Search tips
Search criteria

Results 1-25 (644998)

Clipboard (0)

Related Articles

1.  “cAMP Sponge”: A Buffer for Cyclic Adenosine 3′, 5′-Monophosphate 
PLoS ONE  2009;4(11):e7649.
While intracellular buffers are widely used to study calcium signaling, no such tool exists for the other major second messenger, cyclic AMP (cAMP).
Methods/Principal Findings
Here we describe a genetically encoded buffer for cAMP based on the high-affinity cAMP-binding carboxy-terminus of the regulatory subunit RIβ of protein kinase A (PKA). Addition of targeting sequences permitted localization of this fragment to the extra-nuclear compartment, while tagging with mCherry allowed quantification of its expression at the single cell level. This construct (named “cAMP sponge”) was shown to selectively bind cAMP in vitro. Its expression significantly suppressed agonist-induced cAMP signals and the downstream activation of PKA within the cytosol as measured by FRET-based sensors in single living cells. Point mutations in the cAMP-binding domains of the construct rendered the chimera unable to bind cAMP in vitro or in situ. Cyclic AMP sponge was fruitfully applied to examine feedback regulation of gap junction-mediated transfer of cAMP in epithelial cell couplets.
This newest member of the cAMP toolbox has the potential to reveal unique biological functions of cAMP, including insight into the functional significance of compartmentalized signaling events.
PMCID: PMC2766031  PMID: 19888343
2.  Epac-selective cAMP Analog 8-pCPT-2′-O-Me-cAMP as a Stimulus for Ca2+-induced Ca2+ Release and Exocytosis in Pancreatic β-Cells* 
The Journal of biological chemistry  2002;278(10):8279-8285.
The second messenger cAMP exerts powerful stimulatory effects on Ca2+ signaling and insulin secretion in pancreatic β-cells. Previous studies of β-cells focused on protein kinase A (PKA) as a downstream effector of cAMP action. However, it is now apparent that cAMP also exerts its effects by binding to cAMP-regulated guanine nucleotide exchange factors (Epac). Although one effector of Epac is the Ras-related G protein Rap1, it is not fully understood what the functional consequences of Epac-mediated signal transduction are at the cellular level. 8-(4-chloro-phenylthio)-2′-O-methyladenosine-3′-5′-cyclic monophosphate (8-pCPT-2′-O-Me-cAMP) is a newly described cAMP analog, and it activates Epac but not PKA. Here we demonstrate that 8-pCPT-2′-O-Me-cAMP acts in human pancreatic β-cells and INS-1 insulin-secreting cells to mobilize Ca2+ from intracellular Ca2+ stores via Epac-mediated Ca2+-induced Ca2+ release (CICR). The cAMP-dependent increase of [Ca2+]i that accompanies CICR is shown to be coupled to exocytosis. We propose that the interaction of cAMP and Epac to trigger CICR explains, at least in part, the blood glucose-lowering properties of an insulinotropic hormone (glucagon-like peptide-1, also known as GLP-1) now under investigation for use in the treatment of type-2 diabetes mellitus.
PMCID: PMC3516291  PMID: 12496249
3.  Cyclic AMP-dependent protein kinase and Epac mediate cyclic AMP responses in pancreatic acini 
The pancreatic acinar cell has several phenotypic responses to cAMP agonists. At physiological concentrations of the muscarinic agonist carbachol (1 μM) or the CCK analog caerulein (100 pM), ligands that increase cytosolic Ca2+, cAMP acts synergistically to enhance secretion. Supraphysiological concentrations of carbachol (1 mM) or caerulein (100 nM) suppress secretion and cause intracellular zymogen activation; cAMP enhances both zymogen activation and reverses the suppression of secretion. In addition to stimulating cAMP-dependent protein kinase (PKA), recent studies using cAMP analogs that lack a PKA response have shown that cAMP can also act through the cAMP-binding protein, Epac (exchange protein directly activated by cyclic AMP). The roles of PKA and Epac in cAMP responses were examined in isolated pancreatic acini. The activation of both cAMP-dependent pathways or the selective activation of Epac was found to enhance amylase secretion induced by physiological and supraphysiological concentrations of the muscarinic agonist carbachol. Similarly, activation of both PKA or the specific activation of Epac enhanced carbachol-induced activation of trypsinogen and chymotrypsinogen. Disorganization of the apical actin cytoskeleton has been linked to the decreased secretion observed with supraphysiological concentrations of carbachol and caerulein. Although stimulation of PKA and Epac or Epac alone could largely overcome the decreased secretion observed with either supraphysiological carbachol or caerulein, stimulation of cAMP pathways did not reduce the disorganization of the apical cytoskeleton. These studies demonstrate that PKA and Epac pathways are coupled to both secretion and zymogen activation in the pancreatic acinar cell.
