Search tips
Search criteria

Results 1-25 (1094352)

Clipboard (0)

Related Articles

1.  Gene Expression Profiling of Vasoregression in the Retina—Involvement of Microglial Cells 
PLoS ONE  2011;6(2):e16865.
Vasoregression is a hallmark of vascular eye diseases but the mechanisms involved are still largely unknown. We have recently characterized a rat ciliopathy model which develops primary photoreceptor degeneration and secondary vasoregression. To improve the understanding of secondary vasoregression in retinal neurodegeneration, we used microarray techniques to compare gene expression profiles in this new model before and after retinal vasoregression. Differential gene expression was validated by quantitative RT-PCR, Western blot and immunofluorescence. Of the 157 genes regulated more than twofold, the MHC class II invariant chain CD74 yielded the strongest upregulation, and was allocated to activated microglial cells close to the vessels undergoing vasoregression. Pathway clustering identified genes of the immune system including inflammatory signaling, and components of the complement cascade upregulated during vasoregression. Together, our data suggest that microglial cells involved in retinal immune response participate in the initiation of vasoregression in the retina.
PMCID: PMC3040753  PMID: 21379381
2.  Müller Cell Reactivity in Response to Photoreceptor Degeneration in Rats with Defective Polycystin-2 
PLoS ONE  2013;8(6):e61631.
Retinal degeneration in transgenic rats that express a mutant cilia gene polycystin-2 (CMV-PKD2(1/703)HA) is characterized by initial photoreceptor degeneration and glial activation, followed by vasoregression and neuronal degeneration (Feng et al., 2009, PLoS One 4: e7328). It is unknown whether glial activation contributes to neurovascular degeneration after photoreceptor degeneration. We characterized the reactivity of Müller glial cells in retinas of rats that express defective polycystin-2.
Age-matched Sprague-Dawley rats served as control. Retinal slices were immunostained for intermediate filaments, the potassium channel Kir4.1, and aquaporins 1 and 4. The potassium conductance of isolated Müller cells was recorded by whole-cell patch clamping. The osmotic swelling characteristics of Müller cells were determined by superfusion of retinal slices with a hypoosmotic solution.
Müller cells in retinas of transgenic rats displayed upregulation of GFAP and nestin which was not observed in control cells. Whereas aquaporin-1 labeling of photoreceptor cells disappeared along with the degeneration of the cells, aquaporin-1 emerged in glial cells in the inner retina of transgenic rats. Aquaporin-4 was upregulated around degenerating photoreceptor cells. There was an age-dependent redistribution of Kir4.1 in retinas of transgenic rats, with a more even distribution along glial membranes and a downregulation of perivascular Kir4.1. Müller cells of transgenic rats displayed a slight decrease in their Kir conductance as compared to control. Müller cells in retinal tissues from transgenic rats swelled immediately under hypoosmotic stress; this was not observed in control cells. Osmotic swelling was induced by oxidative-nitrosative stress, mitochondrial dysfunction, and inflammatory lipid mediators.
Cellular swelling suggests that the rapid water transport through Müller cells in response to osmotic stress is altered as compared to control. The dislocation of Kir4.1 will disturb the retinal potassium and water homeostasis, and osmotic generation of free radicals and inflammatory lipids may contribute to neurovascular injury.
PMCID: PMC3670868  PMID: 23755094
3.  Thioredoxin Glutathione Reductase from Schistosoma mansoni: An Essential Parasite Enzyme and a Key Drug Target 
PLoS Medicine  2007;4(6):e206.
Schistosomiasis—infection with helminth parasites in the genus Schistosoma, including S. mansoni—is a widespread, devastating tropical disease affecting more than 200 million people. No vaccine is available, and praziquantel, the only drug extensively utilized, is currently administered more than 100 million people yearly. Because praziquantel resistance may develop it is essential to identify novel drug targets. Our goal was to investigate the potential of a unique, selenium-containing parasite enzyme thioredoxin glutathione reductase (TGR) as a drug target.
Methods and Findings
Using RNA interference we found that TGR is essential for parasite survival; after silencing of TGR expression, in vitro parasites died within 4 d. We also found that auranofin is an efficient inhibitor of pure TGR (Ki = 10 nM), able to kill parasites rapidly in culture at physiological concentrations (5 μM), and able to partially cure infected mice (worm burden reductions of ~60%). Furthermore, two previously used antischistosomal compounds inhibited TGR activity, suggesting that TGR is a key target during therapy with those compounds.
Collectively, our results indicate that parasite TGR meets all the major criteria to be a key target for antischistosomal chemotherapy. To our knowledge this is the first validation of a Schistosoma drug target using a convergence of both genetic and biochemical approaches.
Using both genetic and biochemical approaches, David Williams and colleagues show that the parasite thioredoxin glutathione reductase meets all the major criteria to be a key target for antischistosomal chemotherapy.
Editors' Summary
More than 200 million people are infected with schistosomes, a type of parasitic worm. Schistosomes have a complex life cycle that starts with them reproducing in freshwater snails. The snails release free-swimming, infectious parasites that burrow into the skin of people who swim in the contaminated water. Once in the human host, the parasites turn into larvae and migrate to the liver where they become juvenile worms. These mature into 10- to 20-mm-long adult worms and take up long-term residence in the veins draining the gut (Schistosoma mansoni and S. japonicum) or bladder (S. haematobium). Here, the worms mate and release eggs, some of which pass into the feces and so back into water where they hatch and infect fresh snails. Schistosomiasis causes serious health problems (including chronic liver, gut, bladder, and spleen damage) in about 20 million people, making it a disease of great public-health and socioeconomic importance in the developing countries in which it mainly occurs.
Why Was This Study Done?
The only drug available to treat schistosomiasis is praziquantel. Although it is very effective, people regularly get reinfected and need to be retreated once or twice a year. All told, 100 million people are currently being treated with praziquantel. Reliance on a single drug, however, is problematic, as the parasites are likely to develop resistance to the drug over time. The identification of new drug targets in schistosomes is therefore an urgent goal. In this study, the researchers have investigated whether thioredoxin glutathione reductase (TGR), a parasitic enzyme with several functions, might be a key target for antischistosomal chemotherapy. They chose this enzyme because adult worms need to make antioxidants (chemicals that prevent oxygen from damaging cells) to protect themselves against the human immune response. Antioxidant production in these worms depends on TGR; in mammalian cells, two specialized enzymes do its job. The researchers reasoned, therefore, that TGR might be an essential parasite protein and a potentially important drug target.
What Did the Researchers Do and Find?
