PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (678769)

Clipboard (0)
None

Related Articles

1.  Towards evidence‐based medicine for paediatricians 
To give the best care to patients and families, paediatricians need to integrate the highest quality scientific evidence with clinical expertise and the opinions of the family.1Archimedes seeks to assist practising clinicians by providing “evidence‐based” answers to common questions that are not at the forefront of research but are at the core of practice. In doing this, we are adapting a format that has been successfully developed by Kevin Mackway‐Jones and the group at the Emergency Medicine Journal—“BestBets”.
A word of warning. The topic summaries are not systematic reviews, although they are as exhaustive as a practising clinician can produce. They make no attempt to statistically aggregate the data, nor to search the grey, unpublished literature. What Archimedes offers is practical, best evidence‐based answers to practical, clinical questions.
The format of Archimedes may be familiar. A description of the clinical setting is followed by a structured clinical question. (These aid in focusing the mind, assisting searching2 and obtaining answers.3) A brief report of the search used follows—this has been performed in a hierarchical way, to search for the best quality evidence to answer the question (http://www.cebm.net). A table provides a summary of the evidence and key points of the critical appraisal. For further information on critical appraisal, and the measures of effect (such as the number needed to treat), books by Sackett4 and Moyer5 may help. To pull the information together, a commentary is provided, but to make it all much more accessible, a box provides the clinical bottom lines.
Electronics‐only topics that have been published on the BestBets site (www.bestbets.org) and may be of interest to paediatricians include the following.
Can steroids be used to reduce post tonsillectomy pain?
Readers wishing to submit their own questions—with best evidence answers—are encouraged to review those already proposed at www.bestbets.org. If your question still hasn't been answered, feel free to submit your summary according to the instructions for authors at www.archdischild.com. Three topics are covered in this issue of the journal:
Is teething the cause of minor ailments?
Should steroid creams be used in cases of labial fusion?
Does erythromycin cause pyloric stenosis?
References
1 Moyer VA, Ellior EJ. Preface. In: Moyer VA, Elliott EJ, Davis RL, et al, eds. Evidence based pediatrics and child health. Issue 1. London: BMJ Books, 2000.
2 Richardson WS, Wilson MC, Nishikawa J, et al. The well‐built clinical question: a key to evidence‐based decisions. ACP J Club 1995;123:A12–13.
3 Bergus GR, Randall CS, Sinift SD, et al. Does the structure of clinical questions affect the outcome of curbside consultations with specialty colleagues? Arch Fam Med 2000;9:541–7.
4 Sackett DL, Starus S, Richardson WS, et al. Evidence‐based medicine. How to practice and teach EBM. San Diego: Harcourt‐Brace, 2000.
5 Moyer VA, Elliott EJ, Davis RL, et al, eds. Evidence based pediatrics and child health. Issue 1. London: BMJ Books, 2000.
Can: doing, using and replicating evidence‐based child health
The practice of evidence‐based child health is said to be the five‐step way of asking questions, acquiring information, appraising the evidence, applying the results and assessing our performance.
If the truth be known, for the vast majority of the time, most of us perform our clinical practice replicating what we have done previously. Most of the time this is based on the combination of excellent education, skilled interpretation of clinical findings, and good discussions with children and families. We hope that the education we rely on was (and remains) based on the best available scientific evidence. If it is, we are practising a form of “micro‐evidence‐based healthcare (EBHC)” (doing just step 4).
Sometimes, we question our knowledge (or more uncomfortably, someone does this for us), and will head off to top up our understanding of an area. This “using” mode, if we use well‐appraised resources to supply our thirst for information, will also promote the practice of evidence‐based care. This midi‐EBHC asks us to go through steps 1, 2 and 4.
Occasionally, we also actually need to go through the entire process of getting “down and dirty” with the primary research and appraising it to influence our practice. Maxi‐EBHC is considerably more demanding in time, but largely more satisfying intellectually.
If we reframe the practice of EBHC as using the family and child values, the best evidence, and our clinical expertise, then we can do it by micro‐methods, midi‐methods or maxi‐methods, and choose the most appropriate approach for the situation we confront.
Acknowledgement
I thank Dr Sharon Straus, Director of the Center for Evidence‐based Medicine, University of Toronto, Toronto, Ontario, Canada.
doi:10.1136/adc.2006.110080
PMCID: PMC2083440
2.  A Cluster Randomized Clinical Trial to Improve Prescribing Patterns in Ambulatory Pediatrics 
PLoS Clinical Trials  2007;2(5):e25.
Objectives:
Having shown previously that an electronic prescription writer and decision support system improved pediatric prescribing behavior for otitis media in an academic clinic setting, we assessed whether point-of-care delivery of evidence could demonstrate similar effects for a wide range of other common pediatric conditions.
Design:
Cluster randomized controlled trial.
Setting:
A teaching clinic/clinical practice site and a primary care pediatric clinic serving a rural and semi-urban patient mix.
Participants:
A total of 36 providers at the teaching clinic/practice site and eight providers at the private primary pediatric clinic.
Intervention:
An evidence-based message system that presented real-time evidence to providers based on prescribing practices for acute otitis media, allergic rhinitis, sinusitis, constipation, pharyngitis, croup, urticaria, and bronchiolitis.
Outcome measures:
The proportion of prescriptions dispensed in accordance with evidence.
Results:
The proportion of prescriptions dispensed in accordance with evidence improved four percentage points, from 38% at baseline to 42% following the intervention. The control group improved by one percentage point, from 39% at baseline to 40% at trial's conclusion. The adjusted difference between the intervention and control groups was 8% (95% confidence interval 1%, 15%). Intervention effectiveness did not decrease with time.
Conclusion:
For common pediatric outpatient conditions, a point-of-care evidence-based prescription writer and decision support system was associated with significant improvements in prescribing practices.
Editorial Commentary
Background: Computerized systems for managing health-care information, such as medical records and prescriptions, have the potential to improve medical care. These improvements could come about as a result of embedding software within a medical record system that alerts clinicians to evidence that is relevant to the care they are providing. For example, such a system might deliver a pop-up reminder that informs a clinician about a potential prescribing error, or that the prescription ordered is not supported by recent evidence. Systematic reviews of randomized controlled trials evaluating the benefits of such systems have shown that computerized feedback and reminder systems can improve clinician behavior. However, much of this evidence comes from academic clinics caring for adults, and there is not very much evidence available on children or from community-based, nonacademic clinical practices. The researchers here wanted to evaluate whether a computerized system providing clinical decision support at the time of electronic prescribing could improve prescribing in pediatric primary care. In order to test this, the researchers carried out a cluster randomized trial. This means that individual health-care providers were randomized to receive evidence-based prompts via the computerized system or not, depending on which arm of the trial they were randomized to, but outcome data for the trial were collected at the level of the individual patient's prescription. Pop-up prompts were provided for eight medical conditions common in pediatric primary care, and alerted the provider to a summary of the evidence that supported or refuted the prescription that the provider was about to make. The primary outcome in the trial was the change in proportion of prescriptions dispensed in accordance with evidence, over the course of the trial.
What the trial shows: In the trial, 36 pediatric health-care providers were randomized at one site, where the trial was carried out over 50 months, and eight at another, where the trial lasted for 18 months. At the start of the trial, 38% of prescriptions in the intervention group were in accordance with the evidence, and 39% of prescriptions in the control group. At the end of the trial, 42% of prescriptions in the intervention group were in accordance with evidence, as compared to 40% of prescriptions in the control group. The difference in prescribing behavior change over the course of the trial between intervention and control groups was statistically significant, once adjusted for the clustering of data by the individual providers.
Strengths and limitations: In this trial, health-care providers were randomized, rather than patients. This method (cluster randomization) is probably the most appropriate method to carry out a trial such as this, because it reduces the chance of contamination (i.e., that patients not assigned to the intervention might receive some of its benefits). One limitation is the small number of providers that were recruited into the trial; another is that many of these in fact practiced or had recently practiced in academic medicine rather than community-based, nonacademic clinical practices. This limits the ability to generalize from these findings to a nonacademic setting. Finally, the trial was planned with the intention of evaluating the ability of computerized systems to achieve health-care provider behavior change. Therefore, data were analyzed by lumping together outcomes for many different medical conditions. This means that the computerized prompt system may not necessarily have been that successful in achieving improvements in prescribing for any individual condition.
Contribution to the evidence: Systematic reviews of the effectiveness of computerized decision support systems of this kind have found some evidence that such systems can improve the behavior of health-care providers. This study adds data showing that the reminder system studied here resulted in moderate improvements in prescribing within a pediatric primary care setting.
doi:10.1371/journal.pctr.0020025
PMCID: PMC1876598  PMID: 17525793
3.  Commentary: Progress and Challenges in Evidence-based Family Assessment in Pediatric Psychology 
Journal of Pediatric Psychology  2008;33(9):1062-1064.