PMCID: PMC2975017  PMID: 17234888
actin; zymogen; secretion; trypsin; chymotrypsin
4.  The role of cAMP in nerve growth factor-promoted neurite outgrowth in PC12 cells 
The Journal of Cell Biology  1986;102(3):821-829.
Nerve growth factor (NGF)-mediated neurite outgrowth in rat pheochromocytoma PC12 cells has been described to be synergistically potentiated by the simultaneous addition of dibutyryl cAMP. To elucidate further the role of cAMP in NGF-induced neurite outgrowth we have used the adenylate cyclase activator forskolin, cAMP, and a set of chemically modified cAMP analogues, including the adenosine cyclic 3',5'-phosphorothioates (cAMPS) (Rp)-cAMPS and (Sp)-cAMPS. These diastereomers have differential effects on the activation of cAMP- dependent protein kinases, i.e., (Sp)-cAMPS behaves as a cAMP agonist and (Rp)-cAMPS behaves as a cAMP antagonist. Our data show that the establishment of a neuritic network, as observed from PC12 cells treated with NGF alone, could not be induced by either forskolin, cAMP, or cAMP analogues alone. The presence of NGF in combination with forskolin or cAMP or its agonistic analogues potentiated the initiation of neurite outgrowth from PC12 cells. The (Sp)-cAMPS-induced stimulation of NGF-mediated process formation was successfully blocked by the (Rp)-cAMPS diastereomer. On the other hand, NGF-stimulated neurite outgrowth was not inhibited by the presence of the cAMP antagonist (Rp)-cAMPS. We conclude that the morphological differentiation of PC12 cells stimulated by NGF does not require cAMP as a second messenger. The constant increase of intracellular cAMP, caused by either forskolin or cAMP and the analogues, in combination with NGF, not only rapidly stimulated early neurite outgrowth but also exerted a maintaining effect on the neuronal network established by NGF.
PMCID: PMC2114106  PMID: 3005337
5.  Epac and PKA: a tale of two intracellular cAMP receptors 
cAMP-mediated signaling pathways regulate a multitude of important biological processes under both physiological and pathological conditions, including diabetes, heart failure, and cancer. In eukaryotic cells, the effects of cAMP are mediated by two ubiquitously expressed intracellular cAMP receptors, the classic protein kinase A/cAMP-dependent protein kinase (PKA/cAPK) and the recently discovered exchange protein directly activated by cAMP/cAMP-regulated guanine nucleotide exchange factors (Epac/cAMP-GEF). Like PKA, Epac contains an evolutionally conserved cAMP-binding domain that acts as a molecular switch for sensing intracellular second messenger cAMP levels to control diverse biological functions. The existence of two families of cAMP effectors provides a mechanism for a more precise and integrated control of the cAMP signaling pathways in a spatial and temporal manner. Depending upon their relative abundance, distribution and localization, as well as the specific cellular environments, Epac and PKA may act independently, converge synergistically, or oppose each other in regulating a specific cellular function.
PMCID: PMC2630796  PMID: 18604457
cyclic AMP; exchange protein directly activated by cAMP (Epac)/cAMP-regulated guanine exchange factor (cAMP-GEF); protein kinase A (PKA)/cAMP-dependent protein kinase (cAPK); signal transduction
6.  Regulation of Nuclear PKA revealed by spatiotemporal manipulation of cAMP 
Nature chemical biology  2012;8(4):375-382.
