Search tips
Search criteria

Results 1-25 (990958)

Clipboard (0)

Related Articles

1.  Heterogeneous nuclear ribonucleoproteins C1/C2 identified as autoantigens by biochemical and mass spectrometric methods 
Arthritis Research  2000;2(5):407-414.
The antigenic specificity of an unusual antinuclear antibody pattern in three patient sera was identified after separating HeLa-cell nuclear extracts by two-dimensional (2D) gel electrophoresis and localizing the antigens by immunoblotting with patient serum. Protein spots were excised from the 2D gel and their contents were analyzed by matrix-assisted laser desorption-ionization (MALDI) or nanoelectrospray ionization time-of-flight (TOF) tandem mass spectrometry (MS) after in-gel digestion with trypsin. A database search identified the proteins as the C1 and C2 heterogeneous nuclear ribonucleoproteins. The clinical spectrum of patients with these autoantibodies includes arthritis, psoriasis, myositis, and scleroderma. None of 59 patients with rheumatoid arthritis, 19 with polymyositis, 33 with scleroderma, and 10 with psoriatic arthritis had similar antibodies. High-resolution protein-separation methods and mass-spectrometric peptide mapping in combination with database searches are powerful tools in the identification of novel autoantigen specificities.
The classification of antinuclear antibodies (ANAs) is important for diagnosis and prognosis and for understanding the molecular pathology of autoimmune disease. Many of the proteins that associate with RNA in the ribonucleoprotein (RNP) complexes of the spliceosome have been found to react with some types of ANA [1], including proteins of the heterogeneous nuclear RNP (hnRNP) complex that associate with newly transcribed pre-mRNA. Autoantibodies to the A2, B1, and B2 proteins of hnRNP found in some patients may be markers of several overlap syndromes [2]. However, ANAs with specificity for these proteins as well as for the D protein also appear to occur in many distinct connective-tissue diseases, although epitope specificities may differ [3]. ANAs with specificity for the C component of hnRNP (consisting of the C1 and C2 proteins) have to our knowledge so far been described in only one case [4]. We here describe the approach taken to unambiguously identify the C1/C2 proteins as ANA targets in the sera of some patients.
To determine the fine specificity of sera containing an unusual speckled ANA-staining pattern using a combination of 2D gel electrophoresis and MS.
Patient sera were screened for ANAs by indirect immunofluorescence microscopy on HEp-2 cells (cultured carcinoma cells). Sera with an unusual, very regular, speckled ANA pattern were tested for reactivity with components of nuclear extracts of HeLa cells that were separated by one-dimensional (1D) or 2D gel electrophoresis or by reversed-phase high-performance liquid chromatography (HPLC). IgG reactivity was assessed by immunoblotting. Reactive protein spots from 2D separations were excised from the gels and subjected to in-gel digestion with trypsin for subsequent peptide mapping, partial peptide sequencing, and protein identification by MS and tandem MS on a hybrid electrospray ionization/quadrupole/time-of-flight (ESI-Q-TOF) mass spectrometer [5,6,7].
We observed a strong nuclear staining pattern (titer >1280) with the characteristic even-sized coarse speckles and no staining of nucleoli in sera from three patients. On immunoblots of nuclear extracts from HeLa cells, these sera stained two distinct bands, at Mr 42 000 and 41 000. There activity strongly resembled that of the patient originally described by Stanek et al [4]. The antigens were enriched by fractionating the extract using reversed-phase HPLC on a C4 column, and the two reactive spots on 2D separations were excised for identification. The two components appeared to be of approximately the same isoelectric points, although their molecular masses differed by approximately 2000. Peptide-mass mapping was performed by matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) MS on the tryptic peptide mixture generated by digestion of the two excised proteins. The database search suggested that the two proteins were C1/C2 hnRNPs (Swissprot accession number P07910). The identity of the proteins was further confirmed by tandem MS using an ESI-Q-TOF instrument. One peptide carrying two positive charges (m/z 580.32 Da), corresponding to a peptide mass of 1158.7 Da, was selected as a precursor ion and partially sequenced by collisional fragmentation. The fragmented peptide was found to represent the tryptic fragment VDSLLENLEK, ie amino acids 207-216 (C2 protein numbering). Four other peptides were partially sequenced and all of them matched the human C1/C2 hnRNP sequence. The theoretical masses of C1 and C2 are 32.0 and 33.3 kDa, respectively. The difference between the two sequences is a 13-amino-acid insert in C2 between positions 107 and 108 of C1. The presence of a specific tryptic fragment in the MALDI-TOF peptide-mass map from the higher-molecular-mass spot containing a 13-amino-acid insert that was not present in the lower-molecular-mass spot, further demonstrated that the two components represented the two isoforms of the C class of hnRNPs.
The patient whose case prompted us to investigate the specificities of these antibodies was a 72-year-old man who had arthralgias and oligoarthritis but did not fulfill the criteria for rheumatoid arthritis and did not have dermatological complaints. The reactivity of various patient groups to the C1/C2 hnRNP autoantigens was subsequently tested by immunoblotting of HeLa-cell nuclear extracts. Of 59 patients with rheumatoid arthritis, 19 with polymyositis, 33 with scleroderma, and 10 with psoriatic arthritis, none had IgG antibodies reacting with the two bands. Of sera from 139 consecutive patients who had moderately to strongly positive speckled ANA patterns shown by indirect immunofluorescence on HEp-2 cells, only two reacted with the C1/C2 hnRNP bands in immunoblotting. One of these was from a young woman (22 years old) whose complaints of muscle tenderness were not explained by objective findings or abnormal laboratory test results. The third patient that we identified through ANA screening followed by immunoblotting was a 54-year-old male who was being treated with methotrexate for long-standing polymyositis in addition to psoriasis and possible osteoporosis.
The results confirm the existence of anti-C1/C2 antibodies in some patients with speckled ANAs. The antigens were identified through the use of biochemical methods using high-resolution separation techniques combined with mass-spectrometry peptide mapping and database searches. As a general approach, this is a powerful way to identify new antigens using small amounts of material without the need for conventional protein sequencing. The approach does require, however, that the proteins can be found in databases, that they are not extensively post-translationally modified, that they can be digested enzymatically, and that they can be isolated in appropriately pure form by the separation technique used.
