PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1120099)

Clipboard (0)
None

Related Articles

1.  Conventional, but not remote ischemic preconditioning, reduces iNOS transcription in liver ischemia/reperfusion 
AIM: To study the effects of preconditioning on inducible nitric oxide synthase (iNOS) and interleukin 1 (IL-1) receptor transcription in rat liver ischemia/reperfusion injury (IRI).
METHODS: Seventy-two male rats were randomized into 3 groups: the one-hour segmental ischemia (IRI, n = 24) group, the ischemic preconditioning (IPC, n = 24) group or the remote ischemic preconditioning (R-IPC, n = 24) group. The IPC and R-IPC were performed as 10 min of ischemia and 10 min of reperfusion. The iNOS and the IL-1 receptor mRNA in the liver tissue was analyzed with real time PCR. The total Nitrite and Nitrate (NOx) in continuously sampled microdialysate (MD) from the liver was analyzed. In addition, the NOx levels in the serum were analyzed.
RESULTS: After 4 h of reperfusion, the iNOS mRNA was significantly higher in the R-IPC (ΔCt: 3.44 ± 0.57) group than in the IPC (ΔCt: 5.86 ± 0.82) group (P = 0.025). The IL-1 receptor transcription activity was reduced in the IPC group (ΔCt: 1.88 ± 0.53 to 4.81 ± 0.21), but not in the R-IPC group, during reperfusion (P = 0.027). In the MD, a significant drop in the NOx levels was noted in the R-IPC group (12.3 ± 2.2 to 4.7 ± 1.2 μmol/L) at the end of ischemia compared with the levels in early ischemia (P = 0.008). A similar trend was observed in the IPC group (11.8 ± 2.1 to 6.4 ± 1.5 μmol/L), although this difference was not statistically significant. The levels of NOx rose quickly during reperfusion in both groups.
CONCLUSION: IPC, but not R-IPC, reduces iNOS and IL-1 receptor transcription during early reperfusion, indicating a lower inflammatory reaction. NOx is consumed in the ischemic liver lobe.
doi:10.3748/wjg.v20.i28.9506
PMCID: PMC4110582  PMID: 25071345
Ischemia-reperfusion injury; Preconditioning; Remote preconditioning; Liver ischemia; Liver surgery; Microdialysis; Nitric oxide; Inducible nitric oxide synthase; Interleukin-1 receptor
2.  Preconditionin effects of dexmedetomidine on myocardial ischemia/reperfusion injury in rats 
Background: Preconditioning might protect the myocardium against ischemia/ reperfusion injury by reducing infarct size and preventing arrhythmias. Dexmedetomidine (DEX) is a highly selective α2-agonist used for sedoanalgesia in daily anesthetic practice. The cardioprotective effects of DEX on infarct size and on the incidence of arrhythmias observed after regional ischemia/reperfusion injury in vivo have not been reported.
Objective: The aim of this study was to determine whether DEX exhibits a preconditioning effect and reduces infarct size and the incidence and duration of arrhythmias in a regional cardiac ischemia/reperfusion model in rats.
Methods: Adult male Sprague-Dawley rats were anesthetized with sodium thiopental and mechanically ventilated (0.9 mL/100 g at 60 strokes/min) through a cannula inserted into the trachea after tracheotomy. Cardiac ischemia was then produced by ligating the left main coronary artery for 30 minutes, followed by a reperfusion period of 120 minutes. Blood pressure (BP) and heart rate (HR) were monitored and echocardiograms (ECGs) were performed. Arrhythmia was scored based on incidence and duration. The animals were randomly divided into 3 groups. The ischemic preconditioning (IPC) group underwent 5 minutes of ischemia followed by 5 minutes of reperfusion before the 30-minute ischemia/120-minute reperfusion period. In the DEX group, intraperitoneal (IP) DEX 1 mL (100 μg/kg) was administered 30 minutes before the ischemia/ reperfusion period. In the control group, IP saline 1 mL was administered 30 minutes before the ischemia/reperfusion period. After reperfusion, the heart was excised, demarcated with saline and ethanol to identify the occluded and nonoccluded myocardium, and cut into slices ~2 mm thick, that were then stained and placed between 2 glass plates. The risk zone and the infarct zone were compared between groups. The investigator assessing the infarcts was blinded to the study group.
Results: Twenty-one adult (aged 4-6 months) male Sprague-Dawley rats weighing 280 to 360 g were included in the study; 7 rats were assigned to each group. BP, HR, and ECG readings were not significantly different between groups and did not change during the study. Arrythmias occurred during ischemia and reperfusion in all groups. The duration of the arrhythmias was significantly shorter and the arrhythmia score was significantly lower in the IPC group (all, P<0.05), compared with the control group; however, they were not significantly different in the DEX group. During the ischemic period, duration of ventricular tachycardia (VT) and ventricular premature contractions (VPC) in the DEX group was significantly longer than that observed in the IPC group (all, P<0.05). The duration of VPC was also significantly shorter than that observed in the control group (both, P<0.05). Duration of VT during the reperfusion period in the DEX group was significantly longer than that observed in both IPC and control groups (both, P<0.05). The mean (SD) percentage of damage was significantly lower in the IPC group (44.1% [2.0%]) and the DEX group (26.7% [2.0%]) compared with the control group (69.0% [3.0%]; both, P<0.05). The percentage of damage in the DEX group was also significantly lower compared with the IPC group (P<0.05).
Conclusions: This small, experimental in vivo study found that DEX was associated with reduced infarct size in ischemia/reperfusion injury in regional ischemia in this rat model but had no effect on the incidence of arrhythmias. Future studies are needed to clarify these findings.
doi:10.1016/j.curtheres.2008.04.003
PMCID: PMC3969917  PMID: 24692794
dexmedetomidine; preconditioning; cardiac ischemia/reperfusion
3.  Ischemic preconditioning reduces endoplasmic reticulum stress and upregulates hypoxia inducible factor-1α in ischemic kidney: the role of nitric oxide 
Background
Although recent studies indicate that renal ischemic preconditioning (IPC) protects the kidney from ischemia-reperfusion (I/R) injury, the precise protective mechanism remains unclear. In the current study, we investigated whether early IPC could upregulate hypoxia inducible transcription factor-1α (HIF-1α) expression and could reduce endoplasmic reticulum (ER) stress after renal I/R and whether pharmacological inhibition of nitric oxide (NO) production would abolish these protective effects.
Methods
Kidneys of Wistar rats were subjected to 60 min of warm ischemia followed by 120 min of reperfusion (I/R group), or to 2 preceding cycles of 5 min ischemia and 5 min reperfusion (IPC group), or to intravenously injection of NG-nitro-L-arginine methylester (L-NAME, 5 mg/kg) 5 min before IPC (L-NAME+IPC group). The results of these experimental groups were compared to those of a sham-operated group. Sodium reabsorption rate, creatinine clearance, plasma lactate dehydrogenase (LDH) activity, tissues concentrations of malonedialdehyde (MDA), HIF-1α and nitrite/nitrate were determined. In addition, Western blot analyses were performed to identify the amounts of Akt, endothelial nitric oxide synthase (eNOS) and ER stress parameters.
