PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (944676)

Clipboard (0)
None

Related Articles

1.  Structure of a 6-pyruvoyltetrahydropterin synthase homolog from Streptomyces coelicolor 
The X-ray crystal structure of the 6-pyruvoyltetrahydropterin synthase (PTPS) homolog from Streptomyces coelicolor, SCO 6650, was solved at 1.5 Å resolution. SCO 6650 forms a hexameric T-fold that closely resembles other PTPS proteins. The biological activity of SCO 6650 is unknown, but it lacks both a required active-site zinc metal ion and the essential catalytic triad and does not catalyze the PTPS reaction. However, SCO 6650 maintains active-site residues consistent with binding a pterin-like substrate.
doi:10.1107/S1744309108027048
PMCID: PMC2564891  PMID: 18931427
2.  Streptomyces coelicolor SCO4226 Is a Nickel Binding Protein 
PLoS ONE  2014;9(10):e109660.
The open reading frame SCO4226 of Streptomyces coelicolor A3(2) encodes an 82-residue hypothetical protein. Biochemical assays revealed that each SCO4226 dimer binds four nickel ions. To decipher the molecular function, we solved the crystal structures of SCO4226 in both apo- and nickel-bound (Ni-SCO4226) forms at 1.30 and 2.04 Å resolution, respectively. Each subunit of SCO4226 dimer adopts a canonical ferredoxin-like fold with five β-strands flanked by two α-helices. In the structure of Ni-SCO4226, four nickel ions are coordinated at the surface of the dimer. Further biochemical assays suggested that the binding of Ni2+ triggers the self-aggregation of SCO4226 in vitro. In addition, RT-qPCR assays demonstrated that the expression of SCO4226 gene in S. coelicolor is specifically up-regulated by the addition of Ni2+, but not other divalent ions such as Cu2+, Mn2+ or Co2+. All these results suggested that SCO4226 acts as a nickel binding protein, probably required for nickel sequestration and/or detoxification.
doi:10.1371/journal.pone.0109660
PMCID: PMC4186839  PMID: 25285530
3.  Evolution of New Function in the GTP Cyclohydrolase II Proteins of Streptomyces coelicolor† 
Biochemistry  2006;45(39):12144-12155.
The genome sequence of Streptomyces coelicolor contains three open reading frames (sco1441, sco2687, and sco6655) that encode proteins with significant (>40%) amino acid identity to GTP cyclohydrolase II (GCH II), which catalyzes the committed step in the biosynthesis of riboflavin. The physiological significance of the redundancy of these proteins in S. coelicolor is not known. However, the gene contexts of the three proteins are different, suggesting that they may serve alternate biological niches. Each of the three proteins was overexpressed in Escherichia coli and characterized to determine if their functions are biologically overlapping. As purified, each protein contains 1 molar equiv of zinc/ mol of protein and utilizes guanosine 5′-triphosphate (GTP) as substrate. Two of these proteins (SCO 1441 and SCO 2687) produce the canonical product of GCH II, 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5′-phosphate (APy). Remarkably, however, one of the three proteins (SCO 6655) converts GTP to 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5′-phosphate (FAPy), as shown by UV-visible spectrophotometry, mass spectrometry, and NMR. This activity has been reported for a GTP cyclohydrolase III protein from Methanocaldococcus jannaschii [Graham, D. E., Xu, H., and White, R. H. (2002) Biochemistry 41, 15074–15084], which has no amino acid sequence homology to SCO 6655. Comparison of the sequences of these proteins and mapping onto the structure of the E. coli GCH II protein [Ren, J., Kotaka, M., Lockyer, M., Lamb, H. K., Hawkins, A. R., and Stammers, D. K. (2005) J. Biol. Chem. 280, 36912–36919] allowed identification of a switch residue, Met120, which appears to be responsible for the altered fate of GTP observed with SCO 6655; a Tyr is found in the analogous position of all proteins that have been shown to catalyze the conversion of GTP to APy. The Met120Tyr variant of SCO 6655 acquires the ability to catalyze the conversion of GTP to APy, suggesting a role for Tyr120 in the late phase of the reaction. Our data are consistent with duplication of GCH II in S. coelicolor promoting evolution of a new function. The physiological role(s) of the gene clusters that house GCH II homologues will be discussed.
doi:10.1021/bi061005x
PMCID: PMC3227873  PMID: 17002314
4.  6-Pyruvoyltetrahydropterin Synthase Paralogs Replace the Folate Synthesis Enzyme Dihydroneopterin Aldolase in Diverse Bacteria▿ †  
Journal of Bacteriology  2009;191(13):4158-4165.
Dihydroneopterin aldolase (FolB) catalyzes conversion of dihydroneopterin to 6-hydroxymethyldihydropterin (HMDHP) in the classical folate biosynthesis pathway. However, folB genes are missing from the genomes of certain bacteria from the phyla Chloroflexi, Acidobacteria, Firmicutes, Planctomycetes, and Spirochaetes. Almost all of these folB-deficient genomes contain an unusual paralog of the tetrahydrobiopterin synthesis enzyme 6-pyruvoyltetrahydropterin synthase (PTPS) in which a glutamate residue replaces or accompanies the catalytic cysteine. A similar PTPS paralog from the malaria parasite Plasmodium falciparum is known to form HMDHP from dihydroneopterin triphosphate in vitro and has been proposed to provide a bypass to the FolB step in vivo. Bacterial genes encoding PTPS-like proteins with active-site glutamate, cysteine, or both residues were accordingly tested together with the P. falciparum gene for complementation of the Escherichia coli folB mutation. The P. falciparum sequence and bacterial sequences with glutamate or glutamate plus cysteine were active; those with cysteine alone were not. These results demonstrate that PTPS paralogs with an active-site glutamate (designated PTPS-III proteins) can functionally replace FolB in vivo. Recombinant bacterial PTPS-III proteins, like the P. falciparum enzyme, mediated conversion of dihydroneopterin triphosphate to HMDHP, but other PTPS proteins did not. Neither PTPS-III nor other PTPS proteins exhibited significant dihydroneopterin aldolase activity. Phylogenetic analysis indicated that PTPS-III proteins may have arisen independently in various PTPS lineages. Consistent with this possibility, merely introducing a glutamate residue into the active site of a PTPS protein conferred incipient activity in the growth complementation assay, and replacing glutamate with alanine in a PTPS-III protein abolished complementation.
doi:10.1128/JB.00416-09
PMCID: PMC2698474  PMID: 19395485
5.  Structure, Mechanism, and Substrate Profile for Sco3058: The Closest Bacterial Homologue to Human Renal Dipeptidase 
Biochemistry  2010;49(3):611-622.