It is not known at present if the C1/C2 antibodies may have pathogenic relevance and/or relate to specific diagnoses or subsets within the group of connective-tissue diseases. It does appear that the reactivity is quite rare among ANA-positive patients, and therefore many patients will have to be examined to determine these issues. The fact that the antibodies to the C1/C2 hnRNPs are revealed by indirect immunofluorescence would indicate that the epitopes are accessible in intact, fixed HEp-2 cells and thus probably reside outside the nucleic-acid-binding domains that would be expected to be covered by RNA.
PMCID: PMC17817  PMID: 11056675
antinuclear antibodies; autoantibodies; heterogeneous nuclear ribonucleoproteins C1/C2; mass spectrometry
2.  Matrix-Assisted Laser Desorption Ionization–Time of Flight (MALDI-TOF) Mass Spectrometry for Detection of Antibiotic Resistance Mechanisms: from Research to Routine Diagnosis 
Clinical Microbiology Reviews  2013;26(1):103-114.
Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has been successfully applied as an identification procedure in clinical microbiology and has been widely used in routine laboratory practice because of its economical and diagnostic benefits. The range of applications of MALDI-TOF MS has been growing constantly, from rapid species identification to labor-intensive proteomic studies of bacterial physiology. The purpose of this review is to summarize the contribution of the studies already performed with MALDI-TOF MS concerning antibiotic resistance and to analyze future perspectives in this field. We believe that current research should continue in four main directions, including the detection of antibiotic modifications by degrading enzymes, the detection of resistance mechanism determinants through proteomic studies of multiresistant bacteria, and the analysis of modifications of target sites, such as ribosomal methylation. The quantification of antibiotics is suggested as a new approach to study influx and efflux in bacterial cells. The results of the presented studies demonstrate that MALDI-TOF MS is a relevant tool for the detection of antibiotic resistance and opens new avenues for both clinical and experimental microbiology.
PMCID: PMC3553667  PMID: 23297261
3.  Relative Quantitation of Neuropeptides Over a Thousand-fold Concentration Range 
Neuropeptides are essential cell-to-cell signaling molecules that influence diverse regulatory and behavioral functions within biological systems. Differing in their amino acid sequences and posttranslational modifications, hundreds of neuropeptides are produced via a series of enzymatic processing steps, and their levels vary with location, time, and physiological condition. Due to their wide range of endogenous concentrations and inherent chemical complexity, using mass spectrometry (MS) to accurately quantify changes in peptide levels can be challenging. Here we evaluate three different MS systems for their ability to accurately measure neuropeptide levels: capillary liquid chromatography-electrospray ionization-ion trap (CapLC-ESI-IT) MS, ultraperformance liquid chromatography- electrospray ionization-quadrupole-time-of-flight (UPLC-LC-ESI-Q-TOF) MS, and matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) MS. Specifically, eight sample mixtures composed of five neuropeptide standards, with four technical replicates of each, were labeled with H4/D4-succinic anhydride, followed by relative peptide quantitation using the three MS platforms. For these samples, the CapLC-ESI-IT MS platform offered the most robust ability to accurately quantify peptides over a concentration range of 1200-fold, although it required larger sample sizes than the other two platforms. Both the UPLC-ESI-Q-TOF MS and the MALDI-TOF MS systems had lower limits of quantification, with the MALDI-TOF having the lowest. By implementing several data acquisition schemes and optimizing the data analysis approaches, we were able to accurately quantify peptides over a three orders of magnitude concentration range using either the UPLC or MALDI-TOF platforms. Overall these results increase our understanding of both the capabilities and limits of using MS-based approaches to measure peptides.
PMCID: PMC3515743  PMID: 22993045
4.  Analysis of RNA cleavage by MALDI-TOF mass spectrometry 
Nucleic Acids Research  2012;41(1):e2.
A method of analysis is presented that utilizes matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) to monitor the kinetics and products of RNA cleavage, by use of a program designed to mass-match observed MS peaks with predicted RNA cleavage products. The method is illustrated through application to the study of targeted oxidation of RNA stem loops from HIV-1 Rev Response Element mRNA (RRE RNA) and ribosomal 16S A-site RNA (16S RNA) by metallonucleases. Following incubation of each RNA with catalysts and/or redox co-reactants, reaction mixtures were desalted, and MALDI-TOF MS was used to monitor both time-resolved formation of cleavage products and disappearance of full-length RNA. For each RNA, a unique list was generated that contained the predicted masses of both the full-length, and all of the possible RNA cleavage fragments that resulted from the combination of all possible cleavage sites and each of the six expected overhangs formed at nascent termini adjacent to the cleavage sites. The overhangs corresponded to 2′,3′-cyclic phosphate, 3′-phosphate, 3′-phosphoglycolate, 5′- hydroxyl and 5′- phosphate, which corresponded to differing oxidative, hydrolytic, and/or 2′-OH-mediated-endonucleolytic modes of scission. Each mass spectrum was compared with a corresponding list of predicted masses, and peaks were rapidly assigned by use of a Perl script, with a mass-matching tolerance of 200 ppm. Both time-dependent cleavage mediated by metallonucleases and MALDI-TOF-induced fragmentation were observed, and these were distinguished by time-dependent experiments. The resulting data allowed a semi-quantitative assessment of the rate of formation of each overhang at each nucleotide position. Limitations included artifactual skewing of quantification by mass bias, a limited mass range for quantification, and a lack of detection of secondary cleavage products. Nevertheless, the method presented herein provides a rapid, accurate, highly-detailed and semi-quantitative analysis of RNA cleavage that should be widely applicable.
PMCID: PMC3592410  PMID: 22941655
5.  Prospective Evaluation of a Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System in a Hospital Clinical Microbiology Laboratory for Identification of Bacteria and Yeasts: a Bench-by-Bench Study for Assessing the Impact on Time to Identification and Cost-Effectiveness 
Journal of Clinical Microbiology  2012;50(10):3301-3308.
Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has been found to be an accurate, rapid, and inexpensive method for the identification of bacteria and yeasts. Previous evaluations have compared the accuracy, time to identification, and costs of the MALDI-TOF MS method against standard identification systems or commercial panels. In this prospective study, we compared a protocol incorporating MALDI-TOF MS (MALDI protocol) with the current standard identification protocols (standard protocol) to determine the performance in actual practice using a specimen-based, bench-by-bench approach. The potential impact on time to identification (TTI) and costs had MALDI-TOF MS been the first-line identification method was quantitated. The MALDI protocol includes supplementary tests, notably for Streptococcus pneumoniae and Shigella, and indications for repeat MALDI-TOF MS attempts, often not measured in previous studies. A total of 952 isolates (824 bacterial isolates and 128 yeast isolates) recovered from 2,214 specimens were assessed using the MALDI protocol. Compared with standard protocols, the MALDI protocol provided identifications 1.45 days earlier on average (P < 0.001). In our laboratory, we anticipate that the incorporation of the MALDI protocol can reduce reagent and labor costs of identification by $102,424 or 56.9% within 12 months. The model included the fixed annual costs of the MALDI-TOF MS, such as the cost of protein standards and instrument maintenance, and the annual prevalence of organisms encountered in our laboratory. This comprehensive cost analysis model can be generalized to other moderate- to high-volume laboratories.
PMCID: PMC3457442  PMID: 22855510
6.  Identification and Cluster Analysis of Streptococcus pyogenes by MALDI-TOF Mass Spectrometry 
PLoS ONE  2012;7(11):e47152.
Whole-cell matrix–assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been successfully applied for bacterial identification and typing of many pathogens. The fast and reliable qualities of MALDI-TOF MS make it suitable for clinical diagnostics. MALDI-TOF MS for the identification and cluster analysis of Streptococcus pyogenes, however, has not been reported. The goal of our study was to evaluate this approach for the rapid identification and typing of S. pyogenes.
65 S. pyogenes isolates were obtained from the hospital. The samples were prepared and MALDI-TOF MS measurements were conducted as previously reported. Identification of unknown spectra was performed via a pattern recognition algorithm with a reference spectra and a dendrogram was constructed using the statistical toolbox in Matlab 7.1 integrated in the MALDI Biotyper 2.0 software.
For identification, 61 of 65 S. pyogenes isolates could be identified correctly by MALDI-TOF MS with BioType 2.0 when compared to biochemical identification (API Strep), with an accuracy of 93.85%. In clustering analysis, 44 of 65 isolates were in accordance with those established by M typing, with a matching rate of 67.69%. When only the M type prevalence in China was considered, 41 of 45 isolates were in agreement with M typing, with a matching rate of 91.1%.
It was here shown that MALDI-TOF MS with Soft Biotype 2.0 and its database could facilitate rapid identification of S. pyogenes. It may present an attractive alternative to traditional biochemical methods of identification. However, for classification, more isolates and advances in the MALDI-TOF MS technology are needed to improve accuracy.
PMCID: PMC3492366  PMID: 23144803
7.  Direct Identification of Urinary Tract Pathogens from Urine Samples by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry▿  
Journal of Clinical Microbiology  2010;48(6):2110-2115.
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been suggested as a reliable method for bacterial identification from cultures. Direct analysis of clinical samples might increase the usefulness of this method, shortening the time for microorganism identification. We compared conventional methods for the diagnosis of urinary tract infections (UTIs) and identification of the urinary tract pathogens (automated screening, plate cultures, and identification based on biochemical characteristics) and a fast method based on conventional screening and MALDI-TOF MS. For this latter method, 4 ml of urine was centrifuged at a low-revolution setting (2,000 × g) to remove leukocytes and then at high revolutions (15,500 × g) to collect bacteria. The pellet was washed and then applied directly to the MALDI-TOF MS plate. Two hundred sixty urine samples, detected as positive by the screening device (UF-1000i), were processed by culture and MALDI-TOF MS. Twenty samples were positive in the screening device but negative in culture, and all of them were also negative by MALDI-TOF MS. Two-hundred thirty-five samples displayed significant growth of a single morphological type in culture. Two-hundred twenty of them showed bacterial growth of >105 CFU/ml. Microorganism identifications in this group were coincident at the species level in 202 cases (91.8%) and at the genus level in 204 cases (92.7%). The most frequent microorganism was Escherichia coli (173 isolates). MALDI-TOF MS identified this microorganism directly from the urine sample in 163 cases (94.2%). Our results show that MALDI-TOF MS allows bacterial identification directly from infected urine in a short time, with high accuracy, and especially when Gram-negative bacteria with high bacterial counts are involved.
PMCID: PMC2884468  PMID: 20392910
8.  BioSunMS: a plug-in-based software for the management of patients information and the analysis of peptide profiles from mass spectrometry 
With wide applications of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS), statistical comparison of serum peptide profiles and management of patients information play an important role in clinical studies, such as early diagnosis, personalized medicine and biomarker discovery. However, current available software tools mainly focused on data analysis rather than providing a flexible platform for both the management of patients information and mass spectrometry (MS) data analysis.
Here we presented a plug-in-based software, BioSunMS, for both the management of patients information and serum peptide profiles-based statistical analysis. By integrating all functions into a user-friendly desktop application, BioSunMS provided a comprehensive solution for clinical researchers without any knowledge in programming, as well as a plug-in architecture platform with the possibility for developers to add or modify functions without need to recompile the entire application.
BioSunMS provides a plug-in-based solution for managing, analyzing, and sharing high volumes of MALDI-TOF or SELDI-TOF MS data. The software is freely distributed under GNU General Public License (GPL) and can be downloaded from
PMCID: PMC2654546  PMID: 19220920
9.  Rapid Identification of Vibrio parahaemolyticus by Whole-Cell Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry▿ † 
Applied and Environmental Microbiology  2009;75(21):6745-6756.