Results
IPC decreased cytolysis, lipid peroxidation and improved renal function. Parallely, IPC enhanced Akt phosphorylation, eNOS, nitrite/nitrate and HIF-1α levels as compared to I/R group. Moreover, our results showed that IPC increased the relative amounts of glucose-regulated protein 78 (GRP78) and decreased those of RNA activated protein kinase (PKR)-like ER kinase (PERK), activating transcription factor 4 (ATF4) and TNF-receptor-associated factor 2 (TRAF2) as judged to I/R group. However, pre treatment with L-NAME abolished these beneficial effects of IPC against renal I/R insults.
Conclusion
These findings suggest that early IPC protects kidney against renal I/R injury via reducing oxidative and ER stresses. These effects are associated with phosphorylation of Akt, eNOS activation and NO production contributing thus to HIF-1α stabilization. The beneficial impact of IPC was abolished when NO production is inhibited before IPC application.
doi:10.1186/1423-0127-19-7
PMCID: PMC3398272  PMID: 22252226
kidney; ischemia-reperfusion; ischemic preconditioning; Akt; eNOS, HIF1-α; ER stress
4.  Remote ischemic preconditioning of cardiomyocytes inhibits the mitochondrial permeability transition pore independently of reduced calcium‐loading or sarcKATP channel activation 
Physiological Reports  2014;2(11):e12231.
Abstract
Ischemic preconditioning (IPC) inhibits Ca2+‐loading during ischemia which contributes to cardioprotection by inhibiting mechanical injury due to hypercontracture and biochemical injury through mitochondrial permeability transition (MPT) pores during reperfusion. However, whether remote‐IPC reduced Ca2+‐loading during ischemia and its subsequent involvement in inhibiting MPT pore formation during reperfusion has not been directly shown. We have developed a cellular model of remote IPC to look at the impact of remote conditioning on Ca2+‐regulation and MPT pore opening during simulated ischemia and reperfusion, using fluorescence microscopy. Ventricular cardiomyocytes were isolated from control rat hearts, hearts preconditioned with three cycles of ischemia/reperfusion or naïve myocytes remotely conditioned with effluent collected from preconditioned hearts. Both conventional‐IPC and remote‐IPC reduced the loss of Ca2+‐homeostasis and contractile function following reenergization of metabolically inhibited cells and protected myocytes against ischemia/reperfusion injury. However, only conventional‐IPC reduced the Ca2+‐loading during metabolic inhibition and this was independent of any change in sarcKATP channel activity but was associated with a reduction in Na+‐loading, reflecting a decrease in Na/H exchanger activity. Remote‐IPC delayed opening of the MPT pores in response to ROS, which was dependent on PKCε and NOS‐signaling. These data show that remote‐IPC inhibits MPT pore opening to a similar degree as conventional IPC, however, the contribution of MPT pore inhibition to protection against reperfusion injury is independent of Ca2+‐loading in remote IPC. We suggest that inhibition of the MPT pore and not Ca2+‐loading is the common link in cardioprotection between conventional and remote IPC.
Remote ischemic preconditioning (IPC) provides a similar level of protection against ischemia–reperfusion injury to that of conventional‐IPC. This study shows that unlike conventional‐IPC, this was independent of any reduction in Na or Ca2+‐loading during the simulated ischemic event but results from a direct PKCε‐dependent inhibition of the mitochondrial permeability transition pore.
doi:10.14814/phy2.12231
PMCID: PMC4255825  PMID: 25428953
Ca2+‐Loading; ischemic preconditioning; MPT pore; remote ischemic preconditioning; sodium/hydrogen exchanger
5.  AMPK-Regulated and Akt-Dependent Enhancement of Glucose Uptake Is Essential in Ischemic Preconditioning-Alleviated Reperfusion Injury 
PLoS ONE  2013;8(7):e69910.
Aims
Ischemic preconditioning (IPC) is a potent form of endogenous protection. However, IPC-induced cardioprotective effect is significantly blunted in insulin resistance-related diseases and the underlying mechanism is unclear. This study aimed to determine the role of glucose metabolism in IPC-reduced reperfusion injury.
Methods
Normal or streptozotocin (STZ)-treated diabetic rats subjected to 2 cycles of 5 min ischemia/5 min reperfusion prior to myocardial ischemia (30 min)/reperfusion (3 h). Myocardial glucose uptake was determined by 18F-fluorodeoxyglucose-positron emission tomography (PET) scan and gamma-counter biodistribution assay.
Results
IPC exerted significant cardioprotection and markedly improved myocardial glucose uptake 1 h after reperfusion (P<0.01) as evidenced by PET images and gamma-counter biodistribution assay in ischemia/reperfused rats. Meanwhile, myocardial translocation of glucose transporter 4 (GLUT4) to plasma membrane together with myocardial Akt and AMPK phosphorylation were significantly enhanced in preconditioned hearts. Intramyocardial injection of GLUT4 siRNA markedly decreased GLUT4 expression and blocked the cardioprotection of IPC as evidence by increased myocardial infarct size. Moreover, the PI3K inhibitor wortmannin significantly inhibited activation of Akt and AMPK, reduced GLUT4 translocation, glucose uptake and ultimately, depressed IPC-induced cardioprotection. Furthermore, IPC-afforded antiapoptotic effect was markedly blunted in STZ-treated diabetic rats. Exogenous insulin supplementation significantly improved glucose uptake via co-activation of myocardial AMPK and Akt and alleviated ischemia/reperfusion injury as evidenced by reduced myocardial apoptosis and infarction size in STZ-treated rats (P<0.05).
Conclusions
The present study firstly examined the role of myocardial glucose metabolism during reperfusion in IPC using direct genetic modulation in vivo. Augmented glucose uptake via co-activation of myocardial AMPK and Akt in reperfused myocardium is essential to IPC-alleviated reperfusion injury. This intrinsic metabolic modulation and cardioprotective capacity are present in STZ-treated hearts and can be triggered by insulin.
doi:10.1371/journal.pone.0069910
PMCID: PMC3724784  PMID: 23922853
6.  Nitrite, a novel method to decrease ischemia/reperfusion injury in the rat liver 
AIM: To investigate whether nitrite administered prior to ischemia/reperfusion (I/R) reduces liver injury.
METHODS: Thirty-six male Sprague-Dawley rats were randomized to 3 groups, including sham operated (n = 8), 45-min segmental ischemia of the left liver lobe (IR, n = 14) and ischemia/reperfusion (I/R) preceded by the administration of 480 nmol of nitrite (n = 14). Serum transaminases were measured after 4 h of reperfusion. Liver microdialysate (MD) was sampled in 30-min intervals and analyzed for glucose, lactate, pyruvate and glycerol as well as the total nitrite and nitrate (NOx). The NOx was measured in serum.
