trees by a nested analysis of covariance.
• Key Results Tropical submontane trees had responses similar to cool-temperate trees, showing an increase in height in canopy openings, i.e. taller saplings of sparsely branched species increase height growth rates by increasing the sapling leaf area. Cool-temperate trees have a wider crown projection area and a smaller leaf area per crown projection area to avoid self-shading within a crown compared with tropical submontane trees. Plasticity of the crown projection area is greater in cool-temperate trees than in tropical submontane trees, probably because of the difference in leaf longevity.
• Conclusions This study concluded that interspecific variation in the responses of crown development to canopy openings in regard to increasing height related to the species' branching structure, and that different life-forms, such as evergreen and deciduous trees, had different crown allometry and plasticity.
PMCID: PMC2803653  PMID: 16399792
Cool-temperate trees; crown allometry; crown architecture; height growth; Indonesia; saplings; plasticity; tropical trees
6.  Patterns and Drivers of Tree Mortality in Iberian Forests: Climatic Effects Are Modified by Competition 
PLoS ONE  2013;8(2):e56843.
Tree mortality is a key process underlying forest dynamics and community assembly. Understanding how tree mortality is driven by simultaneous drivers is needed to evaluate potential effects of climate change on forest composition. Using repeat-measure information from c. 400,000 trees from the Spanish Forest Inventory, we quantified the relative importance of tree size, competition, climate and edaphic conditions on tree mortality of 11 species, and explored the combined effect of climate and competition. Tree mortality was affected by all of these multiple drivers, especially tree size and asymmetric competition, and strong interactions between climate and competition were found. All species showed L-shaped mortality patterns (i.e. showed decreasing mortality with tree size), but pines were more sensitive to asymmetric competition than broadleaved species. Among climatic variables, the negative effect of temperature on tree mortality was much larger than the effect of precipitation. Moreover, the effect of climate (mean annual temperature and annual precipitation) on tree mortality was aggravated at high competition levels for all species, but especially for broadleaved species. The significant interaction between climate and competition on tree mortality indicated that global change in Mediterranean regions, causing hotter and drier conditions and denser stands, could lead to profound effects on forest structure and composition. Therefore, to evaluate the potential effects of climatic change on tree mortality, forest structure must be considered, since two systems of similar composition but different structure could radically differ in their response to climatic conditions.
PMCID: PMC3581527  PMID: 23451096
7.  Cambial activity related to tree size in a mature silver-fir plantation 
Annals of Botany  2011;108(3):429-438.
Background and Aims
Our knowledge about the influences of environmental factors on tree growth is principally based on the study of dominant trees. However, tree social status may influence intra-annual dynamics of growth, leading to differential responses to environmental conditions. The aim was to determine whether within-stand differences in stem diameters of trees belonging to different crown classes resulted from variations in the length of the growing period or in the rate of cell production.
Cambial activity was monitored weekly in 2006 for three crown classes in a 40-year-old silver-fir (Abies alba) plantation near Nancy (France). Timings, duration and rate of tracheid production were assessed from anatomical observations of the developing xylem.
Key Results
Cambial activity started earlier, stopped later and lasted longer in dominant trees than in intermediate and suppressed ones. The onset of cambial activity was estimated to have taken 3 weeks to spread to 90 % of the trees in the stand, while the cessation needed 6 weeks. Cambial activity was more intense in dominant trees than in intermediate and suppressed ones. It was estimated that about 75 % of tree-ring width variability was attributable to the rate of cell production and only 25 % to its duration. Moreover, growth duration was correlated to tree height, while growth rate was better correlated to crown area.
These results show that, in a closed conifer forest, stem diameter variations resulted principally from differences in the rate of xylem cell production rather than in its duration. Tree size interacts with environmental factors to control the timings, duration and rate of cambial activity through functional processes involving source–sink relationships principally, but also hormonal controls.