Vibrio parahaemolyticus is a pathogenic marine bacterium that is the main causative agent of bacterial seafood-borne gastroenteritis in the United States. An increase in the frequency of V. parahaemolyticus-related infections during the last decade has been attributed to the emergence of an O3:K6 pandemic clone in 1995. The diversity of the O3:K6 pandemic clone and its serovariants has been examined using multiple molecular techniques including multilocus sequence analysis, pulsed-field gel electrophoresis, and group-specific PCR analysis. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a powerful tool for rapidly distinguishing between related bacterial species. In the current study, we demonstrate the development of a whole-cell MALDI-TOF MS method for the distinction of V. parahaemolyticus from other Vibrio spp. We identified 30 peaks that were present only in the spectra of the V. parahaemolyticus strains examined in this study that may be developed as MALDI-TOF MS biomarkers for identification of V. parahaemolyticus. We detected variation in the MALDI-TOF spectra of V. parahaemolyticus strains isolated from different geographical locations and at different times. The MALDI-TOF MS spectra of the V. parahaemolyticus strains examined were distinct from those of the other Vibrio species examined including the closely related V. alginolyticus, V. harveyi, and V. campbellii. The results of this study demonstrate the first use of whole-cell MALDI-TOF MS analysis for the rapid identification of V. parahaemolyticus.
PMCID: PMC2772414  PMID: 19749061
10.  Performance of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Bacterial Strains Routinely Isolated in a Clinical Microbiology Laboratory ▿  
Journal of Clinical Microbiology  2010;48(5):1549-1554.
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been introduced in diagnostic microbiology laboratories for the identification of bacterial and yeast strains isolated from clinical samples. In the present study, we prospectively compared MALDI-TOF MS to the conventional phenotypic method for the identification of routine isolates. Colonies were analyzed by MALDI-TOF MS either by direct deposition on the target plate or after a formic acid-acetonitrile extraction step if no valid result was initially obtained. Among 1,371 isolates identified by conventional methods, 1,278 (93.2%) were putatively identified to the species level by MALDI-TOF MS and 73 (5.3%) were identified to the genus level, but no reliable identification was obtained for 20 (1.5%). Among the 1,278 isolates identified to the species level by MALDI-TOF MS, 63 (4.9%) discordant results were initially identified. Most discordant results (42/63) were due to systematic database-related taxonomical differences, 14 were explained by poor discrimination of the MALDI-TOF MS spectra obtained, and 7 were due to errors in the initial conventional identification. An extraction step was required to obtain a valid MALDI-TOF MS identification for 25.6% of the 1,278 valid isolates. In conclusion, our results show that MALDI-TOF MS is a fast and reliable technique which has the potential to replace conventional phenotypic identification for most bacterial strains routinely isolated in clinical microbiology laboratories.
PMCID: PMC2863943  PMID: 20220166
11.  Identification of Cryptic Anopheles Mosquito Species by Molecular Protein Profiling 
PLoS ONE  2013;8(2):e57486.
Vector control is the mainstay of malaria control programmes. Successful vector control profoundly relies on accurate information on the target mosquito populations in order to choose the most appropriate intervention for a given mosquito species and to monitor its impact. An impediment to identify mosquito species is the existence of morphologically identical sibling species that play different roles in the transmission of pathogens and parasites. Currently PCR diagnostics are used to distinguish between sibling species. PCR based methods are, however, expensive, time-consuming and their development requires a priori DNA sequence information. Here, we evaluated an inexpensive molecular proteomics approach for Anopheles species: matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). MALDI-TOF MS is a well developed protein profiling tool for the identification of microorganisms but so far has received little attention as a diagnostic tool in entomology. We measured MS spectra from specimens of 32 laboratory colonies and 2 field populations representing 12 Anopheles species including the A. gambiae species complex. An important step in the study was the advancement and implementation of a bioinformatics approach improving the resolution over previously applied cluster analysis. Borrowing tools for linear discriminant analysis from genomics, MALDI-TOF MS accurately identified taxonomically closely related mosquito species, including the separation between the M and S molecular forms of A. gambiae sensu stricto. The approach also classifies specimens from different laboratory colonies; hence proving also very promising for its use in colony authentication as part of quality assurance in laboratory studies. While being exceptionally accurate and robust, MALDI-TOF MS has several advantages over other typing methods, including simple sample preparation and short processing time. As the method does not require DNA sequence information, data can also be reviewed at any later stage for diagnostic or functional patterns without the need for re-designing and re-processing biological material.
PMCID: PMC3585343  PMID: 23469000
12.  Protease- and acid-catalyzed labeling workflows employing 18O-enriched water 
Short abstract
Stable isotope labeling workflows employing 18O-enriched water (LeO-workflows) are versatile tools for quantitative and qualitative proteomics studies. In protease-assisted (PALeO) workflows, 18O-atoms are introduced by proteolytic cleavage and carboxyl oxygen exchange reactions mediated by proteases. In the acid-catalyzed (ALeO) workflow, 18O-atoms are introduced by carboxyl oxygen exchange at low pH.
Long abstract
Stable isotopes are essential tools in biological mass spectrometry. Historically, 18O-stable isotopes have been extensively used to study the catalytic mechanisms of proteolytic enzymes1–3. With the advent of mass spectrometry-based proteomics, the enzymatically-catalyzed incorporation of 18O-atoms from stable isotopically enriched water has become a popular method to quantitatively compare protein expression levels (reviewed by Fenselau and Yao4, Miyagi and Rao5 and Ye et al.6). 18O-labeling constitutes a simple and low-cost alternative to chemical (e.g., iTRAQ, ICAT) and metabolic (e.g., SILAC) labeling techniques7. Depending on the protease utilized, 18O-labeling can result in the incorporation of up to two 18O-atoms in the C-terminal carboxyl group of the cleavage product3. The labeling reaction can be subdivided into two independent processes, the peptide bond cleavage and the carboxyl oxygen exchange reaction8. In our PALeO (protease-assisted labeling employing 18O-enriched water) adaptation of enzymatic 18O-labeling, we utilized 50% 18O-enriched water to yield distinctive isotope signatures. In combination with high-resolution matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS/MS), the characteristic isotope envelopes can be used to identify cleavage products with a high level of specificity. We previously have used the PALeO-methodology to detect and characterize endogenous proteases9 and monitor proteolytic reactions10–11. Since PALeO encodes the very essence of the proteolytic cleavage reaction, the experimental setup is simple and biochemical enrichment steps of cleavage products can be circumvented. The PALeO-method can easily be extended to (i) time course experiments that monitor the dynamics of proteolytic cleavage reactions and (ii) the analysis of proteolysis in complex biological samples that represent physiological conditions. PALeO-TimeCourse experiments help identifying rate-limiting processing steps and reaction intermediates in complex proteolytic pathway reactions. Furthermore, the PALeO-reaction allows us to identify proteolytic enzymes such as the serine protease trypsin that is capable to rebind its cleavage products and catalyze the incorporation of a second 18O-atom. Such “double-labeling” enzymes can be used for postdigestion 18O-labeling, in which peptides are exclusively labeled by the carboxyl oxygen exchange reaction. Our third strategy extends labeling employing 18O-enriched water beyond enzymes and uses acidic pH conditions to introduce 18O-stable isotope signatures into peptides.
