Search tips
Search criteria

Results 1-25 (812717)

Clipboard (0)

Related Articles

1.  Targeting of stealth liposomes to erbB-2 (Her/2) receptor: in vitro and in vivo studies. 
British Journal of Cancer  1996;74(11):1749-1756.
Long-circulating (stealth) liposomes coated with polyethylene glycol (PEG), which show reduced uptake by the reticuloendothelial system (RES) and enhanced accumulation in tumours, were used for conjugation to monoclonal antibodies (MAbs) as a drug-targeting device. A MAb (N-12A5) directed against erbB-2 oncoprotein, a functional surface antigen, was used. Amplification and overexpression of the erbB-2 gene product, being unique to malignancy, confer onto this antibody-mediated therapy high tumour specificity. In vitro binding of [3H]cholesteryl ether ([3H]Chol ether) labelled anti-erbB-2 conjugated liposomes to N-87 cells (erbB-2-positive human gastric carcinoma) was compared with the binding of non-targeted liposomes and indicated a 16-fold increase in binding for the targeted liposomes. No difference in binding to OV1063 cells (erbB-2-negative human ovary carcinoma) was observed. These results indicate highly selective binding of antibody-targeted liposomes to erbB-2-overexpressing cells. Despite increased cell binding, doxorubicin (DOX) loaded in anti-erbB-2-conjugated liposomes did not cause increased in vitro cytotoxicity against N-87 cells, suggesting lack of liposome internalisation. In vivo, the critical factor needed to decrease the non-specific RES uptake and prolong the circulation time of antibody-conjugated liposomes is a low protein to phospholipid ratio ( < 60 micrograms mumol-1). Using these optimised liposome preparations loaded with DOX and by monitoring the drug levels and the [3H]Chol ether label, biodistribution studies in nude mice bearing subcutaneous implants of N-87 tumours were carried out. No significant differences in liver and spleen uptake between antibody-conjugated and plain liposomes were observed. Nevertheless, there was no enhancement of tumour liposome levels over plain liposomes. Both liposome preparations considerably enhanced DOX concentration in the tumour compared with free drug administration. Therapeutic experiments with N-87 tumour-bearing nude mice indicated that anti-tumour activity of targeted and non-targeted liposomes was similar, although both preparations had an increased therapeutic efficacy compared with the free drug. These studies suggest that efficacy is dependent on drug delivery to the tumour and that the rate-limiting factor of liposome accumulation in tumours is the liposome extravasation process, irrespective of liposome affinity or targeting to tumour cells.
PMCID: PMC2077226  PMID: 8956788
2.  Biodistribution and pharmacokinetics of 188Re-liposomes and their comparative therapeutic efficacy with 5-fluorouracil in C26 colonic peritoneal carcinomatosis mice 
Nanoliposomes are designed as carriers capable of packaging drugs through passive targeting tumor sites by enhanced permeability and retention (EPR) effects. In the present study the biodistribution, pharmacokinetics, micro single-photon emission computed tomography (micro-SPECT/CT) image, dosimetry, and therapeutic efficacy of 188Re-labeled nanoliposomes (188Re-liposomes) in a C26 colonic peritoneal carcinomatosis mouse model were evaluated.
Colon carcinoma peritoneal metastatic BALB/c mice were intravenously administered 188Re-liposomes. Biodistribution and micro-SPECT/CT imaging were performed to determine the drug profile and targeting efficiency of 188Re-liposomes. Pharmacokinetics study was described by a noncompartmental model. The OLINDA|EXM® computer program was used for the dosimetry evaluation. For therapeutic efficacy, the survival, tumor, and ascites inhibition of mice after treatment with 188Re-liposomes and 5-fluorouracil (5-FU), respectively, were evaluated and compared.
In biodistribution, the highest uptake of 188Re-liposomes in tumor tissues (7.91% ± 2.02% of the injected dose per gram of tissue [%ID/g]) and a high tumor to muscle ratio (25.8 ± 6.1) were observed at 24 hours after intravenous administration. The pharmacokinetics of 188Re-liposomes showed high circulation time and high bioavailability (mean residence time [MRT] = 19.2 hours, area under the curve [AUC] = 820.4%ID/g*h). Micro-SPECT/CT imaging of 188Re-liposomes showed a high uptake and targeting in ascites, liver, spleen, and tumor. The results were correlated with images from autoradiography and biodistribution data. Dosimetry study revealed that the 188Re-liposomes did not cause high absorbed doses in normal tissue but did in small tumors. Radiotherapeutics with 188Re-liposomes provided better survival time (increased by 34.6% of life span; P < 0.05), tumor and ascites inhibition (decreased by 63.4% and 83.3% at 7 days after treatment; P < 0.05) in mice compared with chemotherapeutics of 5-fluorouracil (5-FU).
The use of 188Re-liposomes for passively targeted tumor therapy had greater therapeutic effect than the currently clinically applied chemotherapeutics drug 5-FU in a colonic peritoneal carcinomatosis mouse model. This result suggests that 188Re-liposomes have potential benefit and are safe in treating peritoneal carcinomatasis of colon cancer.
PMCID: PMC3218575  PMID: 22114492
biodistribution; dosimetry; 5-fluorouracil; micro-SPECT/CT; 188Re-liposomes
3.  Poly(ethylene glycol)-block-poly(ε-caprolactone)–and phospholipid-based stealth nanoparticles with enhanced therapeutic efficacy on murine breast cancer by improved intracellular drug delivery 
Effective anticancer drug delivery to the tumor site without rapid body clearance is a prerequisite for successful chemotherapy. 1,2-distearoyl-sn-glycero-3-phospho-ethanolamine-N-(methoxy[polyethyleneglycol]-2000) (DSPE-PEG2000) has been widely used in the preparation of stealth liposomes. Although PEG chains can efficiently preserve liposomes from rapid clearance by the reticuloendothelial system (RES), its application has been hindered by poor cellular uptake and unsatisfactory therapeutic effect.