RESULTS: Aspartate aminotransferase (AST) at the end of reperfusion was higher in the IR group than in the nitrite group (40 ± 6.8 μkat/L vs 22 ± 2.6 μkat/L, P = 0.022). Similarly, alanine aminotransferase (ALT) was also higher in the I/R group than in the nitrite group (34 ± 6 μkat vs 14 ± 1.5 μkat, P = 0.0045). The NOx in MD was significantly higher in the nitrite group than in the I/R group (10.1 ± 2.9 μmol/L vs 3.2 ± 0.9 μmol/L, P = 0.031) after the administration of nitrite. During ischemia, the levels decreased in both groups and then increased again during reperfusion. At the end of reperfusion, there was a tendency towards a higher NOx in the I/R group than in the nitrite group (11.6 ± 0.7 μmol/L vs 9.2 ± 1.1 μmol/L, P = 0.067). Lactate in MD was significantly higher in the IR group than in the nitrite group (3.37 ± 0.18 mmol/L vs 2.8 ± 0.12 mmol/L, P = 0.01) during ischemia and the first 30 min of reperfusion. During the same period, glycerol was also higher in the IRI group than in the nitrite group (464 ± 38 μmol/L vs 367 ± 31 μmol/L, P = 0.049). With respect to histology, there were more signs of tissue damage in the I/R group than in the nitrite group, and 29% of the animals in the I/R group exhibited necrosis compared with none in the nitrite group. Inducible nitric oxide synthase transcription increased between early ischemia (t = 15) and the end of reperfusion in both groups.
CONCLUSION: Nitrite administered before liver ischemia in the rat liver reduces anaerobic metabolism and cell necrosis, which could be important in the clinical setting.
doi:10.3748/wjg.v21.i6.1775
PMCID: PMC4323453
Ischemia-reperfusion injury; Nitrite; Liver ischemia; Liver surgery; Microdialysis; Nitric oxide; Inducible nitric oxide synthase
7.  Redox Signaling Triggers Protection During The Reperfusion Rather Than The Ischemic Phase Of Preconditioning 
Basic research in cardiology  2008;103(4):378-384.
In ischemic preconditioning (IPC) brief ischemia/reperfusion renders the heart resistant to infarction from any subsequent ischemic insult. Protection results from binding of surface receptors by ligands released during the preconditioning ischemia. The downstream pathway involves redox signaling as IPC will not protect in the presence of a free radical scavenger. To determine when the redox signaling occurs, five groups of isolated rabbit hearts were studied. All hearts underwent 30 min of coronary branch occlusion and 2 h of reperfusion. IPC groups were subjected to 5 min of regional ischemia followed by 10 min of reperfusion prior to the 30-min coronary occlusion. The Control group had only the 30-min occlusion and 2-h reperfusion. The second group had IPC alone. The third group was also preconditioned, but the free radical scavenger N-2-mercaptopropionyl glycine (MPG, 300 µM) was infused during the 10-min reperfusion and therefore was present in the myocardium in the distribution of the snared coronary artery during the entire reperfusion phase and also during the subsequent 30-min ischemia. In another preconditioned group MPG was added to the perfusate before the preconditioning ischemia and therefore was present in the tissue only during the preconditioning ischemia and then was washed out during reperfusion. In the fifth group MPG was added to the perfusate for only the last 5 min of the preconditioning reperfusion and therefore was present in the tissue during the last minutes of the reperfusion phase and the 30 min of ischemia. Infarct size and risk size were measured by triphenyltetrazolium staining and fluorescent microspheres, resp. IPC reduced infarct size from 31.3±2.7% of the ischemic zone in control hearts to only 8.4±1.9%. MPG completely blocked IPC’s protection in the 3rd group (39.4±2.8%) but did not affect its protection in groups 4 (8.1±1.5%) or 5 (7.8±1.1%). Hence redox signaling occurs during the reperfusion phase of IPC.
doi:10.1007/s00395-008-0718-z
PMCID: PMC2670099  PMID: 18347834
8.  The effects of exogenous l-carnitine on lipid peroxidation and tissue damage in an experimental warm hepatic ischemia-reperfusion injury model* 
Background:l-Carnitine is the essential endogenous factor for the transport of long-chain fatty acids from the cytoplasm to within the mitochondrion where the β-oxidation process takes place. l-Carnitine is a superoxide scavenger and an antioxidant that possesses an anti-ischemic action and a stabilizing effect on cell membranes. It may be of help in liver ischemia reperfusion injury. Results regarding the effects of l-carnitine on liver ischemia and reperfusion injury are few and conflicting.
Objective: The aim of this study was to investigate the efficacy of exogenous l-carnitine on lipid peroxidation and protecting liver at different stages of experimental total warm hepatic ischemia-reperfusion (TWHIR) procedure in rats.
Methods: This experimental study in healthy, weanling, male Wistar rats (weighing 180–200 g) was conducted at the Experimental Animal Research Laboratory of the Faculty of Medicine of Mersin University, Mersin, Turkey. Rats were randomly divided into 5 groups: (A) Control group; (B) TWHIR procedure only; (C) l-carnitine administered 2 hours before the TWHIR procedure; (D) l-carnitine administered just before the TWHIR procedure; and (E) l-carnitine administered after total warm hepatic ischemia but just before the reperfusion procedure. Total warm hepatic ischemia (via the Pringle maneuver) and reperfusion were performed for 45 and 30 minutes, respectively. l-Carnitine (200 mg/kg) was administered intravenously. At the end of each procedure a blood sample was drawn and total hepatectomy was performed following reperfusion. Malondialdehyde (MDA) and myeloperoxidase (MPO) levels of both plasma and liver tissue, total antioxidant capacity (TAOC), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in plasma, and histopathologic examination were analyzed to assess lipid peroxidation and damage in liver tissue.
Results: Thirty-four rats (mean [SD]age, 59.26 [1.2]days; mean [SD] weight, 194.1 [5.1] g) were used in the study. There was a significant difference observed between groups A (n = 5) and B (n = 5) for all evaluation parameters. The TWHIR procedure performed in group B was associated with significant increases versus baseline in ALT, AST, MDA, and MPO in plasma, and MDA and MPO in liver tissue, but a significant decrease of TAOC in plasma. ALT, AST, serum and liver MDA, and MPO levels of group B were significantly higher than all groups administered l-carnitine. l-Carnitine administration between total warm hepatic ischemia and reperfusion was associated with a significant attenuation in all parameters. The liver MDA levels of groups C (n = 8) and D (n = 8) were significantly lower than that of group E (n = 8) (mean [SD]: C, 16.53 [3.32] and D, 18.28 [1.67] vs E, 23.05 [3.52]; P = 0.001 and P = 0.016, respectively). The mean (SD) liver MPO level of group C (1.09 [0.16]) was significantly lower than that of groups D (2.12 [0.25]) and E (2.11 [0.28]) (both, P = 0.001). The TAOC of group B (0.77 [0.12]) was significantly lower than that of groups C (1.34 [0.19]) and D (1.08 [0.20]) (P = 0.001 and P = 0.015, respectively). The TAOC of group C was significantly higher than that of the other l-carnitine groups (E, 0.94 [0.13]) (P = 0.023 vs group D; and P = 0.001 vs group E). Histopathologic scores of groups A, C, and E were significantly lower than that of group B, but the difference between groups B and D was not statistically significant.
Conclusions: In this experimental study, administration of exogenous l-carnitine was associated with significantly decreased lipid peroxidation in plasma and liver tissue when administered prior to a TWHIR procedure. In addition, l-carnitine seemed to be more effective with regard to decreasing lipid peroxidation in liver tissue when administered before warm hepatic ischemia. l-Carnitine was associated with significantly decreased leukocyte sequestration in plasma and liver tissue. A significant increase in TAOC was associated with l-carnitine administered prior to ischemia. These observations suggest that l-carnitine might have a protective effect against ischemia-reperfusion injury in rat liver tissue.
doi:10.1016/j.curtheres.2007.02.002
PMCID: PMC3965977  PMID: 24678117
l-carnitine; experimental; liver; ischemia; reperfusion
9.  Evaluation of the effects of ischemic preconditioning on the hematological parameters of rats subjected to intestinal ischemia and reperfusion 
Clinics  2015;70(1):61-68.