PMCID: PMC3605716  PMID: 23462971
MALDI-TOF mass spectrometry; proteomics; proteolysis; quantification; stable isotope labeling
13.  Rapid Identification and Typing of Listeria Species by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry▿ †  
Applied and Environmental Microbiology  2008;74(17):5402-5407.
Listeria monocytogenes is a food-borne pathogen that is the causative agent of human listeriosis, an opportunistic infection that primarily infects pregnant women and immunologically compromised individuals. Rapid, accurate discrimination between Listeria strains is essential for appropriate therapeutic management and timely intervention for infection control. A rapid method involving matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) that shows promise for identification of Listeria species and typing and even allows for differentiation at the level of clonal lineages among pathogenic strains of L. monocytogenes is presented. A total of 146 strains of different Listeria species and serotypes as well as clinical isolates were analyzed. The method was compared with the pulsed-field gel electrophoresis analysis of 48 Listeria strains comprising L. monocytogenes strains isolated from food-borne epidemics and sporadic cases, isolates representing different serotypes, and a number of Listeria strains whose genomes have been completely sequenced. Following a short inactivation/extraction procedure, cell material from a bacterial colony was deposited on a sample target, dried, overlaid with a matrix necessary for the MALDI process, and analyzed by MALDI-TOF MS. This technique examines the chemistry of major proteins, yielding profile spectra consisting of a series of peaks, a characteristic “fingerprint” mainly derived from ribosomal proteins. Specimens can be prepared in a few minutes from plate or liquid cultures, and a spectrum can be obtained within 1 minute. Mass spectra derived from Listeria isolates showed characteristic peaks, conserved at both the species and lineage levels. MALDI-TOF MS fingerprinting may have potential for Listeria identification and subtyping and may improve infection control measures.
PMCID: PMC2546641  PMID: 18606788
14.  Technologies in the Whole-Genome Age: MALDI-TOF-Based Genotyping 
With the decipherment of the human genome, new questions have moved into the focus of today's research. One key aspect represents the discovery of DNA variations capable to influence gene transcription, RNA splicing, or regulating processes, and their link to pathology. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) is a powerful tool for the qualitative investigation and relative quantification of variations like single nucleotide polymorphisms, DNA methylation, microsatellite instability, or loss of heterozygosity. After its introduction into proteomics, efforts were made to adopt this technique to DNA analysis. Initially intended for peptide/protein analysis, it held several difficulties for application to nucleic acids. Today, MALDI-TOF-MS has reached worldwide acceptance and application in nucleic acid research, with a wide spectrum of methods being available. One of the most versatile approaches relies on primer extension to genotype single alleles, microsatellite repeat lengths or the methylation status of a given cytosine. Optimized methods comprising intelligent primer design and proper nucleotide selection for primer extension enabled multiplexing of reactions, rendering the analysis more economic due to parallel genotyping of several alleles in a single experiment. Laboratories equipped with MALDI-TOF-MS possess a universal technical platform for the analysis of a large variety of different molecules.
PMCID: PMC2941830  PMID: 21049076
MALDI-TOF; Mass spectrometry; Single nucleotide polymorphism; Methylation; Microsatellite instability; Genotyping
15.  Expanding the Crustacean Neuropeptidome using a Multi-Faceted Mass Spectrometric Approach 
Journal of proteome research  2009;8(5):2426-2437.
Jonah crab Cancer borealis is an excellent model organism long served for many areas of physiology, including the study of endocrinology and neurobiology. Characterizing the neuropeptides present in its nervous system provides the first critical step toward understanding the physiological roles of these complex molecules. Multiple mass spectral techniques were used to comprehensively characterize the neuropeptidome in C. borealis, including matrix assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI FTMS), MALDI time of flight (TOF)/TOF MS and nanoflow liquid chromatography coupled to electrospray ionization quadrupole time of flight tandem mass spectrometry (nanoLC ESI Q TOF MS/MS). In order to enhance the detection signals and expand the dynamic range, direct tissue analysis, tissue extraction, capillary electrophoresis (CE) and off-line HPLC separation have also been employed. In total, 142 peptides were identified, including 85 previously known C. borealis peptides, 22 peptides characterized previously from other decapods, but new to this species, and 35 new peptides de novo sequenced for the first time in this study. Seventeen neuropeptide families were revealed including RFamide, allatostatin (A and B type), RYamide, orcokinin, orcomyotropin, proctolin, crustacean cardioactive peptide (CCAP), crustacean hyperglycemic hormone precursor-related peptide (CPRP), crustacean hyperglycemic hormone (CHH), corazonin, pigment-dispersing hormone (PDH), tachykinin, pyrokinin, SIFamide, red pigment concentrating hormone (RPCH) and HISGLYRamide. Collectively, our results greatly increase the number and expand the coverage of known C. borealis neuropeptides, and thus provide a stronger framework for future studies on the physiological roles played by these molecules in this important model organism.