Human renal dipeptidase, an enzyme associated with glutathione metabolism and the hydrolysis of β-lactams, is similar in sequence to a cluster of ~400 microbial proteins currently annotated as nonspecific dipeptidases within the amidohydrolase superfamily. The closest homologue to the human renal dipeptidase from a fully sequenced microbe is Sco3058 from Streptomyces coelicolor. Dipeptide substrates of Sco3058 were identified by screening a comprehensive series of L-Xaa-L-Xaa, L-Xaa-D-Xaa and D-Xaa-L-Xaa dipeptide libraries. The substrate specificity profile shows that Sco3058 hydrolyzes a broad range of dipeptides with a marked preference for an L-amino acid at the N-terminus and a D-amino acid at the C-terminus. The best substrate identified was L-Arg-D-Asp (kcat/Km = 7.6 × 105 M−1 s−1). The three-dimensional structure of Sco3058 was determined in the absence and presence of the inhibitors citrate and a phosphinate mimic of L-Ala-D-Asp. The enzyme folds as a (β/α)8-barrel and two zinc ions are bound in the active site. Site-directed mutagenesis was used to probe the importance of specific residues that have direct interactions with the substrate analogues in the active site (Asp-22, His-150, Arg-223 and Asp-320). Solvent viscosity and kinetic effects by D2O indicate that substrate binding is relatively sticky and that proton transfers do not occurr during the rate-limiting step. A bell-shaped pH-rate profile for kcat and kcat/Km indicated that one group needs to be deprotonated and a second group must be protonated for optimal turnover. Computational docking of high-energy intermediate forms of L/D-Ala-L/D-Ala to the three dimensional structure of Sco3058 identified the structural determinants for the stereochemical preferences for substrate binding and turnover.
doi:10.1021/bi901935y
PMCID: PMC2808448  PMID: 20000809
6.  Proteomic survey of the Streptomyces coelicolor nucleoid 
Journal of Proteomics  2013;83(100):37-46.
Nucleoid-associated proteins (NAPs) are small, highly abundant transcriptional regulators with low sequence specificity which are involved in multiple DNA-related processes including gene expression, DNA protection, recombination/repair and nucleoid structuring. Through these functions they are able to regulate important phenotypic properties including virulence, secondary metabolism and stress resistance. However the set of NAPs known within the Actinobacteria is small and incomplete. The missing proteins are likely to be key regulators of virulence in pathogens such as Mycobacterium tuberculosis and also of development and secondary metabolism in industrially-important species such as Streptomyces. Here, we use label-free LC–MS/MS to systematically search for novel NAPs in isolated nucleoids of the model actinomycete Streptomyces coelicolor. Based on the criteria of high abundance (emPAI score) and predicted DNA-binding ability (DNAbinder score) we identified a set of 24 proteins with a high predicted likelihood of being NAPs. The approach was deemed successful as the set included known major NAPs HupA, HupS, sIHF and Lsr2 as well as the global transcriptional regulators BldD and CRP and the pleiotropic response regulator AfsQ1. It also included a number of proteins whose functions are not yet known from recognisable classes of transcription factor (SCO2140, SCO4493, SCO1839, SCO1210, SCO5405, SCO4229, SCO3198) or from uncharacterised protein families (SCO5783, SCO5592, SCO3793, SCO6482) which comprise a valuable set of candidates for further study.
Biological significance
In this paper we establish a robust protocol for preparing S. coelicolor nucleoids for mass spectrometric analysis and develop a workflow for identifying novel nucleoid-associated proteins (NAPs) by combining LC–MS/MS with a bioinformatical analysis. The nucleoid-associated proteins of many species are known to be key regulators of virulence, stress tolerance and global patterns of gene expression. Identifying the “missing” nucleoid proteins of S. coelicolor is likely to have important implications for manipulating the production of secondary metabolites such as antibiotics. Candidate NAPs were identified. Several of these are highly conserved in clinically important species such as Mycobacterium and in many commercially important species such as Salinispora and Micromonospora which represent a vital source of novel drugs such as antibiotics, antifungals and anticancer agents.
Graphical abstract
Highlights
•Streptomyces coelicolor was grown in liquid culture to late vegetative phase.•Whole nucleoids were isolated by sucrose gradient sedimentation.•Proteins attached to the nucleoids were identified by label-free LC–MS/MS.•A list of high-abundance DNA-binding proteins was generated, representing likely NAPs.
doi:10.1016/j.jprot.2013.02.033
PMCID: PMC3784963  PMID: 23523638
GR, Global regulator; NAP, Nucleoid-associated proteins; DNA-binding; LC–MS/MS; Nucleoid; H-NS; IHF; Streptomyces
7.  Structural basis of substrate recognition by Hematopoietic Tyrosine Phosphatase (HePTP)† 
Biochemistry  2008;47(50):13336-13345.