The researchers made large quantities of pure TGR and tested its activity against various substrates. The enzymatic properties and substrate preferences of TGR, they found, differed somewhat from those of its mammalian counterparts. They then screened different types of compounds for their ability to inhibit TGR. Praziquantel had no effect on TGR activity, but two antischistosomal compounds that are no longer used, potassium antimonyl tartrate and oltipraz, inhibited the enzyme. The most potent inhibitor of TGR, however, was a gold-containing complex called auranofin, low levels of which inhibited TGR in test tubes, completely killed larval, juvenile, and adult parasites living in laboratory dishes within hours, and more than halved the worm burden in infected mice. Finally, the researchers used a technique called RNA silencing to test the importance of TGR for worm survival. Fragments of double-stranded RNA (dsRNA) stop proteins being made from messenger RNA that contains an identical sequence. The addition of TGR dsRNA to larval parasites in a dish greatly reduced TGR enzyme activity and killed nearly all the parasites within days.
What Do These Findings Mean?
These findings suggest TGR as a key target for antischistosomal drug development. Indeed, the discovery that two previously used antischistosomal compounds inhibit TGR suggests that the enzyme has already served as a target protein. The RNA silencing experiment shows that TGR is essential for parasite survival, and the biochemical analyses indicate that TGR and its mammalian counterparts have different substrate specificities. Thus, it should be possible to find compounds that inhibit TGR but have much less effect on the mammalian enzymes. This is certainly true for auranofin, a drug used to treat rheumatoid arthritis. Whether auranofin will be an effective treatment for schistosomiasis remains to be seen—an agent that completely kills schistosomes in animals would be preferable. However, even a 50% reduction in worm burden would decrease the human health problems caused by schistosomiasis, and a combination of auranofin (or another TGR inhibitor) with an agent that works by a different mechanism might be more effective and would also reduce the chances of the parasite developing drug resistance.
Additional Information.
Please access these Web sites via the online version of this summary at
World Health Organization provides information on schistosomiasis, including a fact sheet in English, Spanish, French, Arabic, Chinese, and Russian
US Centers for Disease Control and Prevention provide information for the public and for professionals on schistosomiasis
MedlinePlus encyclopedia includes an entry on schistosomiasis (in English and Spanish)
The Schistosomiasis Control Initiative has information on the disease and its control
Wikipedia has a page on schistosomiasis that is available in several languages (note: Wikipedia is a free online encyclopedia that anyone can edit)
PMCID: PMC1892040  PMID: 17579510
4.  Angiotensin II induced inflammation in the kidney and in the heart of double transgenic rats 
We are investigating a double transgenic rat (dTGR) model, in which rats transgenic for the human angiotensinogen and renin genes are crossed. These rats develop moderately severe hypertension but die of end-organ cardiac and renal damage by week 7. The heart shows necrosis and fibrosis, whereas the kidneys resemble the hemolytic-uremic syndrome vasculopathy. Surface adhesion molecules (ICAM-1 and VCAM-1) are expressed early on the endothelium, while the corresponding ligands are found on circulating leukocytes. Leukocyte infiltration in the vascular wall accompanies PAI-1, MCP-1, iNOS and Tissue Factor expression. Furthermore we show evidence that Ang II causes the upregulation of NF-kB in our model.
We started PDTC-treatment on four weeks old dTGR (200 mg/kg sc) and age-matched SD rats.. Blood-pressure- and albuminuria- measurements were monitored during the treatement period (four weeks). The seven weeks old animals were killed, hearts and kidneys were isolated and used for immunohistochemical-and electromobility shift assay analsis.
Chronic treatment with the antioxidant PDTC decreased blood pressure (162 ± 8 vs. 190 ± 7 mm Hg, p = 0.02). Cardiac hypertrophy index was significantly reduced (4.90 ± 0.1 vs. 5.77 ± 0.1 mg/g, p < 0.001) compared to dTGR. PDTC reduced 24 h albuminuria by 85 % (2.7 ± 0.5 vs. 18.0 ± 3.4 mg/d, p < 0.001) and prevented death significantly. Vascular injury was ameliorated in small renal and cardiac vessels. PDTC inhibited NF-κB binding activity in heart and kidney. Immunohistochemical analysis shows increased expression of the p65 NF-κB subunit in the endothelium, smooth muscles cells of damaged small vessels, infiltrated cells, glomeruli, tubuli and collecting ducts of dTGR. PDTC markedly reduced the immunoreactivity of p65.
Our data show that inhibition of NF-κB by PDTC markedly reduces inflammation, iNOS expression in the dTGR most likely leading to decreased cytotoxicity, and cell proliferation. Thus, NF-κB activation plays an important role in ANG II-induced end-organ damage.
PMCID: PMC65512  PMID: 11835691
5.  Systemic Treatment with Erythropoietin Protects the Neurovascular Unit in a Rat Model of Retinal Neurodegeneration 
PLoS ONE  2014;9(7):e102013.
Rats expressing a transgenic polycystic kidney disease (PKD) gene develop photoreceptor degeneration and subsequent vasoregression, as well as activation of retinal microglia and macroglia. To target the whole neuroglialvascular unit, neuro- and vasoprotective Erythropoietin (EPO) was intraperitoneally injected into four –week old male heterozygous PKD rats three times a week at a dose of 256 IU/kg body weight. For comparison EPO-like peptide, lacking unwanted side effects of EPO treatment, was given five times a week at a dose of 10 µg/kg body weight. Matched EPO treated Sprague Dawley and water-injected PKD rats were held as controls. After four weeks of treatment the animals were sacrificed and analysis of the neurovascular morphology, glial cell activity and pAkt localization was performed. The number of endothelial cells and pericytes did not change after treatment with EPO or EPO-like peptide. There was a nonsignificant reduction of migrating pericytes by 23% and 49%, respectively. Formation of acellular capillaries was significantly reduced by 49% (p<0.001) or 40% (p<0.05). EPO-treatment protected against thinning of the central retina by 10% (p<0.05), a composite of an increase of the outer nuclear layer by 12% (p<0.01) and in the outer segments of photoreceptors by 26% (p<0.001). Quantification of cell nuclei revealed no difference. Microglial activity, shown by gene expression of CD74, decreased by 67% (p<0.01) after EPO and 36% (n.s.) after EPO-like peptide treatment. In conclusion, EPO safeguards the neuroglialvascular unit in a model of retinal neurodegeneration and secondary vasoregression. This finding strengthens EPO in its protective capability for the whole neuroglialvascular unit.
PMCID: PMC4094460  PMID: 25013951
6.  Effect of biliary drainage on inducible nitric oxide synthase, CD14 and TGR5 expression in obstructive jaundice rats 
AIM: To investigate the effect of biliary drainage on inducible nitric oxide synthase (iNOS), CD14 and TGR5 expression in rats with obstructive jaundice (OJ).
METHODS: Male adult Sprague-Dawley rats were randomly assigned to four groups: OJ, sham operation (SH), internal biliary drainage (ID) and external biliary drainage (ED). Rat models were successfully established by two operations and succumbed for extraction of Kupffer cells (KCs) and liver tissue collection on the 8th and 15th day. KCs were isolated by in situ hepatic perfusion and digested with collagen IV, density gradient centrifuged by percoll reagent and purified by cell culture attachment. The isolated KCs were cultured with the endotoxin lipopolysaccharide (LPS) with and without the addition of ursodeoxycholic acid (UDCA). The expression of iNOS, CD14 and bile acid receptor-TGR5 protein in rat liver tissues was determined by immunohistochemistry. The expression of iNOS and CD14 messenger RNA (mRNA) on the isolated KCs was detected by reverse transcription polymerase chain reaction (PCR) and the TGR5 mRNA level in KCs was measured by real-time quantitative PCR.