PMCID: PMC2692460  PMID: 19222238
Cancer borealis; matrix assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI FTMS); electrospray ionization quadrupole time of flight mass spectrometry (ESI-Q-TOF MS); neuropeptides; peptide sequencing; peptidomics; thoracic ganglia; stomatogastric ganglia; commissural ganglia; sinus gland; pericardial organ
16.  Reliable identification at the species level of Brucella isolates with MALDI-TOF-MS 
BMC Microbiology  2011;11:267.
The genus Brucella contains highly infectious species that are classified as biological threat agents. The timely detection and identification of the microorganism involved is essential for an effective response not only to biological warfare attacks but also to natural outbreaks. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is a rapid method for the analysis of biological samples. The advantages of this method, compared to conventional techniques, are rapidity, cost-effectiveness, accuracy and suitability for the high-throughput identification of bacteria. Discrepancies between taxonomy and genetic relatedness on the species and biovar level complicate the development of detection and identification assays.
In this study, the accurate identification of Brucella species using MALDI-TOF-MS was achieved by constructing a Brucella reference library based on multilocus variable-number tandem repeat analysis (MLVA) data. By comparing MS-spectra from Brucella species against a custom-made MALDI-TOF-MS reference library, MALDI-TOF-MS could be used as a rapid identification method for Brucella species. In this way, 99.3% of the 152 isolates tested were identified at the species level, and B. suis biovar 1 and 2 were identified at the level of their biovar. This result demonstrates that for Brucella, even minimal genomic differences between these serovars translate to specific proteomic differences.
MALDI-TOF-MS can be developed into a fast and reliable identification method for genetically highly related species when potential taxonomic and genetic inconsistencies are taken into consideration during the generation of the reference library.
PMCID: PMC3314589  PMID: 22192890
17.  Integrative proteomic analysis of the nucleus accumbens in rhesus monkeys following cocaine self-administration 
Molecular Psychiatry  2008;15(2):185-203.
The reinforcing effects and long-term consequences of cocaine self-administration have been associated with brain regions of the mesolimbic dopamine pathway, namely the nucleus accumbens (NAc). Studies of cocaine-induced biochemical adaptations in rodent models have advanced our knowledge; however, unbiased detailed assessments of intracellular alterations in the primate brain are scarce, yet essential, to develop a comprehensive understanding of cocaine addiction. To this end, two-dimensional difference in gel electrophoresis (2D-DIGE) was used to compare changes in cytosolic protein abundance in the NAc between rhesus monkeys self-administering cocaine and controls. Following image normalization, spots with significantly differential image intensities (P < 0.05) were identified, excised, trypsin digested and analyzed by matrix-assisted laser-desorption ionization time-of-flight time-of-flight (MALDI-TOF-TOF). In total, 1098 spots were subjected to statistical analysis with 22 spots found to be differentially abundant of which 18 proteins were positively identified by mass spectrometry. In addition, approximately 1000 protein spots were constitutively expressed of which 21 proteins were positively identified by mass spectrometry. Increased levels of proteins in the cocaine-exposed monkeys include glial fibrillary acidic protein, syntaxin-binding protein 3, protein kinase C isoform, adenylate kinase isoenzyme 5 and mitochondrial-related proteins, whereas decreased levels of proteins included β-soluble N-ethylmaleimide-sensitive factor attachment protein and neural and non-neural enolase. Using a complimentary proteomics approach, the differential expression of phosphorylated proteins in the cytosolic fraction of these subjects was examined. Two-dimensional gel electrophoresis (2DGE) was followed by gel staining with Pro-Q Diamond phosphoprotein gel stain, enabling differentiation of approximately 150 phosphoprotein spots between the groups. Following excision and trypsin digestions, MALDI-TOF-TOF was used to confirm the identity of 15 cocaine-altered phosphoproteins. Significant increased levels were detected for γ-aminobutyric acid type A receptor-associated protein 1, 14-3-3 γ-protein, glutathione S-transferase and brain-type aldolase, whereas significant decreases were observed for β-actin, Rab GDP-dissociation inhibitor, guanine deaminase, peroxiredoxin 2 isoform b and several mitochondrial proteins. Results from these studies indicate coordinated dysregulation of proteins related to cell structure, signaling, metabolism and mitochondrial function. These data extend and compliment previous studies of cocaine-induced biochemical alterations in human post-mortem brain tissue, using an animal model that closely recapitulates the human condition and provide new insight into the molecular basis of the disease and potential targets for pharmacotherapeutic intervention.
PMCID: PMC3272768  PMID: 18504425
cocaine; protein expression; nucleus accumbens; phosphorylation; monkey
18.  High-Throughput Identification of Bacteria and Yeast by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry in Conventional Medical Microbiology Laboratories ▿  
Journal of Clinical Microbiology  2010;48(3):900-907.
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is suitable for high-throughput and rapid diagnostics at low costs and can be considered an alternative for conventional biochemical and molecular identification systems in a conventional microbiological laboratory. First, we evaluated MALDI-TOF MS using 327 clinical isolates previously cultured from patient materials and identified by conventional techniques (Vitek-II, API, and biochemical tests). Discrepancies were analyzed by molecular analysis of the 16S genes. Of 327 isolates, 95.1% were identified correctly to genus level, and 85.6% were identified to species level by MALDI-TOF MS. Second, we performed a prospective validation study, including 980 clinical isolates of bacteria and yeasts. Overall performance of MALDI-TOF MS was significantly better than conventional biochemical systems for correct species identification (92.2% and 83.1%, respectively) and produced fewer incorrect genus identifications (0.1% and 1.6%, respectively). Correct species identification by MALDI-TOF MS was observed in 97.7% of Enterobacteriaceae, 92% of nonfermentative Gram-negative bacteria, 94.3% of staphylococci, 84.8% of streptococci, 84% of a miscellaneous group (mainly Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, and Kingella [HACEK]), and 85.2% of yeasts. MALDI-TOF MS had significantly better performance than conventional methods for species identification of staphylococci and genus identification of bacteria belonging to HACEK group. Misidentifications by MALDI-TOF MS were clearly associated with an absence of sufficient spectra from suitable reference strains in the MALDI-TOF MS database. We conclude that MALDI-TOF MS can be implemented easily for routine identification of bacteria (except for pneumococci and viridans streptococci) and yeasts in a medical microbiological laboratory.