To address the dilemma, we presented a facile approach to fabricate novel stealth nanoparticles generated by poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL), soybean phosphatidylcholine (SPC), and cholesterol, namely LPPs (L represented lipid and PP represented PEG-b-PCL), for the delivery of anticancer drug paclitaxel (PTX). LPPs were prepared using the thin film hydration method. Two PEG-b-PCL polymers with different molecular weights (MW; PEG2000-b-PCL2000, MW: 4,000 Da and PEG5000-b-PCL5000, MW: 10,000 Da) were used to fabricate stealth nanoparticles. Conventional PEGylated liposome (LDP2000, L represented lipid and DP2000 represented DSPE-PEG2000) composed of SPC, cholesterol, and DSPE-PEG2000 was used as the control. The physical properties, cellular uptake, endocytosis pathway, cytotoxicity, pharmacokinetics, tumor accumulation, and anticancer efficacy of free PTX, PTX-loaded LPPs, and LDP2000 were systemically investigated after injection into 4T1 breast tumor–bearing mice.
LPPs were vesicles around 100 nm in size with negative zeta potential. With enhanced stability, LPPs achieved sustainable release of cancer therapeutics. The cellular uptake level was closely related to the PEG chain length of PEG-b-PCL; a shorter PEG chain resulted in higher cellular uptake. Moreover, the cellular internalization of LPP2000 modified by PEG2000-b-PCL2000 on 4T1 cells was 2.1-fold higher than LDP2000 due to the improved stability of LPP2000. The cytotoxicity of PTX-loaded LPP2000 was also higher than that of LDP2000 and LPP5000 as observed using a WST-8 assay, while blank LPPs showed negligible toxicity. Consistent with the results of the in vitro study, in vivo experiments showed that LPPs allowed significantly improved bioavailability and prolonged T1/2β as compared to free PTX injection. More importantly, LPPs mainly accumulated at the tumor site, probably due to the enhanced permeation and retention effect (EPR effect). As a nanomedicine, LPP2000 (tumor inhibition rate of 75.1%) significantly enhanced the therapeutic effect of PTX in 4T1 breast tumor–bearing mice by inhibiting tumor growth compared to LDP2000 and LPP5000 (tumor inhibition rates of 56.3% and 49.5%, respectively).
Modification of liposomes with PEG2000-b-PCL2000 can simultaneously improve drug accumulation at the target tumor site and tumor cells, showing great promise for utilization as a PEG modification tool in the fabrication of stealth nanoparticles for cancer chemotherapy.
PMCID: PMC4356685  PMID: 25784805
nanoparticles PEG-b-PCL; phospholipid; murine breast cancer chemotherapy; paclitaxel
4.  Plasma clearance, biodistribution and therapeutic properties of mitoxantrone encapsulated in conventional and sterically stabilized liposomes after intravenous administration in BDF1 mice. 
British Journal of Cancer  1997;75(2):169-177.
Mitoxantrone can be efficiently loaded into large unilamellar vesicles using a transmembrane pH gradient. Release studies indicate that these drug-loaded carriers are highly stable and even after dissipation of the residual pH gradient retain more than 85% of encapsulated mitoxantrone following dialysis at 37 degrees C for 5 days. In murine studies we have compared the plasma clearance and biodistribution of both mitoxantrone and liposomal lipid following intravenous administration of free drug or mitoxantrone encapsulated in either conventional or sterically stabilized liposomes. In contrast to the rapid blood clearance observed for free mitoxantrone, both liposomal systems provided extended circulation lifetimes, with over 90% of the drug present 1 h after administration and 15-30% remaining at 24 h. In agreement with previous reports, longer plasma half-lives were observed for sterically stabilized liposomes than for conventional systems. In addition, a strong correlation between drug and carrier biodistribution was seen, with uptake occurring mainly in the liver and spleen and paralleling plasma clearance. This would suggest that tissue disposition reflects that of drug-loaded liposomes rather than the individual components. Liposomal encapsulation also significantly reduced mitoxantrone toxicity, allowing administration of higher, more efficacious drug doses. In a murine L1210 tumour model, for example, no long-term survivors were seen in animal groups treated with free drug, whereas at the maximum therapeutic dose of liposomal mitoxantrone survival rates of 40% were observed.
PMCID: PMC2063281  PMID: 9010021
5.  Technetium-99m labelled liposomes to image experimental arthritis 
Annals of the Rheumatic Diseases  1997;56(6):369-373.
OBJECTIVES—Liposomes sterically stabilised with polyethylene glycol (PEG) labelled with technetium-99m were tested for their ability to image adjuvant arthritis in a rat model.
METHODS—Adjuvant arthritis was induced in the ankle joint of the left hind foot by injection of Mycobacterium butyricum in Freund's incomplete adjuvant in the foot pad. Seven days later animals received the following radiopharmaceuticals labelled with 99mTc (a) non-PEG-liposomes, (b) PEG-liposomes or (c) non-specific human polyclonal IgG. For each of the radiopharmaceuticals the in vivo distribution of the radiolabel was monitored both scintigraphically as well as by counting the dissected tissues at two, eight, and 24 hours after injection.
RESULTS—The pharmacokinetics of the radiopharmaceuticals differed considerably (half life in the blood: PEG-liposomes (18 hours) > 99mTc-IgG (3 hours) > non-PEG liposomes (1 hour)). The inflamed focus was visualised with each of the agents. The uptake of each of the radiopharmaceuticals in the inflamed ankle region correlated with their residence time in the blood (inflamed joint uptake: PEG liposomes (1.15% injected dose (ID)/g)>99mTc-IgG (0.35% ID/g)>non-PEG-liposomes (0.05% ID/g)). Quantitative analysis of the images showed that the inflamed ankle to background ratio was highest with the PEG-liposomes (7.5 at 24 hours after injection), while with the other two agents this ratio did not exceed 4.
CONCLUSION—This study shows that 99mTc-labelled PEG-liposomes may be an excellent agent to visualise arthritis. Increased label uptake in the inflamed joint and increased target to background ratios can be obtained with PEG-liposomes because of their long circulating properties. In addition to their use as vehicles for scintigraphic imaging of arthritis PEG-liposomes might also be used for the site specific delivery of antirheumatic drugs.

PMCID: PMC1752389  PMID: 9227166
6.  Pharmacology of liposomal vincristine in mice bearing L1210 ascitic and B16/BL6 solid tumours. 
British Journal of Cancer  1995;71(3):482-488.