It is widely accepted that families are integral to biopsychosocial, social ecological, and other systemic approaches for understanding families and pediatric health. Pediatric psychologists are among the strongest advocates for families. At the same time, families pose challenges that we (pediatric psychology as a field) struggle with in terms of theoretical conceptualizations, assessment and intervention approaches, and training. We primarily use individual frameworks in our practice and research. In this brief commentary, prompted by the report of accomplishments in evidence-based family assessment in pediatric psychology (Alderfer et al., 2007), I outline some of the background for an implicit “challenge” to our field to advance our family orientation and provide some concrete ideas about next steps.
doi:10.1093/jpepsy/jsn061
PMCID: PMC2639488
4.  Behavioural assessment of pediatric pain 
Behavioural assessment methods have been used to signal the need for intervention and to evaluate treatment effectiveness. Direct observation and rating scales have been used to assess pain and distress associated with acute medical procedures, postoperative pain, critical care, analogue pain induction procedures and other sources. Two recent scholarly reviews of behavioural assessment methods were conducted by the Society of Pediatric Psychology Evidence-Based Assessment Task Force and the Pediatric Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials, which classified various instruments as well established, approaching well established or promising. The characteristics of the eight behavioural assessment scales that were recommended by one of these task forces are further reviewed in the present paper. The results indicate that behavioural assessment scales have been used flexibly to assess pain in a wide variety of situations, across different pediatric populations and for patients of different ages. In the present review, there appears to be no basis for designating the scales as measures of distress versus pain; both emotional and sensory components of pain seem to be assessed by each of the scales. There is considerable overlap among the behavioural indicators of pain used in the different scales. Furthermore, the behavioural codes indicative of pain may occur before, during and after painful events. Recommendations for future research are provided, including using behavioural assessment to focus on children’s coping and adults’ behaviours, as well as pain.
PMCID: PMC2706564  PMID: 19262916
Behavioural assessment; Direct observation; Pediatric pain; Rating scale
5.  Putting pain assessment into practice: Why is it so painful? 
OBJECTIVE:
To explore some of the reasons for poor compliance with the use of standardized pain assessment tools in clinical practice, despite numerous guidelines and standards mandating their use.
METHODS:
First, a review of research and clinical audit literature on the effects of standardized pain assessment tools on patient or process outcomes was conducted, and findings were critiqued. Second, a synthesis of recent literature on the biopsychosocial mechanisms of human detection and recognition of pain in others was presented. Third, the implications for pain assessment in pediatric clinical settings were discussed.
RESULTS:
There is a lack of good-quality evidence for the efficacy, effectiveness or cost-benefit of standardized pain assessment tools in relation to pediatric patient or process outcomes. Research suggests that there may be greater variability than previously appreciated in the ability and motivation of humans when assessing pain in others. It remains unknown whether pain detection skills or motivation to relieve pain in others can be improved or overcome by standardized methods of pain assessment.
DISCUSSION:
Further research is needed to understand the intra- and interpersonal dynamics in clinical assessment of pain in children and to test alternative means of achieving diagnosis and treatment of pain. Until this evidence is available, guidelines recommending standardized pain assessment must be clearly labelled as being based on principles or evidence from other fields of practice, and avoid implying that they are ‘evidence based’.
PMCID: PMC2706559  PMID: 19262911
Children; Clinical practice guidelines; Pain recognition; Standardized pain assessment tools
6.  Innovation and design of a web-based pain education interprofessional resource 
Although web-based educational platforms are widely used in health professions education, there is little research evaluating the effectiveness of web-based, educational innovations. Much of the available research has failed to address several issues including innovation processes, sustainability, barriers to implementation and influences to the field, among others. Moreover, scholarly and reflective descriptions of important features of innovations that could advance understanding and inform teaching are largely absent from the literature. The authors of this article describe the development of an educational innovation process and design of a web-based, pain interprofessional resource for prelicensure health science students in universities across Canada.
INTRODUCTION:
The present article describes educational innovation processes and design of a web-based pain interprofessional resource for prelicensure health science students in universities across Canada. Operationalization of educational theory in design coupled with formative evaluation of design are discussed, along with strategies that support collaborative innovation.
METHODS:
Educational design was driven by content, theory and evaluation. Pain misbeliefs and teaching points along the continuum from acute to persistent pain were identified. Knowledge-building theory, situated learning, reflection and novel designs for cognitive scaffolding were then employed. Design research principles were incorporated to inform iterative and ongoing design.
RESULTS:
An authentic patient case was constructed, situated in inter-professional complex care to highlight learning objectives related to pre-operative, postoperative and treatment up to one year, for a surgical cancer patient. Pain mechanisms, assessment and management framed content creation. Knowledge building scaffolds were used, which included video simulations, embedded resources, concurrent feedback, practice-based reflective exercises and commentaries. Scaffolds were refined to specifically support knowledge translation. Illustrative commentaries were designed to explicate pain misbeliefs and best practices. Architecture of the resource was mapped; a multimedia, interactive prototype was created. This pain education resource was developed primarily for individual use, with extensions for interprofessional collective discourse.
DISCUSSION:
Translation of curricular content scripts into representation maps supported the collaborative design process by establishing a common visual language. The web-based prototype will be formatively and summatively evaluated to assess pedagogic design, knowledge-translation scaffolds, pain knowledge gains, relevance, feasibility and fidelity of this educational innovation.
PMCID: PMC3298045  PMID: 22184552
Innovation; Interprofessional; Pain; Resource; Web-based
7.  On the threshold - evaluation of variability in effects of acupuncture in a gender perspective 
Chinese Medicine  2010;5:32.
Variable results of pain alleviation in response to acupuncture have been reported, complicating its interpretation. Sources of variability are probably multi-factorial, including the contribution of gender related effects. Gender related variation in perceived pain has been discussed frequently, but documented effects of acupuncture referring to gender are sparse. Furthermore, factors such as operationalisation of the outcome variable and the statistical method for evaluation could also be sources of variability. When pain is regarded as subjective, the produced data should be treated as ordinal. The rank-based method by Svensson, taking the non-metric qualities of the ordinal data into account as well as the variability at the group and the individual level, is therefore an alternative. The present commentary aims to (1) evaluate changes in electrical sensory thresholds and electrical pain thresholds after low frequency electro-acupuncture separately in healthy women and men; (2) introduce and exemplify the method by Svensson in a user-friendly approach. To analyze the systematic patterns of change in thresholds, indicating evidence of treatment on a group level, the relative position (RP) and relative concentration (RC), were measured. The variation related to the individual, the relative rank variation (RV) was also measured. The results were divergent between women (n = 23) and men (n = 22), i.e. unchanged sensory threshold after acupuncture at the group level in women while changed in men. The assessed pain threshold after acupuncture on the other hand was changed towards higher levels in women and unchanged in men. The individual variation was apparent in both women and men but larger in women. For statistical analysis of the variability for both group and individual related effects, the rank-based method by Svensson could be used. The present study indicates that evaluation of sensory and pain threshold response should be analysed separately in women and men.
doi:10.1186/1749-8546-5-32
PMCID: PMC2942886  PMID: 20815910
8.  Fibromyalgia and disability adjudication: No simple solutions to a complex problem 
BACKGROUND:
Adjudication of disability claims related to fibromyalgia (FM) syndrome can be a challenging and complex process. A commentary published in the current issue of Pain Research & Management makes suggestions for improvement. The authors of the commentary contend that: previously and currently used criteria for the diagnosis of FM are irrelevant to clinical practice; the opinions of family physicians should supersede those of experts; there is little evidence that trauma can cause FM; no formal instruments are necessary to assess disability; and many FM patients on or applying for disability are exaggerating or malingering, and tests of symptoms validity should be used to identify malingerers.
OBJECTIVES:
To assess the assertions made by Fitzcharles et al.
METHODS:
A narrative review of the available research literature was performed.
RESULTS:
Available diagnostic criteria should be used in a medicolegal context; family physicians are frequently uncertain about FM and/or biased; there is considerable evidence that trauma can be a cause of FM; it is essential to use validated instruments to assess functional impairment; and the available tests of physical effort and symptom validity are of uncertain value in identifying malingering in FM.
CONCLUSIONS:
The available evidence does not support many of the suggestions presented in the commentary. Caution is advised in adopting simple solutions for disability adjudication in FM because they are generally incompatible with the inherently complex nature of the problem.
PMCID: PMC4273706  PMID: 25479149
Adjudication; Disability; Fibromyalgia; Law
9.  Pain-QuILT: Clinical Feasibility of a Web-Based Visual Pain Assessment Tool in Adults With Chronic Pain 
Background
Chronic pain is a prevalent and debilitating problem. Accurate and timely pain assessment is critical to pain management. In particular, pain needs to be consistently tracked over time in order to gauge the effectiveness of different treatments. In current clinical practice, paper-based questionnaires are the norm for pain assessment. However, these methods are not conducive to capturing or tracking the complex sensations of chronic pain. Pain-QuILT (previously called the Iconic Pain Assessment Tool) is a Web-based tool for the visual self-report and tracking of pain (quality, intensity, location, tracker) in the form of time-stamped records. It has been iteratively developed and evaluated in adolescents and adults with chronic pain, including usability testing and content validation. Clinical feasibility is an important stepping-stone toward widespread implementation of a new tool. Our group has demonstrated Pain-QuILT clinical feasibility in the context of a pediatric chronic pain clinic. We sought to extend these findings by evaluating Pain-QuILT clinical feasibility from the perspective of adults with chronic pain, in comparison with standard paper-based methods (McGill Pain Questionnaire [MPQ] and Brief Pain Inventory [BPI]).