PMCID: PMC3158687  PMID: 21816842
Cambial activity; forest-stand structure; silver fir (Abies alba); tree-ring formation; tree-to-tree competition; social status; wood anatomy; xylem cell differentiation
8.  Tree-line changes along the Andes: implications of spatial patterns and dynamics 
The Andes provide an extensive latitudinal and topographical framework for studying the factors that control the spatial patterns of forests (timberlines) and their species components expressed through the presence of tree growth forms (tree lines). Despite consistent overall similarities in landscape patterns, many processes must be unique, given the dramatic differences in species richness and biophysical constraints along the Andes. In all cases evaluated to date, morphological plasticity is a common trait of plant species that dominate at tree lines. In fact, many changes observed can be related to species-specific traits. Physiological limitations on tree growth form only explain species limits, while disturbances and cyclical climate fluctuations interact to affect many landscape patterns. Over long periods of time, tree lines provide unique habitats and perhaps opportunities for speciation. Understanding the spatial organization of tree-line dynamics is one viable research approach for evaluating the likely past fluxes and possible future changes.
PMCID: PMC2311430  PMID: 17255035
Andes Mountains; biodiversity; timberline; tree line
9.  Understanding height-structured competition in forests: is there an R* for light? 
Tree species differ from one another in, and display trade-offs among, a wide range of attributes, including canopy and understorey growth and mortality rates, fecundity, height and crown allometry, and crown transmissivity. But how does this variation affect the outcome of interspecific competition and hence community structure? We derive criteria for the outcome of competition among tree species competing for light, given their allometric and life-history parameters. These criteria are defined in terms of a new simple whole life-cycle measure of performance, which provides a simple way to organize and understand the many ways in which species differ. The general case, in which all parameters can differ between species, can produce coexistence, founder control or competitive exclusion: thus, competition for light need not be hierarchical as implied by R* theory. The special case in which species differ only in crown transmissivity produces neutral dynamics. The special case in which species differ in all parameters except crown transmissivity gives hierarchical competition, where the equivalent of R* is Zˆ*, the height at which trees enter the canopy in an equilibrium monoculture.
PMCID: PMC2291153  PMID: 17925276
biomechanics; succession; community ecology; forest dynamics; pairwise invasibility; Sortie
10.  Computing Competition for Light in the GREENLAB Model of Plant Growth: A Contribution to the Study of the Effects of Density on Resource Acquisition and Architectural Development 
Annals of Botany  2007;101(8):1207-1219.
Background and Aims
The dynamical system of plant growth GREENLAB was originally developed for individual plants, without explicitly taking into account interplant competition for light. Inspired by the competition models developed in the context of forest science for mono-specific stands, we propose to adapt the method of crown projection onto the x–y plane to GREENLAB, in order to study the effects of density on resource acquisition and on architectural development.
The empirical production equation of GREENLAB is extrapolated to stands by computing the exposed photosynthetic foliage area of each plant. The computation is based on the combination of Poisson models of leaf distribution for all the neighbouring plants whose crown projection surfaces overlap. To study the effects of density on architectural development, we link the proposed competition model to the model of interaction between functional growth and structural development introduced by Mathieu (2006, PhD Thesis, Ecole Centrale de Paris, France).
Key Results and Conclusions
The model is applied to mono-specific field crops and forest stands. For high-density crops at full cover, the model is shown to be equivalent to the classical equation of field crop production ( Howell and Musick, 1985, in Les besoins en eau des cultures; Paris: INRA Editions). However, our method is more accurate at the early stages of growth (before cover) or in the case of intermediate densities. It may potentially account for local effects, such as uneven spacing, variation in the time of plant emergence or variation in seed biomass. The application of the model to trees illustrates the expression of plant plasticity in response to competition for light. Density strongly impacts on tree architectural development through interactions with the source–sink balances during growth. The effects of density on tree height and radial growth that are commonly observed in real stands appear as emerging properties of the model.
PMCID: PMC2710279  PMID: 18037666
Functional–structural plant models; GREENLAB; competition for light; Beer–Lambert Law; plant plasticity; dynamical system
11.  Size symmetry of competition alters biomass-density relationships. 
As crowded populations of plants develop, the growth of some plants is accompanied by the death of others, a process called density-dependent mortality or 'self-thinning'. During the course of density-dependent mortality, the relationship between total population biomass (B) and surviving plant density (N) is allometric: B = aN(b). Essentially, increasing population biomass can be achieved only through decreasing population density. Variation in the allometric coefficient a among species has been recognized for many years and is important for management, assessment of productivity and carbon budgets, but the causes of this variation have not been elucidated. Individual-based models predict that size-dependent competition causes variation in the allometric coefficient. Using transgenic Arabidopsis with decreased plasticity, we provide experimental evidence that morphological plasticity of wild-type populations decreases the size asymmetry of competition for light and thereby decreases density-dependent mortality. This decrease in density-dependent mortality results in more biomass at a given density under size-symmetric compared with size-asymmetric competition.