Understanding how specific cAMP signals are organized and relayed to their effectors in different compartments of the cell to achieve functional specificity requires molecular tools that allow precise manipulation of cAMP in these compartments. Here we characterize a new method using bicarbonate-activatable and genetically targetable soluble adenylyl cyclase (sAC) to control the location, kinetics and magnitude of the cAMP signal. Using this live-cell cAMP manipulation in conjunction with fluorescence imaging and mechanistic modeling, we uncover the activation of a resident pool of PKA holoenzyme in the nuclei of HEK-293 cells, modifying the existing dogma of cAMP-PKA signaling in the nucleus. Furthermore, we show that phosphodiesterases (PDE) and A-Kinase Anchoring Proteins (AKAP) are critical in shaping nuclear PKA responses. Collectively, our data suggests a new model where AKAP-localized PDEs tune an activation threshold for nuclear PKA holoenzyme, thereby converting spatially distinct second messenger signals to temporally controlled nuclear kinase activity.
PMCID: PMC3307945  PMID: 22366721
7.  FRET-based direct detection of dynamic protein kinase A activity on the sarcoplasmic reticulum in cardiomyocytes 
The second messenger cAMP-dependent protein kinase A (PKA) plays an important role in the various cellular and physiological responses. On the sarcoplasmic reticulum (SR) in cardiomyocytes, PKA regulates the calcium cycling for exciting-contraction coupling, which is often dysfunctional in a variety of heart diseases including heart failure. Here, we have developed a novel FRET-based A-kinase activity biosensor (AKAR), termed SR-AKAR3, to visualize the PKA dynamics on the SR. Activation of adrenergic receptor induces a rapid and significant increase in SR-AKAR3 FRET ratio, which is dependent on agonist occupation of the receptor and inhibited by H-89, a PKA inhibitor. Interestingly, direct activation of adenylyl cyclases or application of a cAMP analog 8-br-cAMP induced much slower and smaller increases in SR-AKAR3 FRET ratio. These data indicate that the signaling induced by adrenergic stimulation displays a preferential access to the SR in comparison to those by direct activation of adenylyl cyclases. More, SR-AKAR3 mimics endogenous protein phospholamban on the SR for PKA-mediated phosphorylation and myocyte contraction response under adrenergic stimulation. Together, this new PKA activity biosensor provides a useful tool to directly visualize the dynamic regulation of PKA activity on the SR in cardiomyocytes under various physiological and clinical conditions.
PMCID: PMC3025313  PMID: 21130738
8.  A Subunit of Protein Kinase A Regulates Growth and Differentiation in the Fungus Mucor circinelloides▿  
Eukaryotic Cell  2009;8(7):933-944.
The cyclic AMP (cAMP)-dependent protein kinase A (PKA) signaling pathway plays a role in regulating development, growth, and virulence in a number of fungi. To determine whether PKA plays a similar function in zygomycete fungi, a mutant of Mucor circinelloides was generated that lacks pkaR1, one of the regulatory subunits of PKA. The mutant showed a reduction in growth and alterations in germination rates, cell volume, germ tube length, and asexual sporulation. The lack of pkaR1 gene resulted in a highly decreased, but not null, cAMP binding activity and in a protein kinase activity that was still dependent on cAMP, although with a higher −/+ cAMP activity ratio, suggesting the existence of other cAMP binding activities. Consequently, three proteins analogous to pkaR1 were predicted from the recently sequenced genome of M. circinelloides and were named pkaR2, pkaR3, and pkaR4. Two of the proteins, pkaR2 and pkaR3, with cAMP binding activity were isolated from the wild-type strain and identified by mass spectrometry. The expression of all genes was detected at the mRNA level by semiquantitative reverse transcription-PCR, and they showed a differential expression at different developmental stages. This is the first time that a fungus is reported to have more than one gene encoding the regulatory subunit of PKA.
PMCID: PMC2708453  PMID: 19411621
9.  Dynamic Regulation of cAMP Synthesis through Anchored PKA-Adenylyl Cyclase V/VI Complexes 
Molecular cell  2006;23(6):925-931.
Spatiotemporal organization of cAMP signaling begins with the tight control of second messenger synthesis. In response to agonist stimulation of G protein-coupled receptors, membrane-associated adenylyl cyclases (ACs) generate cAMP that diffuses throughout the cell. The availability of cAMP activates various intracellular effectors, including protein kinase A (PKA). Specificity in PKA action is achieved by the localization of the enzyme near its substrates through association with A-kinase anchoring proteins (AKAPs). Here, we provide evidence for interactions between AKAP79/150 and ACV and ACVI. PKA anchoring facilitates the preferential phosphorylation of AC to inhibit cAMP synthesis. Real-time cellular imaging experiments show that PKA anchoring with the cAMP synthesis machinery ensures rapid termination of cAMP signaling upon activation of the kinase. This protein configuration permits the formation of a negative feedback loop that temporally regulates cAMP production.