OBJECTIVES:
Intestinal ischemia/reperfusion often leads to acute lung injury and multiple organ failure. Ischemic preconditioning is protective in nature and reduces tissue injuries in animal and human models. Although hematimetric parameters are widely used as diagnostic tools, there is no report of the influence of intestinal ischemia/reperfusion and ischemic preconditioning on such parameters. We evaluated the hematological changes during ischemia/reperfusion and preconditioning in rats.
METHODS:
Forty healthy rats were divided into four groups: control, laparotomy, intestinal ischemia/reperfusion and ischemic preconditioning. The intestinal ischemia/reperfusion group received 45 min of superior mesenteric artery occlusion, while the ischemic preconditioning group received 10 min of short ischemia and reperfusion before 45 min of prolonged occlusion. A cell counter was used to analyze blood obtained from rats before and after the surgical procedures and the hematological results were compared among the groups.
RESULTS:
The results showed significant differences in hematimetric parameters among the groups. The parameters that showed significant differences included lymphocyte, white blood cells and granulocyte counts; hematocrit; mean corpuscular hemoglobin concentration; red cell deviation width; platelet count; mean platelet volume; plateletcrit and platelet distribution width.
CONCLUSION:
The most remarkable parameters were those related to leukocytes and platelets. Some of the data, including the lymphocyte and granulocytes counts, suggest that ischemic preconditioning attenuates the effect of intestinal ischemia/reperfusion on circulating blood cells. Our work contributes to a better understanding of the hematological responses after intestinal ischemia/reperfusion and IPC, and the present findings may also be used as predictive values.
doi:10.6061/clinics/2015(01)11
PMCID: PMC4321002
Ischemic Reperfusion Injury; Ischemic Preconditioning; Systemic Inflammatory Response; Intestinal Ischemia; Hemocytometry; Superior Mesenteric Artery Occlusion
10.  The protective effect of ischemic preconditioning on rat testis 
Background
It has been demonstrated that brief episodes of sublethal ischemia-reperfusion, so-called ischemic preconditioning, provide powerful tissue protection in different tissues such as heart, brain, skeletal muscle, lung, liver, intestine, kidney, retina, and endothelial cells. Although a recent study has claimed that there are no protective effects of ischemic preconditioning in rat testis, the protective effects of ischemic preconditioning on testicular tissue have not been investigated adequately. The present study was thus planned to investigate whether ischemic preconditioning has a protective effect on testicular tissue.
Methods
Rats were divided into seven groups that each contained seven rats. In group 1 (control group), only unilateral testicular ischemia was performed by creating a testicular torsion by a 720 degree clockwise rotation for 180 min. In group 2, group 3, group 4, group 5, group 6, and group 7, unilateral testicular ischemia was performed for 180 min following different periods of ischemic preconditioning. The ischemic preconditioning periods were as follows: 10 minutes of ischemia with 10 minutes of reperfusion in group 2; 20 minutes of ischemia with 10 minutes of reperfusion in group 3; 30 minutes of ischemia with 10 minutes of reperfusion in group 4; multiple preconditioning periods were used (3 × 10 min early phase transient ischemia with 10 min reperfusion in all episodes) in group 5; multiple preconditioning periods were used (5, 10, and 15 min early phase transient ischemia with 10 min reperfusion in all episodes) in group 6; and, multiple preconditioning periods were used (10, 20, and 30 min early phase transient ischemia with 10 min reperfusion in all episodes) in group 7. After the ischemic protocols were carried out, animals were sacrificed by cervical dislocation and testicular tissue samples were taken for biochemical measurements (protein, malondialdehyde, nitric oxide) and histological examination.
Results
Although decreased tissue malondialdehyde levels were detected in the groups of 2, 3, 4, and 5 compared to group 1, significant decreases were observed in only group 2 and group 5 (p < .05). Nitric oxide levels were numerically decreased in all groups compared to the control group but was statistically significant only in group 5 (p < .05). Histopathological examination demonstrated that all groups subjected to ischemic preconditioning had less tissue damage than group 1 (p < .05).
Conclusion
These results suggest that ischemic preconditioning provides tissue protection in testicular tissue.
doi:10.1186/1477-7827-5-47
PMCID: PMC2231361  PMID: 18096073
11.  Both ischemic preconditioning and ghrelin administration protect hippocampus from ischemia/reperfusion and upregulate uncoupling protein-2 
BMC Physiology  2009;9:17.
Background
A major endogenous protective mechanism in many organs against ischemia/reperfusion (I/R) injury is ischemic preconditioning (IPC). By moderately uncoupling the mitochondrial respiratory chain and decreasing production of reactive oxygen species (ROS), IPC reduces apoptosis induced by I/R by reducing cytochrome c release from the mitochondria. One element believed to contribute to reduce ROS production is the uncoupling protein UCP2 (and UCP3 in the heart). Although its implication in IPC in the brain has been shown in vitro, no in vivo study of protein has shown its upregulation. Our first goal was to determine in rat hippocampus whether UCP2 protein upregulation was associated with IPC-induced protection and increased ROS production. The second goal was to determine whether the peptide ghrelin, which possesses anti-oxidant and protective properties, alters UCP2 mRNA levels in the same way as IPC during protection.
Results
After global forebrain ischemia (15 min) with 72 h reperfusion (I/R group), we found important neuronal lesion in the rat hippocampal CA1 region, which was reduced by a preceding 3-min preconditioning ischemia (IPC+I/R group), whereas the preconditioning stimulus alone (IPC group) had no effect. Compared to control, UCP2 protein labelling increased moderately in the I/R (+39%, NS) and IPC+I/R (+28%, NS) groups, and substantially in the IPC group (+339%, P < 0.05). Treatment with superoxide dismutase (10000 U/kg ip) at the time of a preconditioning ischemia greatly attenuated (-73%, P < 0.001) the increase in UCP2 staining at 72 h, implying a role of oxygen radicals in UCP2 induction.
Hippocampal UCP2 mRNA showed a moderate increase in I/R (+33%, P < 0.05) and IPC+I/R (+40%, P < 0.05) groups versus control, and a large increase in the IPC group (+333%, P < 0.001). In ghrelin experiments, the I/R+ghrelin group (3 daily administrations) showed considerable protection of CA1 neurons versus I/R animals, and increased hippocampal UCP2 mRNA (+151%, P < 0.001).
Conclusion
We confirm that IPC causes increased expression of UCP2 protein in vivo, at a moment appropriate for protection against I/R in the hippocampus. The two dissimilar protective strategies, IPC and ghrelin administration, were both associated with upregulated UCP2, suggesting that UCP2 may often represent a final common pathway in protection from I/R.
doi:10.1186/1472-6793-9-17
PMCID: PMC2754976  PMID: 19772611
12.  Ischemic Preconditioning Decreases Mitochondrial Proton Leak and Reactive Oxygen Species Production in the Postischemic Heart 
Background
Proton leak (H+ leak) dissipates mitochondrial membrane potential (mΔΨ) through the reentry of protons into the mitochondrial matrix independent of ATP synthase. Changes in H+ leak may affect reactive oxygen species (ROS) production. We measured H+ leak and ROS production during ischemia-reperfusion and ischemic preconditioning (IPC) and examined how changing mitochondrial respiration affected mΔΨ and ROS production.