PMCID: PMC2832429  PMID: 20053859
19.  Matrix-Assisted Laser Desorption Ionization - Time of Flight Mass Spectrometry: An Emerging Tool for the Rapid Identification of Mosquito Vectors 
PLoS ONE  2013;8(8):e72380.
The identification of mosquito vectors is typically based on morphological characteristics using morphological keys of determination, which requires entomological expertise and training. The use of protein profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), which is increasingly being used for the routine identification of bacteria, has recently emerged for arthropod identification.
To investigate the usefulness of MALDI-TOF-MS as a mosquito identification tool, we tested protein extracts made from mosquito legs to create a database of reference spectra. The database included a total of 129 laboratory-reared and field-caught mosquito specimens consisting of 20 species, including 4 Aedes spp., 9 Anopheles spp., 4 Culex spp., Lutzia tigripes, Orthopodomyia reunionensis and Mansonia uniformis. For the validation study, blind tests were performed with 76 specimens consisting of 1 to 4 individuals per species. A cluster analysis was carried out using the MALDI-Biotyper and some spectra from all mosquito species tested.
Biomarker mass sets containing 22 and 43 masses have been detected from 100 specimens of the Anopheles, Aedes and Culex species. By carrying out 3 blind tests, we achieved the identification of mosquito vectors at the species level, including the differentiation of An. gambiae complex, which is possible using MALDI-TOF-MS with 1.8 as the cut-off identification score. A cluster analysis performed with all available mosquito species showed that MALDI-Biotyper can distinguish between specimens at the subspecies level, as demonstrated for An gambiae M and S, but this method cannot yet be considered a reliable tool for the phylogenetic study of mosquito species.
We confirmed that even without any specific expertise, MALDI-TOF-MS profiling of mosquito leg protein extracts can be used for the rapid identification of mosquito vectors. Therefore, MALDI-TOF-MS is an alternative, efficient and inexpensive tool that can accurately identify mosquitoes collected in the field during entomological surveys.
PMCID: PMC3744494  PMID: 23977292
20.  A rapid MALDI-TOF mass spectrometry workflow for Drosophila melanogaster differential neuropeptidomics 
Molecular Brain  2013;6:60.
Neuropeptides are a diverse category of signaling molecules in the nervous system regulating a variety of processes including food intake, social behavior, circadian rhythms, learning, and memory. Both the identification and functional characterization of specific neuropeptides are ongoing fields of research. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of nervous tissues from a variety of organisms allows direct detection and identification of neuropeptides. Here, we demonstrate an analysis workflow that allows for the detection of differences in specific neuropeptides amongst a variety of neuropeptides being simultaneously measured. For sample preparation, we describe a straight-forward and rapid (minutes) method where individual adult Drosophila melanogaster brains are analyzed. Using a MATLAB-based data analysis workflow, also compatible with MALDI-TOF mass spectra obtained from other sample preparations and instrumentation, we demonstrate how changes in neuropeptides levels can be detected with this method.
Over fifty isotopically resolved ion signals in the peptide mass range are reproducibly observed across experiments. MALDI-TOF MS profile spectra were used to statistically identify distinct relative differences in organ-wide endogenous levels of detected neuropeptides between biological conditions. In particular, three distinct levels of a particular neuropeptide, pigment dispersing factor, were detected by comparing groups of preprocessed spectra obtained from individual brains across three different D. melanogaster strains, each of which express different amounts of this neuropeptide. Using the same sample preparation, MALDI-TOF/TOF tandem mass spectrometry confirmed that at least 14 ion signals observed across experiments are indeed neuropeptides. Among the identified neuropeptides were three products of the neuropeptide-like precursor 1 gene previously not identified in the literature.
Using MALDI-TOF MS and preprocessing/statistical analysis, changes in relative levels of a particular neuropeptide in D. melanogaster tissue can be statistically detected amongst a variety of neuropeptides. While the data analysis methods should be compatible with other sample preparations, the presented sample preparation method was sufficient to identify previously unconfirmed D. melanogaster neuropeptides.
PMCID: PMC4022047  PMID: 24373546
Neuropeptidomics; MALDI-TOF; Drosophila melanogaster; Neuropeptides; Pigment dispersing factor; Tandem mass spectrometry; NPLP1; Neuropeptide-like precursor 1
21.  Matrix-assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) Mass Spectrometric Analysis of Intact Proteins Larger than 100 kDa 
Effectively determining masses of proteins is critical to many biological studies (e.g. for structural biology investigations). Accurate mass determination allows one to evaluate the correctness of protein primary sequences, the presence of mutations and/or post-translational modifications, the possible protein degradation, the sample homogeneity, and the degree of isotope incorporation in case of labelling (e.g. 13C labelling).
Electrospray ionisation (ESI) mass spectrometry (MS) is widely used for mass determination of denatured proteins, but its efficiency is affected by the composition of the sample buffer. In particular, the presence of salts, detergents, and contaminants severely undermines the effectiveness of protein analysis by ESI-MS. Matrix-assisted laser desorption/ionization (MALDI) MS is an attractive alternative, due to its salt tolerance and the simplicity of data acquisition and interpretation. Moreover, the mass determination of large heterogeneous proteins (bigger than 100 kDa) is easier by MALDI-MS due to the absence of overlapping high charge state distributions which are present in ESI spectra.
Here we present an accessible approach for analysing proteins larger than 100 kDa by MALDI-time of flight (TOF). We illustrate the advantages of using a mixture of two matrices (i.e. 2,5-dihydroxybenzoic acid and α-cyano-4-hydroxycinnamic acid) and the utility of the thin layer method as approach for sample deposition. We also discuss the critical role of the matrix and solvent purity, of the standards used for calibration, of the laser energy, and of the acquisition time. Overall, we provide information necessary to a novice for analysing intact proteins larger than 100 kDa by MALDI-MS.
