Search tips
Search criteria

Results 1-25 (651650)

Clipboard (0)

Related Articles

1.  Nicotine and oxidative cigarette smoke constituents induce immune-modulatory and pro-inflammatory dendritic cell responses1 
Molecular immunology  2008;45(12):3321-3329.
Chronic airway inflammation is a cardinal feature of chronic obstructive pulmonary disease (COPD), a destructive cigarette smoke-induced lung disease. Although it is apparent that dendritic cells (DCs) are an important constituent of the chronic inflammatory cell influx found in airways of COPD patients, the functional roles of DCs in the pathogenesis of smoking-induced emphysema are unknown. We postulated that DCs activated by cigarette smoke constituents directly participate in the chronic inflammation that characterizes COPD airways. Concordant with this hypothesis, we observed that incubation of DCs with cigarette smoke extract (CSE), and chronic exposure of mice to cigarette smoke, both augmented the generation of neutrophilic chemokines by immature and lipopolysaccharide (LPS) or CD40L-matured DCs. The generation of interleukin-8 (CXCL8/IL-8) by human DCs conditioned with CSE was suppressed by the anti-oxidant n-acetyl cysteine (NAC), implying the involvement of oxidant sensitive pathways as a primary mechanism involved in the enhanced CXCL8/IL-8 generation. Cigarette smoke extract and nicotine also augment the production of secreted prostaglandin E2 and intracellular cyclo-oxygenase-2 (COX-2) in maturing DCs. Whereas NAC suppressed production of CXCL8 by CSE-conditioned DCs, it augmented production of PGE2 and cellular COX-2 levels in maturing DCs. These studies indicate that the stimulation of DCs by cigarette smoke-induced oxidative stress and nicotine promote the generation of pro-inflammatory responses that promote chronic inflammation in smokers. Certain pharmacologic strategies such as anti-oxidant therapy may be only partially effective in mitigating cigarette smoke-induced pro-inflammatory DC-mediated responses in smokers.
PMCID: PMC2857673  PMID: 18533267
Smoking; dendritic cell; oxidative stress; neutrophil; chemokines; prostaglandins
2.  Cigarette smoke induces IL-8, but inhibits eotaxin and RANTES release from airway smooth muscle 
Respiratory Research  2005;6(1):74.
Cigarette smoke is the leading risk factor for the development of chronic obstructive pulmonary disease (COPD) an inflammatory condition characterised by neutrophilic inflammation and release of proinflammatory mediators such as interleukin-8 (IL-8). Human airway smooth muscle cells (HASMC) are a source of proinflammatory cytokines and chemokines. We investigated whether cigarette smoke could directly induce the release of chemokines from HASMC.
HASMC in primary culture were exposed to cigarette smoke extract (CSE) with or without TNFα. Chemokines were measured by enzyme-linked immunosorbent assay (ELISA) and gene expression by real time polymerase chain reaction (PCR). Data were analysed using one-way analysis of variance (ANOVA) followed by Bonferroni's t test
CSE (5, 10 and 15%) induced IL-8 release and expression without effect on eotaxin or RANTES release. At 20%, there was less IL-8 release. TNFα enhanced CSE-induced IL-8 release and expression. However, CSE (5–30%) inhibited TNFα-induced eotaxin and RANTES production. The effects of CSE on IL-8 release were inhibited by glutathione (GSH) and associated with the induction of the oxidant sensing protein, heme oxygenase-1.
Cigarette smoke may directly cause the release of IL-8 from HASMC, an effect enhanced by TNF-α which is overexpressed in COPD. Inhibition of eotaxin and RANTES by cigarette smoke is consistent with the predominant neutrophilic but not eosinophilic inflammation found in COPD.
PMCID: PMC1187925  PMID: 16029496
3.  Pathogenesis of Inflammation and Repair in Advanced COPD 
Chronic obstructive pulmonary disease is characterized by an abnormal persistent inflammatory response to noxious environmental stimuli, most commonly cigarette smoke. Although cigarette smoking elicits airway inflammation in all of those who smoke, persistent inflammation and clinically significant COPD occurs in only a minority of smokers. The pathogenesis of COPD involves the recruitment and regulation of neutrophils, macrophages, and lymphocytes to the lung, as well as the induction of oxidative stress, all of which result in lung parenchymal destruction and airway remodeling. Recent research has generated a greater understanding of the mechanisms responsible for COPD development, including new concepts in T cell biology and the increasing recognition that the processes governing lung cell apoptosis are upregulated. We are also starting to understand the reasons for continued inflammation even after smoking cessation, which accelerates the rate of lung function decline in COPD. Herein we review our current knowledge of the inflammatory pathways involved in COPD pathogenesis, as well as newer concepts that have begun to unfold in recent years.
PMCID: PMC3992429  PMID: 20496295
Chronic obstructive pulmonary disease; oxidative stress; apoptosis; inflammatory cells; cytokines
4.  Roflumilast N-Oxide Prevents Cytokine Secretion Induced by Cigarette Smoke Combined with LPS through JAK/STAT and ERK1/2 Inhibition in Airway Epithelial Cells 
PLoS ONE  2014;9(1):e85243.