Materials/Methods
Isolated rat hearts (n=6/group) were subjected to either Control-IR or IPC. Rate pressure product (RPP) was measured. Mitochondria were isolated at end reperfusion. Respiration was measured by polarography and titrated with increasing concentrations of malonate (0.5-2mM). mΔΨ was measured using a tetraphenylphosphonium electrode. H+ leak is the respiratory rate required to maintain membrane potential at -150mV in the presence of oligomycin-A Mitochondrial complex III ROS production was measured by fluorometry using Amplex-Red.
Results
IPC improved recovery of RPP at end reperfusion (63±4% vs. 21±2% in Control-IR, p<0.05). Ischemia-reperfusion caused increased H+ leak (94±12 vs. 31±1 nanomoles O/mg protein/min in Non-Ischemic Control, p<0.05). IPC attenuates these increases (55±9 nanomoles O/mg protein/min, p< 0.05 vs. Control-IR). IPC reduced mitochondrial ROS production compared to Control-IR (31±2 vs. 40±3 nanomoles/mg protein/min, p<0.05). As mitochondrial respiration decreased, mΔΨ and mitochondrial ROS production also decreased. ROS production remained lower in IPC than in Control-IR for all mΔΨ and respiration rates.
Conclusions
Increasing H+ leak is not associated with increased ROS production. IPC decreases both the magnitude of H+ leak and ROS production after ischemia-reperfusion.
doi:10.1016/j.jss.2010.09.018
PMCID: PMC3005326  PMID: 21035133
Ischemia; reperfusion; reactive oxygen species; mitochondria; proton leak; uncoupling; heart
13.  Protection of rat renal vitamin E levels by ischemic-preconditioning 
BMC Nephrology  2004;5:6.
Background
During renal transplantation, the kidney remains without blood flow for a period of time. The following reperfusion of this ischemic kidney causes functional and structural injury. Formation of oxygen-derived free radicals (OFR) and subsequent lipid peroxidation (LP) has been implicated as the causative factors of these injuries. Vitamin E is known to be the main endogenous antioxidant that stabilizes cell membranes by interfering with LP. The present study was designed to examine the role of ischemic-preconditioning (repeated brief periods of ischemia, IPC) in prevention of renal injury caused by ischemia-reperfusion (IR) in rats.
Methods
IPC included sequential clamping of the right renal artery for 5 min and release of the clamp for another 5 min for a 3 cycles. IR was induced by 30 min ischemia followed by 10 min reperfusion. Four groups of male rats were used: Control, IPC, IR and IPC-IR. Vitamin E, an endogenous antioxidant and as an index of LP, was measured by HPLC and UV detection in renal venous plasma and tissue. Renal function was assessed by serum creatinine and BUN levels. Renal damage was assessed in sections stained with Haematoxylin and Eosin.
Results
In the IR group, there was a significant decrease in vitamin E in plasma and tissue compared to a control group (p,0.05). In the IPC-IR group, vitamin E concentration was significantly higher than in the IR group (p,0.01). The results showed that 30 min ischemia in the IR group significantly (p,0.05) reduced renal function demonstrated by an increase in serum creatinine levels as compared with the control group. These results in the IPC group also showed a significant difference with the IR group but no significant difference in serum BUN and creatinine between IR and IPC-IR group were detected. Histological evaluation showed no structural damage in the IPC group and an improvement in the IPC-IR group compared to IR alone.
Conclusions
In this study, IPC preserved vitamin E levels, but it could not markedly improve renal function in the early phase (1–2 h) of reperfusion. IPC may be a useful method for antioxidant preservation in organ transplantation.
doi:10.1186/1471-2369-5-6
PMCID: PMC411039  PMID: 15115553
14.  Effect of ischemic preconditioning in skeletal muscle measured by functional magnetic resonance imaging and spectroscopy: a randomized crossover trial 
Background
Nuclear magnetic resonance (NMR) imaging and spectroscopy have been applied to assess skeletal muscle oxidative metabolism. Therefore, in-vivo NMR may enable the characterization of ischemia-reperfusion injury. The goal of this study was to evaluate whether NMR could detect the effects of ischemic preconditioning (IPC) in healthy subjects.
Methods
Twenty-three participants were included in two randomized crossover protocols in which the effects of IPC were measured by NMR and muscle force assessments. Leg ischemia was administered for 20 minutes with or without a subsequent impaired reperfusion for 5 minutes (stenosis model). IPC was administered 4 or 48 hours prior to ischemia. Changes in 31phosphate NMR spectroscopy and blood oxygen level-dependent (BOLD) signals were recorded. 3-Tesla NMR data were compared to those obtained for isometric muscular strength.
Results
The phosphocreatine (PCr) signal decreased robustly during ischemia and recovered rapidly during reperfusion. In contrast to PCr, the recovery of muscular strength was slow. During post-ischemic stenosis, PCr increased only slightly. The BOLD signal intensity decreased during ischemia, ischemic exercise and post-ischemic stenosis but increased during hyperemic reperfusion. IPC 4 hours prior to ischemia significantly increased the maximal PCr reperfusion signal and mitigated the peak BOLD signal during reperfusion.
Conclusions
Ischemic preconditioning positively influenced muscle metabolism during reperfusion; this resulted in an increase in PCr production and higher oxygen consumption, thereby mitigating the peak BOLD signal. In addition, an impairment of energy replenishment during the low-flow reperfusion was detected in this model. Thus, functional NMR is capable of characterizing changes in reperfusion and in therapeutic interventions in vivo.
Trial Registration
ClinicalTrials.gov: NCT00883467
doi:10.1186/1532-429X-13-32
PMCID: PMC3143996  PMID: 21718491
15.  Evaluation of thyroid hormone induced pharmacological preconditioning on cardiomyocyte protection against ischemic-reperfusion injury 
Indian Journal of Pharmacology  2012;44(1):68-72.
Objectives:
Ischemic preconditioning (IPC) has been demonstrated to make myocardium transiently more resistant to deleterious effect of prolonged ischemia. The opening of the mitochondrial permeability transition pore (mPTP) at the time of myocardial reperfusion is a critical determinant of cell death. L-thyroxine pre-treatment increases the tolerance of the heart to ischemia and produces cardioprotection similar to ischemic precondition. This study has been designed to investigate the mechanism involved in L-thyroxine-induced cardiomyocyte protection against ischemia-reperfusion (I/R) injury in rats.
Materials and Methods:
L-thyroxine (T4) was administered to Wistar rats (n=6) (25 μg/100 g/day s.c.) for two weeks. Hearts from normal and L-thyroxine-treated rats were perfused in Langendorff's mode and subjected to 30 min of ischemia followed by 120 min of reperfusion. Myocardial infarct size was estimated by triphenyltetrazolium chloride (TTC) staining and lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) was analyzed in coronary effluent.
Results:
IPC and pharmacological preconditioning (PPC) significantly decreased (P<0.05) myocardial infarct size, release of LDH and CK-MB in rat heart. Perfusion of atractyloside, an opener of mPTP, significantly (P<0.05) attenuated the cardioprotective effect of IPC and L-thyroxine-induced pharmacological preconditioning (PPC) in normal rat heart.