Objective
The goal of our study was to assess Pain-QuILT for (1) ease of use, (2) time for completion, (3) patient preferences, and (4) to explore the patterns of self-reported pain across the Pain-QuILT, MPQ, and BPI.
Methods
Participants were recruited during a scheduled follow-up visit at a hospital-affiliated pain management and physical rehabilitation clinic in southwestern Ontario. Participants self-reported their current pain using the Pain-QuILT, MPQ, and BPI (randomized order). A semistructured interview format was used to capture participant preferences for pain self-report.
Results
The sample consisted of 50 adults (54% female, 27/50) with a mean age of 50 years. Pain-QuILT was rated as significantly easier to use than both the MPQ and BPI (P<.01) and was also associated with the fewest difficulties in completion. On average, the time to complete each tool was less than 5 minutes. A majority of participants (58%, 29/50) preferred Pain-QuILT for reporting their pain over alternate methods (16%, 8/50 for MPQ; 14%, 7/50 for BPI; 12%, 6/50 for “other”). The most commonly chosen pain descriptors on MPQ were matched with Pain-QuILT across 91% of categories. There was a moderate-to-high correlation between Pain-QuILT and BPI scores for pain intensity (r=.70, P<.01).
Conclusions
The results of this clinical feasibility study in adults with chronic pain are consistent with our previously published pediatric findings. Specifically, data indicate that Pain-QuILT is (1) easy to use, (2) quick to complete, (3) preferred by a majority of patients, and (4) correlated as expected with validated pain measures. As a digital, patient-friendly method of assessing and tracking pain, we conclude that Pain-QuILT has potential to add significant value as one standard component of chronic pain management.
doi:10.2196/jmir.3292
PMCID: PMC4034112  PMID: 24819478
chronic pain; assessment tool; Internet; clinical feasibility
10.  Short-Term Efficacy of Rofecoxib and Diclofenac in Acute Shoulder Pain: A Placebo-Controlled Randomized Trial 
PLoS Clinical Trials  2007;2(3):e9.
Objectives:
To evaluate the short-term symptomatic efficacy of rofecoxib and diclofenac versus placebo in acute episodes of shoulder pain.
Design:
Randomized controlled trial of 7 days.
Setting:
Rheumatologists and/or general practitioners totaling 47.
Participants:
Acute shoulder pain.
Interventions:
Rofecoxib 50 mg once daily, diclofenac 50 mg three times daily, and placebo.
Outcome measures:
Pain, functional impairment, patient's global assessment of his/her disease activity, and local steroid injection requirement for persistent pain. The primary variable was the Kaplan-Meier estimates of the percentage of patients at day 7 fulfilling the definition of success (improvement in pain intensity and a low pain level sustained to the end of the 7 days of the study; log-rank test).
Results:
There was no difference in the baseline characteristics between the three groups (rofecoxib n = 88, placebo n = 94, and diclofenac n = 89). At day 7, the Kaplan-Meier estimates of successful patients was higher in the treatment groups than in the placebo (54%, 56%, and 38% in the diclofenac, rofecoxib, and placebo groups respectively, p = 0.0070 and p = 0.0239 for placebo versus rofecoxib and diclofenac, respectively). During the 7 days of the study, there was a statistically significant difference between placebo and both active arms (rofecoxib and diclofenac) in all the evaluated outcome measures A local steroid injection had to be performed in 33 (35%) and 19 (22%) patients in the placebo and rofecoxib group respectively. Number needed to treat to avoid such rescue therapy was 7 patients (95% confidence interval 5–15).
Conclusion:
This study highlights the methodological aspects of clinical trials, e.g., eligibility criteria and outcome measures, in acute painful conditions. The data also establish that diclofenac and rofecoxib are effective therapies for the management of acute painful shoulder and that they reduce the requirement for local steroid injection.
Editorial Commentary
Background: Shoulder pain is a very common complaint that presents in primary care, and there are many different possible causes. Acute pain would normally be managed with nonsteroidal anti-inflammatory drugs (NSAIDs), supplemented with steroid injections (which are often reserved for the treatment of severe or persistent pain). One NSAID, diclofenac, is used frequently for this condition, but other NSAIDs might also be effective. A subgroup of NSAIDs called the Cox-2 selective inhibitors specifically inhibit one particular enzyme (cyclo-oxygenase, shortened to Cox-2) which is involved in inflammation and pain. These drugs are thought to be less likely to cause stomach irritation than other NSAIDs. Therefore the researchers in this study carried out a short-term, three-way clinical trial comparing diclofenac with one particular Cox-2 inhibitor, rofecoxib, and placebo in patients with acute shoulder pain. However, rofecoxib was withdrawn from the market in September 2004 because of evidence that use of the drug was associated with an increased risk of heart attacks and strokes, and controversy remains regarding the risk of such events among users of other Cox-2 inhibitors.
What this trial shows: The main aim of this trial was to compare the level of pain relief over seven days of treatment with either diclofenac or rofecoxib, as compared to placebo. The primary outcome measure used in the trial was the proportion of patients achieving a 50% or greater decrease in pain levels over the course of the study, measured using a numerical rating scale. A total of 273 participants were recruited into the trial and at day 7 the proportion achieving a 30% decrease in pain was 38% in the placebo arm, 54% in the diclofenac arm, and 56% in the rofecoxib arm. The differences in this outcome measure between diclofenac and placebo and between rofecoxib and placebo were statistically significant; however, the researchers did not carry out a direct comparison between diclofenac and rofecoxib. The rates of adverse events were roughly comparable between all three arms of the trial, although the study was not originally planned to be large enough to detect differences in the rates of such events, so it is not possible to conclude whether there was any true difference.
Strengths and limitations: The randomization procedures used in the study minimize the possibility of bias in assigning patients to treatment arms. Bias in assessment of outcomes was also minimized by ensuring that steps were taken to prevent investigators and patients from knowing which drugs a particular patient received until the end of the trial. A key limitation of the study is the short follow-up, only seven days, and it is therefore unclear whether efficacy and safety of these drugs would continue for the much longer periods of time (weeks or even months) for which these patients might need pain relief. Finally, patients randomized to the placebo arm received no treatment for the seven days of the study other than acetaminophen or steroid injections (which would result in withdrawal from the trial). This design does not limit interpretation of the data but could be criticized because of concern over whether the patients receiving placebo received adequate pain relief.
Contribution to the evidence: This study provides some data on the efficacy of diclofenac and rofecoxib, as compared to placebo in treatment of this condition. Given that rofecoxib is now withdrawn, the efficacy of this drug is no longer relevant. However, the information from this trial should help in designing future studies of NSAIDs in shoulder pain, for example to define appropriate trial outcomes, sample size, and other aspects of study design.
doi:10.1371/journal.pctr.0020009
PMCID: PMC1817652  PMID: 17347681
11.  Quality indicators for the assessment and management of pain in the emergency department: A systematic review 
Appropriate and timely treatment of pain are very important, particularly in the emergency department, where pain continues to be undertreated. One of the ways in which the undertreatment of pain can be mitigated is the use of defined quality benchmarks. This systematic review of the literature was performed to identify such quality indicators. The resulting 20 quality indicators may be used to improve pain assessment and management protocols in the emergency department setting.
BACKGROUND:
Evidence indicates that pain is undertreated in the emergency department (ED). The first step in improving the pain experience for ED patients is to accurately and systematically assess the actual care being provided. Identifying gaps in the assessment and treatment of pain and improving patient outcomes requires relevant, evidence-based performance measures.
OBJECTIVE:
To systematically review the literature and identify quality indicators specific to the assessment and management of pain in the ED.
METHODS:
Four major bibliographical databases were searched from January 1980 to December 2010, and relevant journals and conference proceedings were manually searched. Original research that described the development or collection of data on one or more quality indicators relevant to the assessment or management of pain in the ED was included.
RESULTS:
The search identified 18,078 citations. Twenty-three articles were included: 15 observational (cohort) studies; three before-after studies; three audits; one quality indicator development study; and one survey. Methodological quality was moderate, with weaknesses in the reporting of study design and methodology. Twenty unique indicators were identified, with the majority (16 of 20) measuring care processes. Overall, 91% (21 of 23) of the studies reported indicators for the assessment or management of presenting pain, as opposed to procedural pain. Three of the studies included children; however, none of the indicators were developed specifically for a pediatric population.
CONCLUSION:
Gaps in the existing literature include a lack of measures reflecting procedural pain, patient outcomes and the pediatric population. Future efforts should focus on developing indicators specific to these key areas.