Cigarette smoke is a major cause of chronic obstructive pulmonary disease (COPD). Airway epithelial cells and macrophages are the first defense cells against cigarette smoke and these cells are an important source of pro-inflammatory cytokines. These cytokines play a role in progressive airflow limitation and chronic airways inflammation. Furthermore, the chronic colonization of airways by Gram-negative bacteria, contributes to the persistent airways inflammation and progression of COPD. The current study addressed the effects of cigarette smoke along with lipolysaccharide (LPS) in airway epithelial cells as a representative in vitro model of COPD exacerbations. Furthermore, we evaluated the effects of PDE4 inhibitor, the roflumilast N-oxide (RNO), in this experimental model. A549 cells were stimulated with cigarette smoke extract (CSE) alone (0.4% to 10%) or in combination with a low concentration of LPS (0.1 µg/ml) for 2 h or 24 h for measurement of chemokine protein and mRNAs and 5–120 min for protein phosphorylation. Cells were also pre-incubated with MAP kinases inhibitors and Prostaglandin E2 alone or combined with RNO, before the addition of CSE+LPS. Production of cytokines was determined by ELISA and protein phosphorylation by western blotting and phospho-kinase array. CSE did not induce production of IL-8/CXCL8 and Gro-α/CXCL1 from A549 cells, but increase production of CCL2/MCP-1. However the combination of LPS 0.1 µg/ml with CSE 2% or 4% induced an important production of these chemokines, that appears to be dependent of ERK1/2 and JAK/STAT pathways but did not require JNK and p38 pathways. Moreover, RNO associated with PGE2 reduced CSE+LPS-induced cytokine release, which can happen by occur through of ERK1/2 and JAK/STAT pathways. We report here an in vitro model that can reflect what happen in airway epithelial cells in COPD exacerbation. We also showed a new pathway where CSE+LPS can induce cytokine release from A549 cells, which is reduced by RNO.
PMCID: PMC3885699  PMID: 24416369
5.  The dendritic cell niche in chronic obstructive pulmonary disease 
Respiratory Research  2012;13(1):80.
The pulmonary innate immune system is heavily implicated in the perpetual airway inflammation and impaired host defense characterizing Chronic Obstructive Pulmonary Disease (COPD). The airways of patients suffering from COPD are infiltrated by various immune and inflammatory cells including macrophages, neutrophils, T lymphocytes, and dendritic cells. While the role of macrophages, neutrophils and T lymphocytes is well characterized, the contribution of dendritic cells to COPD pathogenesis is still the subject of emerging research. A paper by Botelho and colleagues in the current issue of Respiratory Research investigates the importance of dendritic cell recruitment in cigarette-smoke induced acute and chronic inflammation in mice. Dendritic cells of the healthy lung parenchyma and airways perform an important sentinel function and regulate immune homeostasis. During inflammatory responses the function and migration pattern of these cells is dramatically altered but the underlying mechanisms are incompletely understood. Botelho and colleagues demonstrate here the importance of IL-1R1/IL-1α related mechanisms including CCL20 production in cigarette-smoke induced recruitment of dendritic cells and T cell activation in the mouse lung.
PMCID: PMC3507810  PMID: 22992180
COPD; Dendritic cells; IL-1R1; IL-1α; Cigarette smoke exposure; Mice
6.  Cigarette smoke enhances human rhinovirus-induced CXCL8 production via HuR-mediated mRNA stabilization in human airway epithelial cells 
Respiratory Research  2013;14(1):88.
Human rhinovirus (HRV) triggers exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Cigarette smoking is the leading risk factor for the development of COPD and 25% of asthmatics smoke. Smoking asthmatics have worse symptoms and more frequent hospitalizations compared to non-smoking asthmatics. The degree of neutrophil recruitment to the airways correlates with disease severity in COPD and during viral exacerbations of asthma. We have previously shown that HRV and cigarette smoke, in the form of cigarette smoke extract (CSE), each induce expression of the neutrophil chemoattractant and activator, CXCL8, in human airway epithelial cells. Additionally, we demonstrated that the combination of HRV and CSE induces expression of levels of CXCL8 that are at least additive relative to induction by each stimulus alone, and that enhancement of CXCL8 expression by HRV+CSE is regulated, at least in part, via mRNA stabilization. Here we further investigate the mechanisms by which HRV+CSE enhances CXCL8 expression.
Primary human bronchial epithelial cells were cultured and treated with CSE alone, HRV alone or the combination of the two stimuli. Stabilizing/destabilizing proteins adenine/uridine-rich factor-1 (AUF-1), KH-type splicing regulatory protein (KHSRP) and human antigen R (HuR) were measured in cell lysates to determine expression levels following treatment. siRNA knockdown of each protein was used to assess their contribution to the induction of CXCL8 expression following treatment of cells with HRV and CSE.
We show that total expression of stabilizing/de-stabilizing proteins linked to CXCL8 regulation, including AUF-1, KHSRP and HuR, are not altered by CSE, HRV or the combination of the two stimuli. Importantly, however, siRNA-mediated knock-down of HuR, but not AUF-1 or KHSRP, abolishes the enhancement of CXCL8 by HRV+CSE. Data were analyzed using one-way ANOVA with student Newman-Keuls post hoc analysis and values of p≤ 0.05 were considered significant.
Induction of CXCL8 by the combination of HRV and CSE is regulated by mRNA stabilization involving HuR. Thus, targeting the HuR pathway may be an effective method of dampening CXCL8 production during HRV-induced exacerbations of lower airway disease, particularly in COPD patients and asthmatic patients who smoke.