Vincristine pharmacokinetic, tumour uptake and therapeutic characteristics were investigated here in order to elucidate the processes underlying the enhanced efficacy observed for vincristine entrapped in small (120 nm) distearoylphosphatidylcholine/cholesterol liposomes. Plasma vincristine levels after intravenous (i.v.) injection are elevated more than 100-fold in the liposomal formulation compared with free drug in tumour-bearing as well as non-tumour-bearing mice over 24 h. Biodistribution studies demonstrate that the extent and duration of tumour exposure to vincristine is dramatically improved when the drug is administered i.v. in liposomal form. Specifically, 72 h trapezoidal area under the curve values for liposomal vincristine in the murine L1210 ascitic and B16/BL6 solid tumours are 12.9- to 4.1-fold larger, respectively, than observed for free drug. Similar to previous results with the L1210 model, increased drug delivery to the B16 tumour results in significant inhibition of tumour growth, whereas no anti-tumour activity is observed with free vincristine. Comparisons of drug and liposomal lipid accumulation in tumour and muscle tissue indicate that the enhanced efficacy of liposomal vincristine is related predominantly to drug delivered by liposomes to the tumour site rather than drug released from liposomes in the circulation. Consequently, improvements in liposomal vincristine formulations must focus on factors that increase uptake of liposomes into tumour sites as well as enhance liposomal drug retention in the circulation.
PMCID: PMC2033637  PMID: 7880728
7.  Antisense imaging of colon cancer-bearing nude mice with liposome-entrapped 99m-technetium-labeled antisense oligonucleotides of c-myc mRNA 
AIM: To investigate the feasibility for antisense imaging of the colon cancer with liposome-entrapped 99 m-technetium labeled antisense oligonucleotides as tracers.
METHODS: Fifteen mer single-stranded aminolinked phosphorothioate antisense oligonucleotides of c-myc mRNA were labeled with 99mTc-pertechnetate, then purified and finally entrapped with liposomes to form the labeling compounds, liposome-entrapped 99mTc-labeled antisense oligonucleotides. The LS-174-T cells (colon of adenocarcinoma cell line) were incubated with the labeling compounds to test the uptake rates of LS-174-T cells. Later on, a model of 30 tumor bearing nude mice was constructed by inoculating with 5 × 106 of LS-174-T cells at right flank of each nude mouse. About 10 d later, the model were adminstered by intravenous injection of the liposome-entrapped 99mTc-labeled antisense oligonucleotides. Then some of the tumour bearing nude mice were sacrificed at 0.5, 1, 2, and 4 h after intravenous injection, and proper quantity of liver, spleen, tumor, etc. was obtained. The tissues were counted in a gamma counter, and after correction for decay and background activity, expressed as a percentage of the injected dose. The others whose anterior and posterior whole-body scans were obtained at 1, 1.5, 2, 4, 6 and 24 h with a dual-head bodyscan camera equipped with parallel-hole low-energy collimaters. The ratios of radioactive counts in tumor to that in contralateral equivalent region of abdomen were calculated.
RESULTS: The uptake rates of LS-174-T cells for liposome-entrapped 99mTc-labeled antisense oligonucleotides increased as time prolonged and reach the peak (17.77% ± 2.41%) at 7 h. The biodistributions showed that the rdioactivity in the tumor (13.46% ± 0.20%) of injected dose was the highest at 2 h of intravenous injection of liposome-entrapped 99mTc-labeled antisense oligonucleotides, and then decreased sharply to 4.58% ± 0.45% at 4 h. The tumor was shown clearly in the whole-body scan at 2 h of intravenous injection. The ratios, radioactive counts in tumor to that in contralateral equivalent region of abdomen (1.7332 ± 0.2537), was the highest one at 2 h after intravenous injection of liposome-entrapped 99mTc-labeled antisense oligonucleotides.
CONCLUSION: The liposome-entrapped 99mTc-labeled antisense oligonucleotides deserve being developed into radiopharmaceutics for the colon cancer imaging.
PMCID: PMC4572164  PMID: 15300907
8.  Lactosylated liposomes for targeted delivery of doxorubicin to hepatocellular carcinoma 
N-lactosyl-dioleoylphosphatidylethanolamine (Lac-DOPE) was synthesized and evaluated as a liver-specific targeting ligand via asialoglycoprotein receptors for liposomal delivery of doxorubicin.
Lactosylated liposomes encapsulating calcein (Lac-L-calcein) or doxorubicin (Lac-L-DOX) composed of egg phosphatidylcholine, cholesterol, monomethoxy polyethylene glycol 2000-distearoyl phosphatidylethanolamine, and Lac-DOPE at 50:35:5:10 (mol/mol) were prepared by polycarbonate membrane extrusion and evaluated in human hepatocellular carcinoma HepG2 cells. Cellular uptake of Lac-L-calcein was monitored by confocal microscopy and by flow cytometry. The cytotoxicity of Lac-L-DOX was evaluated by MTT assay. The pharmacokinetic properties of Lac-L-DOX were studied in normal mice, and its biodistribution and antitumor activity were studied in nude mice with HepG2 xenografts.
The size of Lac-L-DOX was less than 100 nm and the liposomes demonstrated excellent colloidal stability. In vitro uptake of Lac-L-calcein by HepG2 cells was four times greater than that of non-targeted L-calcein. In the presence of 20 mM lactose, the uptake of Lac-L-calcein was inhibited, suggesting that asialoglycoprotein receptors mediated the observed cellular uptake. Lac-L-DOX exhibited enhanced in vivo cytotoxicity compared with the nontargeted liposomal doxorubicin (L-DOX), and its pharmacokinetic parameters indicate that Lac-L-DOX has a long blood circulation time (t1/2 8.73 hours). Tissue distribution and therapeutic efficacy studies in nude mice bearing HepG2 xenografts show that Lac-L-DOX had significantly stronger tumor inhibitory activity compared with L-DOX and free doxorubicin, along with a higher accumulation of drug within the tumor site and greater cellular uptake by tumor cells.
These data suggest that lactosylated liposomes are promising drug delivery vehicles for hepatocellular carcinoma.