RESULTS: The iNOS protein was markedly expressed in the liver of OJ rats, but rare expressed in SH rats. After relief of OJ, the iNOS expression was decidedly suppressed in the ID group (ID vs OJ, P < 0.01), but obviously increased in rats of ED (ED vs OJ, P = 0.004). When interfered only with LPS, the expression of iNOS mRNA by KCs was increased in the OJ group compared with the SH group (P = 0.004). After relief of biliary obstruction, the iNOS mRNA expression showed slight changes in the ED group (ED vs OJ, P = 0.71), but dropped in the ID group (ID vs OJ, P = 0.001). Compared with the simple intervention with LPS, the expressions of iNOS mRNA were significantly inhibited in all four groups after interfered with both LPS and UDCA (P < 0.01, respectively). After bile duct ligation, the CD14 protein expression in rat liver was significantly strengthened (OJ vs SH, P < 0.01), but the CD14 mRNA level by KCs was not up-regulated (OJ vs SH, P = 0.822). After relieving the OJ, the expression of CD14 protein was reduced in the ID group (ID vs OJ, P < 0.01), but not reduced in ED group (ED vs OJ, P = 0.591). And then the CD14 mRNA expression was aggravated by ED (ED vs OJ, P < 0.01), but was not significantly different between the ID group and the SH and OJ groups (ID vs SH, P = 0.944; ID vs OJ, P = 0.513, respectively). The expression of TGR5 protein and mRNA increased significantly in OJ rats (OJ vs SH, P = 0.001, respectively). After relief of OJ, ID could reduce the expression of TGR5 protein and mRNA to the levels of SH group (ID vs SH, P = 0.22 and P = 0.354, respectively), but ED could not (ED vs SH, P = 0.001, respectively).
CONCLUSION: ID could be attributed to the regulatory function of activation of KCs and release of inflammatory mediators.
PMCID: PMC3631983  PMID: 23613625
Obstructive jaundice; Biliary drainage; Kupffer cells; CD14; TGR5; Ursodeoxycholic acid
7.  Renal Nitric Oxide Synthase and Antioxidant Preservation in Cyp1a1-Ren-2 Transgenic Rats With Inducible Malignant Hypertension 
American Journal of Hypertension  2013;26(10):1242-1249.
Dietary administration of 0.30% indole-3-carbinol (I3C) to Cyp1a1-Ren2 transgenic rats (TGRs) generates angiotensin II (ANG II)–dependent malignant hypertension (HTN) and increased renal vascular resistance. However, TGRs with HTN maintain a normal or slightly reduced glomerular filtration rate. We tested the hypothesis that maintenance of renal function in hypertensive Cyp1a1-Ren2 TGRs is due to preservation of the intrarenal nitric oxide (NO) and antioxidant systems.
Kidney cortex, kidney medulla, aortic endothelial (e) and neuronal (n) nitric oxide synthase (NOS), superoxide dismutases (SODs), and p22phox (nicotinamide adenine dinucleotide phosphate-oxidase subunit) protein abundances were measured along with kidney cortex total antioxidant capacity (TAC) and NOx. TGRs were fed a normal diet that contained 0.3% I3C or 0.3% I3C + candesartan (AT1 receptor antagonist; 25mg/L in drinking water) (n = 5–6 per group) for 10 days.
Blood pressure increased and body weight decreased in I3C-induced TGRs, while candesartan blunted these responses. Abundances of NOS, SOD, and p22phox as well as TAC were maintained in the kidney cortex of I3C-induced TGRs with and without candesartan, while kidney cortex NOx production increased in both groups. Kidney medulla eNOS and extracellular (EC) SOD decreased and nNOS were unchanged in both groups of I3C-induced TGRs. In addition, a compensatory increase occurred in kidney medulla Mn SOD in I3C-induced TGRs + candesartan. Aortic eNOS and nNOS∝ fell and p22phox and Mn SOD increased in hypertensive I3C-induced TGRs; all changes were reversed with candesartan.
The preservation of renal cortical NO and antioxidant capacity is associated with preserved renal function in Cyp1a1-Ren2 TGRs with ANG II-dependent malignant HTN.
PMCID: PMC3773572  PMID: 23764378
angiotensin receptor blocker; aorta; blood pressure; candesartan; hypertension; kidney; superoxide dismutase; total antioxidant capacity.
8.  Expression patterning reveals retinal inflammation as a minor factor in experimental retinopathy of ZDF rats 
Acta Diabetologica  2014;51(4):553-558.
Obese Zucker diabetic fatty (ZDF) rats are used as a type-2 diabetes model for microvascular complications. In order to study retinopathy in this model, changes in retinal vasculature were analyzed by quantitative morphometry and related to retinal expression of 46 selected genes that were analyzed by microfluidic card PCR technology. At 3 months of age, obese animals had developed stable hyperglycemia (20.7 ± 1.3 mmol/L plasma glucose vs. 6.5 ± 0.1 mmol/L in lean). Hyperinsulinemia initially presented in obese rats at 2 months (10.5 ± 0.7 μg/L plasma insulin vs. 0.2 ± 0.04 μg/L in lean) and decreased at 3 months (3.9 ± 0.6 vs. 0.5 ± 0.09 μg/ml in lean). At 8 months of age, animals had developed microvascular complications. An increased number of acellular capillaries in obese (24 ± 5/mm2) versus lean (15 ± 4/mm2) and a decreased number of retinal pericytes in obese (2,270 ± 250/mm2) versus lean animals (1,620 ± 243/mm2) could be observed. VEGFa, MIF, and HIF-1α were the most abundantly expressed and inflammatory genes such as TNFα and IL-6 are the least abundantly expressed genes. None of these genes were differentially regulated. Surprisingly, specific growth factors such as bFGF (FGF2) and placental growth factor, and adhesion molecules such as ICAM-1 were abundantly expressed and up-regulated in diabetic versus non-diabetic ZDF rats. In summary, we observed in type-2 diabetic ZDF rats retinopathy with retinal vasoregression along with a simultaneous up-regulation of specific growth factors such as bFGF and adhesion molecules, but only minor changes in key inflammatory genes.
Electronic supplementary material
The online version of this article (doi:10.1007/s00592-013-0550-2) contains supplementary material, which is available to authorized users.
PMCID: PMC4127441  PMID: 24477469
Zucker diabetic fatty rats; Diabetic retinopathy; Preclinical model; Growth factors; Inflammation; Adhesion
9.  Mutational Characterization of the Bile Acid Receptor TGR5 in Primary Sclerosing Cholangitis 
PLoS ONE  2010;5(8):e12403.