PMCID: PMC3848374  PMID: 23988199
Airway epithelium; Rhinovirus; Cigarette smoke; CXCL8; HuR; Post-transcriptional gene regulation; COPD; Asthma
7.  Respiratory Syncytial Virus Infections Enhance Cigarette Smoke Induced COPD in Mice 
PLoS ONE  2014;9(2):e90567.
Respiratory syncytial viral (RSV) infections are a frequent cause of chronic obstructive pulmonary disease (COPD) exacerbations, which are a major factor in disease progression and mortality. RSV is able to evade antiviral defenses to persist in the lungs of COPD patients. Though RSV infection has been identified in COPD, its contribution to cigarette smoke-induced airway inflammation and lung tissue destruction has not been established. Here we examine the long-term effects of cigarette smoke exposure, in combination with monthly RSV infections, on pulmonary inflammation, protease production and remodeling in mice. RSV exposures enhanced the influx of macrophages, neutrophils and lymphocytes to the airways of cigarette smoke exposed C57BL/6J mice. This infiltration of cells was most pronounced around the vasculature and bronchial airways. By itself, RSV caused significant airspace enlargement and fibrosis in mice and these effects were accentuated with concomitant smoke exposure. Combined stimulation with both smoke and RSV synergistically induced cytokine (IL-1α, IL-17, IFN-γ, KC, IL-13, CXCL9, RANTES, MIF and GM-CSF) and protease (MMP-2, -8, -12, -13, -16 and cathepsins E, S, W and Z) expression. In addition, RSV exposure caused marked apoptosis within the airways of infected mice, which was augmented by cigarette smoke exposure. RSV and smoke exposure also reduced protein phosphatase 2A (PP2A) and protein tyrosine phosphates (PTP1B) expression and activity. This is significant as these phosphatases counter smoke-induced inflammation and protease expression. Together, these findings show for the first time that recurrent RSV infection markedly enhances inflammation, apoptosis and tissue destruction in smoke-exposed mice. Indeed, these results indicate that preventing RSV transmission and infection has the potential to significantly impact on COPD severity and progression.
PMCID: PMC3938768  PMID: 24587397
8.  Cigarette smoke and lipopolysaccharide induce a proliferative airway smooth muscle phenotype 
Respiratory Research  2010;11(1):48.
A major feature of chronic obstructive pulmonary disease (COPD) is airway remodelling, which includes an increased airway smooth muscle (ASM) mass. The mechanisms underlying ASM remodelling in COPD are currently unknown. We hypothesized that cigarette smoke (CS) and/or lipopolysaccharide (LPS), a major constituent of CS, organic dust and gram-negative bacteria, that may be involved in recurrent airway infections and exacerbations in COPD patients, would induce phenotype changes of ASM.
To this aim, using cultured bovine tracheal smooth muscle (BTSM) cells and tissue, we investigated the direct effects of CS extract (CSE) and LPS on ASM proliferation and contractility.
Both CSE and LPS induced a profound and concentration-dependent increase in DNA synthesis in BTSM cells. CSE and LPS also induced a significant increase in BTSM cell number, which was associated with increased cyclin D1 expression and dependent on activation of ERK 1/2 and p38 MAP kinase. Consistent with a shift to a more proliferative phenotype, prolonged treatment of BTSM strips with CSE or LPS significantly decreased maximal methacholine- and KCl-induced contraction.
Direct exposure of ASM to CSE or LPS causes the induction of a proliferative, hypocontractile ASM phenotype, which may be involved in airway remodelling in COPD.
PMCID: PMC2873257  PMID: 20429916
9.  RAGE and tobacco smoke: insights into modeling chronic obstructive pulmonary disease 
Chronic obstructive pulmonary disease (COPD) is a progressive condition characterized by chronic airway inflammation and airspace remodeling, leading to airflow limitation that is not completely reversible. Smoking is the leading risk factor for compromised lung function stemming from COPD pathogenesis. First- and second-hand cigarette smoke contain thousands of constituents, including several carcinogens and cytotoxic chemicals that orchestrate chronic lung inflammation and destructive alveolar remodeling. Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors primarily expressed by diverse lung cells. RAGE expression increases following cigarette smoke exposure and expression is elevated in the lungs of patients with COPD. RAGE is responsible in part for inducing pro-inflammatory signaling pathways that culminate in expression and secretion of several cytokines, chemokines, enzymes, and other mediators. In the current review, new transgenic mouse models that conditionally over-express RAGE in pulmonary epithelium are discussed. When RAGE is over-expressed throughout embryogenesis, apoptosis in the peripheral lung causes severe lung hypoplasia. Interestingly, apoptosis in RAGE transgenic mice occurs via conserved apoptotic pathways also known to function in advanced stages of COPD. RAGE over-expression in the adult lung models features of COPD including pronounced inflammation and loss of parenchymal tissue. Understanding the biological contributions of RAGE during cigarette smoke-induced inflammation may provide critically important insight into the pathology of COPD.
PMCID: PMC3429072  PMID: 22934052
RAGE; COPD; tobacco; mouse model
10.  The standardized herbal formula, PM014, ameliorated cigarette smoke-induced lung inflammation in a murine model of chronic obstructive pulmonary disease 
In this study, we evaluated the anti-inflammatory effect of PM014 on cigarette smoke induced lung disease in the murine animal model of chronic obstructive pulmonary disease (COPD).