Hematopoietic tyrosine phosphatase (HePTP) is one of three members of the kinase interaction motif (KIM)-phosphatase family which also includes STEP and PCPTP1. The KIM-PTPs are characterized by a 15 residue sequence, the KIM, which confers specific high affinity binding to their only known substrates, the MAP kinases Erk and p38, an interaction which is critical for their ability to regulate processes such as T cell differentiation (HePTP) and neuronal signaling (STEP). The KIM-PTPs are also characterized by a unique set of residues in their PTP substrate binding loops, where four of the thirteen residues are differentially conserved among the KIM-PTPs as compared to more than 30 other class I PTPs. One of these residues, T106 in HePTP and the KIM-PTPs, is either an aspartate or asparagine in nearly every other PTP. Using multiple techniques, we investigate the role of these KIM-PTP specific residues in order to elucidate the molecular basis of substrate recognition by HePTP. First, we used NMR spectroscopy to show that Erk2 derived peptides interact specifically with HePTP at the active site. Next, to reveal the molecular details of this interaction, we solved the high-resolution 3-dimensional structures of two distinct HePTP:Erk2 peptide complexes. Strikingly, we were only able to obtain crystals of these transient complexes using a KIM-PTP specific substrate trapping mutant, in which the KIM-PTP specific residue T106 was mutated to an aspartic acid (T106D). The introduced aspartate sidechain facilitates the coordination of the bound peptides thereby stabilizing the active dephosphorylation complex. These structures establish the essential role of HePTP T106 in restricting HePTP specificity to only those substrates which are able to interact with KIM-PTPs via the KIM (e.g. Erk2, p38). Finally, we describe how this interaction of the KIM is sufficient for overcoming the otherwise weak interaction at the active site of KIM-PTPs.
doi:10.1021/bi801724n
PMCID: PMC2908255  PMID: 19053285
8.  Annotating Enzymes of Uncertain Function: The Deacylation of d-Amino Acids by Members of the Amidohydrolase Superfamily† 
Biochemistry  2009;48(27):6469-6481.
The catalytic activities of three members of the amidohydrolase superfamily were discovered using amino acid substrate libraries. Bb3285 from Bordetella bronchiseptica, Gox1177 from Gluconobacter oxydans, and Sco4986 from Streptomyces coelicolor are currently annotated as d-aminoacylases or N-acetyl-d-glutamate deacetylases. These three enzymes are 22−34% identical to one another in amino acid sequence. Substrate libraries containing nearly all combinations of N-formyl-d-Xaa, N-acetyl-d-Xaa, N-succinyl-d-Xaa, and l-Xaa-d-Xaa were used to establish the substrate profiles for these enzymes. It was demonstrated that Bb3285 is restricted to the hydrolysis of N-acyl substituted derivatives of d-glutamate. The best substrates for this enzyme are N-formyl-d-glutamate (kcat/Km = 5.8 × 106 M−1 s−1), N-acetyl-d-glutamate (kcat/Km = 5.2 × 106 M−1 s−1) and l-methionine-d-glutamate (kcat/Km = 3.4 × 105 M−1 s−1). Gox1177 and Sco4986 preferentially hydrolyze N-acyl substituted derivatives of hydrophobic d-amino acids. The best substrates for Gox1177 are N-acetyl-d-leucine (kcat/Km = 3.2 × 104 M−1 s−1), N-acetyl-d-tryptophan (kcat/Km = 4.1 × 104 M−1 s−1) and l-tyrosine-d-leucine (kcat/Km = 1.5 × 104 M−1 s−1). A fourth protein, Bb2785 from B. bronchiseptica, did not have d-aminoacylase activity. The best substrates for Sco4986 are N-acetyl-d-phenylalanine and N-acetyl-d-tryptophan. The three-dimensional structures of Bb3285 in the presence of the product acetate or a potent mimic of the tetrahedral intermediate were determined by X-ray diffraction methods. The side chain of the d-glutamate moiety of the inhibitor is ion-paired to Arg-295 while the α-carboxylate is ion-paired with Lys-250 and Arg-376. These results have revealed the chemical and structural determinants for substrate specificity in this protein. Bioinformatic analyses of an additional ∼250 sequences identified as members of this group suggest that there are no simple motifs that allow prediction of substrate specificity for most of these unknowns, highlighting the challenges for computational annotation of some groups of homologous proteins.
doi:10.1021/bi900661b
PMCID: PMC2748305  PMID: 19518059
9.  A New TetR Family Transcriptional Regulator Required for Morphogenesis in Streptomyces coelicolor▿  
Journal of Bacteriology  2007;190(1):61-67.
Both morphogenesis and antibiotic production in the streptomycetes are initiated in response to starvation, and these events are coupled. We previously described a transposon-generated mutant in Streptomyces coelicolor, SE293, that resulted in a bld strain that overproduced the antibiotic actinorhodin. The SCO1135 open reading frame identified by the insertion encodes a member of the TetR family of transcriptional regulators. Here we show that a constructed deletion of the SCO1135 open reading frame resulted in the same morphological and antibiotic production phenotype as the insertion mutant. The constructed deletion also resulted in constitutive expression of SCO1135 transcript, as well as that of the gene cluster immediately adjacent to it, SCO1134-1132, which encodes a putative molybdopterin binding complex. A His6-tagged version of the SCO1135 protein product was shown to bind the intergenic region between SCO1135 and SCO1134, which contains the apparent transcription start sites for each gene mapped by primer extension analysis. Increased expression of the SCO1134-1132 transcript in the SCO1135 deletion mutant also resulted in increased expression of xanthine dehydrogenase activity, confirming the predictions about these open reading framed based on protein similarity. We have designated the SCO1134-1142 gene cluster xdhABC and the regulator encoded by SCO1135 xdhR. We speculate that the inappropriate expression of xanthine dehydrogenase affects purine salvaging pathways at the onset of development, creating artificially high concentrations of both GTP and ppGpp and perturbing the pathways these molecules participate in for the initiation of morphogenesis and antibiotic production.
doi:10.1128/JB.01316-07
PMCID: PMC2223726  PMID: 17965158
10.  Structural Insight into Methyl-Coenzyme M Reductase Chemistry using Coenzyme B Analogues†,‡ 
Biochemistry  2010;49(35):7683-7693.