PMCID: PMC1691148  PMID: 12427311
12.  Up in the Tree – The Overlooked Richness of Bryophytes and Lichens in Tree Crowns 
PLoS ONE  2013;8(12):e84913.
Assessing diversity is among the major tasks in ecology and conservation science. In ecological and conservation studies, epiphytic cryptogams are usually sampled up to accessible heights in forests. Thus, their diversity, especially of canopy specialists, likely is underestimated. If the proportion of those species differs among forest types, plot-based diversity assessments are biased and may result in misleading conservation recommendations. We sampled bryophytes and lichens in 30 forest plots of 20 m × 20 m in three German regions, considering all substrates, and including epiphytic litter fall. First, the sampling of epiphytic species was restricted to the lower 2 m of trees and shrubs. Then, on one representative tree per plot, we additionally recorded epiphytic species in the crown, using tree climbing techniques. Per tree, on average 54% of lichen and 20% of bryophyte species were overlooked if the crown was not been included. After sampling all substrates per plot, including the bark of all shrubs and trees, still 38% of the lichen and 4% of the bryophyte species were overlooked if the tree crown of the sampled tree was not included. The number of overlooked lichen species varied strongly among regions. Furthermore, the number of overlooked bryophyte and lichen species per plot was higher in European beech than in coniferous stands and increased with increasing diameter at breast height of the sampled tree. Thus, our results indicate a bias of comparative studies which might have led to misleading conservation recommendations of plot-based diversity assessments.
PMCID: PMC3866205  PMID: 24358373
13.  Tree litter and forest understorey vegetation: a conceptual framework to understand the effects of tree litter on a perennial geophyte, Anemone nemorosa 
Annals of Botany  2012;109(6):1175-1184.
Background and Aims
Litter is a key factor in structuring plant populations, through positive or negative interactions. The litter layer forms a mechanical barrier that is often strongly selective against individuals lacking hypocotyle plasticity. Litter composition also interacts with plant growth by providing beneficial nutrients or, inversely, by allowing harmful allelopathic leaching. As conspicuous litter fall accumulation is often observed under deciduous forests, interactions between tree litter and understorey plant populations are worthy of study.
In a 1-year ex-situ experiment, the effects of tree litter on the growth of Anemone nemorosa, a small perennial forest geophyte, were investigated. Three ‘litter quantity’ treatments were defined, representative of forest floor litter (199, 356·5 and 514 g m−2), which were crossed with five ‘litter composition’ treatments (Quercus petraea, Fagus sylvatica, Carpinus betulus, Q. petraea + F. sylvatica and Q. petraea + C. betulus), plus a no-litter control. Path analysis was then used to investigate the pathways linking litter characteristics and components of adult plant growth.
Key Results
As expected, the heavier the litter, the longer the petiole; rhizome growth, however, was not depreciated by the litter-induced petiole lengthening. Both rhizome mass increment and number of initiated buds marginally increased with the amount of litter. Rhizome mass increment was in fact determined primarily by leaf area and leaf life span, neither of which was unequivocally correlated with any litter characteristics. However, the presence of litter significantly increased leafing success: following a late frost event, control rhizomes growing in the absence of litter experienced higher leaf mortality before leaf unfolding.
The study questions the role of litter as a physical or chemical barrier to ground vegetation; to better understand this role, there is a need for ex-situ, longer-term experiments coupled with in-situ observations in the forest.
PMCID: PMC3336955  PMID: 22419760
Anemone nemorosa; forest flora; geophyte; litter composition; litter permeability; path analysis; spring ephemeral; temperate forest
14.  Evidence of variant intra- and interspecific scaling of tree crown structure and relevance for allometric theory 
Oecologia  2012;169(3):637-649.