PMCID: PMC4273718  PMID: 25337856
Emergency department; Pain assessment and management; Quality indicators; Systematic review
12.  Hospitalized children continue to report undertreated and preventable pain 
Pain among hospitalized children is known to be common; however, previous research has been lacking with regard to measures of patient self-report and patients’ pain treatment thresholds. Therefore, the authors of this article conducted an interview- and chart review-based study to obtain a more comprehensive viewpoint regarding hospitalized children’s pain experience, taking into consideration pain treatment thresholds.
BACKGROUND:
Published reports of substantial rates of moderate to severe pediatric inpatient pain tend to overlook lower-intensity pain that may be clinically significant.
OBJECTIVE:
To document the prevalence of clinically significant pain in pediatric inpatients by considering the pain threshold at which each child desires intervention, and to assess sources of pain, pain assessment and intervention, and relationships among demographic and medical variables to reported pain.
METHODS:
Inpatients or their parents on four hospital units during four nonconsecutive days were eligible for inclusion. Interviews (76 parents; 31 patients) captured experiences of 107 inpatients (three weeks to 18 years of age) including current, worst and usual pain, pain treatment thresholds, sources of pain and help received during the previous 24 h. A chart review provided data regarding demographic and medical variables, and pain assessment and management.
RESULTS:
In total, 94% of patients experienced pain. The prevalence of clinically significant pain was 8% (current), 62% (worst) and 24% (usual). Current and worst pain was primarily procedural, and usual pain was primarily disease related. On average, patients had 4.03 documented pain assessments over 24 h. Caregiver responses (eg, reassurance) and nonpharmacological interventions were frequently reported (>90%) but infrequently documented (<50%); 66% of patients received pharmacological interventions. Younger patients received fewer pain assessments and opioids. Patients with clinically significant usual pain were more likely to have undergone surgery, and receive more pain assessments and interventions.
CONCLUSIONS:
While recent studies suggest reduced pain in pediatric inpatients, the present findings reveal a continued high frequency of undertreated pain. High rates of procedural pain are preventable and should be targeted given the underutilization of pain management strategies.
PMCID: PMC4158935  PMID: 24809068
Epidemiology; Hospital; Pain management; Pediatric pain; Pediatrics
13.  A Smartphone-Based Pain Management App for Adolescents With Cancer: Establishing System Requirements and a Pain Care Algorithm Based on Literature Review, Interviews, and Consensus 
JMIR Research Protocols  2014;3(1):e15.
Background
Pain that occurs both within and outside of the hospital setting is a common and distressing problem for adolescents with cancer. The use of smartphone technology may facilitate rapid, in-the-moment pain support for this population. To ensure the best possible pain management advice is given, evidence-based and expert-vetted care algorithms and system design features, which are designed using user-centered methods, are required.
Objective
To develop the decision algorithm and system requirements that will inform the pain management advice provided by a real-time smartphone-based pain management app for adolescents with cancer.
Methods
A systematic approach to algorithm development and system design was utilized. Initially, a comprehensive literature review was undertaken to understand the current body of knowledge pertaining to pediatric cancer pain management. A user-centered approach to development was used as the results of the review were disseminated to 15 international experts (clinicians, scientists, and a consumer) in pediatric pain, pediatric oncology and mHealth design, who participated in a 2-day consensus conference. This conference used nominal group technique to develop consensus on important pain inputs, pain management advice, and system design requirements. Using data generated at the conference, a prototype algorithm was developed. Iterative qualitative testing was conducted with adolescents with cancer, as well as pediatric oncology and pain health care providers to vet and refine the developed algorithm and system requirements for the real-time smartphone app.
Results
The systematic literature review established the current state of research related to nonpharmacological pediatric cancer pain management. The 2-day consensus conference established which clinically important pain inputs by adolescents would require action (pain management advice) from the app, the appropriate advice the app should provide to adolescents in pain, and the functional requirements of the app. These results were used to build a detailed prototype algorithm capable of providing adolescents with pain management support based on their individual pain. Analysis of qualitative interviews with 9 multidisciplinary health care professionals and 10 adolescents resulted in 4 themes that helped to adapt the algorithm and requirements to the needs of adolescents. Specifically, themes were overall endorsement of the system, the need for a clinical expert, the need to individualize the system, and changes to the algorithm to improve potential clinical effectiveness.
Conclusions
This study used a phased and user-centered approach to develop a pain management algorithm for adolescents with cancer and the system requirements of an associated app. The smartphone software is currently being created and subsequent work will focus on the usability, feasibility, and effectiveness testing of the app for adolescents with cancer pain.
doi:10.2196/resprot.3041
PMCID: PMC3978558  PMID: 24646454
adolescent; pain; neoplasms; cellular phone; algorithms
14.  Phase 1 Study of Two Merozoite Surface Protein 1 (MSP142) Vaccines for Plasmodium falciparum Malaria 
PLoS Clinical Trials  2007;2(4):e12.
Objectives:
To assess the safety and immunogenicity of two vaccines, MSP142-FVO/Alhydrogel and MSP142-3D7/Alhydrogel, targeting blood-stage Plasmodium falciparum parasites.
Design:
A Phase 1 open-label, dose-escalating study.
Setting:
Quintiles Phase 1 Services, Lenexa, Kansas between July 2004 and November 2005.
Participants:
Sixty healthy malaria-naïve volunteers 18–48 y of age.
Interventions:
The C-terminal 42-kDa region of merozoite surface protein 1 (MSP142) corresponding to the two allelic forms present in FVO and 3D7 P. falciparum lines were expressed in Escherichia coli, refolded, purified, and formulated on Alhydrogel (aluminum hydroxide). For each vaccine, volunteers in each of three dose cohorts (5, 20, and 80 μg) were vaccinated at 0, 28, and 180 d. Volunteers were followed for 1 y.
Outcome Measures:
The safety of MSP142-FVO/Alhydrogel and MSP142-3D7/Alhydrogel was assessed. The antibody response to each vaccine was measured by reactivity to homologous and heterologous MSP142, MSP119, and MSP133 recombinant proteins and recognition of FVO and 3D7 parasites.
Results:
Anti-MSP142 antibodies were detected by ELISA in 20/27 (74%) and 22/27 (81%) volunteers receiving three vaccinations of MSP142-FVO/Alhydrogel or MSP142-3D7/Alhydrogel, respectively. Regardless of the vaccine, the antibodies were cross-reactive to both MSP142-FVO and MSP142-3D7 proteins. The majority of the antibody response targeted the C-terminal 19-kDa domain of MSP142, although low-level antibodies to the N-terminal 33-kDa domain of MSP142 were also detected. Immunofluorescence microscopy of sera from the volunteers demonstrated reactivity with both FVO and 3D7 P. falciparum schizonts and free merozoites. Minimal in vitro growth inhibition of FVO or 3D7 parasites by purified IgG from the sera of the vaccinees was observed.
Conclusions:
The MSP142/Alhydrogel vaccines were safe and well tolerated but not sufficiently immunogenic to generate a biologic effect in vitro. Addition of immunostimulants to the Alhydrogel formulation to elicit higher vaccine-induced responses in humans may be required for an effective vaccine.
Editorial Commentary
Background: Generally, adults living in parts of the world where malaria is common develop protective immunity against the parasite. This means they may get infected but not become ill as a result. However, there are individuals, such as pregnant women and children under the age of five, who are more likely to develop symptoms of malaria due to no (or reduced) natural immunity. A successful malaria vaccine would stimulate an individual's immune system to respond to the malaria parasite and prevent serious clinical disease. Many different groups are currently developing potential vaccines. Several candidates are based on a protein called MSP1 (merozoite surface protein 1) which is found on the surface of the blood-stage form of the malaria parasite. However, in nature parasites carry different versions of the MSP1 protein, and ideally a successful vaccine would bring about immune responses against these different versions. The researchers carrying out this trial wanted to compare the safety and immune responses against candidate vaccines representing two different MSP1 proteins, which covered many different parasite lines. As a phase 1 trial, the study was carried out in healthy adult volunteers. Sixty individuals were assigned to receive an injection of the vaccines, either containing a recombinant protein analogous to the FVO parasite line (termed MSP142-FVO) or the 3D7 parasite line (termed MSP142-3D7) at three different dose levels. The trial's primary objective was to assess safety, which was done by collecting data on any abnormal signs or symptoms up to 14 d after each of three vaccinations. These outcomes were graded and then defined as related to the vaccine or not. The researchers also looked at antibody levels in participants' blood against different variants of the MSP1 protein, as well as using in vitro tests to see whether antibodies from vaccinated individuals could prevent malaria parasites from growing in lab culture.
What the trial shows: The safety outcomes of the trial showed that the most common type of side effect experienced by the volunteers was pain at the injection site. The vast majority of such events were graded as mild, although there was one single case of a severe event (high levels of pain experienced by one volunteer at the injection site). There was no significant association between the chance of side effects and the vaccine dosage that an individual received. Following vaccination, antibody levels against the protein on which the vaccine was based were detected, although these levels dropped over time. The researchers did not see a strong association between the vaccine dosage that individuals received and the level of antibody response. However, the two vaccines when compared seemed to be equally good at raising an immune response and both caused antibodies to be raised corresponding to different variants of the MSP1 protein. However, the antibodies raised did not seem to be particularly effective at preventing malaria parasites from growing in lab culture.