Methyl-coenzyme M reductase (MCR) catalyzes the final and rate-limiting step in methane biogenesis; the reduction of methyl-coenzyme M (methyl-SCoM) by coenzyme B (CoBSH) to methane and a heterodisulfide (CoBS-SCoM). Crystallographic studies show that the active site is deeply buried within the enzyme, and contains a highly reduced nickel-tetrapyrrole, coenzyme F430. Methyl-SCoM must enter the active site prior to CoBSH, as species derived from analogues of methyl-SCoM are always observed bound to the F430 nickel in the deepest part of the 30 Å long substrate channel that leads from the protein surface to the active site. The seven-carbon mercaptoalkanoyl chain of CoBSH binds within a 16 Å predominantly hydrophobic part of the channel close to F430, with the CoBSH thiolate lying closest to the nickel at a distance of 8.8 Å. It has previously been suggested that binding of CoBSH initiates catalysis by inducing a conformational change that moves methyl-SCoM closer to the nickel promoting cleavage of the C-S bond of methyl-SCoM. In order to better understand the structural role of CoBSH early in the MCR mechanism, we have determined crystal structures of MCR in complex with four different CoBSH analogues; pentanoyl-, hexanoyl-, octanoyl- and nonanoyl- derivatives of CoBSH (CoB5SH, CoB6SH, CoB8SH and CoB9SH respectively). The data presented here reveal that the shorter CoB5SH mercaptoalkanoyl chain overlays with that of CoBSH, but terminates two units short of the CoBSH thiolate position. In contrast, the mercaptoalkanoyl chain of CoB6SH adopts a different conformation, such that its thiolate is coincident with the position of the CoBSH thiolate. This is consistent with the observation that CoB6SH is a slow substrate. A labile water in the substrate channel was found to be a sensitive indicator for the presence of CoBSH and HSCoM. The longer CoB8SH and CoB9SH analogues can be accommodated in the active site through exclusion of this water. These analogues react with Ni(III)-methyl; a proposed MCR catalytic intermediate of methanogenesis. The CoB8SH thiolate is 2.6 Å closer to the nickel than that of CoBSH, but the additional carbon of CoB9SH only decreases the nickel thiolate distance a further 0.3 Å. Although the analogues did not induce any structural changes in the substrate channel, the thiolates appeared to preferentially bind at two distinct positions in the channel; one being the previously observed CoBSH thiolate position, and the other being at a hydrophobic annulus of residues that lines the channel proximal to the nickel.
doi:10.1021/bi100458d
PMCID: PMC3098740  PMID: 20707311
11.  An atypical orthologue of 6-pyruvoyltetrahydropterin synthase can provide the missing link in the folate biosynthesis pathway of malaria parasites 
Molecular Microbiology  2007;67(3):609-618.
Folate metabolism in malaria parasites is a long-standing, clinical target for chemotherapy and prophylaxis. However, despite determination of the complete genome sequence of the lethal species Plasmodium falciparum, the pathway of de novo folate biosynthesis remains incomplete, as no candidate gene for dihydroneopterin aldolase (DHNA) could be identified. This enzyme catalyses the third step in the well-characterized pathway of plants, bacteria, and those eukaryotic microorganisms capable of synthesizing their own folate. Utilizing bioinformatics searches based on both primary and higher protein structures, together with biochemical assays, we demonstrate that P. falciparum cell extracts lack detectable DHNA activity, but that the parasite possesses an unusual orthologue of 6-pyruvoyltetrahydropterin synthase (PTPS), which simultaneously gives rise to two products in comparable amounts, the predominant of which is 6-hydroxymethyl-7,8-dihydropterin, the substrate for the fourth step in folate biosynthesis (catalysed by 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase; PPPK). This can provide a bypass for the missing DHNA activity and thus a means of completing the biosynthetic pathway from GTP to dihydrofolate. Supported by site-directed mutagenesis experiments, we ascribe the novel catalytic activity of the malarial PTPS to a Cys to Glu change at its active site relative to all previously characterized PTPS molecules, including that of the human host.
doi:10.1111/j.1365-2958.2007.06073.x
PMCID: PMC2229834  PMID: 18093090
12.  Identification of new developmentally regulated genes involved in Streptomyces coelicolor sporulation 
BMC Microbiology  2013;13:281.
Background
The sporulation of aerial hyphae of Streptomyces coelicolor is a complex developmental process. Only a limited number of the genes involved in this intriguing morphological differentiation programme are known, including some key regulatory genes. The aim of this study was to expand our knowledge of the gene repertoire involved in S. coelicolor sporulation.
Results
We report a DNA microarray-based investigation of developmentally controlled gene expression in S. coelicolor. By comparing global transcription patterns of the wild-type parent and two mutants lacking key regulators of aerial hyphal sporulation, we found a total of 114 genes that had significantly different expression in at least one of the two mutants compared to the wild-type during sporulation. A whiA mutant showed the largest effects on gene expression, while only a few genes were specifically affected by whiH mutation. Seven new sporulation loci were investigated in more detail with respect to expression patterns and mutant phenotypes. These included SCO7449-7451 that affect spore pigment biogenesis; SCO1773-1774 that encode an L-alanine dehydrogenase and a regulator-like protein and are required for maturation of spores; SCO3857 that encodes a protein highly similar to a nosiheptide resistance regulator and affects spore maturation; and four additional loci (SCO4421, SCO4157, SCO0934, SCO1195) that show developmental regulation but no overt mutant phenotype. Furthermore, we describe a new promoter-probe vector that takes advantage of the red fluorescent protein mCherry as a reporter of cell type-specific promoter activity.