PMCID: PMC3476751  PMID: 23093902
liposomes; hepatocellular carcinoma; asialoglycoprotein receptor; drug targeting
9.  Accumulation, internalization and therapeutic efficacy of neuropilin-1-targeted liposomes 
Advancements in liposomal drug delivery have produced long circulating and very stable drug formulations. These formulations minimize systemic exposure; however, unfortunately, therapeutic efficacy has remained limited due to the slow diffusion of liposomal particles within the tumor and limited release or uptake of the encapsulated drug. Here, the carboxyl-terminated CRPPR peptide, with affinity for the receptor neuropilin-1 (NRP), which is expressed on both endothelial and cancer cells, was conjugated to liposomes to enhance the tumor accumulation. Using a pH sensitive probe, liposomes were optimized for specific NRP binding and subsequent cellular internalization using in vitro cellular assays. Liposomes conjugated with the carboxyl-terminated CRPPR peptide (termed C-LPP liposomes) bound to the NRP-positive primary prostatic carcinoma cell line (PPC-1) but did not bind to the NRP-negative PC-3 cell line, and binding was observed with liposomal peptide concentrations as low as 0.16 mol%. Binding of the C-LPP liposomes was receptor-limited, with saturation observed at high liposome concentrations. The identical peptide sequence bearing an amide terminus did not bind specifically, accumulating only with a high (2.5 mol%) peptide concentration and adhering equally to NRP positive and negative cell lines. The binding of C-LPP liposomes conjugated with 0.63 mol% of the peptide was 83-fold greater than liposomes conjugated with the amide version of the peptide. Cellular internalization was also enhanced with C-LPP liposomes, with 80% internalized following 3hr incubation. Additionally, fluorescence in the blood pool (~40% of the injected dose) was similar for liposomes conjugated with 0.63 mol% of carboxyl-terminated peptide and non-targeted liposomes at 24 hr after injection, indicating stable circulation. Prior to doxorubicin treatment, in vivo tumor accumulation and vascular targeting were increased for peptide-conjugated liposomes compared to non-targeted liposomes based on confocal imaging of a fluorescent cargo, and the availability of the vascular receptor was confirmed with ultrasound molecular imaging. Finally, over a 4-week course of therapy, tumor knockdown resulting from doxorubicin-loaded, C-LPP liposomes was similar to non-targeted liposomes in syngeneic tumor-bearing FVB mice and C-LPP liposomes reduced doxorubicin accumulation in the skin and heart and eliminated skin toxicity. Taken together, our results demonstrate that a carboxyl-terminated RXXR peptide sequence, conjugated to liposomes at a concentration of 0.63 mol%, retains long circulation but enhances binding and internalization, and reduces toxicity.
PMCID: PMC4079909  PMID: 24434424
Doxorubicin; Toxicity; CendR; Neuropilin-1; Liposome; Optical Imaging
10.  Synthesis of novel tetravalent galactosylated DTPA-DSPE and study on hepatocyte-targeting efficiency in vitro and in vivo 
For the purposes of obtaining a hepatocyte-selective drug delivery system, a novel tetravalent galactosylated diethylenetriaminepentaacetic acid-distearoyl phosphatidylethanolamine (4Gal-DTPA-DSPE) was synthesized. The chemical structure of 4Gal-DTPA-DSPE was confirmed by proton nuclear magnetic resonance and mass spectrometry. The four galactose-modified liposomes (4Gal-liposomes) were prepared by thin-film hydration method, then doxorubicin (DOX) was encapsulated into liposomes using an ammonium sulfate gradient loading method. The liposomal formulations with 4Gal-DTPA-DSPE were characterized by laser confocal scanning microscopy and flow cytometry analysis, and the results demonstrated that the 4Gal-liposomes facilitated the intracellular uptake of DOX into HepG2 cells via asialoglycoprotein receptor-mediated endocytosis. Cytotoxicity assay showed that the cell proliferation inhibition effect of 4Gal-liposomes was higher than that of the conventional liposomes without the galactose. Additionally, pharmacokinetic experiments in rats revealed that the 4Gal-liposomes displayed slower clearance from the systemic circulation compared with conventional liposomes. The organ distributions in mice and the study on frozen sections of liver implied that the 4Gal-liposomes enhanced the intracellular uptake of DOX into hepatocytes and prolonged the circulation. Taken together, these results indicate that liposomes containing 4Gal-DTPA-DSPE have great potential as drug delivery carriers for hepatocyte-selective targeting.
PMCID: PMC3746791  PMID: 23976853
targeted drug delivery; liposomes; pharmacokinetics; galactose; ASGP-R; doxorubicin
11.  Liposomal Conjugates for Drug Delivery to the Central Nervous System 
Pharmaceutics  2015;7(2):27-42.
Treatments of central nervous system (CNS) diseases often fail due to the blood–brain barrier. Circumvention of this obstacle is crucial for any systemic treatment of such diseases to be effective. One approach to transfer drugs into the brain is the use of colloidal carrier systems—amongst others, liposomes. A prerequisite for successful drug delivery by colloidal carriers to the brain is the modification of their surface, making them invisible to the reticuloendothelial system (RES) and to target them to specific surface epitopes at the blood–brain barrier. This study characterizes liposomes conjugated with cationized bovine serum albumin (cBSA) as transport vectors in vitro in porcine brain capillary endothelial cells (PBCEC) and in vivo in rats using fluorescently labelled liposomes. Experiments with PBCEC showed that sterically stabilized (PEGylated) liposomes without protein as well as liposomes conjugated to native bovine serum albumin (BSA) were not taken up. In contrast, cBSA-liposomes were taken up and appeared to be concentrated in intracellular vesicles. Uptake occurred in a concentration and time dependent manner. Free BSA and free cBSA inhibited uptake. After intravenous application of cBSA-liposomes, confocal fluorescence microscopy of brain cryosections from male Wistar rats showed fluorescence associated with liposomes in brain capillary surrounding tissue after 3, 6 and 24 h, for liposomes with a diameter between 120 and 150 nm, suggesting successful brain delivery of cationized-albumin coupled liposomes.
PMCID: PMC4491649  PMID: 25835091
liposomes; blood–brain barrier; cationized bovine serum albumin; liposomal conjugates; brain capillary endothelial
12.  Peptide ligand and PEG-mediated long-circulating liposome targeted to FGFR overexpressing tumor in vivo 
Background and methods
Paclitaxel, a widely used antitumor agent, has limited clinical application due to its hydrophobicity and systemic toxicity. To achieve sustained and targeted delivery of paclitaxel to tumor sites, liposomes composed of egg phosphatidylcholine, cholesterol, and distearolyphosphatidyl ethanolamine-N-poly(ethylene glycol) (PEG2000) were prepared by a lipid film method. In addition, the liposomes also contained truncated fibroblast growth factor fragment-PEG-cholesterol as a ligand targeting the tumor marker fibroblast growth factor receptor. Physicochemical characteristics, such as particle size, zeta potential, entrapment efficiency, and release profiles were investigated. Pharmacokinetics and biodistribution were evaluated in C57BL/6 J mice bearing B16 melanoma after intravenous injection of paclitaxel formulated in Cremophor EL (free paclitaxel), conventional liposomes (CL-PTX), or in targeted PEGylated liposomes (TL-PTX).