Strengths and limitations: Strengths of this study include a comparison of three different dosage levels of the vaccines under study, as well as a comparison of two vaccines based on the same protein, representing different parasite lines. Limitations to the study include the small number of participants, which makes the trial underpowered to detect all but large differences in side effects between the groups being compared. A placebo arm was not included in the trial, so it is not possible to be sure that the numbers of side effects observed here can be attributed to the vaccines or not. Finally, the procedure for assigning individuals to the two different vaccines involved alternation, rather than true randomization, which could have minimized the risk of bias.
Contribution to the evidence: The trial reported here is an essential step in vaccine development. The results provide the first evidence relating to safety for these two vaccines, and do not raise any safety concerns at this stage. Although the vaccines raised an immune response, the antibodies raised did not seem to have much of an effect on malaria parasites in vitro. While these vaccines are safe, alternative MSP1 vaccine formulations anticipated to bring about a greater immune response will likely be studied before proceeding to field studies.
doi:10.1371/journal.pctr.0020012
PMCID: PMC1847697  PMID: 17415408
15.  Towards evidence based medicine for paediatricians 
In order to give the best care to patients and families, paediatricians need to integrate the highest quality scientific evidence with clinical expertise and the opinions of the family.1Archimedes seeks to assist practising clinicians by providing “evidence based” answers to common questions which are not at the forefront of research but are at the core of practice. In doing this, we are adapting a format which has been successfully developed by Kevin Macaway‐Jones and the group at the Emergency Medicine Journal—“BestBets”.
A word of warning. The topic summaries are not systematic reviews, through they are as exhaustive as a practising clinician can produce. They make no attempt to statistically aggregate the data, nor search the grey, unpublished literature. What Archimedes offers are practical, best evidence based answers to practical, clinical questions.
The format of Archimedes may be familiar. A description of the clinical setting is followed by a structured clinical question. (These aid in focusing the mind, assisting searching,2 and gaining answers.3) A brief report of the search used follows—this has been performed in a hierarchical way, to search for the best quality evidence to answer the question.4 A table provides a summary of the evidence and key points of the critical appraisal. For further information on critical appraisal, and the measures of effect (such as number needed to treat, NNT) books by Sackett5 and Moyer6 may help. To pull the information together, a commentary is provided. But to make it all much more accessible, a box provides the clinical bottom lines.
Readers wishing to submit their own questions—with best evidence answers—are encouraged to review those already proposed at www.bestbets.org. If your question still hasn't been answered, feel free to submit your summary according to the Instructions for Authors at www.archdischild.com. Three topics are covered in this issue of the journal:
Does neonatal BCG vaccination protect against tuberculous meningitis?
Does dexamethasone reduce the risk of extubation failure in ventilated children?
Should metformin be prescribed to overweight adolescents in whom dietary/behavioural modifications have not helped?
REFERENCES
1. Moyer VA, Ellior EJ. Preface. In: Moyer VA, Elliott EJ, Davis RL, et al, eds. Evidence based pediatrics and child health, Issue 1. London: BMJ Books, 2000.
2. Richardson WS, Wilson MC, Nishikawa J, et al. The well‐built clinical question: a key to evidence‐based decisions. ACP J Club 1995;123:A12–13.
3. Bergus GR, Randall CS, Sinift SD, et al. Does the structure of clinical questions affect the outcome of curbside consultations with specialty colleagues? Arch Fam Med 2000;9:541–7.
4. http://cebm.jr2.ox.ac.uk/docs/levels.htm (accessed July 2002).
5. Sackett DL, Starus S, Richardson WS, et al. Evidence‐based medicine. How to practice and teach EBM. San Diego: Harcourt‐Brace, 2000.
6. Moyer VA, Elliott EJ, Davis RL, et al, eds. Evidence based pediatrics and child health, Issue 1. London: BMJ Books, 2000.
How to read your journals
Most people have their journals land, monthly, weekly, or quarterly, on their desk, courtesy of their professional associations. Then they sit, gathering dust and guilt, for a period of time. When the layer of either is too great for comfort (or the desk space is needed for some proper work), the wrapper is removed and the journal scanned. But does how people read reflect their information needs or their entertainment requirements?
It is not uncommon to find people straying from the editorial introduction to the value added sections (like obituaries, Lucina‐like summary pages, and end‐of‐article fillers) rather than face the impenetrable science that sits between them. I think that this is probably unhelpful, and would urge readers to do one more thing before placing the journal in the recycling. Scan the table of contents; if it mentions a systematic review or a randomised trial, then read at least the title and the abstract's conclusions. If you agree, pat yourself warmly on the back for being evidence based and up‐to‐date. If you disagree, ask if it will make any impact on your clinical (or personal) life. If it might, run through the methods and quickly appraise them. Does it supply higher quality evidence than that you already possess? If it does, it's worth reading. If it doesn't, don't bother too much.
There are new innovations which might aid the tedious task of consuming research effort. The on‐line Précis section of the Archives provides a highly readable version of the contents page to whet one's appetite. Finally, it's worth mentioning that evidence based summary materials (like Archimedes, or Journal Watch) are always worth reading—and if you didn't think that you wouldn't be here, would you?
PMCID: PMC2082933
Archimedes; evidence based medicine
16.  Towards evidence‐based medicine for paediatricians 
To give the best care to patients and families, paediatricians need to integrate the highest‐quality scientific evidence with clinical expertise and the opinions of the family.1Archimedes seeks to assist practising clinicians by providing “evidence‐based” answers to common questions which are not at the forefront of research but are at the core of practice. In doing this, we are adapting a format that has been successfully developed by Kevin Macaway‐Jones and the group at the Emergency Medicine Journal—“BestBets”.
A word of warning. The topic summaries are not systematic reviews, although they are as exhaustive as a practising clinician can produce. They make no attempt to statistically aggregate the data, nor search the grey, unpublished literature. What Archimedes offers are practical, best evidence‐based answers to practical, clinical questions.
The format of Archimedes may be familiar. A description of the clinical setting is followed by a structured clinical question. (These aid in focusing the mind, assisting searching2 and gaining answers.3) A brief report of the search used follows—this has been carried out in a hierarchical way, to search for the best‐quality evidence to answer the question (http://www.cebm.net/levels_of_evidence.asp). A table provides a summary of the evidence and key points of the critical appraisal. For further information on critical appraisal and the measures of effect (such as number needed to treat), books by Sackett et al4 and Moyer et al5 may help. To pull the information together, a commentary is provided. But to make it all much more accessible, a box provides the clinical bottom lines.
Electronic‐only topics that have been published on the BestBets site (www.bestbets.org) and may be of interest to paediatricians include:
Are meningeal irritation signs reliable in diagnosing meningitis in children?
Is immobilisation effective in Osgood‐Schlatter's disease?
Do all children presenting to the emergency department with a needlestick injury require PEP for HIV to reduce HIV transmission?
Readers wishing to submit their own questions—with best evidence answers—are encouraged to review those already proposed at www.bestbets.org. If your question still has not been answered, feel free to submit your summary according to the Instructions for Authors at www.archdischild.com. Three topics are covered in this issue of the journal.
Is lumbar puncture necessary for evaluation of early neonatal sepsis?
Does the use of calamine or antihistamine provide symptomatic relief from pruritus in children with varicella zoster infection?
Is supplementary iron useful when preterm infants are treated with erythropoietin?
Is more research needed?
“More research is needed” is a phrase you might have read before. But is more research really needed? Two situations are offered to us in Archimedes this month where clinical questions are, as yet, unanswered. Is iron supplementation really necessary for premature infants treated with erythropoietin, and do antihistamines and calamine lotion help in children with chicken pox? How can we decide if these questions really do “need” research? It may be worth thinking of how likely benefits and harms may be, what the importance of these outcomes are and finally, how much would you consider reasonable to pay for the answer? For example, what chance is there that antihistamines work in chickenpox? What is the chance that side effects will occur? What is the relative severity of side effects versus the delight of being itch free? If we pay for research and spend hours and hours of time pressing through the increasing regulatory frameworks for clinical trials to define the answer to this question, what will be the opportunity cost? What would we fail to do by looking at this? The same questions can be asked of iron supplementation in premature infants, the salvage treatment of relapsing systemic histocytosis or the promotion of car‐seat use in low‐income families. Such value judgements are important; they will have different answers from different perspectives; they will be subject to political influences from pressure groups; being aware of them might stop us from frequently expounding “more research is needed”.
References
1Moyer VA, Ellior EJ. Preface. In: Moyer VA, Elliott EJ, Davis RL, et al, eds. Evidence based pediatrics and child health, Issue 1. London: BMJ Books, 2000.
2Richardson WS, Wilson MC, Nishikawa J, et al. The well‐built clinical question: a key to evidence‐based decisions. ACP J Club 1995;123:A12–13.