PMCID: PMC3941446  PMID: 16973443
10.  Attention deficits and hyperactivity following inhibition of cAMP-dependent protein kinase (PKA) within the medial prefrontal cortex of rats 
Previous work demonstrates that microinjections of dopamine D1 receptor agonists and antagonists directly into the medial prefrontal cortex (mPFC) of rats can affect attention in the 5-choice serial reaction time task (5CSRTT), a rodent test analogous to the continuous performance task used to study attention in humans. The present studies were designed to determine if intra-mPFC modulation of cAMP dependent protein kinase (PKA), an intracellular target of D1 receptor stimulation, also affects attention. We examined the effects of localized microinfusions of the cAMP analog Sp-cAMPS (to activate PKA) or Rp-cAMPS (to inhibit PKA) in the 5CSRTT. In parallel we examined the effects of these manipulations on activity levels in an open field, as well as on motivation and the capacity to make complex operant responses using the intracranial self-stimulation (ICSS) test. Inhibition of PKA reduced accuracy in the 5CSRTT and caused substantial increases in locomotor activity without affecting motivation or the capacity to emit operant responses at high rates. Stimulation of PKA also affected some measures of performance in the 5CSRTT, but this effect was associated with reduced capacity to respond at high rates. Viral vector-mediated disruption of cAMP response element binding protein (CREB), a transcription factor directly activated by PKA, also reduced accuracy in the 5CSRTT, raising the possibility that acute inhibition of PKA and sustained inhibition of CREB affect attention through common mechanisms. These studies indicate that PKA inhibition within the mPFC of rats produces inattention and hyperactivity and thus might be useful in modeling human attention disorders.
PMCID: PMC2721023  PMID: 19387423
attention; adenylate cyclase; CREB; prefrontal cortex; rat; reward
11.  Opposing Roles of pka and epac in the cAMP-Dependent Regulation of Schwann Cell Proliferation and Differentiation 
PLoS ONE  2013;8(12):e82354.
In Schwann cells (SCs), cyclic adenosine monophosphate (cAMP) not only induces differentiation into a myelinating SC-related phenotype, but also synergistically enhances the mitogenic action of growth factors such as neuregulin. To better understand the molecular mechanism by which cAMP exerts these apparently contradictory functions, we investigated the role of the two main effectors of cAMP, protein kinase A (PKA) and the exchange protein activated by cAMP (EPAC), on the proliferation and differentiation of both isolated and axon-related SCs. For these studies, a variety of PKA and EPAC agonists and antagonists were used, including pathway-selective analogs of cAMP and pharmacological inhibitors. Our studies indicated that the activity of PKA rather than EPAC was required for the adjuvant effect of cAMP on S-phase entry, whereas the activity of EPAC rather than PKA was required for SC differentiation and myelin formation. Even though selective EPAC activation had an overall anti-proliferative effect in SCs, it failed to drive the expression of Krox-20, a master regulator of myelination, and that of myelin-specific proteins and lipids, suggesting that EPAC activation was insufficient to drive a full differentiating response. Interestingly, inhibition of EPAC activity resulted in a drastic impairment of SC differentiation and myelin formation but not Krox-20 expression, which indicates an independent mechanism of Krox-20 regulation in response to cAMP. In conclusion, our data supports the idea that the outcome of cAMP signaling in SCs depends on the particular set of effectors activated. Whereas the mitogenic action of cAMP relies exclusively on PKA activity, the differentiating action of cAMP requires a PKA-independent (non-canonical) cAMP-specific pathway that is partially transduced by EPAC.
PMCID: PMC3859537  PMID: 24349260
12.  Cyclic AMP is both a pro-apoptotic and anti-apoptotic second messenger 
Acta Physiologica (Oxford, England)  2011;204(2):277-287.