Mice were exposed to cigarette smoke (CS) for 2 weeks to induce COPD-like lung inflammation. Two hours prior to cigarette smoke exposure, the treatment group was administered PM014 via an oral injection. To investigate the effects of PM014, we assessed PM014 functions in vivo, including immune cell infiltration, cytokine profiles in bronchoalveolar lavage (BAL) fluid and histopathological changes in the lung. The efficacy of PM014 was compared with that of the recently developed anti-COPD drug, roflumilast.
PM014 substantially inhibited immune cell infiltration (neutrophils, macrophages, and lymphocytes) into the airway. In addition, IL-6, TNF-α and MCP-1 were decreased in the BAL fluid of PM014-treated mice compared to cigarette smoke stimulated mice. These changes were more prominent than roflumilast treated mice. The expression of PAS-positive cells in the bronchial layer was also significantly reduced in both PM014 and roflumilast treated mice.
These data suggest that PM014 exerts strong therapeutic effects against CS induced, COPD-like lung inflammation. Therefore, this herbal medicine may represent a novel therapeutic agent for lung inflammation in general, as well as a specific agent for COPD treatment.
PMCID: PMC3847199  PMID: 24010767
COPD; CS; PM014; Neutrophil; IL-6; TNF-α; MCP-1
11.  Role of the tachykinin NK1 receptor in a murine model of cigarette smoke-induced pulmonary inflammation 
Respiratory Research  2009;10(1):37.
The tachykinins, substance P and neurokinin A, present in sensory nerves and inflammatory cells such as macrophages and dendritic cells, are considered as pro-inflammatory agents. Inflammation of the airways and lung parenchyma plays a major role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and increased tachykinin levels are recovered from the airways of COPD patients. The aim of our study was to clarify the involvement of the tachykinin NK1 receptor, the preferential receptor for substance P, in cigarette smoke (CS)-induced pulmonary inflammation and emphysema in a mouse model of COPD.
Tachykinin NK1 receptor knockout (NK1-R-/-) mice and their wild type controls (all in a mixed 129/sv-C57BL/6 background) were subjected to sub acute (4 weeks) or chronic (24 weeks) exposure to air or CS. 24 hours after the last exposure, pulmonary inflammation and development of emphysema were evaluated.
Sub acute and chronic exposure to CS resulted in a substantial accumulation of inflammatory cells in the airways of both WT and NK1-R-/- mice. However, the CS-induced increase in macrophages and dendritic cells was significantly impaired in NK1-R-/- mice, compared to WT controls, and correlated with an attenuated release of MIP-3α/CCL20 and TGF-β1. Chronic exposure to CS resulted in development of pulmonary emphysema in WT mice. NK1-R-/- mice showed already enlarged airspaces upon air-exposure. Upon CS-exposure, the NK1-R-/- mice did not develop additional destruction of the lung parenchyma. Moreover, an impaired production of MMP-12 by alveolar macrophages upon CS-exposure was observed in these KO mice. In a pharmacological validation experiment using the NK1 receptor antagonist RP 67580, we confirmed the protective effect of absence of the NK1 receptor on CS-induced pulmonary inflammation.
These data suggest that the tachykinin NK1 receptor is involved in the accumulation of macrophages and dendritic cells in the airways upon CS-exposure and in the development of smoking-induced emphysema. As both inflammation of the airways and parenchymal destruction are important characteristics of COPD, these findings may have implications in the future treatment of this devastating disease.
PMCID: PMC2689186  PMID: 19445658
12.  Cigarette Smoke–Induced Egr-1 Upregulates Proinflammatory Cytokines in Pulmonary Epithelial Cells 
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide and is a progressive and irreversible disorder. Cigarette smoking is associated with 80–90% of COPD cases; however, the genes involved in COPD-associated emphysema and chronic inflammation are poorly understood. It was recently demonstrated that early growth response gene 1 (Egr-1) is significantly upregulated in the lungs of smokers with COPD (Ning W and coworkers, Proc Natl Acad Sci 2004;101:14895–14900). We hypothesized that Egr-1 is activated in pulmonary epithelial cells during exposure to cigarette smoke extract (CSE). Using immunohistochemistry, we demonstrated that pulmonary adenocarcinoma cells (A-549) and primary epithelial cells lacking basal Egr-1 markedly induce Egr-1 expression after CSE exposure. To evaluate Egr-1–specific effects, we used antisense (αS) oligodeoxynucleotides (ODN) to knock down Egr-1 expression. Incorporation of Egr-1 αS ODN significantly decreased CSE-induced Egr-1 mRNA and protein, while sense ODN had no effect. Via Egr-1–mediated mechanisms, IL-1β and TNF-α were significantly upregulated in pulmonary epithelial cells exposed to CSE or transfected with Egr-1. To investigate the relationship between Egr-1 induction by smoking and susceptibility to emphysema, we determined Egr-1 expression in strains of mice with different susceptibilities for the development of smoking-induced emphysema. Egr-1 was markedly increased in the lungs of emphysema-susceptible AKR/J mice chronically exposed to cigarette smoke, but only minimally increased in resistant NZWLac/J mice. In conclusion, Egr-1 is induced by cigarette smoke and functions in proinflammatory mechanisms that likely contribute to the development of COPD in the lungs of smokers.