Conclusion:
The cardioprotective effect of L-thyroxine-induced preconditioning may be mediated through inhibition of mPTP opening during reperfusion phase.
doi:10.4103/0253-7613.91870
PMCID: PMC3271543  PMID: 22345873
Ischemic preconditioning; mPTP-opening; myocardial infarction; pharmacological preconditioning
16.  Effects of ischemic pre- and postconditioning on HIF-1α, VEGF and TGF-β expression after warm ischemia and reperfusion in the rat liver 
Background
Ischemic pre- and postconditioning protects the liver against ischemia/reperfusion injuries. The aim of the present study was to examine how ischemic pre- and postconditioning affects gene expression of hypoxia inducible factor 1α (HIF-1α), vascular endothelial growth factor A (VEGF-A) and transforming growth factor β (TGF-β) in liver tissue.
Methods
28 rats were randomized into five groups: control; ischemia/reperfusion; ischemic preconditioning (IPC); ischemic postconditioning (IPO); combined IPC and IPO. IPC consisted of 10 min of ischemia and 10 min of reperfusion. IPO consisted of three cycles of 30 sec. reperfusion and 30 sec. of ischemia.
Results
HIF-1α mRNA expression was significantly increased after liver ischemia compared to controls (p = 0.010). HIF-1α mRNA expression was significantly lower in groups subjected to IPC or combined IPC and IPO when compared to the ischemia/reperfusion group (p = 0.002). VEGF-A mRNA expression increased in the ischemia/reperfusion or combined IPC and IPO groups when compared to the control group (p < 0.05).
Conclusion
Ischemic conditioning seems to prevent HIF-1α mRNA induction in the rat liver after ischemia and reperfusion. This suggests that the protective effects of ischemic conditioning do not involve the HIF-1 system. On the other hand, the magnitude of the HIF-1α response might be a marker for the degree of I/R injuries after liver ischemia. Further studies are needed to clarify this issue.
doi:10.1186/1476-5926-10-3
PMCID: PMC3155899  PMID: 21771288
17.  Remote ischaemic preconditioning protects against cardiopulmonary bypass‐induced tissue injury: a preclinical study 
Heart  2006;92(10):1506-1511.
Objectives
To test the hypothesis that remote ischaemic preconditioning (rIPC) reduces injury after cardiopulmonary bypass (CPB).
Design
Randomised study with an experimental model of CPB (3 h CPB with 2 h of cardioplegic arrest). Twelve 15 kg pigs were randomly assigned to control or rIPC before CPB and followed up for 6 h.
Intervention
rIPC was induced by four 5 min cycles of lower limb ischaemia before CPB.
Main outcome measures
Troponin I, glial protein S‐100B, lactate concentrations, load‐independent indices (conductance catheter) of systolic and diastolic function, and pulmonary resistance and compliance were measured before and for 6 h after CPB.
Results
Troponin I increased after CPB in both groups but during reperfusion the rIPC group had lower concentrations than controls (mean area under the curve −57.3 (SEM 7.3) v 89.0 (11.6) ng·h/ml, p  =  0.02). Lactate increased after CPB in both groups but during reperfusion the control group had significantly more prolonged hyperlactataemia (p  =  0.04). S‐100B did not differ between groups. Indices of ventricular function did not differ. There was a tendency to improved lung compliance (p  =  0.07), and pulmonary resistance changed less in the rIPC than in the control group during reperfusion (p  =  0.02). Subsequently, peak inspiratory pressure was lower (p  =  0.001).
Conclusion
rIPC significantly attenuated clinically relevant markers of myocardial and pulmonary injury after CPB. Transient limb ischaemia as an rIPC stimulus has potentially important clinical applications.
doi:10.1136/hrt.2004.042366
PMCID: PMC1861036  PMID: 16818489
18.  Purine Nucleoside Phosphorylase: A New Marker for Free Oxygen Radical Injury to the Endothelial Cell 
Hepatology (Baltimore, Md.)  1990;11(2):193-198.
The effect of ischemia and reperfusion on purine nucleoside phosphorylase was studied in an isolated perfused rat liver model. This enzyme is localized primarily in the cytoplasm of the endothelial and Kupffer cells; some activity is associated with the parenchymal cells. Levels of this enzyme accurately predicted the extent of ischemia and reperfusion damage to the microvascular endothelial cell of the liver. Livers from Lewis rats were subjected to 30, 45 and 60 min of warm (37° C) no flow ischemia that was followed by a standard reperfusion period lasting 45 min. Purine nucleoside phosphorylase was measured at the end of the no flow ischemia and reperfusion periods as was superoxide generation (O2−). Bile production was monitored throughout the no flow ischemia and reperfusion periods. Control perfusions were carried out for 120 min. A significant rise in purine nucleoside phosphorylase levels as compared with controls was observed at the end of ischemia in all the three groups. The highest level, 203.5 ± 29.2 mU/ml, was observed after 60 min of ischemia. After the reperfusion period, levels of purine nucleoside phosphorylase decreased in the 30- and 45-min groups 58.17 ± 9.66 mU/ml and 67.5 ± 17.1 mU/ml, respectively. These levels were equal to control perfusions. In contrast, after 60 min of ischemia, levels of purine nucleoside phosphorylase decreased early in the reperfusion period and then rose to 127.8 ± 14.8 mU/ml by the end of reperfusion (p < 0.0001). Superoxide generation at the beginning of reperfusion was higher than in controls with similar values observed at the end of 30, 45 and 60 min of ischemia. During reperfusion, production of superoxide continued. Bile production was significantly lower at the end of 30 min (0.044 ± 0.026 µl/min/gm), 45 min (0.029 ± 0.022 µl/min/gm) and 60 min of ischemia (0.022 ± 0.008 µl/min/gm) when compared with bile production by control livers during the corresponding time (0.680 ± 0.195, 0.562 ± 0.133 and 0.480 ± 0.100 µl/min/gm respectively; p < 0.001). During reperfusion, rates of bile production were normal after 30 and 45 min of ischemia. In contrast, significantly lower rates of bile production, 0.046 ± 0.36 µl/min/gm (p < 0.001) occurred during reperfusion after 60 min of ischemia. Control livers during the same period produced 0.330 ± 0.056 µl/min/gm of bile. The results indicate that purine nucleoside phosphorylase levels may be a good index of oxidative injury to the liver in ischemia reperfusion and reliably predict the functional state of the organ after reperfusion.
PMCID: PMC2972712  PMID: 2155167
19.  Remote postconditioning by humoral factors in effluent from ischemic preconditioned rat hearts is mediated via PI3K/Akt-dependent cell-survival signaling at reperfusion 
Basic Research in Cardiology  2010;106(1):135-145.