General scaling rules or constants for metabolic and structural plant allometry as assumed by the theory of Euclidian geometric scaling (2/3-scaling) or metabolic scaling (3/4-scaling) may meet human’s innate propensity for simplicity and generality of pattern and processes in nature. However, numerous empirical works show that variability of crown structure rather than constancy is essential for a tree’s success in coping with crowding. In order to link theory and empiricism, we analyzed the intra- and inter-specific scaling of crown structure for 52 tree species. The basis is data from 84 long-term plots of temperate monospecific forests under survey since 1870 and a set of 126 yield tables of angiosperm and gymnosperm forest tree species across the world. The study draws attention to (1) the intra-specific variation and correlation of the three scaling relationships: tree height versus trunk diameter, crown cross-sectional area versus trunk diameter, and tree volume versus trunk diameter, and their dependence on competition, (2) the inter-specific variation and correlation of the same scaling exponents (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\upalpha}_{h,d}, {\upalpha}_{{\text{csa,}}d} $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{\upalpha}}_{v,d} $$\end{document}) across 52 tree species, and (3) the relevance of the revealed variable scaling of crown structure for leaf organs and metabolic scaling. Our results arrive at suggesting a more extended metabolic theory of ecology which includes variability and covariation between allometric relationships as prerequisite for the individual plant’s competitiveness.
Electronic supplementary material
The online version of this article (doi:10.1007/s00442-011-2240-5) contains supplementary material, which is available to authorized users.
PMCID: PMC3375085  PMID: 22237660
Structural allometry; Euclidian geometry; Metabolic scaling theory; Fractal dimension; Self-thinning
15.  Histological Analysis and 3D Reconstruction of Winter Cereal Crowns Recovering from Freezing: A Unique Response in Oat (Avena sativa L.) 
PLoS ONE  2013;8(1):e53468.
The crown is the below ground portion of the stem of a grass which contains meristematic cells that give rise to new shoots and roots following winter. To better understand mechanisms of survival from freezing, a histological analysis was performed on rye, wheat, barley and oat plants that had been frozen, thawed and allowed to resume growth under controlled conditions. Extensive tissue disruption and abnormal cell structure was noticed in the center of the crown of all 4 species with relatively normal cells on the outside edge of the crown. A unique visual response was found in oat in the shape of a ring of cells that stained red with Safranin. A tetrazolium analysis indicated that tissues immediately inside this ring were dead and those outside were alive. Fluorescence microscopy revealed that the barrier fluoresced with excitation between 405 and 445 nm. Three dimensional reconstruction of a cross sectional series of images indicated that the red staining cells took on a somewhat spherical shape with regions of no staining where roots entered the crown. Characterizing changes in plants recovering from freezing will help determine the genetic basis for mechanisms involved in this important aspect of winter hardiness.
PMCID: PMC3544926  PMID: 23341944
16.  Above-ground Biomass Investments and Light Interception of Tropical Forest Trees and Lianas Early in Succession 
Annals of Botany  2007;99(1):141-151.
Background and Aims
Crown structure and above-ground biomass investment was studied in relation to light interception of trees and lianas growing in a 6-month-old regenerating forest.
The vertical distribution of total above-ground biomass, height, diameter, stem density, leaf angles and crown depth were measured for individual plants of three short-lived pioneers (SLPs), four long-lived pioneers (LLPs) and three lianas. Daily light interception per individual Φd was calculated with a canopy model. The model was then used to estimate light interception per unit of leaf mass (Φleaf mass), total above-ground mass (Φmass) and crown structure efficiency (Ea, the ratio of absorbed vs. available light).
Key Results
The SLPs Trema and Ochroma intercepted higher amounts of light per unit leaf mass (Φleaf mass) because they had shallower crowns, resulting in higher crown use efficiency (Ea) than the other species. These SLPs (but not Cecropia) were also taller and intercepted more light per unit leaf area (Φarea). LLPs and lianas had considerably higher amounts of leaf mass and area per unit above-ground mass (LMR and LAR, respectively) and thus attained Φmass values similar to the SLPs (Φmass=Φarea×LAR). Lianas, which were mostly self-supporting, had light interception efficiencies similar to those of the trees.
These results show how, due to the trade-off between crown structure and biomass allocation, SLPs, and LLPs and lianas intercept similar amount of light per unit mass which may contribute to the ability of the latter two groups to persist.
PMCID: PMC2802976  PMID: 17210607
Bolivia; canopy model; crown structure; leaf mass ratio; lianas; light interception; pioneers; specific leaf area; tropical forest
17.  Relationships between tree size, crown shape, gender segregation and sex allocation in Pinus halepensis, a Mediterranean pine tree 
Annals of Botany  2011;108(1):197-206.