Conclusion
Aerial hyphal sporulation in S. coelicolor is a technically challenging process for global transcriptomic investigations since it occurs only as a small fraction of the colony biomass and is not highly synchronized. Here we show that by comparing a wild-type to mutants lacking regulators that are specifically affecting processes in aerial hypha, it is possible to identify previously unknown genes with important roles in sporulation. The transcriptomic data reported here should also serve as a basis for identification of further developmentally important genes in future functional studies.
doi:10.1186/1471-2180-13-281
PMCID: PMC3878966  PMID: 24308424
Differentiation; Aerial mycelium; Spore; Transcriptome; Spore pigment; Alanine dehydrogenase
13.  Pleiotropic role of the Sco1/SenC family copper chaperone in the physiology of Streptomyces 
Microbial biotechnology  2012;5(4):477-488.
Summary
Antibiotic production and cell differentiation in Streptomyces is stimulated by micromolar levels of Cu2+. Here, we knocked out the Sco1/SenC family copper chaperone (ScoC) encoded in the conserved gene cluster ‘sco’ (the S treptomycescopper utilization) in Streptomyces coelicolor A3(2) and S. griseus. It is known that the Sco1/SenC family incorporates Cu2+ into the active centre of cytochrome oxidase (cox). The knockout caused a marked delay in antibiotic production and aerial mycelium formation on solid medium, temporal pH decline in glucose‐containing liquid medium, and significant reduction of cox activity in S. coelicolor. The scoC mutant produced two‐ to threefold higher cellular mass of the wild type exhibiting a marked cox activity in liquid medium supplied with 10 µM CuSO4, suggesting that ScoC is involved in not only the construction but also the deactivation of cox. The scoC mutant was defective in the monoamine oxidase activity responsible for cell aggregation and sedimentation. These features were similarly observed with regard to the scoC mutant of S. griseus. The scoC mutant of S. griseus was also defective in the extracellular activity oxidizing N,N′‐dimethyl‐p‐phenylenediamine sulfate. Addition of 10 µM CuSO4 repressed the activity of the conserved promoter preceding scoA and caused phenylalanine auxotrophy in some Streptomyces spp. probably because of the repression of pheA; pheA encodes prephenate dehydratase, which is located at the 3′ terminus of the putative operon structure. Overall, the evidence indicates that Sco is crucial for the utilization of copper under a low‐copper condition and for the activation of the multiple Cu2+‐containing oxidases that play divergent roles in the complex physiology of Streptomyces.
doi:10.1111/j.1751-7915.2011.00319.x
PMCID: PMC3815325  PMID: 22117562
14.  Complex Intra-Operonic Dynamics Mediated by a Small RNA in Streptomyces coelicolor 
PLoS ONE  2014;9(1):e85856.
Streptomyces are predominantly soil-dwelling bacteria that are best known for their multicellular life cycle and their prodigious metabolic capabilities. They are also renowned for their regulatory capacity and flexibility, with each species encoding >60 sigma factors, a multitude of transcription factors, and an increasing number of small regulatory RNAs. Here, we describe our characterization of a conserved small RNA (sRNA), scr4677. In the model species Streptomyces coelicolor, this sRNA is located in the intergenic region separating SCO4677 (an anti-sigma factor-encoding gene) and SCO4676 (a putative regulatory protein-encoding gene), close to the SCO4676 translation start site in an antisense orientation. There appears to be considerable genetic interplay between these different gene products, with wild type expression of scr4677 requiring function of the anti-sigma factor SCO4677, and scr4677 in turn influencing the abundance of SCO4676-associated transcripts. The scr4677-mediated effects were independent of RNase III (a double stranded RNA-specific nuclease), with RNase III having an unexpectedly positive influence on the level of SCO4676-associated transcripts. We have shown that both SCO4676 and SCO4677 affect the production of the blue-pigmented antibiotic actinorhodin under specific growth conditions, and that this activity appears to be independent of scr4677.
doi:10.1371/journal.pone.0085856
PMCID: PMC3896431  PMID: 24465751
15.  Purification, crystallization and preliminary crystallographic analysis of a 6-pyruvoyltetrahydropterin synthase homologue from Esherichia coli  
The 6-pyruvoyltetrahydropterin synthase from E. coli has been crystallized in two crystal forms. Diffraction data were collected from hexagonal- and rectangular-shaped crystals to 3.0 and 2.3 Å, respectively.
6-Pyruvoyltetrahydropterin synthase from E. coli (ePTPS) has been crystallized using the hanging-drop vapour-diffusion method. Hexagonal- and rectangular-shaped crystals were obtained. Diffraction data were collected from the hexagonal and rectangular crystals to 3.0 and 2.3 Å resolution, respectively. The hexagonal plate-shaped crystals belonged to space group P321, with unit-cell parameters a = b = 112.59, c = 68.82 Å, and contained two molecules in the asymmetric unit. The rectangular crystals belonged to space group I222, with unit-cell parameters a = 112.76, b = 117.66, c = 153.57 Å, and contained six molecules in the asymmetric unit. The structure of ePTPS in both crystal forms has been determined by molecular replacement.
doi:10.1107/S1744309108000626
PMCID: PMC2374169  PMID: 18271114
6-pyruvoyltetrahydropterin synthase; tetrahydrobiopterin; Escherichia coli
16.  Multiple Pathways for Triacylglycerol Biosynthesis in Streptomyces coelicolor▿  
The terminal reaction in triacylglyceride (TAG) biosynthesis is the esterification of diacylglycerol (DAG) with a fatty acid molecule. To study this reaction in Streptomyces coelicolor, we analyzed three candidate genes (sco0958, sco1280, and sco0123) whose products significantly resemble the recently identified wax ester synthase/acyl-coenzyme A (CoA):DAG acyltransferase (DGAT) from Acinetobacter baylyi. The deletion of either sco0123 or sco1280 resulted in no detectable decrease in TAG accumulation. In contrast, the deletion of sco0958 produced a dramatic reduction in neutral lipid production, whereas the overexpression of this gene yielded a significant increase in de novo TAG biosynthesis. In vitro activity assays showed that Sco0958 mediates the esterification of DAG using long-chain acyl-CoAs (C14 to C18) as acyl donors. The Km and Vmax values of this enzyme for myristoyl-CoA were 45 μM and 822 nmol mg−1 min−1, respectively. Significantly, the triple mutant strain was not completely devoid of storage lipids, indicating the existence of alternative TAG-biosynthetic routes. We present strong evidence demonstrating that the residual production of TAG in this mutant strain is mediated, at least in part, by an acyl-CoA-dependent pathway, since the triple mutant still exhibited DGAT activity. More importantly, there was substantial phospholipid:DGAT (PDAT) activity in the wild type and in the triple mutant. This is the first time that a PDAT activity has been reported for bacteria, highlighting the extreme metabolic diversity of this industrially important soil microorganism.