3Bergus GR, Randall CS, Sinift SD, et al. Does the structure of clinical questions affect the outcome of curbside consultations with specialty colleagues? Arch Fam Med 2000;9:541–7.
4Sackett DL, Starus S, Richardson WS, et al. Evidence‐based medicine. How to practice and teach EBM. San Diego: Harcourt‐Brace, 2000.
5Moyer VA, Elliott EJ, Davis RL, et al, eds. Evidence based pediatrics and child health, Issue 1. London: BMJ Books, 2000.
doi:10.1136/adc.2006.105379
PMCID: PMC2083019
17.  Towards evidence based medicine for paediatricians 
In order to give the best care to patients and families, paediatricians need to integrate the highest quality scientific evidence with clinical expertise and the opinions of the family.1Archimedes seeks to assist practising clinicians by providing “evidence‐based” answers to common questions which are not at the forefront of research but are at the core of practice. In doing this, we are adapting a format which has been successfully developed by Kevin Macaway‐Jones and the group at the Emergency Medicine Journal—“BestBets”.
A word of warning. The topic summaries are not systematic reviews, though they are as exhaustive as a practising clinician can produce. They make no attempt to statistically aggregate the data, nor search the grey, unpublished literature. What Archimedes offers are practical, best evidence‐based answers to practical, clinical questions.
The format of Archimedes may be familiar. A description of the clinical setting is followed by a structured clinical question. (These aid in focusing the mind, assisting searching2 and gaining answers.3) A brief report of the search used follows—this has been performed in a hierarchical way, to search for the best‐quality evidence to answer the question. (http://www.cebm.net). A table provides a summary of the evidence and key points of the critical appraisal. For further information on critical appraisal, and the measures of effect (such as number needed to treat), books by Sackett et al4 and Moyer et al5 may help. To pull the information together, a commentary is provided. But to make it all much more accessible, a box provides the clinical bottom lines.
Electronic‐only topics that have been published on the BestBets site (www.bestbets.org) and may be of interest to paediatricians include:
When is a second course of indomethacin effective for PDA in neonates?
Does delayed cord clamping prevent sepsis?
Readers wishing to submit their own questions—with best evidence answers—are encouraged to review those already proposed at www.bestbets.org. If your question still hasn't been answered, feel free to submit your summary according to the Instructions for Authors at www.archdischild.com. Three topics are covered in this issue of the journal:
In children aged <3 years does procalcitonin help exclude serious bacterial infection in fever without focus?
Does avoidance of breast feeding reduce mother‐to‐infant transmission of hepatitis C virus infection?
Should children under treatment for juvenile idiopathic arthritis receive flu vaccination?
CAN gambling with other people's children
When we use tests to “rule out” a condition, we generally accept that we are left with a small risk of being wrong. (I think we have all discharged a child with an “upper respiratory tract infection” on a Friday to be greeted with them on antibiotics for pneumonia the following Monday.) How much faith we place in a test result is a product of two things: our initial assumption about the likelihood of the diagnosis (pretest probability) and our opinion as to how effective the test is (accuracy), but our actions do not just reflect these factors.
For instance, a well, afebrile child with a scattering of petechiae over its wrist 8 hours before, is unlikely to have meningococcal disease. If you perform a couple of tests, you can find that it has a low C‐reactive protein and a normal full blood count. What we do with this varies widely; some people would treat this with 48 h of antibiotics, others would discharge the patient home.
It is interesting to reflect on two things: first, what chance of meningococcal disease would you put on this clinical picture (before the test), and what about with the test results? What about your colleagues? You may be surprised by how widely this varies. Second, even those who have the same estimates of risk of disease may have different preferred actions (depending on their attitude to risk).
In looking at the diagnostic test for the ruling out of a disease, we can make our arguments more useful by having some data on the assumptions we make, and then transparently discussing our attitudes to risk. It is only after doing this that we can really decide if a test is good enough for us, regardless of how accurate it might be.
References
1Moyer VA, Ellior EJ. Preface. In: Moyer VA, Elliott EJ, Davis RL, et al, eds. Evidence based pediatrics and child health, Issue 1. London: BMJ Books, 2000.
2Richardson WS, Wilson MC, Nishikawa J, et al. The well‐built clinical question: a key to evidence‐based decisions. ACP J Club 1995;123:A12–13.
3Bergus GR, Randall CS, Sinift SD, et al. Does the structure of clinical questions affect the outcome of curbside consultations with specialty colleagues? Arch Fam Med 2000;9:541–7.
4Sackett DL, Starus S, Richardson WS, et al. Evidence‐based medicine. How to practice and teach EBM. San Diego: Harcourt‐Brace, 2000.
5Moyer VA, Elliott EJ, Davis RL, et al, eds. Evidence based pediatrics and child health. Issue 1. London: BMJ Books, 2000.
PMCID: PMC2083694  PMID: 17376947
18.  Tissue Adhesives for Simple Traumatic Lacerations 
Journal of Athletic Training  2008;43(2):222-224.
Reference/Citation: Farion K, Osmond MH, Hartling L, et al. Tissue adhesives for traumatic lacerations in children and adults. Cochrane Database Syst Rev. 2001(4);CD003326.
Clinical Question: What is the clinical evidence base for tissue adhesives in the management of simple traumatic lacerations?
Data Sources: Studies were identified by searches of the following databases: Cochrane Wounds Group Specialized Trials Register (September 2003), Cochrane Central Register of Controlled Trials (CENTRAL) (CDROM 2003, issue 3), MEDLINE (1966 to September 2003, week 1), EMBASE (1988 to 2003, week 36), Web of Science Science Citation Index (1975 to September 13, 2003) and various clinical trials registers (September 2003). Investigators and product manufacturers were contacted to identify additional eligible studies. The search terms included wounds and injuries, laceration, face injury, nose injury, tissue adhesives, and acrylates.
Study Selection: Each study fulfilled the following criteria: (1) The study was a randomized controlled trial that compared tissue adhesives with standard wound closure (SWC) (sutures, staples, adhesive strips) or tissue adhesive with tissue adhesive. (2) The wounds were acute, linear lacerations less than 12 hours old, resulting from blunt or sharp trauma. (3) The wound length, width, and depth allowed for approximation of the edges with minimal tension after deep sutures were placed, if required. Studies were included with no language or publication status restriction, with participants of any age recruited in an emergency department, outpatient clinic, walk-in clinic, or other primary care setting. Studies were excluded if the wounds were stellate lacerations, puncture wounds, mammalian bites, infected, heavily contaminated or devitalized, crossing joints or mucocutaneous junctions, in hair-bearing areas, or in patients with keloid formation or chronic illness.
Data Extraction: The characteristics of the study and participants, interventions, outcome measures, and findings were extracted by one author and verified by a second using a standard form. The primary measure was cosmetic outcome. Secondary measures were pain with the procedure, time to complete the procedure, and complications (erythema, infection, discharge, need for delayed closure, and dehiscence). Studies were divided into 2 groups as follows: group 1, comparisons among tissue adhesives with SWC, and group 2, comparisons among different tissue adhesives. All eligible studies were assessed for methodologic quality independently by 2 investigators using the Jadad Scale, which evaluates randomization, double blinding, withdrawals, and dropouts and is scored on a 5-point (maximum) scale. The data from the tissue adhesive and SWC studies were pooled and analyzed with a random-effects model. The I 2 statistic was used to determine heterogeneity among the studies. χ 2 analysis was performed to compare participant age, wound location, and type of tissue adhesive among the studies. The data from the studies comparing tissue adhesives were pooled and analyzed using a fixed-effects model.
Main Results: The search criteria identified 39 eligible studies, of which 11 met the inclusion criteria. In 10 studies, a tissue adhesive was compared with SWC. Five groups used butylcyanoacrylate, and 5 used octylcyanoacrylate. For SWC, 6 groups used sutures, 2 used adhesive strips, and 2 used a combination of methods, although most used sutures. Six studies were limited to pediatric patients and 2 to adult patients; 2 included patients of any age. Wounds were limited to facial lacerations in 2 pediatric studies and 1 group with patients of any age. Lacerations requiring deep sutures were excluded in 4 studies. One group compared tissue adhesives (butylcyanoacrylate and octylcyanoacrylate) among pediatric patients with facial lacerations not requiring deep sutures. In the 11 included studies, authors of 9 randomized and evaluated 1 laceration per patient, whereas 2 groups included patients with more than 1 laceration. In 1 group, each laceration was independently randomized and evaluated, and the other group randomized the patient and assigned all lacerations to a treatment group (tissue adhesive with SWC or tissue adhesive with tissue adhesive). The sample sizes ranged between 60 and 163 lacerations, and all 11 studies were performed in emergency departments.
The primary measure in all included studies was cosmetic outcome. The majority of groups used the Cosmetic Visual Analogue Scale, the Wound Evaluation Score, or a combination of these measures. Three groups measured cosmetic outcome with nonvalidated scoring systems. Assessment time periods were grouped and reported at (1) 5 to 14 days, (2) 1 to 3 months, and (3) 9 to 12 months after wound closure. Secondary outcomes were pain (as noted on visual analogue scale) and time to complete the procedure (as mean number of minutes). The 11 studies scored from 1 to 3 on the Jadad Scale. Adequate allocation concealment was reported in only 1 group.