Short non-lethal ischemic episodes administered to hearts prior to (ischemic preconditioning, IPC) or directly after (ischemic postconditioning, IPost) ischemic events facilitate myocardial protection. Transferring coronary effluent collected during IPC treatment to un-preconditioned recipient hearts protects from lethal ischemic insults. We propose that coronary IPC effluent contains hydrophobic cytoprotective mediators acting via PI3K/Akt-dependent pro-survival signaling at ischemic reperfusion. Ex vivo rat hearts were subjected to 30 min of regional ischemia and 120 min of reperfusion. IPC effluent administered for 10 min prior to index ischemia attenuated infarct size by ≥55% versus control hearts (P < 0.05). Effluent administration for 10 min at immediate reperfusion (reperfusion therapy) or as a mimetic of pharmacological postconditioning (remote postconditioning, RIPost) significantly reduced infarct size compared to control (P < 0.05). The IPC effluent significantly increased Akt phosphorylation in un-preconditioned hearts when administered before ischemia or at reperfusion, while pharmacological inhibition of PI3K/Akt-signaling at reperfusion completely abrogated the cardioprotection offered by effluent administration. Fractionation of coronary IPC effluent revealed that cytoprotective humoral mediator(s) released during the conditioning phase were of hydrophobic nature as all hydrophobic fractions with molecules under 30 kDa significantly reduced infarct size versus the control and hydrophilic fraction-treated hearts (P < 0.05). The total hydrophobic effluent fraction significantly reduced infarct size independently of temporal administration (before ischemia, at reperfusion or as remote postconditioning). In conclusion, the IPC effluent retains strong cardioprotective properties, containing hydrophobic mediator(s) < 30 kDa offering cytoprotection via PI3K/Akt-dependent signaling at ischemic reperfusion.
doi:10.1007/s00395-010-0133-0
PMCID: PMC3012213  PMID: 21103992
Postconditioning; Preconditioning; Cardioprotection; Ischemia; Reperfusion; Akt
20.  In vivo hypoxic preconditioning protects from warm liver ischemic/reperfusion injury through the adenosine A2B receptor 
Transplantation  2012;94(9):894-902.
BACKGROUND
Liver ischemia(I)/reperfusion(R) injury(I) is a known risk factor for the postoperative outcome of patients undergoing liver surgery/transplantation. Attempts to protect from organ damage require multidisciplinary strategies and are of emerging interest in view of patients with higher age and ASA-status. Ischemic preconditioning has been successfully applied to prevent from IRI during liver resections/transplantation. Since even short periods of ischemia during preconditioning inevitably lead to hypoxia and formation of anti-inflammatory/ cytoprotective acting adenosine, we reasoned that short non-ischemic hypoxia also protects against hepatic IRI.
METHODS
Mice underwent hypoxic preconditioning(HPC) by breathing 10%-oxygen for 10 minutes, followed by 10 minutes of 21%-oxygen prior to left-liver-lobe-ischemia(45 min) and reperfusion(4 hrs). The interactions of hypoxia->adenosine->adenosine-receptors were tested by pharmacologic antagonism at adenosine receptor(AR) sites in wild type mice and in mice with genetic deletions at the A1-;A2A-;A2B- and A3-ARs. Hepatocellular damage, inflammation and metabolic effects were quantified by enzyme activities, cytokines, liver-myeloperoxidase(MPO), blood adenosine and tissue-adenosinemonophosphate(AMP), respectively.
RESULTS
Hepatoprotection by HPC was significant in wild type and A1-, A2A-and A3 AR-knock-out mice as quantified by lower ALT serum activities, cytokine levels, histological damage-scores, tissue-myeloperoxidase-concentrations and as well as preserved AMP-concentrations. Protection by HPC was blunted in mice pretreated with the A2B-AR-antagonist MRS1754 or in A2B-AR“knock-outs”.
CONCLUSION
Because liver protective effects of HPC are negated when the A2B receptor is non-functional, the "hypoxia->adenosine->A2B receptor" pathway plays a critical role in the prevention of warm ischemia reperfusion injury in vivo. Hypoxic activation of this pathway warrants use of selective A2B-AR-agonists or even intermittent hypoxia (e.g. in deceased organ donors) to protect from liver ischemia/reperfusion injury.
doi:10.1097/TP.0b013e31826a9a46
PMCID: PMC3491139  PMID: 23073466
hypoxia; murine liver ischemia; preconditioning; hepatoprotection
21.  Pretreatment with Bone Morphogenetic Protein-7 (BMP-7) Mimics Ischemia Preconditioning Following Intestinal Ischemia/Reperfusion Injury in The Intestine and Liver 
Shock (Augusta, Ga.)  2008;30(5):532-536.
Intestinal ischemia/reperfusion (I/R) injury has been shown to cause intestinal mucosal injury and adversely affect function. Ischemic preconditioning (IPC) has been shown to protect against intestinal I/R injury by reducing polymorphonuclear leukocyte infiltration, intestinal mucosal injury, and liver injury, and preserve intestinal transit. Bone morphogenetic protein 7 (BMP-7) has been shown to protect against I/R injury in the kidney and brain. Recently, microarray analysis has been used to examine the possible IPC candidate pathways. This work revealed that IPC may work through upregulation of BMP-7. The purpose of this study was to examine if pretreatment with BMP-7 would replicate the effects seen with IPC in the intestine and liver after intestinal I/R. Rats were randomized to six groups: sham, I/R (30 min of superior mesenteric artery occlusion and 6 h of R), IPC+R (three cycles of superior mesenteric artery occlusion for 4 min and R for 10 min), IPC+I/R, BMP-7+R (100 microm/kg recombinant human BMP-7), or BMP-7+I/R. A duodenal catheter was placed, and 30 min before sacrifice, fluorescein isothiocyanate-Dextran was injected. At sacrifice, dye concentrations were measured to determine intestinal transit. Ileal mucosal injury was determined by histology and myeloperoxidase activity was used as a marker of polymorphonuclear leukocyte infiltration. Serum levels of aspartate aminotransferase were measured at sacrifice to determine liver injury. Pretreatment with BMP-7 significantly improved intestinal transit and significantly decreased intestinal mucosal injury and serum aspartate aminotransferase levels, comparable to animals undergoing IPC. In conclusion, BMP-7 protected against intestinal I/R-induced intestinal and liver injury. Bone morphogenetic protein 7 may be a more logical surrogate to IPC in the prevention of injury in the setting of intestinal I/R.
doi:10.1097/SHK.0b013e31816f20f1
PMCID: PMC3800102  PMID: 18461025
BMP-7; ileus; ischemia/reperfusion; intestinal transit
22.  Ischemic postconditioning protects cardiomyocytes against ischemia/reperfusion injury by inducing MIP2 
Experimental & Molecular Medicine  2011;43(8):437-445.