doi:10.1128/AEM.02638-07
PMCID: PMC2394905  PMID: 18310412
17.  Structural and phylogenetic analysis of a conserved actinobacteria-specific protein (ASP1; SCO1997) from Streptomyces coelicolor 
Background
The Actinobacteria phylum represents one of the largest and most diverse groups of bacteria, encompassing many important and well-characterized organisms including Streptomyces, Bifidobacterium, Corynebacterium and Mycobacterium. Members of this phylum are remarkably diverse in terms of life cycle, morphology, physiology and ecology. Recent comparative genomic analysis of 19 actinobacterial species determined that only 5 genes of unknown function uniquely define this large phylum [1]. The cellular functions of these actinobacteria-specific proteins (ASP) are not known.
Results
Here we report the first characterization of one of the 5 actinobacteria-specific proteins, ASP1 (Gene ID: SCO1997) from Streptomyces coelicolor. The X-ray crystal structure of ASP1 was determined at 2.2 Ǻ. The overall structure of ASP1 retains a similar fold to the large NP-1 family of nucleoside phosphorylase enzymes; however, the function is not related. Further comparative analysis revealed two regions expected to be important for protein function: a central, divalent metal ion binding pore, and a highly conserved elbow shaped helical region at the C-terminus. Sequence analyses revealed that ASP1 is paralogous to another actinobacteria-specific protein ASP2 (SCO1662 from S. coelicolor) and that both proteins likely carry out similar function.
Conclusion
Our structural data in combination with sequence analysis supports the idea that two of the 5 actinobacteria-specific proteins, ASP1 and ASP2, mediate similar function. This function is predicted to be novel since the structures of these proteins do not match any known protein with or without known function. Our results suggest that this function could involve divalent metal ion binding/transport.
doi:10.1186/1472-6807-9-40
PMCID: PMC2714318  PMID: 19515238
18.  Functional Promiscuity of the COG0720 Family 
ACS Chemical Biology  2011;7(1):197-209.
The biosynthesis of GTP derived metabolites such as tetrahydrofolate (THF), biopterin (BH4), and the modified tRNA nucleosides queuosine (Q) and archaeosine (G+) relies on several enzymes of the Tunnel-fold superfamily. A subset of these proteins include the 6-pyruvoyl-tetrahydropterin (PTPS-II), PTPS-III, and PTPS-I homologs, all members of the COG0720 family, that have been previously shown to transform 7,8-dihydroneopterin triphosphate (H2NTP) into different products. PTPS-II catalyzes the formation of 6-pyruvoyltetrahydropterin in the BH4 pathway. PTPS-III catalyzes the formation of 6-hydroxylmethyl-7,8-dihydropterin in the THF pathway. PTPS-I catalyzes the formation of 6-carboxy-5,6,7,8-tetrahydropterin in the Q pathway. Genes of these three enzyme families are often misannotated as they are difficult to differentiate by sequence similarity alone. Using a combination of physical clustering, signature motif, and phylogenetic co-distribution analyses, in vivo complementation studies, and in vitro enzymatic assays, a complete reannotation of the COG0720 family was performed in prokaryotes. Notably, this work identified and experimentally validated dual function PTPS-I/III enzymes involved in both THF and Q biosynthesis. Both in vivo and in vitro analyses showed that the PTPS-I family could tolerate a translation of the active site cysteine and was inherently promiscuous, catalyzing different reactions on the same substrate, or the same reaction on different substrates. Finally, the analysis and experimental validation of several archaeal COG0720 members confirmed the role of PTPS-I in archaeosine biosynthesis, and resulted in the identification PTPS-III enzymes with variant signature sequences in Sulfolobus species. This study reveals an expanded versatility of the COG0720 family members and illustrates that for certain protein families, extensive comparative genomic analysis beyond homology is required to correctly predict function.
doi:10.1021/cb200329f
PMCID: PMC3262898  PMID: 21999246
Queuosine; archaeosine; tetrahydrofolate; biopterin; tRNA modification; riboflavin; 6-pyruvoyl-tetrahydropterin synthase
19.  Diverse Levels of Sequence Selectivity and Catalytic Efficiency of Protein-Tyrosine Phosphatases 
Biochemistry  2014;53(2):397-412.