Compared with CL-PTX and free paclitaxel, TL-PTX prolonged the half-life of paclitaxel by 2.01-fold and 3.40-fold, respectively, in plasma and improved the AUC0→t values of paclitaxel by 1.56-fold and 2.31-fold, respectively, in blood. Biodistribution studies showed high accumulation of TL-PTX in tumor tissue and organs containing the mononuclear phagocyte system (liver and spleen), but a considerable decrease in other organs (heart, lung, and kidney) compared with CL-PTX and free paclitaxel.
The truncated fibroblast growth factor fragment-conjugated PEGylated liposome has promising potential as a long-circulating and tumor-targeting carrier system.
PMCID: PMC3423151  PMID: 22923988
paclitaxel; truncated fibroblast growth factor fragment; poly(ethylene glycol); liposomes; targeted drug delivery
13.  Ehrlich tumor inhibition using doxorubicin containing liposomes 
Ehrlich tumors were grown in female balb mice by subcutaneous injection of Ehrlich ascites carcinoma cells. Mice bearing Ehrlich tumor were injected with saline, DOX in solution or DOX encapsulated within liposomes prepared from DMPC/CHOL/DPPG/PEG-PE (100:100:60:4) in molar ratio. Cytotoxicity assay showed that the IC50 of liposomes containing DOX was greater than that DOX only. Tumor growth inhibition curves in terms of mean tumor size (cm3) were presented. All the DOX formulations were effective in preventing tumor growth compared to saline. Treatment with DOX loaded liposomes displayed a pronounced inhibition in tumor growth than treatment with DOX only. Histopathological examination of the entire tumor sections for the various groups revealed marked differences in cellular features accompanied by varying degrees in necrosis percentage ranging from 12% for saline treated mice to 70% for DOX loaded liposome treated mice. The proposed liposomal formulation can efficiently deliver the drug into the tumor cells by endocytosis (or passive diffusion) and lead to a high concentration of DOX in the tumor cells. The study showed that the formulation of liposomal doxorubicin improved the therapeutic index of DOX and had increased anti-tumor activity against Ehrlich tumor models.
PMCID: PMC4420998  PMID: 25972739
Liposomes; Doxorubicin; Ehrlich carcinoma; Cytotoxicity; PEG; DPPG
14.  Tumor targeting and imaging with dual-peptide conjugated multifunctional liposomal nanoparticles 
The significant progress in nanotechnology provides a wide spectrum of nanosized material for various applications, including tumor targeting and molecular imaging. The aim of this study was to evaluate multifunctional liposomal nanoparticles for targeting approaches and detection of tumors using different imaging modalities. The concept of dual-targeting was tested in vitro and in vivo using liposomes derivatized with an arginine-glycine-aspartic acid (RGD) peptide binding to αvβ3 integrin receptors and a substance P peptide binding to neurokinin-1 receptors.
For liposome preparation, lipids, polyethylene glycol building blocks, DTPA-derivatized lipids for radiolabeling, lipid-based RGD and substance P building blocks and imaging labels were combined in defined molar ratios. Liposomes were characterized by photon correlation spectroscopy and zeta potential measurements, and in vitro binding properties were tested using fluorescence microscopy. Standardized protocols for radiolabeling were developed to perform biodistribution and micro-single photon emission computed tomography/computed tomography (SPECT/CT) studies in nude mice bearing glioblastoma and/or melanoma tumor xenografts. Additionally, an initial magnetic resonance imaging study was performed.
Liposomes were radiolabeled with high radiochemical yields. Fluorescence microscopy showed specific cellular interactions with RGD-liposomes and substance P-liposomes. Biodistribution and micro-SPECT/CT imaging of 111In-labeled liposomal nanoparticles revealed low tumor uptake, but in a preliminary magnetic resonance imaging study with a single-targeted RGD-liposome, uptake in the tumor xenografts could be visualized.
The present study shows the potential of liposomes as multifunctional targeted vehicles for imaging of tumors combining radioactive, fluorescent, and magnetic resonance signaling. Specific in vitro tumor targeting by fluorescence microscopy and radioactivity was achieved. However, biodistribution studies in an animal tumor model revealed only moderate tumor uptake and no additive effect using a dual-targeting approach.
PMCID: PMC3862508  PMID: 24353415
liposomal nanoparticles; radiolabeling; dual-targeting; tumor imaging; multifunctionality
15.  Sustained Liver Targeting and Improved Antiproliferative Effect of Doxorubicin Liposomes Modified with Galactosylated Lipid and PEG-Lipid 
AAPS PharmSciTech  2010;11(2):870-877.
In this study, a cleavable PEG-lipid (methoxypolyethyleneglycol 2000-cholesteryl hemisuccinate, PEG2000-CHEMS) linked via ester bond and galactosylated lipid ((5-cholesten-3β-yl) 4-oxo-4-[2-(lactobionyl amido) ethylamido] butanoate, CHS-ED-LA) were used to modify doxorubicin (DOX) liposome. DOX was encapsulated into conventional liposomes (CL), galactosylated liposomes (modified with CHS-ED-LA, GalL), pegylated liposomes (modified with PEG2000-CHEMS, PEG-CL), and pegylated galactosylated liposomes (modified with CHS-ED-LA and PEG2000-CHEMS, PEG-GalL) using an ammonium sulfate gradient loading method and then intravenously injected to normal mice. Both PEG-GalL DOX and GalL DOX gave relatively high overall drug targeting efficiencies to liver ((Te)liver) and were mainly taken up by hepatocyte. However, PEG-GalL DOX showed unique “sustained targeting” characterized by slowed transfer of DOX to liver and reduced peak concentrations in the liver. The biodistribution and antitumor efficacy of various DOX preparations were studied in hepatocarcinoma 22 (H22) tumor-bearing mice. The inhibitory rate of PEG-GalL DOX to H22 tumors was up to 94%, significantly higher than that of PEG-CL DOX, GalL DOX, CL DOX, and free DOX, although the tumor distribution of DOX revealed no difference between PEG-GalL DOX and PEG-CL DOX. Meanwhile, the gradual increase in the liver DOX concentration due to the sustained uptake of PEG-GalL DOX formulations resulted in lower damage to liver. In conclusion, the present investigation indicated that double modification of liposomes with PEG2000-CHEMS, and CHS-ED-LA represents a potentially advantageous strategy in the therapy of liver cancers or other liver diseases.