Background and Aims
Sex allocation has been studied mainly in small herbaceous plants but much less in monoecious wind-pollinated trees. The aim of this study was to explore changes in gender segregation and sex allocation by Pinus halepensis, a Mediterranean lowland pine tree, within tree crowns and between trees differing in their size or crown shape.
The production of new male and female cones and sex allocation of biomass, nitrogen and phosphorus were studied. The relationship between branch location, its reproductive status and proxies of branch vigour was also studied.
Key Results
Small trees produced only female cones, but, as trees grew, they produced both male and female cones. Female cones were produced mainly in the upper part of the crown, and male cones in its middle and lower parts. Lateral branch density was correlated with the number of male but not female cones; lateral branches were more dense in large than in small trees and even denser in hemispherical trees. Apical branches grew faster, were thicker and their phosphorus concentration was higher than in lateral shoots. Nitrogen concentration was higher in cone-bearing apical branches than in apical vegetative branches and in lateral branches with or without cones. Allocation to male relative to female function increased with tree size as predicted by sex allocation theory.
The adaptive values of sex allocation and gender segregation patterns in P. halepensis, in relation to its unique life history, are demonstrated and discussed. Small trees produce only female cones that have a higher probability of being pollinated than the probability of male cones pollinating; the female-first strategy enhances population spread. Hemispherical old trees are loaded with serotinous cones that supply enough seeds for post-fire germination; thus, allocation to males is more beneficial than to females.
PMCID: PMC3119615  PMID: 21586528
Allocation; biomass; branch vigour; crown shape; gender segregation; nitrogen; Pinus halepensis; phosphorus; sex allocation; tree size
18.  Cork Oak Vulnerability to Fire: The Role of Bark Harvesting, Tree Characteristics and Abiotic Factors 
PLoS ONE  2012;7(6):e39810.
Forest ecosystems where periodical tree bark harvesting is a major economic activity may be particularly vulnerable to disturbances such as fire, since debarking usually reduces tree vigour and protection against external agents. In this paper we asked how cork oak Quercus suber trees respond after wildfires and, in particular, how bark harvesting affects post-fire tree survival and resprouting. We gathered data from 22 wildfires (4585 trees) that occurred in three southern European countries (Portugal, Spain and France), covering a wide range of conditions characteristic of Q. suber ecosystems. Post-fire tree responses (tree mortality, stem mortality and crown resprouting) were examined in relation to management and ecological factors using generalized linear mixed-effects models. Results showed that bark thickness and bark harvesting are major factors affecting resistance of Q. suber to fire. Fire vulnerability was higher for trees with thin bark (young or recently debarked individuals) and decreased with increasing bark thickness until cork was 3–4 cm thick. This bark thickness corresponds to the moment when exploited trees are debarked again, meaning that exploited trees are vulnerable to fire during a longer period. Exploited trees were also more likely to be top-killed than unexploited trees, even for the same bark thickness. Additionally, vulnerability to fire increased with burn severity and with tree diameter, and was higher in trees burned in early summer or located in drier south-facing aspects. We provided tree response models useful to help estimating the impact of fire and to support management decisions. The results suggested that an appropriate management of surface fuels and changes in the bark harvesting regime (e.g. debarking coexisting trees in different years or increasing the harvesting cycle) would decrease vulnerability to fire and contribute to the conservation of cork oak ecosystems.
PMCID: PMC3386235  PMID: 22787521
19.  Post-Disturbance Plant Community Dynamics following a Rare Natural-Origin Fire in a Tsuga canadensis Forest 
PLoS ONE  2012;7(8):e43867.