PMCID: PMC3857990  PMID: 24056304
Chemistry; Issue 79; Chemistry Techniques; Analytical; Mass Spectrometry; Analytic Sample Preparation Methods; biochemistry; Analysis of intact proteins; mass spectrometry; matrix-assisted laser desorption ionization; time of flight; sample preparation
22.  Mass Spectrometric Screening of Ovarian Cancer with Serum Glycans 
Disease Markers  2014;2014:634289.
Changes of glycosylation pattern in serum proteins have been linked to various diseases including cancer, suggesting possible development of novel biomarkers based on the glycomic analysis. In this study, N-linked glycans from human serum were quantitatively profiled by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and compared between healthy controls and ovarian cancer patients. A training set consisting of 40 healthy controls and 40 ovarian cancer cases demonstrated an inverse correlation between P value of ANOVA and area under the curve (AUC) of each candidate biomarker peak from MALDI-TOF MS, providing standards for the classification. A multibiomarker panel composed of 15 MALDI-TOF MS peaks resulted in AUC of 0.89, 80~90% sensitivity, and 70~83% specificity in the training set. The performance of the biomarker panel was validated in a separate blind test set composed of 23 healthy controls and 37 ovarian cancer patients, leading to 81~84% sensitivity and 83% specificity with cut-off values determined by the training set. Sensitivity of CA-125, the most widely used ovarian cancer marker, was 74% in the training set and 78% in the test set, respectively. These results indicate that MALDI-TOF MS-mediated serum N-glycan analysis could provide critical information for the screening of ovarian cancer.
PMCID: PMC3932261  PMID: 24648610
23.  Comparative study of MALDI-TOF MS and VITEK 2 in bacteria identification 
Journal of Thoracic Disease  2014;6(5):534-538.
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been introduced in diagnostic microbiology laboratories for the identification of bacterial and yeast strains isolated from clinical samples. This study aimed to evaluate the accuracy of MALDI-TOF MS in clinical microbiology diagnosis by comparing it with commonly-used VITEK 2 or gene sequencing.
The performances of MALDI-TOF MS and VITEK 2 were compared retrospectively for identifying routine isolates. Discrepancies were analyzed by gene sequencing analysis of the 16S genes.
For 1,025 isolates, classified as 55 species of 25 genera, 1,021 (99.60%) isolates were accurately identified at the genus level, and 957 (93.37%) isolates at the species level by using MALDI-TOF MS. A total of 949 (92.59%) isolates were completely matched by both methods. Both methods found 76 unmatched isolates among which one strain had no definite identification by MALDI-TOF MS and VITEK 2 respectively. However, MALDI-TOF MS made no errors at the genus level while VITEK 2 made 6 (0.58%) errors at the genus level. At the species level, the identification error rates for MALDI-TOF MS and VITEK 2 were 5.56% and 6.24%, respectively.
With a lower identification error rate, MALDI-TOF MS has better performance than VITEK 2 in identifying bacteria found routinely in the clinical laboratory. It is a quick and cost-effective technique, and has the potential to replace conventional phenotype methods in identifying common bacterial isolates in clinical microbiology laboratories.
PMCID: PMC4015025  PMID: 24822115
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS); VITEK2; bacteria identification
24.  Proteomics Approaches for Identification of Tumor Relevant Protein Targets in Pulmonary Squamous Cell Carcinoma by 2D-DIGE-MS 
PLoS ONE  2014;9(4):e95121.
Potential markers for progression of pulmonary squamous cell carcinoma (SCC) were identified by examining samples of lung SCC and adjacent normal tissues using a combination of fluorescence two-dimensional difference gel electrophoresis (2D-DIGE), matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS), and electrospray ionization quadrupole-time of flight mass spectrometry (ESI-Q-TOF). The PANTHER System was used for gel image based quantification and statistical analysis. An analysis of proteomic data revealed that 323 protein spots showed significantly different levels of expression (P≤0.05) in lung SCC tissue compared to expression in normal lung tissue. A further analysis of these protein spots by MALDI-TOF-MS identified 81 different proteins. A systems biology approach was used to map these proteins to major pathways involved in numerous cellular processes, including localization, transport, cellular component organization, apoptosis, and reproduction. Additionally, the expression of several proteins in lung SCC and normal tissues was examined using immunohistochemistry and western blot. The functions of individual proteins are being further investigated and validated, and the results might provide new insights into the mechanism of lung SCC progression, potentially leading to the design of novel diagnostic and therapeutic strategies.
PMCID: PMC3989308  PMID: 24740010
25.  Rapid discrimination of Bifidobacterium animalis subspecies by matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry 
Food Microbiology  2011;30(2):432-437.
Currently, the species Bifidobacterium animalis consists of two subspecies, B. animalis subsp. lactis and B. animalis subsp. animalis. Among these two subspecies, B. animalis subsp. lactis is especially important because it is widely used in the manufacture of probiotic dairy products. The application of these microbes in the food industry demands fast, accurate and low cost methods to differentiate between species and strains. Although various genotypic methods have been employed to discriminate between these two subspecies, they are not easily adapted for rapid identification in the industry. The purpose of this study was to evaluate the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to differentiate between the two subspecies of B. animalis, and for discrimination at strain level. We identify twenty-three strains of B. animalis at subspecies and strain level by genotypic methods and by proteomics using MALDI-TOF MS. The proteomics identification by MALDI-TOF was nearly identical to that obtained by genotypic identification using comparison of tuf and atpD genes sequences, and single-nucleotide polymorphisms (SNPs), insertions, and deletions (INDELs). We identified four protein markers, L1, L2, A1, and A2, which are useful for discriminating between both subspecies. Proteomics identification using MALDI-TOF MS was therefore an accurate method for discriminating and identifying these bacteria. Given the speed in which this method is achieved (~20 min including sample preparation), MALDI-TOF MS is promising as a tool for rapid discrimination of starter cultures and probiotics.
PMCID: PMC3297970  PMID: 22365357
Bifidobacterium animalis subsp. lactis; Bifidobacterium animalis subsp. animalis; MALDI-TOF; mass spectrometry

Results 1-25 (990958)