PMCID: PMC2643284  PMID: 16601242
chronic obstructive pulmonary disease; Egr-1; gene expression; inflammation; pulmonary
13.  The role of uPAR in epithelial-mesenchymal transition in small airway epithelium of patients with chronic obstructive pulmonary disease 
Respiratory Research  2013;14(1):67.
Epithelial-mesenchymal transition (EMT) plays a crucial role in small airway fibrosis of patients with chronic obstructive pulmonary disease (COPD). Increasing evidence suggests that the urokinase plasminogen activator receptor (uPAR) is involved in the pathogenesis of COPD. Increased uPAR expression has been implicated in the promotion of EMT in numerous cancers; however the role of uPAR in EMT in small airway epithelial cells of patients with COPD remains unclear. In this study, we investigated the degree of EMT and uPAR expression in lung epithelium of COPD patients, and verified the effect of uPAR on cigarette smoke extract (CSE)-induced EMT in vitro.
The expression of EMT biomarkers and uPAR was assessed in lung epithelium specimens from non-smokers (n = 25), smokers (n = 25) and non-smokers with COPD (n = 10) and smokers with COPD (n = 18). The role of uPAR on CSE-induced EMT in human small airway epithelial cells (HSAEpiCs) was assessed by silencing uPAR expression in vitro.
Markers of active EMT and uPAR expression were significantly increased in the small airway epithelium of patients with COPD compared with controls. We also observed a significant correlation between uPAR and vimentin expression in the small airway epithelium. In vitro, CSE-induced EMT in HSAEpiCs was associated with high expression of uPAR, and targeted silencing of uPAR using shRNA inhibited CSE-induced EMT. Finally, we demonstrate that the PI3K/Akt signaling pathway is required for uPAR-mediated EMT in HSAEpiCs.
A uPAR-dependent signaling pathway is required for CSE-induced EMT, which contributes to small airway fibrosis in COPD. We propose that increased uPAR expression in the small airway epithelium of patients with COPD participates in an active EMT process.
PMCID: PMC3700841  PMID: 23806081
Urokinase plasminogen activator receptor; Epithelial-mesenchymal transition; Small airway epithelial cells; Chronic obstructive pulmonary disease and cigarette smoke
14.  Anti-Inflammatory Role of the cAMP Effectors Epac and PKA: Implications in Chronic Obstructive Pulmonary Disease 
PLoS ONE  2012;7(2):e31574.
Cigarette smoke-induced release of pro-inflammatory cytokines including interleukin-8 (IL-8) from inflammatory as well as structural cells in the airways, including airway smooth muscle (ASM) cells, may contribute to the development of chronic obstructive pulmonary disease (COPD). Despite the wide use of pharmacological treatment aimed at increasing intracellular levels of the endogenous suppressor cyclic AMP (cAMP), little is known about its exact mechanism of action. We report here that next to the β2-agonist fenoterol, direct and specific activation of either exchange protein directly activated by cAMP (Epac) or protein kinase A (PKA) reduced cigarette smoke extract (CSE)-induced IL-8 mRNA expression and protein release by human ASM cells. CSE-induced IκBα-degradation and p65 nuclear translocation, processes that were primarily reversed by Epac activation. Further, CSE increased extracellular signal-regulated kinase (ERK) phosphorylation, which was selectively reduced by PKA activation. CSE decreased Epac1 expression, but did not affect Epac2 and PKA expression. Importantly, Epac1 expression was also reduced in lung tissue from COPD patients. In conclusion, Epac and PKA decrease CSE-induced IL-8 release by human ASM cells via inhibition of NF-κB and ERK, respectively, pointing at these cAMP effectors as potential targets for anti-inflammatory therapy in COPD. However, cigarette smoke exposure may reduce anti-inflammatory effects of cAMP elevating agents via down-regulation of Epac1.
PMCID: PMC3283666  PMID: 22363678
15.  Inflammation and Immune Response in COPD: Where Do We Stand? 
Mediators of Inflammation  2013;2013:413735.
Increasing evidence indicates that chronic inflammatory and immune responses play key roles in the development and progression of COPD. Recent data provide evidence for a role in the NLRP3 inflammasome in the airway inflammation observed in COPD. Cigarette smoke activates innate immune cells by triggering pattern recognition receptors (PRRs) to release “danger signal”. These signals act as ligands to Toll-like receptors (TLRs), triggering the production of cytokines and inducing innate inflammation. In smokers who develop COPD there appears to be a specific pattern of inflammation in the airways and parenchyma as a result of both innate and adaptive immune responses, with the predominance of CD8+ and CD4+ cells, and in the more severe disease, with the presence of lymphoid follicles containing B lymphocytes and T cells. Furthermore, viral and bacterial infections interfere with the chronic inflammation seen in stable COPD and exacerbations via pathogen-associated molecular patterns (PAMPs). Finally, autoimmunity is another novel aspect that may play a critical role in the pathogenesis of COPD. This review is un update of the currently discussed roles of inflammatory and immune responses in the pathogenesis of COPD.
PMCID: PMC3728539  PMID: 23956502
16.  Multiple Facets of cAMP Signalling and Physiological Impact: cAMP Compartmentalization in the Lung 
Pharmaceuticals  2012;5(12):1291-1331.