PMCID: PMC2902302  PMID: 20490957
antitumor; cleavable PEG-lipid; doxorubicin; galactosylated lipsomes; sustained liver targeting
16.  Tumor Burden Talks in Cancer Treatment with PEGylated Liposomal Drugs 
PLoS ONE  2013;8(5):e63078.
PEGylated liposomes are important drug carriers that can passively target tumor by enhanced permeability and retention (EPR) effect in neoplasm lesions. This study demonstrated that tumor burden determines the tumor uptake, and also the tumor response, in cancer treatment with PEGylated liposomal drugs in a C26/tk-luc colon carcinoma-bearing mouse model.
Empty PEGylated liposomes (NanoX) and those encapsulated with VNB (NanoVNB) were labeled with In-111 to obtain InNanoX and InVNBL in high labeling yield and radiochemical purity (all >90%). BALB/c mice bearing either small (58.4±8.0 mm3) or large (102.4±22.0 mm3) C26/tk-luc tumors in the right dorsal flank were intravenously administered with NanoVNB, InNanoX, InVNBL, or NanoX as a control, every 7 days for 3 times. The therapeutic efficacy was evaluated by body weight loss, tumor growth inhibition (using calipers and bioluminescence imaging) and survival fraction. The scintigraphic imaging of tumor mouse was performed during and after treatment.
The biodistribution study of InVNBL revealed a clear inverse correlation (r2 = 0.9336) between the tumor uptake and the tumor mass ranged from 27.6 to 623.9 mg. All three liposomal drugs showed better therapeutic efficacy in small-tumor mice than in large-tumor mice. Tumor-bearing mice treated with InVNBL (a combination drug) showed the highest tumor growth inhibition rate and survival fraction compared to those treated with NanoVNB (chemodrug only) and InNanoX (radionuclide only). Specific tumor targeting and significantly increased tumor uptake after periodical treatment with InVNBL were evidenced by scintigraphic imaging, especially in mice bearing small tumors.
The significant differences in the outcomes of cancer treatment and molecular imaging between animals bearing small and large tumors revealed that tumor burden is a critical and discriminative factor in cancer therapy using PEGylated liposomal drugs.
PMCID: PMC3651236  PMID: 23675454
17.  In vivo and in vitro evaluation of octyl methoxycinnamate liposomes 
Solar radiation causes damage to human skin, and photoprotection is the main way to prevent these harmful effects. The development of sunscreen formulations containing nanosystems is of great interest in the pharmaceutical and cosmetic industries because of the many potential benefits. This study aimed to develop and evaluate an octyl methoxycinnamate (OMC) liposomal nanosystem (liposome/OMC) to obtain a sunscreen formulation with improved safety and efficacy by retaining OMC for longer on the stratum corneum.
The liposome/OMC nanostructure obtained was tested for enzymatic hydrolysis with lipase from Rhizomucor miehei and biodistribution with liposomes labeled with technetium-99m. The liposome/OMC formulation was then incorporated in a gel formulation and tested for ocular irritation using the hen’s egg test-chorio-allantoic membrane (HET-CAM) assay, in vitro and in vivo sun protection factor, in vitro release profile, skin biometrics, and in vivo tape stripping.
The liposome/OMC nanosystem was not hydrolyzed from R. miehei by lipase. In the biodistribution assay, the liposome/OMC formulation labeled with technetium-99m had mainly deposited in the skin, while for OMC the main organ was the liver, showing that the liposome had higher affinity for the skin than OMC. The liposome/OMC formulation was classified as nonirritating in the HET-CAM test, indicating good histocompatibility. The formulation containing liposome/OMC had a higher in vivo solar photoprotection factor, but did not show increased water resistance. Inclusion in liposomes was able to slow down the release of OMC from the formulation, with a lower steady-state flux (3.9 ± 0.33 μg/cm2/hour) compared with the conventional formulation (6.3 ± 1.21 μg/cm2/hour). The stripping method showed increased uptake of OMC in the stratum corneum, giving an amount of 22.64 ± 7.55 μg/cm2 of OMC, which was higher than the amount found for the conventional formulation (14.57 ± 2.30 μg/cm2).
These results indicate that liposomes are superior carriers for OMC, and confer greater safety and efficacy to sunscreen formulations.
PMCID: PMC3864883  PMID: 24376350
sunscreen; liposome; tape stripping; technetium-99-m; lipase
18.  Tumor-targeted delivery of liposome-encapsulated doxorubicin by use of a peptide that selectively binds to irradiated tumors 
Tumor-targeted drug delivery improves anti-tumor efficacy and reduces systemic toxicity by limiting bioavailability of cytotoxic drugs to within tumors. Targeting reagents, such as peptides or antibodies recognizing molecular targets over-expressed within tumors, have been used to improve liposome-encapsulated drug accumulation within tumors and resulted in enhanced tumor growth control. In this report, we expand the scope of targeting reagents by showing that one peptide, HVGGSSV which was isolated from an in vivo screening of phage-displayed peptide library due to its selective binding within irradiated tumors, enabled highly selective tumor-targeted delivery of liposome-encapsulated doxorubicin and resulted in enhanced cytotoxicity within tumors. Targeting liposomes (TL) and non-targeting liposomes (nTL) were labeled with Alexa Fluor 750. Biodistribution of the liposomes within tumor-bearing mice was studied with near infrared (NIR) imaging. In the single dose pharmacokinetic study, the liposomal doxorubicin has an extended circulation half life as compared to the free doxorubicin. Targeting liposomes partitioned to the irradiated tumors and improved drug deposition and retention within tumors. The tumor-targeted delivery of doxorubicin improved tumor growth control as indicated with reduced tumor growth rate and tumor cell proliferation, enhanced tumor blood vessel destruction, and increased treatment-associated apoptosis and necrosis of tumor cells. Collectively, the results demonstrated the remarkable capability of the HVGGSSV peptide in radiation-guided drug delivery to tumors.
PMCID: PMC3044774  PMID: 21075152
radiation-guided drug delivery; phage-displayed peptide; liposomes; doxorubicin; lung cancer; xenograft model
19.  A tumor vasculature targeted liposome delivery system for combretastatin A4: Design, characterization, and in vitro evaluation 
AAPS PharmSciTech  2006;7(2):E7-E16.