Opportunities to directly study infrequent forest disturbance events often lead to valuable information about vegetation dynamics. In mesic temperate forests of North America, stand-replacing crown fire occurs infrequently, with a return interval of 2000–3000 years. Rare chance events, however, may have profound impacts on the developmental trajectories of forest ecosystems. For example, it has been postulated that stand-replacing fire may have been an important factor in the establishment of eastern hemlock (Tsuga canadensis) stands in the northern Great Lakes region. Nevertheless, experimental evidence linking hemlock regeneration to non-anthropogenic fire is limited. To clarify this potential relationship, we monitored vegetation dynamics following a rare lightning-origin crown fire in a Wisconsin hemlock-hardwood forest. We also studied vegetation in bulldozer-created fire breaks and adjacent undisturbed forest. Our results indicate that hemlock establishment was rare in the burned area but moderately common in the scarified bulldozer lines compared to the reference area. Early-successional, non-arboreal species including Rubus spp., Vaccinium angustifolium, sedges (Carex spp.), grasses, Epilobium ciliatum, and Pteridium aquilinium were the most abundant post-fire species. Collectively, our results suggest that competing vegetation and moisture stress resulting from drought may reduce the efficacy of scarification treatments as well as the usefulness of fire for preparing a suitable seedbed for hemlock. The increasing prevalence of growing-season drought suggests that silvicultural strategies based on historic disturbance regimes may need to be reevaluated for mesic species.
PMCID: PMC3424231  PMID: 22928044
20.  An allometry-based approach for understanding forest structure, predicting tree-size distribution and assessing the degree of disturbance 
Tree-size distribution is one of the most investigated subjects in plant population biology. The forestry literature reports that tree-size distribution trajectories vary across different stands and/or species, whereas the metabolic scaling theory suggests that the tree number scales universally as −2 power of diameter. Here, we propose a simple functional scaling model in which these two opposing results are reconciled. Basic principles related to crown shape, energy optimization and the finite-size scaling approach were used to define a set of relationships based on a single parameter that allows us to predict the slope of the tree-size distributions in a steady-state condition. We tested the model predictions on four temperate mountain forests. Plots (4 ha each, fully mapped) were selected with different degrees of human disturbance (semi-natural stands versus formerly managed). Results showed that the size distribution range successfully fitted by the model is related to the degree of forest disturbance: in semi-natural forests the range is wide, whereas in formerly managed forests, the agreement with the model is confined to a very restricted range. We argue that simple allometric relationships, at an individual level, shape the structure of the whole forest community.
PMCID: PMC3574408  PMID: 23193128
self-thinning; old-growth forests; allometry; finite-size scaling
21.  Ecological Characteristics of a Gonystylus bancanus-rich Area in Pekan Forest Reserve, Pahang, Malaysia 
Tropical peat swamp forest (PSF) is a unique wetland ecosystem with distinct vegetation types. Due to the waterlogged environment, the stand characteristics in this ecosystem are different from those of other inland forests. This paper highlights stand characteristics of a PSF based on our investigation of a 1 ha ecological plot established in a Virgin Jungle Reserve (VJR) at Compartment 100, Pekan Forest Reserve, Pahang, Malaysia. This site is considered a Gonystylus bancanus-rich area. From the inventory, we recorded a total of 49 tree species from 38 genera and 25 families among all trees of ≥ 10 cm in diameter at breast height. Calophyllum ferrugineum var. ferrugineum was the most abundant species, followed by G. bancanus. The forest appeared healthy, as all tree characteristics (crown shape, log grade and climber infestation) generally fell within Classes 1 and 2 (good and moderate categories), with the exception of crown illumination which majority of the trees were rated as class 3 (received less sunlight). The latter finding indicates that most of the trees living under the canopy received minimal illumination. In terms of total tree biomass, we estimated that about 414.6 tonnes exist in this 1 ha area; this tree biomass is higher than in some PSF areas of Sumatra, Indonesia.
PMCID: PMC3819060  PMID: 24575176
Ecological Studies; Peat Swamp Forest; Virgin Jungle Reserve; Diversity; Tree Biomass
22.  The adaptive significance of trunk inclination on slopes: a commentary 
A recent study explored the adaptive significance of trunk inclination for trees growing on steep slopes. The authors used an optimality argument to predict how much a tree should respond to sidelight. Their calculations of the costs of leaning are flawed, because: (i) leaf mass has an allometric relationship with total volume, rather than being a fixed proportion of wood mass; (ii) the cost of support wood tissue is mainly a growth rate cost, not a maintenance respiration cost; (iii) small trees are sufficiently elastic to need very little support tissue, and thus they have a different risk structure; and (iv) most crown gaps are ephemeral rather than permanent, which also changes the risk equation. The argument I proposed in a previous study, addressing exactly the same question, is that canopy species are under selective pressure to maintain a strong central trunk that will reach the canopy and thus should not respond to sidelight. A reproductive value model is presented to illustrate this evolutionary question. Small, short-lived species or those from habitats with permanent openings (such as river margins) should be responsive. Both my previous data and the data of the other study support my model, but the model in the other study leaves many facts unexplained.