Therapies involving elevation of the endogenous suppressor cyclic AMP (cAMP) are currently used in the treatment of several chronic inflammatory disorders, including chronic obstructive pulmonary disease (COPD). Characteristics of COPD are airway obstruction, airway inflammation and airway remodelling, processes encompassed by increased airway smooth muscle mass, epithelial changes, goblet cell and submucosal gland hyperplasia. In addition to inflammatory cells, airway smooth muscle cells and (myo)fibroblasts, epithelial cells underpin a variety of key responses in the airways such as inflammatory cytokine release, airway remodelling, mucus hypersecretion and airway barrier function. Cigarette smoke, being next to environmental pollution the main cause of COPD, is believed to cause epithelial hyperpermeability by disrupting the barrier function. Here we will focus on the most recent progress on compartmentalized signalling by cAMP. In addition to G protein-coupled receptors, adenylyl cyclases, cAMP-specific phospho-diesterases (PDEs) maintain compartmentalized cAMP signalling. Intriguingly, spatially discrete cAMP-sensing signalling complexes seem also to involve distinct members of the A-kinase anchoring (AKAP) superfamily and IQ motif containing GTPase activating protein (IQGAPs). In this review, we will highlight the interaction between cAMP and the epithelial barrier to retain proper lung function and to alleviate COPD symptoms and focus on the possible molecular mechanisms involved in this process. Future studies should include the development of cAMP-sensing multiprotein complex specific disruptors and/or stabilizers to orchestrate cellular functions. Compartmentalized cAMP signalling regulates important cellular processes in the lung and may serve as a therapeutic target.
PMCID: PMC3816672  PMID: 24281338
cAMP compartmentalization; barrier function; COPD; A-kinase anchoring proteins (AKAPs); Epac
17.  Cigarette smoke exposure inhibits extracellular MMP-2 (gelatinase A) activity in human lung fibroblasts 
Respiratory Research  2007;8(1):23.
Exposure to cigarette smoke is considered a major risk factor for the development of lung diseases, since its causative role has been assessed in the induction and maintenance of an inflamed state in the airways. Lung fibroblasts can contribute to these processes, due to their ability to produce proinflammatory chemotactic molecules and extracellular matrix remodelling proteinases. Among proteolytic enzymes, gelatinases A and B have been studied for their role in tissue breakdown and mobilisation of matrix-derived signalling molecules. Multiple reports linked gelatinase deregulation and overexpression to the development of inflammatory chronic lung diseases such as COPD.
In this study we aimed to determine variations in the gelatinolytic pattern of human lung fibroblasts (HFL-1 cell line) exposed to cigarette smoke extract (CSE). Gelatinolytic activity levels were determined by using gelatin zymography for the in-gel detection of the enzymes (proenzyme and activated forms), and the subsequent semi-quantitative densitometric evaluation of lytic bands. Expression of gelatinases was evaluated also by RT-PCR, zymography of the cell lysates and by western blotting.
CSE exposure at the doses used (1–10%) did not exert any significant cytotoxic effects on fibroblasts. Zymographic analysis showed that CSE exposure resulted in a linear decrease of the activity of gelatinase A. Control experiments allowed excluding a direct inhibitory effect of CSE on gelatinases. Zymography of cell lysates confirmed the expression of MMP-2 in all conditions. Semi-quantitative evaluation of mRNA expression allowed assessing a reduced transcription of the enzyme, as well as an increase in the expression of TIMP-2. Statistical analyses showed that the decrease of MMP-2 activity in conditioned media reached the statistical significance (p = 0.0031 for 24 h and p = 0.0012 for 48 h), while correlation analysis showed that this result was independent from CSE cytotoxicity (p = 0.7833 for both exposures).
Present work describes for the first time that, apart well characterized proinflammatory responses, human lung fibroblasts may react to CSE with a significant reduction of extracellular MMP-2 lytic activity. Therefore, fibroblasts may actively participate to the alteration of the proteolysis/antiproteolysis balance, which reflects the defective repair of the extracellular matrix. Such event should provide a further contribution to the maintenance of the inflamed state in the lungs.
PMCID: PMC1831768  PMID: 17352820
18.  Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells 
Respiratory Research  2013;14(1):97.
Cigarette smoking is the major risk factor for COPD, leading to chronic airway inflammation. We hypothesized that cigarette smoke induces structural and functional changes of airway epithelial mitochondria, with important implications for lung inflammation and COPD pathogenesis.
We studied changes in mitochondrial morphology and in expression of markers for mitochondrial capacity, damage/biogenesis and fission/fusion in the human bronchial epithelial cell line BEAS-2B upon 6-months from ex-smoking COPD GOLD stage IV patients to age-matched smoking and never-smoking controls.
We observed that long-term CSE exposure induces robust changes in mitochondrial structure, including fragmentation, branching and quantity of cristae. The majority of these changes were persistent upon CSE depletion. Furthermore, long-term CSE exposure significantly increased the expression of specific fission/fusion markers (Fis1, Mfn1, Mfn2, Drp1 and Opa1), oxidative phosphorylation (OXPHOS) proteins (Complex II, III and V), and oxidative stress (Mn-SOD) markers. These changes were accompanied by increased levels of the pro-inflammatory mediators IL-6, IL-8, and IL-1β. Importantly, COPD primary bronchial epithelial cells (PBECs) displayed similar changes in mitochondrial morphology as observed in long-term CSE-exposure BEAS-2B cells. Moreover, expression of specific OXPHOS proteins was higher in PBECs from COPD patients than control smokers, as was the expression of mitochondrial stress marker PINK1.