The sequence selectivity of 14 classical protein-tyrosine phosphatases (PTPs) (PTPRA, PTPRB, PTPRC, PTPRD, PTPRO, PTP1B, SHP-1, SHP-2, HePTP, PTP-PEST, TCPTP, PTPH1, PTPD1, and PTPD2) was systematically profiled by screening their catalytic domains against combinatorial peptide libraries. All of the PTPs exhibit similar preference for pY peptides rich in acidic amino acids and disfavor positively charged sequences, but differ vastly in their degrees of preference/disfavor. Some PTPs (PTP-PEST, SHP-1, and SHP-2) are highly selective for acidic over basic (or neutral) peptides (by >105-fold), whereas others (PTPRA and PTPRD) show no to little sequence selectivity. PTPs also have diverse intrinsic catalytic efficiencies (kcat/KM values against optimal substrates), which differ by >105-fold due to different kcat and/or KM values. Moreover, PTPs show little positional preference for the acidic residues relative to the pY residue. Mutation of Arg47 of PTP1B, which is located near the pY-1 and pY-2 residues of a bound substrate, decreased the enzymatic activity by 3–18-fold toward all pY substrates containing acidic residues anywhere within the pY-6 to pY+5 region. Similarly, mutation of Arg24, which is situated near the C-terminus of a bound substrate, adversely affected the kinetic activity of all acidic substrates. A co-crystal structure of PTP1B bound with a nephrin pY1193 peptide suggests that Arg24 engages in electrostatic interactions with acidic residues at the pY+1, pY+2, and likely other positions. These results suggest that long-range electrostatic interactions between positively charged residues near the PTP active site and acidic residues on pY substrates allow a PTP to bind acidic substrates with similar affinities and the varying levels of preference for acidic sequences by different PTPs are likely caused by the different electrostatic potentials near their active sites. The implications of the varying sequence selectivity and intrinsic catalytic activities with respect to PTP in vivo substrate specificity and biological functions are discussed.
doi:10.1021/bi401223r
PMCID: PMC3954597  PMID: 24359314
Combinatorial library; catalytic activity; kinetics; phosphotyrosine; PTP; substrate specificity
20.  Cleavage of Phosphorothioated DNA and Methylated DNA by the Type IV Restriction Endonuclease ScoMcrA 
PLoS Genetics  2010;6(12):e1001253.
Many taxonomically diverse prokaryotes enzymatically modify their DNA by replacing a non-bridging oxygen with a sulfur atom at specific sequences. The biological implications of this DNA S-modification (phosphorothioation) were unknown. We observed that simultaneous expression of the dndA-E gene cluster from Streptomyces lividans 66, which is responsible for the DNA S-modification, and the putative Streptomyces coelicolor A(3)2 Type IV methyl-dependent restriction endonuclease ScoA3McrA (Sco4631) leads to cell death in the same host. A His-tagged derivative of ScoA3McrA cleaved S-modified DNA and also Dcm-methylated DNA in vitro near the respective modification sites. Double-strand cleavage occurred 16–28 nucleotides away from the phosphorothioate links. DNase I footprinting demonstrated binding of ScoA3McrA to the Dcm methylation site, but no clear binding could be detected at the S-modified site under cleavage conditions. This is the first report of in vitro endonuclease activity of a McrA homologue and also the first demonstration of an enzyme that specifically cleaves S-modified DNA.
Author Summary
Bacteria frequently exchange genetic information among themselves. DNA from one species can be transferred efficiently to unrelated microbes. Bacteria have developed systems that restrict gene transfer. Many restriction systems recognize and destroy foreign DNA entering the cells, but there are also enzymes inducing suicide of cells that have been invaded by foreign genes that modify the host DNA. We describe a restriction endonuclease from an antibiotic-producing soil bacterium that cuts foreign methylated DNA and also foreign DNA containing sulfur. DNA sulfur modification occurs in diverse medically or industrially important microbes and has been shown to prevent cleavage of DNA. The most similar enzyme in the databases is the putative restriction endonuclease McrA from Escherichia coli which has not been observed to cleave DNA in a test tube. Our endonuclease showed no activity with magnesium, but it cleaved DNA in the presence of manganese ions. Therefore, we present two novelties: an unusual restriction endonuclease that cleaves sulfur-modified DNA and conditions that allow the study of the enzyme in a test tube.
doi:10.1371/journal.pgen.1001253
PMCID: PMC3009677  PMID: 21203499
21.  Biochemistry and Molecular Genetics of the Biosynthesis of the Earthy Odorant Methylisoborneol in Streptomyces coelicolor 
Methylisoborneol (2) is a volatile organic compound produced by a wide variety of Actinomycete soil organisms, myxobacteria, and cyanobacteria. It has an unusually low odor threshold and, together with geosmin, is responsible for the characteristic smell of moist soil as well as unpleasant taste and odor episodes associated with public water supplies and contamination of various foodstuffs, including fish, wine, and beer. In spite of considerable interest in detection and remediation of methylisoborneol, the biosynthesis of this methylated monoterpene has been obscure. In Streptomyces coelicolor, the sco7700 and sco7701 genes are shown to correspond to a two-gene operon responsible for methylisoborneol biosynthesis. Both genes have been amplified by PCR and the resulting DNA has been cloned and expressed in Escherichia coli. Incubation of recombinant SCO7701 protein, annotated as a possible C-methyltransferase, with geranyl diphosphate (1) and S-adenosylmethionine gave the previously unknown compound, (E)-2-methylgeranyl diphosphate (3). Incubation of 3 in the presence of Mg2+ with recombinant SCO7700, previously annotated only as a possible metal-binding protein or terpenoid synthase, resulted in the formation of 2-methylisoborneol (2). The steady-state kinetic parameters for both biochemical reactions have been determined. Incubation of geranyl diphosphate and S-adenosylmethionine with a mixture of both SCO7700 and SCO7701 resulted in formation of methylisoborneol (2). Cyclization of 2-methylgeranyl diphosphate (3) to methylisoborneol (2) likely involves the intermediacy of 2-methyllinalyl diphosphate.
doi:10.1021/ja803639g
PMCID: PMC3023297  PMID: 18563898
22.  Visualizing Active Site Dynamics in Single Crystals of HePTP: Opening of the WPD Loop Involves Coordinated Movement of the E Loop 
Journal of molecular biology  2010;405(3):619-629.