TGR5, the G protein-coupled bile acid receptor 1 (GPBAR1), has been linked to inflammatory pathways as well as bile homeostasis, and could therefore be involved in primary sclerosing cholangitis (PSC) a chronic inflammatory bile duct disease. We aimed to extensively investigate TGR5 sequence variation in PSC, as well as functionally characterize detected variants.
Methodology/Principal Findings
Complete resequencing of TGR5 was performed in 267 PSC patients and 274 healthy controls. Six nonsynonymous mutations were identified in addition to 16 other novel single-nucleotide polymorphisms. To investigate the impact from the nonsynonymous variants on TGR5, we created a receptor model, and introduced mutated TGR5 constructs into human epithelial cell lines. By using confocal microscopy, flow cytometry and a cAMP-sensitive luciferase assay, five of the nonsynonymous mutations (W83R, V178M, A217P, S272G and Q296X) were found to reduce or abolish TGR5 function. Fine-mapping of the previously reported PSC and UC associated locus at chromosome 2q35 in large patient panels revealed an overall association between the TGR5 single-nucleotide polymorphism rs11554825 and PSC (odds ratio  = 1.14, 95% confidence interval: 1.03–1.26, p = 0.010) and UC (odds ratio  = 1.19, 95% confidence interval 1.11–1.27, p = 8.5×10−7), but strong linkage disequilibrium precluded demarcation of TGR5 from neighboring genes.
Resequencing of TGR5 along with functional investigations of novel variants provided unique insight into an important candidate gene for several inflammatory and metabolic conditions. While significant TGR5 associations were detected in both UC and PSC, further studies are needed to conclusively define the role of TGR5 variation in these diseases.
PMCID: PMC2928275  PMID: 20811628
10.  Laser injury promotes migration and integration of retinal progenitor cells into host retina 
Molecular Vision  2010;16:983-990.
The migration and integration of grafted cells into diseased host tissue remains a critical challenge, particularly in the field of retinal progenitor cell (RPC) transplantation. It seems that natural physical barriers at the outer retina can impede the migration of grafted RPCs into the host retina. The purpose of this study was to investigate the integration and differentiation of murine RPCs transplanted into the subretinal space of mice with laser-induced damage to the outer retina.
RPCs were harvested from the neural retinas of postnatal day 1 enhanced green fluorescent protein (GFP) mice. Retinal photocoagulation was performed using a diode laser. Two µl containing ~6×105 expanded RPCs in suspension were injected into the subretinal space of the recipient animals following laser treatment. Cell morphometry was performed to assess the integration of donor cells. Immunohistochemistry and western blot were performed on recipient retinas.
Three weeks after transplantation, 1,158±320 cells per eye had migrated into the recipient outer nuclear layer (ONL). Most of these cells resided in the ONL around the retinal laser lesion. A subpopulation of these cells developed morphological features reminiscent of mature photoreceptors, expressed photoreceptor specific proteins including synaptic protein, and appeared to form synaptic connections with bipolar neurons. Retinal photocoagulation resulted in a significantly increased expression of matrix metalloproteinase-2 (MMP-2), MMP-9, and cluster differentiation 44 (CD44s), and a decreased expression of neurocan.
Transplanted RPCs migrate and integrate into the laser-injured ONL where they differentiate into photoreceptors with morphological features reminiscent of mature photoreceptors, express synaptic protein, and appear to form synaptic connections with retinal bipolar neurons. Following retinal photocoagulation, the enhanced level of integration of grafted RPCs is partially associated with increased expression of MMP-2 and, to a lesser extent, MMP-9, together with decreased levels of inhibitory molecules.
PMCID: PMC2890578  PMID: 20577598
11.  Tumor Growth Rate (TGR) is an early indicator of anti-tumor drug activity in phase I clinical trials 
RECIST evaluation does not take into account the pre-treatment tumor kinetics and may provide incomplete information regarding experimental drug activity. Tumor Growth Rate (TGR) allows for a dynamic and quantitative assessment of the tumor kinetics. How TGR varies along the introduction of experimental therapeutics and is associated with outcome in phase I patients remains unknown.
Experimental designs
Medical records from all patients (n=253) prospectively treated in 20 phase I trials were analyzed. TGR was computed during the pre-treatment period (REFERENCE) and the EXPERIMENTAL period. Associations between TGR, standard prognostic scores (RMH score) and outcome (PFS, OS) were computed (multivariate analysis).
We observed a reduction of TGR between the REFERENCE vs. EXPERIMENTAL periods (38% vs. 4.4%, P<.00001). Although most patients were classified as stable disease (65%) or progressive disease (25%) by RECIST at the first evaluation, 82% and 65% of them exhibited a decrease in TGR, respectively. In a multivariate analyses, only the decrease of TGR was associated with PFS (P=.004), whereas the RMH score was the only variable associated with OS (P=.0008). Only the investigated regimens delivered were associated with a decrease of TGR (P<.00001, multivariate analysis). Computing TGR profiles across different clinical trials reveals specific patterns of antitumor activity.
Exploring TGR in phase I patients is simple and provides clinically relevant information: (i) an early and subtle assessment of signs of antitumor activity; (ii) indpendent association with PFS; and (iii) It reveals drug-specific profiles; suggesting potential utility for guiding the further development of the investigational drugs.
PMCID: PMC3947306  PMID: 24240109
12.  The TGR5 receptor mediates bile acid–induced itch and analgesia 
The Journal of Clinical Investigation  2013;123(4):1513-1530.
Patients with cholestatic disease exhibit pruritus and analgesia, but the mechanisms underlying these symptoms are unknown. We report that bile acids, which are elevated in the circulation and tissues during cholestasis, cause itch and analgesia by activating the GPCR TGR5. TGR5 was detected in peptidergic neurons of mouse dorsal root ganglia and spinal cord that transmit itch and pain, and in dermal macrophages that contain opioids. Bile acids and a TGR5-selective agonist induced hyperexcitability of dorsal root ganglia neurons and stimulated the release of the itch and analgesia transmitters gastrin-releasing peptide and leucine-enkephalin. Intradermal injection of bile acids and a TGR5-selective agonist stimulated scratching behavior by gastrin-releasing peptide– and opioid-dependent mechanisms in mice. Scratching was attenuated in Tgr5-KO mice but exacerbated in Tgr5-Tg mice (overexpressing mouse TGR5), which exhibited spontaneous pruritus. Intraplantar and intrathecal injection of bile acids caused analgesia to mechanical stimulation of the paw by an opioid-dependent mechanism. Both peripheral and central mechanisms of analgesia were absent from Tgr5-KO mice. Thus, bile acids activate TGR5 on sensory nerves, stimulating the release of neuropeptides in the spinal cord that transmit itch and analgesia. These mechanisms could contribute to pruritus and painless jaundice that occur during cholestatic liver diseases.