PMCID: PMC1688577
Trunk Inclination Leaf Biomass Shade-Tolerance
23.  Exploring the importance of within-canopy spatial temperature variation on transpiration predictions 
Journal of Experimental Botany  2009;60(13):3665-3676.
Models seldom consider the effect of leaf-level biochemical acclimation to temperature when scaling forest water use. Therefore, the dependence of transpiration on temperature acclimation was investigated at the within-crown scale in climatically contrasting genotypes of Acer rubrum L., cv. October Glory (OG) and Summer Red (SR). The effects of temperature acclimation on intracanopy gradients in transpiration over a range of realistic forest growth temperatures were also assessed by simulation. Physiological parameters were applied, with or without adjustment for temperature acclimation, to account for transpiration responses to growth temperature. Both types of parameterization were scaled up to stand transpiration (expressed per unit leaf area) with an individual tree model (MAESTRA) to assess how transpiration might be affected by spatial and temporal distributions of foliage properties. The MAESTRA model performed well, but its reproducibility was dependent on physiological parameters acclimated to daytime temperature. Concordance correlation coefficients between measured and predicted transpiration were higher (0.95 and 0.98 versus 0.87 and 0.96) when model parameters reflected acclimated growth temperature. In response to temperature increases, the southern genotype (SR) transpiration responded more than the northern (OG). Conditions of elevated long-term temperature acclimation further separate their transpiration differences. Results demonstrate the importance of accounting for leaf-level physiological adjustments that are sensitive to microclimate changes and the use of provenance-, ecotype-, and/or genotype-specific parameter sets, two components likely to improve the accuracy of site-level and ecosystem-level estimates of transpiration flux.
PMCID: PMC2736884  PMID: 19561047
Intraspecific acclimation; MAESTRA; microclimate; modelling; red maple; temperature acclimation; transpiration
24.  Relationships of tree height and diameter at breast height revisited: analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand 
Tree Physiology  2013;33(1):106-118.
Stem diameter at breast height (DBH) and tree height (H) are commonly used measures of tree growth. We examined patterns of height growth and diameter growth along a stem using a 20-year record of an even-aged hinoki cypress (Chamaecyparis obtusa (Siebold & Zucc.) Endl.) stand. In the region of the stem below the crown (except for the butt swell), diameter growth rates (ΔD) at different heights tended to increase slightly from breast height upwards. This increasing trend was pronounced in suppressed trees, but not as much as the variation in ΔD among individual trees. Hence, ΔD below the crown can be regarded as generally being represented by the DBH growth rate (ΔDBH) of a tree. Accordingly, the growth rate of the stem cross-sectional area increased along the stem upwards in suppressed trees, but decreased in dominant trees. The stem diameter just below the crown base (DCB), the square of which is an index of the amount of leaves on a tree, was an important factor affecting ΔDBH. DCB also had a strong positive relationship with crown length. Hence, long-term changes in the DCB of a tree were associated with long-term changes in crown length, determined by the balance between the height growth rate (ΔH) and the rising rate of the crown base (ΔHCB). Within the crown, ΔD's were generally greater than the rates below the crown. Even dying trees (ΔD ≈ 0 below the crown) maintained ΔD > 0 within the crown and ΔH > 0 until about 5 years before death. This growth within the crown may be related to the need to produce new leaves to compensate for leaves lost owing to the longevity of the lower crown. These results explain the different time trajectories in DBH–H relationships among individual trees, and also the long-term changes in the DBH–H relationships. The view that a rise in the crown base is strongly related to leaf turnover helps to interpret DBH–H relationships.
PMCID: PMC3556985  PMID: 23303367
allometry; crown rise; linear mixed models; pipe model theory; stem form; stem taper
25.  Thematic and Spatial Resolutions Affect Model-Based Predictions of Tree Species Distribution 
PLoS ONE  2013;8(7):e67889.
Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.
PMCID: PMC3701650  PMID: 23861828

Results 1-25 (756379)