The second messenger cyclic AMP (cAMP) can either stimulate or inhibit programmed cell death (apoptosis). Here, we review examples of cell types that show pro-apoptotic or anti-apoptotic responses to increases in cAMP. We also show that cells can have both such responses, although predominantly having one or the other. Protein kinase A (PKA)-promoted changes in phosphoylation and gene expression can mediate pro-apoptotic responses, such as in murine S49 lymphoma cells, based on evidence that mutants lacking PKA fail to undergo cAMP-promoted, mitochondria-dependent apoptosis. Mechanisms for the anti-apoptotic response to cAMP likely involve Epac (Exchange protein activated by cAMP), a cAMP-regulated effector that is a guanine nucleotide exchange factor (GEF) for the low molecular weight G-protein, Rap1. Therapeutic approaches that activate PKA-mediated pro-apoptosis or that block Epac-mediated anti-apoptotisis may provide a means to enhance cell killing, such as in certain cancers. By contrast, efforts to block PKA or stimulate Epac have the potential to be useful in diseases settings (such as heart failure) associated with cAMP-promoted apoptosis.
PMCID: PMC3125423  PMID: 21385327
apoptosis; protein kinase A; Epac; Rap1; S49 cell
13.  Pharmacological characterization of cyclic AMP receptors mediating gene regulation in Dictyostelium discoideum. 
Molecular and Cellular Biology  1986;6(7):2402-2408.
Extracellular molecules regulate gene expression in eucaryotes. Exogenous cyclic AMP (cAMP) affects the expression of a large number of developmentally regulated genes in Dictyostelium discoideum. Here, we determine the specificity of the receptor(s) which mediates gene expression by using analogs of cAMP. The order of potency with which these analogs affect the expression of specific genes is consistent with the specificity of their binding to a cell surface receptor and is distinct from their affinity for intracellular cAMP-dependent protein kinase. Dose-response curves with cAMP and adenosine 3',5'-monophosphorothioate, a nonhydrolyzable analog, revealed that the requirement for high concentrations of exogenous cAMP for regulating gene expression is due to the rapid degradation of cAMP by phosphodiesterase. The addition of low concentrations of cAMP (100 nM) or analogs in pulses also regulates gene expression. Both the genes that are positively regulated by exogenous cAMP and the discoidin gene, which is negatively regulated, respond to cAMP analogs to the same degree. Genes expressed in prespore or prestalk cells are also similarly regulated. These data suggest that the effects are mediated through the same receptor. The specificity of this receptor is indistinguishable from that of the well-characterized cell surface cAMP receptor.
PMCID: PMC367793  PMID: 3023932
14.  The inner and outer compartments of mitochondria are sites of distinct cAMP/PKA signaling dynamics 
The Journal of Cell Biology  2013;202(3):453-462.
FRET-based sensors for cAMP and PKA activity reveal that mitochondrial subcompartments host segregated cAMP cascades with distinct functional and kinetic signatures.
Cyclic AMP (cAMP)-dependent phosphorylation has been reported to exert biological effects in both the mitochondrial matrix and outer mitochondrial membrane (OMM). However, the kinetics, targets, and effectors of the cAMP cascade in these organellar domains remain largely undefined. Here we used sensitive FRET-based sensors to monitor cAMP and protein kinase A (PKA) activity in different mitochondrial compartments in real time. We found that cytosolic cAMP did not enter the matrix, except during mitochondrial permeability transition. Bicarbonate treatment (expected to activate matrix-bound soluble adenylyl cyclase) increased intramitochondrial cAMP, but along with membrane-permeant cAMP analogues, failed to induce measureable matrix PKA activity. In contrast, the OMM proved to be a domain of exceptionally persistent cAMP-dependent PKA activity. Although cAMP signaling events measured on the OMM mirrored those of the cytosol, PKA phosphorylation at the OMM endured longer as a consequence of diminished control by local phosphatases. Our findings demonstrate that mitochondria host segregated cAMP cascades with distinct functional and kinetic signatures.
PMCID: PMC3734087  PMID: 23897891
15.  Cyclic AMP-dependent protein kinase inhibits the activity of myogenic helix-loop-helix proteins. 
Molecular and Cellular Biology  1992;12(10):4478-4485.