PMCID: PMC3613908  PMID: 23524965
13.  Aberrant DNA Methylation of G-protein-coupled Bile Acid Receptor Gpbar1 (TGR5) is a Potential Biomarker for Hepatitis B Virus Associated Hepatocellular Carcinoma 
Background: G-protein-coupled bile acid receptor Gpbar1 (TGR5) is a newly identified liver tumor suppressor in carcinogenesis. This present study was therefore to determine the potential value of serum TGR5 promoter methylation in identifying hepatocellular carcinoma (HCC) from chronic hepatitis B (CHB) patients.
Methods: The circulating cell-free DNA (cfDNA) was extracted from a retrospective dataset including 160 HCC, 88 CHB and 45 healthy controls (HCs). Methylation status of TGR5 promoter was examined by methylation-specific polymerase chain reaction (MSP).
Results: Hypermethylation of the TGR5 promoter occurred significantly more frequent in HCC (77/160, 48.13%) than CHB (12/88, 13.64%; p<0.01) and HCs (2/45, 4.44%; p<0.01). The methylation rate of TGR5 in HCC patients ≥60 years old was significantly higher than those <60 years old (p<0.05). Alpha fetoprotein (AFP) had sensitivity of 58.13%, 30.63% and 24.38% at cut-off points of 20, 200 and 400ng/ml respectively; while TGR5 methylation combined AFP had sensitivity of 81.25%, 68.13% and 65%. AFP had specificity of 47.73%, 92.05% and 98.86% at cut-off points of 20, 200 and 400ng/ml respectively; while TGR5 methylation combined AFP had specificity of 38.64%, 78.41% and 85.23%. AFP had Youden index of 0.06, 0.23 and 0.23 at cut-off points of 20, 200 and 400ng/ml respectively; while TGR5 methylation combined AFP had Youden index of 0.20, 0.47 and 0.50.
Conclusions: Our findings strongly suggested the combination of serum TGR5 promoter methylation and AFP enhanced the diagnostic value of AFP alone in discriminating HCC from CHB patients.
PMCID: PMC3894401  PMID: 24465162
TGR5; DNA methylation; Hepatocellular carcinoma; MSP; serum
14.  Combined inhibition of 20-hydroxyeicosatetraenoic acid formation and of epoxyeicosatrienoic acids degradation attenuates hypertension and hypertension-induced end-organ damage in Ren-2 transgenic rats 
Recent studies have shown that the renal cytochrome P-450 metabolites of arachidonic acid: the vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE), and the vasodilator epoxyeicosatrienoic acids (EETs) play an important role in the pathophysiology of angiotensin II (ANG II)-dependent forms of hypertension and the associated target organ damage. The present studies were performed in Ren-2 renin transgenic rats (TGR) to evaluate the effects of chronic selective inhibition of 20-HETE formation or elevation of the level of EETs, alone or in combination, on the course of hypertension and hypertension-associated end-organ damage. Both young (30 days of age) prehypertensive TGR and adult (190 days of age) TGR with established hypertension were examined. Normotensive Hannover Sprague-Dawley (HanSD) rats served as controls. The rats were treated with N-methylsulfonyl-12,12-dibromododec-11-enamide to inhibit 20-HETE formation and/or with N-cyclohexyl-N-dodecyl urea to inhibit soluble epoxide hydrolase and prevent degradation of EETs. Inhibition in TGR rats of 20-HETE formation combined with enhanced bioavailability of EETs attenuated the development of hypertension, cardiac hypertrophy, proteinuria, glomerular hypertrophy and sclerosis as well as renal tubulointerstitial injury. This was also associated with an attenuation of the responsiveness of the systemic and renal vascular beds to ANG II without modifying their responses to norepinephrine. Our data suggest that altered production and/or action of 20-HETE and EETs plays a permissive role in the development of hypertension and hypertension-associated end-organ damage in this model of ANG II-dependent hypertension. This information provides a basis for a search of new therapeutic approaches to the treatment of hypertension.
PMCID: PMC2854172  PMID: 20050826
cytochrome P-450 metabolites; renin-angiotensin system; hypertension; end-organ damage; soluble epoxide hydrolase
15.  Intervention With an Erythropoietin-Derived Peptide Protects Against Neuroglial and Vascular Degeneration During Diabetic Retinopathy 
Diabetes  2011;60(11):2995-3005.
Erythropoietin (EPO) may be protective for early stage diabetic retinopathy, although there are concerns that it could exacerbate retinal angiogenesis and thrombosis. A peptide based on the EPO helix-B domain (helix B-surface peptide [pHBSP]) is nonerythrogenic but retains tissue-protective properties, and this study evaluates its therapeutic potential in diabetic retinopathy.
After 6 months of streptozotocin-induced diabetes, rats (n = 12) and age-matched nondiabetic controls (n = 12) were evenly split into pHBSP and scrambled peptide groups and injected daily (10 μg/kg per day) for 1 month. The retina was investigated for glial dysfunction, microglial activation, and neuronal DNA damage. The vasculature was dual stained with isolectin and collagen IV. Retinal cytokine expression was quantified using real-time RT-PCR. In parallel, oxygen-induced retinopathy (OIR) was used to evaluate the effects of pHBSP on retinal ischemia and neovascularization (1–30 μg/kg pHBSP or control peptide).
pHBSP or scrambled peptide treatment did not alter hematocrit. In the diabetic retina, Müller glial expression of glial fibrillary acidic protein was increased when compared with nondiabetic controls, but pHBSP significantly reduced this stress-related response (P < 0.001). CD11b+ microglia and proinflammatory cytokines were elevated in diabetic retina responses, and some of these responses were attenuated by pHBSP (P < 0.01–0.001). pHBSP significantly reduced diabetes-linked DNA damage as determined by 8-hydroxydeoxyguanosine and transferase-mediated dUTP nick-end labeling positivity and also prevented acellular capillary formation (P < 0.05). In OIR, pHBSP had no effect on preretinal neovascularization at any dose.
Treatment with an EPO-derived peptide after diabetes is fully established can significantly protect against neuroglial and vascular degenerative pathology without altering hematocrit or exacerbating neovascularization. These findings have therapeutic implications for disorders such as diabetic retinopathy.
PMCID: PMC3198080  PMID: 21911748
16.  Intravitreal injection of ciliary neurotrophic factor (CNTF) causes peripheral remodeling and does not prevent photoreceptor loss in canine RPGR mutant retina 
Experimental eye research  2007;84(4):753-771.
Ciliary neurotrophic factor (CNTF) rescues photoreceptors in several animal models of retinal degeneration and is currently being evaluated as a potential treatment for retinitis pigmentosa in humans. This study was conducted to test whether CNTF prevents photoreceptor cell loss in XLPRA2, an early onset canine model of X-linked retinitis pigmentosa caused by a frameshift mutation in RPGR exon ORF15.