Examining cosmetic outcome, 8 groups (565 lacerations) used the Cosmetic Visual Analogue Scale to compare tissue adhesives and SWC. The authors reported no significant differences in scores at the time periods of 5 to 14 days, 1 to 3 months, and 9 to 12 months. A subgroup analysis showed a significant ( P = .005) superiority of butylcyanoacrylate over SWC at 1 to 3 months. Using the Wound Evaluation Score, 4 studies (364 lacerations) compared tissue adhesives with SWC. No significant differences in cosmetic scores were found at 5 to 14 days, 1 to 3 months, or 9 to 12 months. One group (83 lacerations) compared butylcyanoacrylate with octylcyanoacrylate and reported no significant differences in cosmetic scores using the Cosmetic Visual Analogue Scale at 1 to 3 months and the Wound Evaluation Score at 5 to 14 days and 1 to 3 months.
Examining secondary outcomes, 6 groups (570 lacerations) compared tissue adhesives with SWC using the visual analogue scale for pain. Scores reported by parents, patients, physicians, and nurses significantly favored tissue adhesives. In 6 studies (584 lacerations), tissue adhesives were significantly favored over SWC in time to complete the procedure. For complication outcomes, 8 groups (727 lacerations) demonstrated significantly fewer incidences of erythema and an increased risk of dehiscence with tissue adhesives compared with SWC. No significant differences were shown for infection, delayed closure, or discharge. Among 83 lacerations, 1 group compared butylcyanoacrylate with octylcyanoacrylate and reported no significant differences in combined patient-reported and parent-reported visual analogue pain scores, time to complete the procedure, dehiscence, or infection.
Conclusions: This review provides evidence that tissue adhesives are an option to SWC (sutures, staples, adhesive strips) for the management of simple traumatic lacerations. Overall, no significant differences were found in cosmetic scores at the reported assessment periods between tissue adhesives and SWC. At 1 to 3 months, a subgroup analysis significantly favored butylcyanoacrylate over SWC. Tissue adhesives significantly lowered the time to complete the procedure, levels of pain, and rate of erythema. However, the data revealed a significant increase in the rate of dehiscence with the use of tissue adhesives when compared with SWC. The low methodologic quality of the evidence should be considered in the interpretation of the findings.
PMCID: PMC2267332  PMID: 18345349
wound closure; tissue bonding; open wounds
19.  Mechanism-based Classification of Pain for Physical Therapy Management in Palliative care: A Clinical Commentary 
Pain relief is a major goal for palliative care in India so much that most palliative care interventions necessarily begin first with pain relief. Physical therapists play an important role in palliative care and they are regarded as highly proficient members of a multidisciplinary healthcare team towards management of chronic pain. Pain necessarily involves three different levels of classification–based upon pain symptoms, pain mechanisms and pain syndromes. Mechanism-based treatments are most likely to succeed compared to symptomatic treatments or diagnosis-based treatments. The objective of this clinical commentary is to update the physical therapists working in palliative care, on the mechanism-based classification of pain and its interpretation, with available therapeutic evidence for providing optimal patient care using physical therapy. The paper describes the evolution of mechanism-based classification of pain, the five mechanisms (central sensitization, peripheral neuropathic, nociceptive, sympathetically maintained pain and cognitive-affective) are explained with recent evidence for physical therapy treatments for each of the mechanisms.
doi:10.4103/0973-1075.78458
PMCID: PMC3098553  PMID: 21633629
Mechanism-based classification; Pain rehabilitation; Pain sciences; Palliative physical therapy care
20.  The making of a pediatric pain psychologist: education, training and career trajectories 
Pain management  2012;2(5):499-507.
SUMMARY
Currently, there are no standard guidelines for the training of pediatric pain psychologists. This article is intended for pediatric pain medicine trainees and faculty in the USA and Canada, and includes discussion of the professional roles and responsibilities of pediatric pain psychologists, a historical perspective on the role of psychologists in the field of pediatric pain medicine, and career trajectories and recommendations for training of pediatric pain psychologists. The primary aim of this commentary is to provide a starting point for the standardization of training of pediatric pain psychologists in the future.
doi:10.2217/PMT.12.49
PMCID: PMC3546509  PMID: 23335947
21.  iCanCope with Pain™: User-centred design of a web- and mobile-based self-management program for youth with chronic pain based on identified health care needs 
Chronic pain self-management involves providing patients with knowledge, coping strategies and social support that help them to manage their pain. This type of intervention has been shown to be useful in treating chronic pain; however, many eligible chronic pain patients never receive such treatment due to limited accessibility and high cost. The use of Internet-based cognitive behavioural therapy has the potential to change this. In this study, the authors report their progress in the development of an Internet- and smartphone-based application for chronic pain self-management.
BACKGROUND:
While there are emerging web-based self-management programs for children and adolescents with chronic pain, there is currently not an integrated web- and smartphone-based app that specifically addresses the needs of adolescents with chronic pain.
OBJECTIVES:
To conduct a needs assessment to inform the development of an online chronic pain self-management program for adolescents, called iCanCope with Pain™.
METHODS:
A purposive sample of adolescents (n=23; 14 to 18 years of age) was recruited from two pediatric chronic pain clinics in Ontario. Interdisciplinary health care providers were also recruited from these sites. Three focus groups were conducted with adolescents (n=16) and one with pediatric health care providers (n=7). Individual adolescent interviews were also conducted (n=7).
RESULTS:
Qualitative analysis uncovered four major themes: pain impact; barriers to care; pain management strategies; and transition to adult care. Pain impacted social, emotional, physical and role functioning, as well as future goals. Barriers to care were revealed at the health care system, patient and societal levels. Pain management strategies included support systems, and pharmacological, physical and psychological approaches. Transition subthemes were: disconnect between pediatric and adult systems; skills development; parental role; and fear/anxiety. Based on these identified needs, the iCanCope with Pain™ architecture will include the core theory-based functionalities of: symptom self-monitoring; personalized goal setting; pain coping skills training; peer-based social support; and chronic pain education.
CONCLUSIONS:
The proposed iCanCope with Pain™ program aims to address the self-management needs of adolescents with chronic pain by improving access to disease information, strategies to manage symptoms and social support.
PMCID: PMC4197753  PMID: 25000507
Adolescent; Chronic pain; E-health; Mobile-health; Needs assessment; Self-management
22.  Developing a standardized approach to the assessment of pain in children and youth presenting to pediatric rheumatology providers: a Delphi survey and consensus conference process followed by feasibility testing 
Background
Pain in children with rheumatic conditions such as arthritis is common. However, there is currently no standardized method for the assessment of this pain in children presenting to pediatric rheumatologists. A more consistent and comprehensive approach is needed to effectively assess, treat and monitor pain outcomes in the pediatric rheumatology population. The objectives of this study were to: (a) develop consensus regarding a standardized pain assessment tool for use in pediatric rheumatology practice and (b) test the feasibility of three mediums (paper, laptop, and handheld-based applications) for administration.
Methods
In Phase 1, a 2-stage Delphi technique (pediatric rheumatologists and allied professionals) and consensus meeting (pediatric pain and rheumatology experts) were used to develop the self- and proxy-report pain measures. In Phase 2, 24 children aged 4-7 years (and their parents), and 77 youth, aged 8-18 years, with pain, were recruited during routine rheumatology clinic appointments and completed the pain measure using each medium (order randomly assigned). The participant's rheumatologist received a summary report prior to clinical assessment. Satisfaction surveys were completed by all participants. Descriptive statistics were used to describe the participant characteristics using means and standard deviations (for continuous variables) and frequencies and proportions (for categorical variables)
Results
Completing the measure using the handheld device took significantly longer for youth (M = 5.90 minutes) and parents (M = 7.00 minutes) compared to paper (M = 3.08 and 2.28 minutes respectively p = 0.001) and computer (M = 3.40 and 4.00 minutes respectively; p < 0.001). There was no difference in the number of missed responses between mediums for children or parents. For youth, the number of missed responses varied across mediums (p = 0.047) with the greatest number of missed responses occurring with the handheld device. Most children preferred the computer (65%, p = 0.008) and youth reported no preference between mediums (p = 0.307). Most physicians (60%) would recommend the computer summary over the paper questionnaire to a colleague.
Conclusions
It is clinically feasible to implement a newly developed consensus-driven pain measure in pediatric rheumatology clinics using electronic or paper administration. Computer-based administration was most efficient for most users, but the medium employed in practice may depend on child age and economic and administrative factors.
doi:10.1186/1546-0096-10-7
PMCID: PMC3366881  PMID: 22490427
Pain; Rheumatic diseases; Pediatrics; Feasibility studies; Pain measurement
23.  Persistent pain in a community-based sample of children and adolescents: Sex differences in psychological constructs 
The prevalence of persistent and recurrent pain among children and adolescents has important economic, social and psychological repercussions. The impact of chronic pain in children extends beyond the affected individuals – more than one-third of parents of children with pain report clinically significant levels of stress and depression. Although many pain-related psychological factors have been examined in chronic pediatric pain populations, much of that research involved clinical samples. Community-based research, however, is necessary to uncover the way pain is experienced by youth, regardless of whether treatment is sought or is available. This study aimed to ascertain the lifetime prevalence of pediatric pain in a Canadian community-based sample, and to explore age and sex differences in children who report persistent pain and those who do not with respect to several constructs believed to play important roles in the development and maintenance of persistent pain.