Cardiomyocytes can resist ischemia/reperfusion (I/R) injury through ischemic postconditioning (IPoC) which is repetitive ischemia induced during the onset of reperfusion. Myocardial ischemic preconditioning up-regulated protein 2 (MIP2) is a member of the WD-40 family proteins, we previously showed that MIP2 was up-regulated during ischemic preconditioning (IPC). As IPC and IPoC engaged similar molecular mechanisms in cardioprotection, this study aimed to elucidate whether MIP2 was up-regulated during IPoC and contributed to IPoC-mediated protection against I/R injury. The experiment was conducted on two models, an in vivo open chest rat coronary artery occlusion model and an in vitro model with H9c2 myogenic cells. In both models, 3 groups were constituted and randomly designated as the sham, I/R and IPoC/hypoxia postconditioning (HPoC) groups. In the IPoC group, after 45 min of ischemia, hearts were allowed three cycles of reperfusion/ischemia phases (each of 30 s duration) followed by reperfusion. In the HPoC group, after 6 h of hypoxia, H9c2 cells were subjected to three cycles of 10 minute reoxygenation and 10 minute hypoxia followed by reoxygenation. IPoC significantly reduced the infarct size, plasma level of Lactate dehydrogenase and creatine kinase MB in rats. 12 h after the reperfusion, MIP2 mRNA levels in the IPoC group were 10 folds that of the sham group and 1.4 folds that of the I/R group. Increased expression of MIP2 mRNA and attenuation of apoptosis were similarly observed in the HPoC group in the in vitro model. These effects were blunted by transfection with MIP2 siRNA in the H9c2 cells. This study demonstrated that IPoC induced protection was associated with increased expression of MIP2. Both MIP2 overexpression and MIP2 suppression can influence the IPoC induced protection.
doi:10.3858/emm.2011.43.8.049
PMCID: PMC3174377  PMID: 21654187
ischemic preconditioning, myocardial; myocardial ischemia; myocardial reperfusion; reperfusion injury
23.  Protein Kinase C Protects Preconditioned Rabbit Hearts by Increasing Sensitivity of Adenosine A2b-Dependent Signaling During Early Reperfusion 
Although protein kinase C (PKC) plays a key role in ischemic preconditioning (IPC), the actual mechanism of that protection is unknown. We recently found that protection from IPC requires activation of adenosine receptors during early reperfusion. We, therefore, hypothesized PKC might act to increase the heart’s sensitivity to adenosine. IPC limited infarct size in isolated rabbit hearts subjected to 30-min regional ischemia/2-h reperfusion and IPC’s protection was blocked by the PKC inhibitor chelerythrine given during early reperfusion revealing involvement of PKC at reperfusion. Similarly chelerythrine infused in the early reperfusion period blocked the increased phosphorylation of the protective kinases Akt and ERK1/2 observed after IPC. Infusing phorbol 12-myristate 13-acetate (PMA), a PKC activator, during early reperfusion mimicked IPC’s protection. As expected, the protection triggered by PMA at reperfusion was blocked by chelerythrine, but surprisingly it was also blocked by MRS1754, an adenosine A2b receptor–selective antagonist, suggesting that PKC was somehow facilitating signaling from the A2b receptors. NECA [5′-(N-ethylcarboxamido) adenosine], a potent but not selective A2b receptor agonist, increased phosphorylation of Akt and ERK1/2 in a dose-dependent manner. Pretreating hearts with PMA or brief preconditioning ischemia had no effect on phosphorylation of Akt or ERK1/2 per se, but markedly lowered the threshold for NECA to induce their phosphorylation. BAY 60-6583, a highly selective A2b agonist, also caused phosphorylation of ERK 1/2 and Akt. MRS1754 prevented phosphorylation induced by BAY 60-6583. BAY 60-6583 limited infarct size when given to ischemic hearts at reperfusion. These results suggest that activation of cardiac A2b receptors at reperfusion is protective, but because of the very low affinity of the receptors endogenous cardiac adenosine is unable to trigger their signaling. We propose that the key protective event in IPC occurs when PKC increases the heart’s sensitivity to adenosine so that endogenous adenosine can activate A2b-dependent signaling.
doi:10.1016/j.yjmcc.2007.05.016
PMCID: PMC2729547  PMID: 17632123
adenosine A2b receptors; BAY 60-6583; NECA; preconditioning; protein kinase C
24.  Hydrogen Sulfide Preconditioning Protects Rat Liver against Ischemia/Reperfusion Injury by Activating Akt-GSK-3β Signaling and Inhibiting Mitochondrial Permeability Transition 
PLoS ONE  2013;8(9):e74422.
Hydrogen sulfide (H2S) is the third most common endogenously produced gaseous signaling molecule, but its impact on hepatic ischemia/reperfusion (I/R) injury, especially on mitochondrial function, remains unclear. In this study, rats were randomized into Sham, I/R, ischemia preconditioning (IPC) or sodium hydrosulfide (NaHS, an H2S donor) preconditioning groups. To establish a model of segmental (70%) warm hepatic ischemia, the hepatic artery, left portal vein and median liver lobes were occluded for 60 min and then unclamped to allow reperfusion. Preconditioning with 12.5, 25 or 50 μmol/kg NaHS prior to the I/R insult significantly increased serum H2S levels, and, similar to IPC, NaHS preconditioning decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in the plasma and prevented hepatocytes from undergoing I/R-induced necrosis. Moreover, a sub-toxic dose of NaHS (25 μmol/kg) did not disrupt the systemic hemodynamics but dramatically inhibited mitochondrial permeability transition pore (MPTP) opening and thus prevented mitochondrial-related cell death and apoptosis. Mechanistic studies revealed that NaHS preconditioning markedly increased the expression of phosphorylated protein kinase B (p-Akt), phosphorylated glycogen synthase kinase-3 beta (p-GSK-3β) and B-cell lymphoma-2 (Bcl-2) and decreased the release of mitochondrial cytochrome c and cleaved caspase-3/9 levels. Therefore, NaHS administration prior to hepatic I/R ameliorates mitochondrial and hepatocellular damage through the inhibition of MPTP opening and the activation of Akt-GSK-3β signaling. Furthermore, this study provides experimental evidence for the clinical use of H2S to reduce liver damage after perioperative I/R injury.
doi:10.1371/journal.pone.0074422
PMCID: PMC3772845  PMID: 24058562
25.  Microdialysis assessment of peripheral metabolism in critical limb ischemia after endovascular revascularization 
Background
Critical limb ischemia is a chronic pathologic condition defined by the lack of blood flow in peripheral circulation. Microdialysis is a well-known and sensitive method for the early detection of tissue ischemia. The aim of the present study was to use microdialysis in order to analyse cellular metabolism changes after peripheral endovascular revascularization.
Methods
Ten patients diagnosed with critical limb ischemia was enrolled. CMA 60 (CMA® - Solna, Sweden) catheter with a 20 kDa cut-off was placed subcutaneously on the anterior aspect of the foot of both limbs. Samples were collected starting 12-hours before surgery and throughout the following 72-hours, using a CMA 600 (CMA® - Solna, Sweden) microdialysis analyser.
Results
Technical revascularization was successful in all cases. The cannulation was well tolerated in all patients. The site of catheter insertion healed easily in few days without infective complications in any case. Two patients underwent major amputation. After revascularization, glucose showed a strong increase (mean, 5.86 ± 1.52 mMol/L, p = .008). No restoration of the circadian rhythm was noted in patients who underwent major amputation. Glycerol concentration curves were not deductibles in both the ischemic and the control limbs (mean, 148.43 ± 42.13 mMol/L vs 178.44 ± 75.93 mMol/L, p = .348). Within the first 24-hours after revascularization, lactate concentration raised strongly (6.58 ± 1.56 mMol/L, p = .002): thereafter, it immediately decreased to a concentration similar to the control level (1.71 ± 1.69 mMol/L). In both patients who underwent major amputation, lactate did not show the typical peak of the successful revascularization. The trend of the lactate/pyruvate ratio after a brief initial decrease of the ratio increased again in both the patients who finally underwent amputation.
Conclusions
Restoration of glucose and glycerol circadian rhythm, coupled with low lactate concentration and lactate/pyruvate ratio seemed to be linked to good surgical outcome.
doi:10.1186/1750-1164-3-17
PMCID: PMC2809054  PMID: 20043828

Results 1-25 (1120099)