Four different treatment regimens of CNTF were tested in XLPRA2 dogs. Under anesthesia, the animals received at different ages an intravitreal injection of 12 μg of CNTF in the left eye. The right eye served as a control and was injected with a similar volume of phosphate buffered saline (PBS). Ocular examinations were performed regularly during the treatment periods. At termination, the dogs were euthanatized, eyes collected and the retinas were processed for embedding in optimal cutting temperature (OCT) medium. The outer nuclear layer (ONL) thickness was evaluated on H&E sections and values in both CNTF- and PBS-treated eyes were compared. Morphologic alterations in the peripheral retina were characterized by immunohistochemistry using cell-specific markers. Cell proliferation in the retinas was examined on semi-thin plastic sections, and by BrdU pulse-labeling and Ki67 immunohistochemistry on cryosections.
All CNTF-treated eyes showed early clinical signs of corneal epitheliopathy, subcapsular cataracts and uveitis. No statistically significant difference in ONL thickness was seen between the CNTF- and PBS-injected eyes. Prominent retinal remodeling that consisted in an abnormal increase in the number of rods, and in misplacement of some rods, cones, bipolar and Müller cells, was observed in the peripheral retina of CNTF-treated eyes. This was only seen when CNTF was in injected before the age at which the canine retina reaches full maturation.
In XLPRA2 dogs, intravitreal injections of CNTF failed to prevent photoreceptors from undergoing cell death in the central and mid-peripheral retina. CNTF also caused ocular side-effects and morphologic alterations in the periphery that were consistent with cell dedifferentiation and proliferation. Our findings suggest that some inherited forms of retinal degeneration may not respond to CNTF’s neuroprotective effects.
PMCID: PMC2709826  PMID: 17320077
neuroprotection; ciliary neurotrophic factor; retina; photoreceptors; RPGR; X-linked retinitis pigmentosa; remodeling; dog
17.  Possible pathways for lysosomal enzyme delivery 
The Journal of Cell Biology  1985;101(6):2253-2262.
Immunogold double-labeling and ultrathin cryosections were used to compare the subcellular distribution of albumin, mannose 6-phosphate receptor (MPR), galactosyltransferase, and the lysosomal enzymes cathepsin D, beta-hexosaminidase, and alpha-glucosidase in Hep G2 cells. MPR and lysosomal enzymes were found throughout the stack of Golgi cisternae and in a trans-Golgi reticulum (TGR) of smooth-surfaced tubules with coated buds and vesicles. The trans-Golgi orientation of TGR was ascertained by the co-localization with galactosyltransferase. MPR was particularly abundant in TGR and CURL, the compartment of uncoupling receptors and ligands. Both TGR and CURL also contained lysosomal enzymes, but endogenous albumin was detected in TGR only. The coated buds on TGR tubules contained MPR, lysosomal enzymes, as well as albumin. MPR and lysosomal enzymes were also found in coated pits of the plasma membrane. CURL tubules seemed to give rise to smooth vesicles, often of the multivesicular body type. In CURL, the enzymes were found in the lumina of the smooth vesicles while MPR prevailed in the tubules. These observations suggest a role of CURL in transport of lysosomal enzymes to lysosomes. When the cells were treated with the lysosomotropic amine primaquine, binding of anti-MPR to the cells in culture was reduced by half. Immunocytochemistry showed that MPR accumulated in TGR, especially in coated buds. Since these buds contain endogenous albumin and lysosomal enzymes also, these data suggest that coated vesicles originating from TGR provide for a secretory route in Hep G2 cells and that this pathway is followed by the MPR system as well.
PMCID: PMC2114005  PMID: 2933416
18.  Characterization of Müller glia and neuronal progenitors during adult zebrafish retinal regeneration 
Experimental eye research  2008;87(5):433-444.
The adult zebrafish retina exhibits a robust regenerative response following light-induced photoreceptor cell death. This response is initiated by the Müller glia proliferating in the inner nuclear layer (INL), which gives rise to neuronal progenitor cells that continue to divide and migrate to the outer nuclear layer (ONL), where they differentiate into rod and cone photoreceptors. We previously conducted a microarray analysis of retinal gene expression at 16, 31, 51, 68, and 96 hours of constant intense-light treatment to identify genes and their corresponding proteins that may be involved in the generation and proliferation of the neuronal progenitor cells. We examined the expression of two candidate transcription factors, Pax6 and Ngn1, and one candidate transgene, olig2:EGFP, in the regenerating light-damaged retina. We compared the temporal and spatial expression patterns of these markers relative to PCNA (proliferating cell nuclear antigen), an established marker for proliferating cells in the zebrafish retina, and the Tg(gfap:EGFP)nt11 transgenic line that specifically labels Müller glial cells. We found that Müller glial cells dedifferentiate during regeneration, based on the loss of cell-specific markers such as GFAP (glial fibrillary acidic protein) and glutamine synthetase following their reentry into the cell cycle to produce neuronal progenitors. Pax6 expression was first detected in the proliferating neuronal progenitors by 51 hours of constant light treatment, which is significantly after the Müller glia first reenter the cell cycle after 31 hours of light. This suggests that Pax6 expression increases in neuronal progenitors, rather than in the proliferating Müller glia. EGFP expression from the olig2 promoter was first detected by 68 hours of constant light treatment in the dedifferentiated Müller glia, with Pax6 expressed in the closely-associated proliferating neuronal progenitors migrating to the ONL. Both Pax6 and olig2 expression persisted until three days post light-treatment, when the neuronal progenitors begin differentiating into new rod and cone photoreceptors. Ngn1 protein expression was initially detected in proliferating neuronal progenitors at 68 hours of light treatment. However, Ngn1 expression persisted in a subset of the INL nuclei until 17 days post-light treatment. Using the Tg(gfap:EGFP)nt11 transgenic line, Ngn1 was localized to the Müller glial nuclei that were reestablished following the regenerative response. These markers, therefore, can be used to identify different cell types at particular stages of retinal regeneration: neuronal progenitor formation, proliferation, and the reestablishment of the Müller glia cells. These markers will be important to further characterize the regeneration response in other retinal damage models and to elucidate the defects associated with mutants and morphants that disrupt the regeneration response.
PMCID: PMC2586672  PMID: 18718467
Pax6; Ngn1; Olig2; retinal regeneration; Müller glia; neuronal progenitor; stem cells; photoreceptor degeneration
19.  Attenuated Glial Reactions and Photoreceptor Degeneration after Retinal Detachment in Mice Deficient in Glial Fibrillary Acidic Protein and Vimentin 
To characterize the reactions of retinal glial cells (astrocytes and Müller cells) to retinal injury in mice that lack glial fibrillary acidic protein (GFAP) and vimentin (GFAP-/-Vim-/-) and to determine the role of glial cells in retinal detachment (RD)-induced photoreceptor degeneration.
RD was induced by subretinal injection of sodium hyaluronate in adult wild-type (WT) and GFAP-/-Vim-/- mice. Astroglial reaction and subsequent monocyte recruitment were quantified by measuring extracellular signal-regulated kinase (Erk) and c-fos activation and the level of expression of chemokine monocyte chemoattractant protein (MCP)-1 and by counting monocytes/microglia in the detached retinas. Immunohistochemistry, immunoblotting, real-time quantitative polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA) were used. RD-induced photoreceptor degeneration was assessed by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) and measurement of outer nuclear layer (ONL) thickness.