BACKGROUND:
Very few studies have investigated the psychological factors associated with the pain experiences of children and adolescents in community samples.
OBJECTIVES:
To examine the lifetime prevalence of, and psychological variables associated with, persistent pain in a community sample of children and adolescents, and to explore differences according to sex, age and pain history.
METHODS:
Participants completed the Childhood Anxiety Sensitivity Index (CASI), the Child Pain Anxiety Symptoms Scale (CPASS), the Multidimensional Anxiety Scale for Children-10 (MASC-10), the Pain Catastrophizing Scale for Children (PCS-C) and a pain history questionnaire that assessed chronicity and pain frequency. After research ethics board approval, informed consent/assent was obtained from 1022 individuals recruited to participate in a study conducted at the Ontario Science Centre (Toronto, Ontario).
RESULTS:
Of the 1006 participants (54% female, mean [± SD] age 11.6±2.7 years) who provided complete data, 27% reported having experienced pain that lasted for three months or longer. A 2×2×2 (pain history, age and sex) multivariate ANOVA was conducted, with the total scores on the CASI, the CPASS, the MASC-10 and the PCS-C as dependent variables. Girls with a history of persistent pain expressed higher levels of anxiety sensitivity (P<0.001) and pain catastrophizing (P<0.001) than both girls without a pain history and boys regardless of pain history. This same pattern of results was found for anxiety and pain anxiety in the older, but not the younger, age group.
CONCLUSIONS:
Boys and girls appear to differ in terms of how age and pain history relate to the expression of pain-related psychological variables. Given the prevalence of persistent pain found in the study, more research is needed regarding the developmental implications of persistent pain in childhood and adolescence.
PMCID: PMC3206778  PMID: 22059200
Children; Persistent pain; Psychosocial factors; Sex differences
24.  Safety and Allele-Specific Immunogenicity of a Malaria Vaccine in Malian Adults: Results of a Phase I Randomized Trial 
PLoS Clinical Trials  2006;1(7):e34.
Objectives:
The objectives were to evaluate the safety, reactogenicity, and allele-specific immunogenicity of the blood-stage malaria vaccine FMP1/AS02A in adults exposed to seasonal malaria and the impact of natural infection on vaccine-induced antibody levels.
Design:
We conducted a randomized, double-blind, controlled phase I clinical trial.
Setting:
Bandiagara, Mali, West Africa, is a rural town with intense seasonal transmission of Plasmodium falciparum malaria.
Participants:
Forty healthy, malaria-experienced Malian adults aged 18–55 y were enrolled.
Interventions:
The FMP1/AS02A malaria vaccine is a 42-kDa recombinant protein based on the carboxy-terminal end of merozoite surface protein-1 (MSP-142) from the 3D7 clone of P. falciparum, adjuvanted with AS02A. The control vaccine was a killed rabies virus vaccine (Imovax). Participants were randomized to receive either FMP1/AS02A or rabies vaccine at 0, 1, and 2 mo and were followed for 1 y.
Outcome Measures:
Solicited and unsolicited adverse events and allele-specific antibody responses to recombinant MSP-142 and its subunits derived from P. falciparum strains homologous and heterologous to the 3D7 vaccine strain were measured.
Results:
Transient local pain and swelling were more common in the malaria vaccine group than in the control group (11/20 versus 3/20 and 10/20 versus 6/20, respectively). MSP-142 antibody levels rose during the malaria transmission season in the control group, but were significantly higher in malaria vaccine recipients after the second immunization and remained higher after the third immunization relative both to baseline and to the control group. Immunization with the malaria vaccine was followed by significant increases in antibodies recognizing three diverse MSP-142 alleles and their subunits.
Conclusions:
FMP1/AS02A was well tolerated and highly immunogenic in adults exposed to intense seasonal malaria transmission and elicited immune responses to genetically diverse parasite clones. Anti-MSP-142 antibody levels followed a seasonal pattern that was significantly augmented and prolonged by the malaria vaccine.
Editorial Commentary
Background: In sub-Saharan Africa the burden of death and disease from malaria is particularly severe. Most affected are young children under the age of five, in whom natural immunity against the malaria parasite has not yet developed. There are not yet any approved vaccines that would reduce this burden, although many research groups are currently developing potential vaccines. One such candidate vaccine is FMP1/AS02A. This vaccine is designed to trigger an immune response against a protein (merozoite surface protein-1, or MSP-1) found on the surface of the infectious, blood-stage form of the malaria parasite. Early-stage clinical trials have already been performed in healthy people in the United States, who were not exposed to clinical malaria, and in Kenyan adults who are exposed to malaria throughout the year. These studies did not identify any safety concerns regarding the candidate vaccine, which meant that it could progress further in clinical testing. As part of this next stage, a group of researchers wanted to examine the safety and ability of the vaccine to boost immune responses in an area of sub-Saharan Africa where people are not exposed to malaria throughout the year, but rather only in the wet season. The trial reported here was carried out in northeast Mali, in which 40 adults received either the FMP1/AS02A vaccine or a rabies vaccine for comparison, just at the start of the malaria transmission season. The researchers primarily looked at safety outcomes, collecting data on certain specific signs or symptoms up to 8 d after immunization, other reported symptoms up to 31 d after immunization, and any serious adverse events during a follow-up period of 364 d after immunization. The researchers also examined antibody levels in the participants' blood against the MSP-1 protein.
What this trial shows: The researchers found that participants receiving the FMP1/AS02A vaccine had more immediate symptoms at the injection site (for example, pain or swelling) than the comparison group did. Other general symptoms, both solicited and unsolicited, such as headache, muscle aches, fever, and infections, were also more common in the malaria vaccine group than in the group receiving the rabies vaccine. There were two serious adverse events in the vaccine group, but these were not judged to be related to the vaccination. Antibody levels against the MSP-1 protein increased in both study groups through the course of the rainy season (when individuals would be likely exposed to bites from malaria-infected mosquitoes) and subsequently fell after the end of the malaria transmission season. However, participants receiving the vaccine had higher antibody responses at all timepoints measured; the differences were statistically significant at some timepoints, but not at others. Finally, the researchers looked at antibody reactions against three different variants of the MSP-1 protein in sera from participants receiving the candidate vaccine and found that the sera reacted similarly to all three variants.
Strengths and limitations: The study protocol followed established procedures for phase I clinical trials of this type, which allows the data to be compared across studies. Randomization procedures were appropriate, and steps were taken to blind participants in the trial, as well as those assessing outcomes, to the intervention participants received. A limitation of this study, which can apply to other phase I studies in general, is that small numbers of participants were recruited. Therefore, the trial was not powered to detect statistically significant differences between participant groups. It is also not clear whether the higher antibody levels seen in the participants receiving the FMP1/AS02A vaccine would be biologically significant (that is, act to prevent clinical malaria cases), a question that would need to be addressed in further trials.
Contribution to the evidence: The safety results from this study are similar to those from other trials and confirm that no safety concerns have thus far been identified regarding the FMP1/AS02A vaccine, which has now progressed to efficacy testing. This study was also conducted in a population exposed to seasonal malaria, whereas previous trials had been done among people exposed to malaria year-round. Finally, results from the trial also suggest that this vaccine induces antibodies that recognize genetically diverse forms of the vaccine antigen.
doi:10.1371/journal.pctr.0010034
PMCID: PMC1851722  PMID: 17124530
25.  Evidence-based Assessment of Pediatric Pain 
Journal of Pediatric Psychology  2007;33(9):939-955.
Objective To conduct an evidence-based review of pediatric pain measures. Methods Seventeen measures were examined, spanning pain intensity self-report, questionnaires and diaries, and behavioral observations. Measures were classified as “Well-established,” “Approaching well-established,” or “Promising” according to established criteria. Information was highlighted to help professionals evaluate the instruments for particular purposes (e.g., research, clinical work). Results Eleven measures met criteria for “Well-established,” six “Approaching well-established,” and zero were classified as “Promising.” Conclusions There are a number of strong measures for assessing children's pain, which allows professionals options to meet their particular needs. Future directions in pain assessment are identified, such as highlighting culture and the impact of pain on functioning. This review examines the research and characteristics of some of the commonly used pain tools in hopes that the reader will be able to use this evidence-based approach and the information in future selection of assessment devices for pediatric pain.
doi:10.1093/jpepsy/jsm103
PMCID: PMC2639489  PMID: 18024983
assessment; interviews; observational; pain; pediatrics; self-report

Results 1-25 (678769)