The observed mitochondrial changes in COPD epithelium are potentially the consequence of long-term exposure to cigarette smoke, leading to impaired mitochondrial function and may play a role in the pathogenesis of COPD.
PMCID: PMC3852998  PMID: 24088173
Mitochondria; Primary bronchial epithelial cells; Smoking; Reactive oxygen species; COPD
19.  CCN1 Secretion Induced by Cigarette Smoking Extracts Augments IL-8 Release from Bronchial Epithelial Cells 
PLoS ONE  2013;8(7):e68199.
Inflammation involves in many cigarette smoke (CS) related diseases including the chronic obstructive pulmonary disease (COPD). Lung epithelial cell released IL-8 plays a crucial role in CS induced lung inflammation. CS and cigarette smoke extracts (CSE) both induce IL-8 secretion and subsequently, IL-8 recruits inflammatory cells into the lung parenchyma. However, the molecular and cellular mechanisms by which CSE triggers IL-8 release remain not completely understood. In this study, we identified a novel extracellular matrix (ECM) molecule, CCN1, which mediated CSE induced IL-8 secretion by lung epithelial cells. We first found that CS and CSE up-regulated CCN1 expression and secretion in lung epithelial cells in vivo and in vitro. CSE up-regulated CCN1 via induction of reactive oxygen spices (ROS) and endoplasmic reticulum (ER) stress. p38 MAPK and JNK activation were also found to mediate the signal pathways in CSE induced CCN1. CCN1 was secreted into ECM via Golgi and membrane channel receptor aquaporin4. After CSE exposure, elevated ECM CCN1 functioned via an autocrine or paracrine manner. Importantly, CCN1 activated Wnt pathway receptor LRP6, subsequently stimulated Wnt pathway component Dvl2 and triggered beta-catenin translocation from cell membrane to cytosol and nucleus. Treatment of Wnt pathway inhibitor suppressed CCN1 induced IL-8 secretion from lung epithelial cells. Taken together, CSE increased CCN1 expression and secretion in lung epithelial cells via induction of ROS and ER stress. Increased ECM CCN1 resulted in augmented IL-8 release through the activation of Wnt pathway.
PMCID: PMC3706594  PMID: 23874538
20.  Nontypeable Haemophilus influenzae in chronic obstructive pulmonary disease and lung cancer 
Chronic obstructive pulmonary disease (COPD) is predicted to become the third leading cause of death in the world by 2020. It is characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and associated with an abnormal inflammatory response of the lungs to noxious particles and gases, most commonly cigarette smoke. Among smokers with COPD, even following withdrawal of cigarette smoke, inflammation persists and lung function continues to deteriorate. One possible explanation is that bacterial colonization of smoke-damaged airways, most commonly with nontypeable Haemophilus influenzae (NTHi), perpetuates airway injury and inflammation. Furthermore, COPD has also been identified as an independent risk factor for lung cancer irrespective of concomitant cigarette smoke exposure. In this article, we review the role of NTHi in airway inflammation that may lead to COPD progression and lung cancer promotion.
PMCID: PMC3048087  PMID: 21407824
COPD; NTHi; inflammation
21.  Induction of the unfolded protein response by cigarette smoke is primarily an activating transcription factor 4-C/EBP homologous protein mediated process 
Cigarette smoke is the major risk factor associated with the development of chronic obstructive pulmonary disease (COPD). Recent studies propose a link between endoplasmic reticulum (ER) stress and emphysema, demonstrated by increased ER stress markers under smoking conditions. Here, we investigate whether cigarette smoke-induced ER stress is cell specific and correlates with acute and chronic cigarette smoke exposure.
Gene and protein expression changes in human primary lung cell cultures following cigarette smoke extract (CSE) exposure were monitored by qPCR and Western blot analysis. Mice and guinea pigs were exposed to cigarette smoke and ER stress markers examined in whole lung homogenates. Inflammatory cells from the bronchoalveolar lavage fluid of 10 days smoke exposed mice were also examined.
Cigarette smoke induced a trend increase in the ER stress response through an activating transcription factor 4 (ATF4) mediated induction of C/EBP homologous protein (CHOP) in primary small airway epithelial cells. Bronchial epithelial cells and macrophages responded similarly to CSE. Wild-type mice and guinea pigs exposed to acute levels of cigarette smoke exhibited increased levels of CHOP but not at significant levels. However, after long-term chronic cigarette smoke exposure, CHOP expression was reduced. Interestingly, inflammatory cells from smoke exposed mice had a significant increase in CHOP/ATF4 expression.
A trend increase in CHOP levels appear in multiple human lung cell types following acute cigarette smoke exposure in vitro. In vivo, inflammatory cells, predominately macrophages, demonstrate significant cigarette smoke-induced ER stress. Early induction of CHOP in cigarette smoke may play a pivotal role in early induction of lung disease, however in vivo long-term cigarette smoke exposure exhibited a reduction in the ER stress response.
PMCID: PMC3119106  PMID: 21697995
COPD; ER stress; cigarette smoke; CHOP
22.  Critical role of aldehydes in cigarette smoke-induced acute airway inflammation 
Respiratory Research  2013;14(1):45.