RD-induced reactive gliosis, characterized by GFAP and vimentin upregulation, Erk and c-fos activation, MCP-1 induction, and increased monocyte recruitment in WT mice. Absence of GFAP and vimentin effectively attenuated reactive responses of retinal glial cells and monocyte infiltration. As a result, detached retinas of GFAP-/-Vim-/- mice exhibited significantly reduced numbers of TUNEL-positive photoreceptor cells and increased ONL thickness compared with those of WT mice.
The absence of GFAP and vimentin attenuates RD-induced reactive gliosis and, subsequently, limits photoreceptor degeneration. Results of this study indicate that reactive retinal glial cells contribute critically to retinal damage induced by RD and provide a new avenue for limiting photoreceptor degeneration associated with RD and other retinal diseases or damage.
PMCID: PMC2613948  PMID: 17525210
20.  Sequential changes in the gene expression profile of murine retinal progenitor cells during the induction of differentiation 
Molecular Vision  2009;15:2111-2122.
Following transplantation, cultured retinal progenitor cells (RPCs) integrate into the diseased host retina and exhibit morphologies and markers indicative of local cellular phenotypes. In vitro analysis of cultured RPCs allows detailed examination of marker gene expression during the initial phase of differentiation and can provide insight into the variables influencing this process.
Using cultured murine RPCs, this study compares the effects of fetal bovine serum (FBS) with those of ciliary neurotrophic factor (CNTF), individually or in combination with epidermal growth factor (EGF). Differentiation was assessed by way of the relative expression of 17 genes using quantitative PCR (qPCR) at five time points over a seven-day period.
Both CNTF and FBS rapidly altered the gene expression of RPCs, with very marked upregulation of glial fibrillary acidic protein (GFAP; FBS>CNTF) and marked down-regulation of the proliferation marker Ki-67, consistent with the induction of differentiation. The evidence supports a preponderantly pro-glial influence for both the FBS and CNTF, however, neuronal markers were also upregulated to a lesser extent. Immunocytochemistry confirmed subpopulations labeling with neuronal markers, including rhodopsin. In the presence of sustained EGF stimulation, the differentiating influences of both FBS and CNTF remained perceptible as transient peaks of relative gene expression, but were markedly diminished overall.
This study shows that it is possible to compare the relative efficacy of in vitro differentiation protocols using murine RPCs and qPCR. The differentiating influences of both serum and CNTF were confirmed, but shown to be powerfully moderated by EGF. This suggests that EGF withdrawal is the dominant feature of these differentiation protocols and that exposure to either serum or CNTF is insufficient to irreversibly commit a cultured RPC population to terminal differentiation unless accompanied by concomitant cessation of mitogenic stimulation.
PMCID: PMC2765240  PMID: 19862338
21.  Differences in the endosomal distributions of the two mannose 6- phosphate receptors 
The Journal of Cell Biology  1993;121(5):997-1010.
Multiple immunolabeling of cryosections was performed to compare the subcellular distributions of the two mannose 6-phosphate receptors (MPRs) involved in the intracellular targeting of lysosomal enzymes: the cation-dependent (CD) and cation-independent (CI) MPR. In two cell types, the human hepatoma cell line HepG2 and BHK cells double transfected with cDNA's encoding for the human CD-MPR and CI-MPR, we found the two receptors at the same sites: the trans-Golgi reticulum (TGR), endosomes, electron-dense cytoplasmic vesicles, and the plasma membrane. In the TGR the two receptors colocalized and were concentrated to the same extent in the same HA I-adaptor positive coated buds and vesicles. Endosomes were identified by the presence of exogenous tracers. The two MPR codistributed to the same endosomes, but semiquantitative analysis showed a relative enrichment of the CI-MPR in endosomes containing many internal vesicles. Two endosomal subcompartments were discerned, the central vacuole and the associated tubules and vesicles (ATV). We found an enrichment of CD-MPR over CI- MPR in the ATV. Lateral segregation of the two receptors within the plane of membranes was also detected on isolated organelles. Double immunolabeling for the CD-MPR and the asialoglycoprotein receptor, which mainly recycles between endosomes and the plasma membrane, revealed that these two receptors were concentrated in different subpopulations of endosomal ATV. The small GTP-binding protein rab4, which has been shown to mediate recycling from endosomes to the plasma membrane, was localized at the cytosolic face of many endosomal ATV. Quantitative analysis of double-immunolabeled cells revealed only a limited codistribution of the MPRs and rab4 in ATV. These data suggest that the two MPRs exit the TGR via the same coated vesicles, but that upon arrival in the endosomes CD-MPR is more rapidly than CI-MPR, segregated into ATV which probably are destined to recycle MPRs to TGR.
PMCID: PMC2119677  PMID: 8099077
22.  Effects of Combined Ketamine/Xylazine Anesthesia on Light Induced Retinal Degeneration in Rats 
PLoS ONE  2012;7(4):e35687.
To explore the effect of ketamine-xylazine anesthesia on light-induced retinal degeneration in rats.
Rats were anesthetized with ketamine and xylazine (100 and 5 mg, respectively) for 1 h, followed by a recovery phase of 2 h before exposure to 16,000 lux of environmental illumination for 2 h. Functional assessment by electroretinography (ERG) and morphological assessment by in vivo imaging (optical coherence tomography), histology (hematoxylin/eosin staining, TUNEL assay) and immunohistochemistry (GFAP and rhodopsin staining) were performed at baseline (ERG), 36 h, 7 d and 14 d post-treatment. Non-anesthetized animals treated with light damage served as controls.
Ketamine-xylazine pre-treatment preserved retinal function and protected against light-induced retinal degeneration. In vivo retinal imaging demonstrated a significant increase of outer nuclear layer (ONL) thickness in the non-anesthetized group at 36 h (p<0.01) and significant reduction one week (p<0.01) after light damage. In contrast, ketamine-xylazine pre-treated animals showed no significant alteration of total retinal or ONL thickness at either time point (p>0.05), indicating a stabilizing and/or protective effect with regard to phototoxicity. Histology confirmed light-induced photoreceptor cell death and Müller cells gliosis in non-anesthetized rats, especially in the superior hemiretina, while ketamine-xylazine treated rats showed reduced photoreceptor cell death (TUNEL staining: p<0.001 after 7 d), thicker ONL and longer IS/OS. Fourteen days after light damage, a reduction of standard flash induced a-wave amplitudes and a-wave slopes (p = 0.01) and significant alterations in parameters of the scotopic sensitivity function (e.g. Vmax of the Naka Rushton fit p = 0.03) were observed in non-treated vs. ketamine-xylazine treated animals.
Our results suggest that pre-treatment with ketamine-xylazine anesthesia protects retinas against light damage, reducing photoreceptor cell death. These data support the notion that anesthesia with ketamine-xylazine provides neuroprotective effects in light-induced cell damage.