The objective of this study was to develop an efficient tumor vasculature targeted liposome delivery system for combretastatin A4, a novel antivascular agent. Liposomes composed of hydrogenated soybean phosphatidylcholine (HSPC), cholesterol, distearoyl phosphoethanolamine-polyethylene-glycol-2000 conjugate (DSPE-PEG), and DSPE-PEG-maleimide were prepared by the lipid film hydration and extrusion process. Cyclic RGD (Arg-Gly-Asp) peptides with affinity for αvβ3-integrins expressed on tumor vascular endothelial cells were coupled to the distal end of PEG on the liposomes sterically stabilized with PEG (long circulating liposomes, LCL). The liposome delivery system was characterized in terms of size, lamellarity, ligand density, drug loading, and leakage properties. Targeting nature of the delivery system was evaluated in vitro using cultured human umbilical vein endothelial cells (HUVEC). Electron microscopic observations of the formulations revealed presence of small unilamellar liposomes of ∼120 nm in diameter. High performance liquid chromatography determination of ligand coupling to the liposome surface indicated that more than 99% of the RGD peptides were reacted with maleimide groups on the liposome surface. Up to 3 mg/mL of stable liposomal combretastatin A4 loading was achieved with ∼80% of this being entrapped within the liposomes. In the in vitro cell culture studies, targeted liposomes showed significantly higher binding to their target cells than non-targeted liposomes, presumably through specific interaction of the RGD with its receptors on the cell surface. It was concluded that the targeting properties of the prepared delivery system would potentially improve the therapeutic benefits of combretastatin A4 compared with nontargeted liposomes or solution dosage forms.
PMCID: PMC2750290  PMID: 16584166
targeted liposome delivery system; combretastatin A4; tumor vasculature targeting; liposome characterization
20.  Alendronate-coated long-circulating liposomes containing 99mtechnetium-ceftizoxime used to identify osteomyelitis 
Osteomyelitis is a progressive destruction of bones caused by microorganisms. Inadequate or absent treatment increases the risk of bone growth inhibition, fractures, and sepsis. Among the diagnostic techniques, functional images are the most sensitive in detecting osteomyelitis in its early stages. However, these techniques do not have adequate specificity. By contrast, radiolabeled antibiotics could improve selectivity, since they are specifically recognized by the bacteria. The incorporation of these radiopharmaceuticals in drug-delivery systems with high affinity for bones could improve the overall uptake. In this work, long-circulating and alendronate-coated liposomes containing 99mtechnetium-radiolabeled ceftizoxime were prepared and their ability to identify infectious foci (osteomyelitis) in animal models was evaluated. The effect of the presence of PEGylated lipids and surface-attached alendronate was evaluated. The bone-targeted long-circulating liposomal 99mtechnetium–ceftizoxime showed higher uptake in regions of septic inflammation than did the non-long-circulating and/or alendronate-non-coated liposomes, showing that both the presence of PEGylated lipids and alendronate coating are important to optimize the bone targeting. Scintigraphic images of septic or aseptic inflammation-bearing Wistar rats, as well as healthy rats, were acquired at different time intervals after the intravenous administration of these liposomes. The target-to-non-target ratio proved to be significantly higher in the osteomyelitis-bearing animals for all investigated time intervals. Biodistribution studies were also performed after the intravenous administration of the formulation in osteomyelitis-bearing animals. A significant amount of liposomes were taken up by the organs of the mononuclear phagocyte system (liver and spleen). Intense renal excretion was also observed during the entire experiment period. Moreover, the liposome uptake by the infectious focus was significantly high. These results show that long-circulating and alendronate-coated liposomes containing 99mtechnetium-radiolabeled ceftizoxime have a tropism for infectious foci.
PMCID: PMC4381632  PMID: 25848262
bone targeting; radiolabeled antibiotics; scintigraphic imaging; bone infection diagnosis
21.  Folate receptor-targeted liposomes enhanced the antitumor potency of imatinib through the combination of active targeting and molecular targeting 
Imatinib inhibits platelet-derived growth factor receptor (PDGFR), and evidence shows that PDGFR participates in the development and progression of cervical cancer. Although imatinib has exhibited preclinical activity against cervical cancer, only minimal clinical therapeutic efficacy was observed. This poor therapeutic efficacy may be due to insufficient drug delivery to the tumor cells and plasma protein binding. Therefore, the purpose of this study was to explore a novel folate receptor (FR)-targeted delivery system via imatinib-loaded liposomes to enhance drug delivery to tumor cells and to reduce plasma protein binding.
Imatinib was remote-loaded into FR-targeted liposomes which were prepared by thin film hydration followed by polycarbonate membrane extrusion. Encapsulation efficiency, mean size diameter, and drug retention were characterized and cellular uptake, cell cytotoxicity, and cell apoptosis on cervical cancer HeLa cells were evaluated. Comparative pharmacokinetic studies were also carried out with FR-targeted imatinib liposomes, simple imatinib liposomes, and free imatinib.
High encapsulation efficiency (>90%), appropriate mean particle size (143.5 nm), and zeta potential (−15.97 mV) were obtained for FR-targeted imatinib liposomes. The drug release profile showed minimal imatinib leakage (<5%) in phosphate-buffered saline (PBS) at pH =7.4 within 72 hours of incubation, while more leakage (>25%) was observed in PBS at pH =5.5. This indicates that these liposomes possess a certain degree of pH sensitivity. Cytotoxicity assays demonstrated that the FR-targeted imatinib liposomes promoted a six-fold IC50 reduction on the non-targeted imatinib liposomes from 910 to 150 μM. In addition, FR-targeted imatinib liposomes enhanced HeLa cell apoptosis in vitro compared to the non-targeted imatinib liposomes. Pharmacokinetic parameters indicated that both targeted and non-targeted liposomes exhibited long circulation properties in Kunming mice.
These findings indicate that the nano-sized FR-targeted PDGFR antagonist imatinib liposomes may constitute a promising strategy in cervical cancer therapy through the combination of active targeting and molecular targeting.
PMCID: PMC4019625  PMID: 24855354
liposomes; imatinib; folate receptor; tumor targeting; PDGFR
22.  Local Targeted Therapy of Liver Metastasis from Colon Cancer by Galactosylated Liposome Encapsulated with Doxorubicin 
PLoS ONE  2013;8(9):e73860.