Cigarette smoking (CS) is the most important risk factor for COPD, which is associated with neutrophilic airway inflammation. We hypothesize, that highly reactive aldehydes are critical for CS-induced neutrophilic airway inflammation.
BALB/c mice were exposed to CS, water filtered CS (WF-CS) or air for 5 days. Levels of total particulate matter (TPM) and aldehydes in CS and WF-CS were measured. Six hours after the last exposure, inflammatory cells and cytokine levels were measured in lung tissue and bronchoalveolar lavage fluid (BALF). Furthermore, Beas-2b bronchial epithelial cells were exposed to CS extract (CSE) or WF-CS extract (WF-CSE) in the absence or presence of the aldehyde acrolein and IL-8 production was measured after 24 hrs.
Compared to CS, in WF-CS strongly decreased (CS; 271.1 ± 41.5 μM, WF-CS; 58.5 ± 8.2 μM) levels of aldehydes were present whereas levels of TPM were only slightly reduced (CS; 20.78 ± 0.59 mg, WF-CS; 16.38 ± 0.36 mg). The numbers of mononuclear cells in BALF (p<0.01) and lung tissue (p<0.01) were significantly increased in the CS- and WF-CS-exposed mice compared to air control mice. Interestingly, the numbers of neutrophils (p<0.001) in BALF and neutrophils and eosinophils (p<0.05) in lung tissue were significantly increased in the CS-exposed but not in WF-CS-exposed mice as compared to air control mice. Levels of the neutrophil and eosinophil chemoattractants KC, MCP-1, MIP-1α and IL-5 were all significantly increased in lung tissue from CS-exposed mice compared to both WF-CS-exposed and air control mice. Interestingly, depletion of aldehydes in WF-CS extract significantly reduced IL-8 production in Beas-2b as compared to CSE, which could be restored by the aldehyde acrolein.
Aldehydes present in CS play a critical role in inflammatory cytokine production and neutrophilic- but not mononuclear airway inflammation.
PMCID: PMC3671961  PMID: 23594194
Cigarette smoke; Aldehydes; Mouse model; Airway inflammation; COPD
23.  Cigarette Smoke Modulates Expression of Human Rhinovirus-Induced Airway Epithelial Host Defense Genes 
PLoS ONE  2012;7(7):e40762.
Human rhinovirus (HRV) infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD) and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE) modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.
PMCID: PMC3395625  PMID: 22808255
24.  Cigarette Smoking Reprograms Apical Junctional Complex Molecular Architecture in the Human Airway Epithelium In Vivo 
Cellular and molecular life sciences : CMLS  2010;68(5):10.1007/s00018-010-0500-x.
The apical junctional complex (AJC), composed of tight and adherens junctions, maintains epithelial barrier function. Since cigarette smoking and chronic obstructive pulmonary disease (COPD), the major smoking-induced disease, are associated with increased lung epithelial permeability, we hypothesized that smoking alters the transcriptional program regulating airway epithelial AJC integrity. Transcriptome analysis revealed global down-regulation of physiological AJC gene expression in the airway epithelium of healthy smokers (n=59) compared to nonsmokers (n=53) in association with changes in canonical epithelial differentiation pathways such as PTEN signaling accompanied by induction of cancer-related AJC components. The overall expression of AJC-related genes was further decreased in COPD smokers (n=23). Exposure of airway epithelial cells to cigarette smoke extract in vitro resulted in down-regulation of several AJC genes paralleled by decreased transepithelial resistance. Thus, cigarette smoking induces transcriptional reprogramming of airway epithelial AJC architecture from its physiological pattern necessary for barrier function toward disease-associated molecular phenotype.
PMCID: PMC3838912  PMID: 20820852
tight junctions; adherens junctions; airway epithelium; epithelial polarity; cigarette smoking; transcriptional regulation; chronic obstructive pulmonary disease
25.  Impact of smoking on dendritic cell phenotypes in the airway lumen of patients with COPD 
Respiratory Research  2014;15(1):48.
Myeloid dendritic cells (DCs) are increased in the airway wall of patients with chronic obstructive pulmonary disease (COPD), and postulated to play a crucial role in COPD. However, DC phenotypes in COPD are poorly understood.
Function-associated surface molecules on bronchoalveolar lavage fluid (BALF) DCs were analyzed using flow cytometry in current smokers with COPD, in former smokers with COPD and in never-smoking controls.
Myeloid DCs of current smokers with COPD displayed a significantly increased expression of receptors for antigen recognition such as BDCA-1 or Langerin, as compared with never-smoking controls. In contrast, former smokers with COPD displayed a significantly decreased expression of these receptors, as compared with never-smoking controls. A significantly reduced expression of the maturation marker CD83 on myeloid DCs was found in current smokers with COPD, but not in former smokers with COPD. The chemokine receptor CCR5 on myeloid DCs, which is also important for the uptake and procession of microbial antigens, was strongly reduced in all patients with COPD, independently of the smoking status.
COPD is characterized by a strongly reduced CCR5 expression on myeloid DCs in the airway lumen, which might hamper DC interactions with microbial antigens. Further studies are needed to better understand the role of CCR5 in the pathophysiology and microbiology of COPD.
PMCID: PMC4021430  PMID: 24742278
Dendritic cells; COPD; Smoking; Airway

Results 1-25 (651650)