PMCID: PMC3338443  PMID: 22558200
23.  β Integrins Mediate FAK Y397 Autophosphorylation of Resistance Arteries during Eutrophic Inward Remodeling in Hypertension 
Journal of Vascular Research  2014;51(4):305-314.
Human essential hypertension is characterized by eutrophic inward remodeling of the resistance arteries with little evidence of hypertrophy. Upregulation of αVβ3 integrin is crucial during this process. In order to investigate the role of focal adhesion kinase (FAK) activation in this process, the level of FAK Y397 autophosphorylation was studied in small blood vessels from young TGR(mRen2)27 animals as blood pressure rose and eutrophic inward remodeling took place. Between weeks 4 and 5, this process was completed and accompanied by a significant increase in FAK phosphorylation compared with normotensive control animals. Phosphorylated (p)FAK Y397 was coimmunoprecipitated with both β1- and β3-integrin-specific antibodies. In contrast, only a fraction (<10-fold) was coprecipitated with the β3 integrin subunit in control vessels. Inhibition of eutrophic remodeling by cRGDfV treatment of TGR(mRen2)27 rats resulted in the development of smooth-muscle-cell hypertrophy and a significant further enhancement of FAK Y397 phosphorylation, but this time with exclusive coassociation of pFAK Y397 with integrin β1. We established that phosphorylation of FAK Y397 with association with β1 and β3 integrins occurs with pressure-induced eutrophic remodeling. Inhibiting this process leads to an adaptive hypertrophic vascular response induced by a distinct β1-mediated FAK phosphorylation pattern.
PMCID: PMC4224252  PMID: 25300309
Integrins; Resistance arteries; Eutrophic remodeling; Hypertension
24.  Synaptic Pathology in Retinoschisis Knockout (Rs1−/y) Mouse Retina and Modification by rAAV-Rs1 Gene Delivery 
At an early age, the retinoschisin knockout (Rs1-KO) mouse retina has progressive photoreceptor degeneration with severe disruption of the outer plexiform layer (OPL) that decreases at older ages. The electroretinogram (ERG) undergoes parallel changes. The b-wave amplitude from bipolar cells is reduced disproportionately to the photoreceptor a-wave at young but not at older ages. The protein expression and morphology of the OPL in Rs1-KO mice was investigated at different ages, to explore the role of the synaptic layer in these ERG changes.
Retinas of wild-type (Wt) and Rs1-KO mice from postnatal day (P)7 to 12 months were evaluated by light and electron microscopy (EM) and biochemistry. PSD95 (postsynaptic density protein), mGluR6 (metabotropic glutamate receptor subtype 6), retinoschisin (Rs1), the Müller cell proteins glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS), the bipolar cell marker protein kinase C alpha (PKCα), and the horizontal cell marker calbindin were localized by immunofluorescence and immuno-EM. Levels of PSD95 and mGluR6 were determined by quantitative Western blot. Rs1-KO mice treated by intravitreous injection of rAAV(2/2)-CMV-Rs1 in one eye at P14 were evaluated at 8 months by full-field scotopic ERG responses and retinal immunohistochemistry.
Rs1 was associated with the outer surface of synaptic membranes in wild-type (Wt) retinas. PSD95 and mGluR6 were juxtaposed in the OPL of the Rs1-KO retinas by P14, implying that synaptic structures are formed. Light microscopic retinal morphology was similar in Wt and Rs1-KO at P14, but by P21, the OPL was disrupted in Rs1-KO, and some PSD95 and mGluR6 was mislocalized in the outer nuclear layer (ONL). GFAP expression spanned all retinal layers. EM showed synaptic structures adjacent to photoreceptor nuclei. PSD95 and mGluR6 levels were normal at 1 month on Western blot but declined to 59% (P < 0.001) and 55% (P < 0.05) of Wt, respectively, by 4 months. Levels thereafter showed no further reduction out to 12 months. Eyes injected with AAV-Rs1 were studied at 8 months by immunohistochemistry and had higher expression of PSD95 and mGluR6 and less GFAP expression compared with fellow untreated eyes.
In the Rs1-KO mouse, retinal layer formation and synaptic protein expression in the OPL is normal up to P14, implying normal development of synaptic connections. Aberrant localization of synaptic proteins by P21 indicates that displacement of developing and/or mature synapses contributes to the b-wave reduction at young ages, when photoreceptor numbers and synaptic protein levels are normal. The subsequent decline in PSD95 and mGluR6 between 1 and 12 months in Rs1-KO retina mirrors the course of b-wave change and provides evidence of causal relationship between the ERG and OPL changes. These findings and the improved structural integrity of the OPL and b-wave amplitude after Rs1 gene transfer therapy provide a cellular and molecular basis for interpreting the changes in retinal signaling in this model. (Invest Ophthalmol Vis Sci. 2008; 49:3677-3686) DOI:10.1167/iovs.07-1071
PMCID: PMC2556260  PMID: 18660429
25.  Role of a novel bile acid receptor TGR5 in the development of oesophageal adenocarcinoma 
Gut  2009;59(2):170-180.
Background & Aims
Mechanisms of the progression from Barrett’s oesophagus (BO) to oesophageal adenocarcinoma (OA) are not fully understood. Bile acids may play an important role in this progression. The aim of this study is to examine the role of NADPH oxidase NOX5-S and a novel bile acid receptor TGR5 in taurodeoxycholic acid (TDCA)-induced increase in cell proliferation.
Human Barrett’s cell line BAR-T and OA cell line FLO were transfected by using Lipofectamine 2000 or Amaxa-Nucleofector-System. mRNAs were measured by real-time PCR. H2O2 was measured by a fluorescent assay. Cell proliferation was determined by measurement of thymidine incorporation.
NOX5-S was present in FLO cells. TDCA significantly increased NOX5-S expression, H2O2 production and thymidine incorporation in FLO and BAR-T cells. This increase in thymidine incorporation was significantly reduced by knockdown of NOX5-S. TGR5 mRNA and protein levels were significantly higher in OA tissues than in normal oesophageal mucosa or Barrett’s mucosa. Knockdown of TGR5 markedly inhibited TDCA-induced increase in NOX5-S expression, H2O2 production and thymidine incorporation in FLO and BAR-T cells. Overexpression of TGR5 significantly enhanced the effects of TDCA in FLO cells. TGR5 receptors were coupled with Gαq and Gαi-3 proteins, but only Gαq mediated TDCA-induced increase in NOX5-S expression, H2O2 production and thymidine incorporation in FLO cells.
TDCA-induced increase in cell proliferation depends on upregulation of NOX5-S expression in BAR-T and FLO cells. TDCA-induced NOX5-S expression may be mediated by activation of the TGR5 receptor and Gαq protein. Our data may provide potential targets to prevent and/or treat Barrett’s OA.
PMCID: PMC3049934  PMID: 19926617
bile acid receptor; NADPH oxidase; G proteins; Barrett’s oesophagus; oesophageal adenocarcinoma

Results 1-25 (1094352)