Phosphotyrosine hydrolysis by protein tyrosine phosphatases (PTPs) involves substrate binding by the PTP loop and closure over the active site by the WPD loop. The E loop, located immediately adjacent to the PTP and WPD loops, is conserved among human PTPs in both sequence and structure, yet the role of this loop in substrate binding/catalysis is comparatively unexplored. Hematopoietic tyrosine phosphatase (HePTP) is a member of the kinase interaction motif (KIM)-PTP family. Compared to the other PTPs, the KIM-PTPs have E loops that are unique in both sequence and structure. In order to understand the role of the E loop in the transition between the closed and open states of HePTP, we identified a novel crystal form of HePTP that allowed the closed-to-open state transition to be observed within a single crystal form. These structures, which include the first structure of the HePTP open state, show that the WPD loop adopts an ‘atypically open’ conformation and, importantly, that ligands can be exchanged at the active site, critical for HePTP inhibitor development. These structures also show that tetrahedral oxyanions bind at a novel, secondary site and function to coordinate the PTP, WPD and E loops. Finally, using both structural and kinetic data, we reveal a novel role for E loop residue Lys182 in enhancing HePTP catalytic activity through its interaction with Asp236 of the WPD loop, providing the first evidence for coordinated dynamics of the WPD and E loops in the catalytic cycle which, as we show, are relevant to multiple PTP families.
doi:10.1016/j.jmb.2010.11.020
PMCID: PMC3058721  PMID: 21094165
Hematopoietic tyrosine phosphatase (HePTP); PTPN7; kinase interaction motif (KIM)-PTP; WPD loop; E loop
23.  Identification and Biochemical Characterization of Sco3487 from Streptomyces coelicolor A3(2), an Exo- and Endo-Type β-Agarase-Producing Neoagarobiose 
Journal of Bacteriology  2012;194(1):142-149.
Streptomyces coelicolor can degrade agar, the main cell wall component of red macroalgae, for growth. To constitute a crucial carbon source for bacterial growth, the alternating α-(1,3) and β-(1,4) linkages between the 3,6-anhydro-l-galactoses and d-galactoses of agar must be hydrolyzed by α/β-agarases. In S. coelicolor, DagA was confirmed to be an endo-type β-agarase that degrades agar into neoagarotetraose and neoagarohexaose. Genomic sequencing data of S. coelicolor revealed that Sco3487, annotated as a putative hydrolase, has high similarity to the glycoside hydrolase (GH) GH50 β-agarases. Sco3487 encodes a primary translation product (88.5 kDa) of 798 amino acids, including a 45-amino-acid signal peptide. The sco3487 gene was cloned and expressed under the control of the ermE promoter in Streptomyces lividans TK24. β-Agarase activity was detected in transformant culture broth using the artificial chromogenic substrate p-nitrophenyl-β-d-galactopyranoside. Mature Sco3487 (83.9 kDa) was purified 52-fold with a yield of 66% from the culture broth. The optimum pH and temperature for Sco3487 activity were 7.0 and 40°C, respectively. The Km and Vmax for agarose were 4.87 mg/ml (4 × 10−5 M) and 10.75 U/mg, respectively. Sco3487 did not require metal ions for its activity, but severe inhibition by Mn2+ and Cu2+ was observed. Thin-layer chromatography analysis, matrix-assisted laser desorption ionization–time of flight mass spectrometry, and Fourier transform-nuclear magnetic resonance spectrometry of the Sco3487 hydrolysis products revealed that Sco3487 is both an exo- and endo-type β-agarase that degrades agarose, neoagarotetraose, and neoagarohexaose into neoagarobiose.
doi:10.1128/JB.05978-11
PMCID: PMC3256618  PMID: 22020647
24.  Investigation of DNA sequence recognition by a streptomycete MarR family transcriptional regulator through surface plasmon resonance and X-ray crystallography 
Nucleic Acids Research  2013;41(14):7009-7022.
Consistent with their complex lifestyles and rich secondary metabolite profiles, the genomes of streptomycetes encode a plethora of transcription factors, the vast majority of which are uncharacterized. Herein, we use Surface Plasmon Resonance (SPR) to identify and delineate putative operator sites for SCO3205, a MarR family transcriptional regulator from Streptomyces coelicolor that is well represented in sequenced actinomycete genomes. In particular, we use a novel SPR footprinting approach that exploits indirect ligand capture to vastly extend the lifetime of a standard streptavidin SPR chip. We define two operator sites upstream of sco3205 and a pseudopalindromic consensus sequence derived from these enables further potential operator sites to be identified in the S. coelicolor genome. We evaluate each of these through SPR and test the importance of the conserved bases within the consensus sequence. Informed by these results, we determine the crystal structure of a SCO3205-DNA complex at 2.8 Å resolution, enabling molecular level rationalization of the SPR data. Taken together, our observations support a DNA recognition mechanism involving both direct and indirect sequence readout.
doi:10.1093/nar/gkt523
PMCID: PMC3737563  PMID: 23748564
25.  Characterization of a Novel Intracellular Endopeptidase of the α/β Hydrolase Family from Streptomyces coelicolor A3(2) 
Journal of Bacteriology  2003;185(2):496-503.
In a proteasome-lacking mutant of Streptomyces coelicolor A3(2), an intracellular enzyme with chymotrypsin-like activity, absent from the wild type, was detected. Complementation that restored proteasome function did not suppress expression of the endopeptidase. Since the enzyme was not found in two other S. coelicolor proteasome mutants, its expression probably resulted from a secondary mutation arisen in the proteasome mutant. Purification of the endopeptidase revealed its identity to SCO7095, a putative hydrolase encoded by the S. coelicolor A3(2) genome with no known homologue. Based on the prediction of a Ser-Asp-His catalytic triad and an α/β hydrolase fold, SCO7095 was assigned to peptidase clan SC. N-terminally His-tagged SCO7095 was efficiently expressed in Escherichia coli cells and purified for further characterization. Although SCO7095 is distantly related to several proline iminopeptidases, including Thermoplasma acidophilum tricorn-interacting F1, no aminopeptidase activity was detected. On synthetic substrates, the monomeric enzyme exhibited not only chymotrypsin-like activity but also thrombin-like activity.
doi:10.1128/JB.185.2.496-503.2003
PMCID: PMC145308  PMID: 12511496

Results 1-25 (944676)