Since regional drug administration enables to maintain a high drug concentration within tumors, we compared the plasma concentration and biodistribution of doxorubicin (Dox) from drug-loaded conventional liposomes by local or systemic administration. The results demonstrated that drug concentration was substantially improved in liver as well as a decrease in blood and other organs by spleen injection mimicking portal vein perfusion (regional administration). To further investigate the targeted therapeutic effect of galactosylated liposome encapsulated doxorubicin (Dox) by regional administration, liver targeting liposomes were prepared by incorporating galactosylated-DPPE to conventional liposomes. Liposome uptake and targeting were verified in vitro and in vivo by fluorescence microscopy and xenogen IVIS imaging system, respectively. The results showed that galactose targeted liposomes presented a stronger specific cell uptake by human hepatocellular carcinoma HepG2 cells compared to the non-targeted liposomes. In vivo fluorescence imaging showed that the intra-hepatic deposition of conventional and galactosylated liposomes via spleen injection was more than that via tail vein administration, and galactosylated liposomes had higher fluorescent intensity over conventional liposomes in the liver post spleen administration. The anti-tumor effect of various drug administration routes for both liposomal formulations was evaluated using a murine liver metastasis model of colon cancer. The results indicated that tumor progression in the liver and mesenteric lymph nodes was significantly suppressed by Dox-loaded galactosylated liposomes via spleen injection, while no significance was observed in non-targeted formulations. Our data indicated that local perfusion of galactosylated liposomal doxorubicin had a great promise for the treatment of liver metastasis from colon cancer.
PMCID: PMC3770687  PMID: 24040096
23.  Enhanced in vivo bioluminescence imaging using liposomal luciferin delivery system 
To provide a continuous and prolonged delivery of the substrate D-luciferin for bioluminescence imaging in vivo, luciferin was encapsulated into liposomes using either the pH-gradient or acetate-gradient method. Under optimum loading conditions, 0.17 mg luciferin was loaded per mg of lipid with 90–95% encapsulation efficiency, where active loading was 6 to 18-fold higher than obtained with passive loading. Liposomal luciferin in a long-circulating formulation had good shelf stability, with 10% release over 3-month storage at 4°C. Pharmacokinetic profiles of free and liposomal luciferin were then evaluated in transgenic mice expressing luciferase. In contrast to rapid in vivo clearance of free luciferin (t1/2=3.54 min), luciferin encapsulated into long-circulating liposomes showed a prolonged release over 24 hours. The first order release rate constant of luciferin from long-circulating liposomes, as estimated from the best fit of the analytical model to the experimental data, was 0.01 h−1. Insonation of luciferin-loaded temperature sensitive liposomes directly injected into one tumor of Met1-luc tumor-bearing mice resulted in immediate emission of light. Systemic injection of luciferin-loaded long-circulating liposomes into Met1-luc tumor-bearing mice, followed by unilateral ultrasound-induced hyperthermia, produced a gradual increase in radiance over time, reaching a peak 4–7 h post-ultrasound.
PMCID: PMC2815139  PMID: 19748536
Bioluminescence Imaging; Liposome; D-luciferin; Active loading; Hyperthermia; Ultrasound
24.  Photo activation of HPPH encapsulated in “Pocket” liposomes triggers multiple drug release and tumor cell killing in mouse breast cancer xenografts 
We recently reported laser-triggered release of photosensitive compounds from liposomes containing dipalmitoylphosphatidylcholine (DPPC) and 1,2 bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC). We hypothesized that the permeation of photoactivated compounds occurs through domains of enhanced fluidity in the liposome membrane and have thus called them “Pocket” liposomes. In this study we have encapsulated the red light activatable anticancer photodynamic therapy drug 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) (Ex/Em410/670 nm) together with calcein (Ex/Em490/517 nm) as a marker for drug release in Pocket liposomes. A mole ratio of 7.6:1 lipid:HPPH was found to be optimal, with >80% of HPPH being included in the liposomes. Exposure of liposomes with a cw-diode 660 nm laser (90 mW, 0–5 minutes) resulted in calcein release only when HPPH was included in the liposomes. Further analysis of the quenching ratios of liposome-entrapped calcein in the laser treated samples indicated that the laser-triggered release occurred via the graded mechanism. In vitro studies with MDA-MB-231-LM2 breast cancer cell line showed significant cell killing upon treatment of cell-liposome suspensions with the laser. To assess in vivo efficacy, we implanted MDA-MB-231-LM2 cells containing the luciferase gene along the mammary fat pads on the ribcage of mice. For biodistribution experiments, trace amounts of a near infrared lipid probe DiR (Ex/Em745/840 nm) were included in the liposomes. Liposomes were injected intravenously and laser treatments (90 mW, 0.9 cm diameter, for an exposure duration ranging from 5–8 minutes) were done 4 hours postinjection (only one tumor per mouse was treated, keeping the second flank tumor as control). Calcein release occurred as indicated by an increase in calcein fluorescence from laser treated tumors only. The animals were observed for up to 15 days postinjection and tumor volume and luciferase expression was measured. A significant decrease in luciferase expression and reduction in tumor volume was observed only in laser treated animal groups injected with liposomes containing HPPH. Histopathological examination of tumor tissues indicated tumor necrosis resulting from laser treatment of the HPPH-encapsulated liposomes that were taken up into the tumor area.
PMCID: PMC4278788  PMID: 25565809
laser-triggered payload release; photo-agents; photopolymerizable phospholipids; tumor regression; phototriggering
25.  Simultaneous quantification of tumor uptake for targeted and non-targeted liposomes and their encapsulated contents by ICP-MS 
Analytical chemistry  2012;84(17):7578-7582.
Liposomes are intensively being developed for biomedical applications including drug and gene delivery. However, targeted liposomal delivery in cancer treatment is a very complicated multi-step process. Unfavorable liposome biodistribution upon intravenous administration and membrane destabilization in blood circulation could result in only a very small fraction of cargo reaching the tumors. It would therefore be desirable to develop new quantitative strategies to track liposomal delivery systems to improve the therapeutic index and decrease systemic toxicity. Here, we developed a simple and non-radiative method to quantify the tumor uptake of targeted and non-targeted control liposomes as well as their encapsulated contents simultaneously. Specifically, four different chelated lanthanide metals were encapsulated or surface-conjugated onto tumor-targeted and non-targeted liposomes, respectively. The two liposome formulations were then injected into tumor-bearing mice simultaneously and their tumor delivery was determined quantitatively via inductively coupled plasma-mass spectroscopy (ICP-MS), allowing for direct comparisons. Tumor uptake of the liposomes themselves and their encapsulated contents were consistent with targeted and non-targeted liposome formulations that were injected individually.
PMCID: PMC3443955  PMID: 22882145

Results 1-25 (812717)