Differentiation of skeletal muscle cells is inhibited by the cyclic AMP (cAMP) signal transduction pathway. Here we report that the catalytic subunit of cAMP-dependent protein kinase (PKA) can substitute for cAMP and suppress muscle-specific transcription by silencing the activity of the MyoD family of regulatory factors, which includes MyoD, myogenin, myf5, and MRF4. Repression by the PKA catalytic (C) subunit is directed at the consensus sequence CANNTG, the target for DNA binding and transcriptional activation by these myogenic regulators. Phosphopeptide mapping of myogenin in vitro and in vivo revealed two PKA phosphorylation sites, both within the basic region. However, repression of myogenin function by PKA does not require direct phosphorylation of these sites but instead involves an indirect mechanism with one or more intermediate steps. Regulation of the transcriptional activity of the MyoD family by modulation of the cAMP signaling pathway may account for the inhibitory effects of certain peptide growth factors on muscle-specific gene expression and may also determine the responsiveness of different cell types to myogenic conversion by these myogenic regulators.
PMCID: PMC360373  PMID: 1328856
16.  Effects of cAMP-Dependent Protein Kinase Activator and Inhibitor on In Vivo Rolipram Binding to Phosphodiesterase 4 in Conscious Rats 
Synapse (New York, N.Y.)  2010;64(2):172-176.
Rolipram is a selective inhibitor of phosphodiesterase-4 (PDE4), and positron emission tomography (PET) using [11C]rolipram can monitor the in vivo activity of this enzyme that is part of the cAMP second messenger cascade. cAMP-dependent protein kinase (PKA) phosphorylates PDE4 and increases both enzyme activity and affinity for rolipram. In the present PET study, we examined effects of PKA modulators in conscious rats on the binding of [11C](R)-rolipram in comparison to the much less active enantiomer [11C](S)-rolipram. Unilateral injection of a PKA activator (dibutyryl-cAMP) and a PKA inhibitor (Rp-adenosine-3′,5′-cyclic monophosphorothioate) into the striatum significantly increased and decreased, respectively, the binding of [11C](R)-rolipram. These effects were not caused by changes in blood flow or delivery of radioligand to brain, since these agents had no effect on the binding of [11C](S)-rolipram binding. These results support the value of measuring in vivo [11C](R)-rolipram binding in brain to assess responses to physiological or pharmacological challenges to the cAMP second messenger system.
PMCID: PMC2789839  PMID: 19852069
small animal PET; dibutyryl-cAMP; Rp-adenosine-3′; 5′-cyclic monophosphorothioate
17.  Epac-Selective cAMP Analogs: New Tools With Which To Evaluate The Signal Transduction Properties Of cAMP-Regulated Guanine Nucleotide Exchange Factors 
Cellular signalling  2007;20(1):10-20.
The identification of 2′-O-methyl substituted adenosine-3′,5′-cyclic monophosphate (cAMP) analogs that activate the Epac family of cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs, also known as Epac1 and Epac2), has ushered in a new era of cyclic nucleotide research in which previously unrecognized signalling properties of the second messenger cAMP have been revealed. These Epac-Selective Cyclic AMP Analogs (ESCAs) incorporate a 2′-O-methyl substitution on the ribose ring of cAMP, a modification that impairs their ability to activate protein kinase A (PKA), while leaving intact their ability to activate Epac (the Exchange Protein directly Activated by Cyclic AMP). One such ESCA in wide-spread use is 8-pCPT-2′-O-Me-cAMP. It is a cell-permeant derivative of 2′-O-Me-cAMP, and it is a super activator of Epac. A wealth of newly published studies demonstrate that 8-pCPT-2′-O-Me-cAMP is a unique tool with which to asses atypical actions of cAMP that are PKA-independent. Particularly intriguing are recent reports demonstrating that ESCAs reproduce the PKA-independent actions of ligands known to stimulate Class I (Family A) and Class II (Family B) GTP-binding protein-coupled receptors (GPCRs). This topical review summarizes the current state of knowledge regarding the molecular pharmacology and signal transduction properties of Epac-selective cAMP analogs. Special attention is focused on the rational drug design of ESCAs in order to improve their Epac selectivity, membrane permeability, and stability. Also emphasized is the usefulness of ESCAs as new tools with which to assess the role of Epac as a determinant of intracellular Ca2+ signalling, ion channel function, neurotransmitter release, and hormone secretion.
PMCID: PMC2215344  PMID: 17716863
cAMP; Epac; PKA; rational drug design
18.  Ligand Responses of Vfr, the Virulence Factor Regulator from Pseudomonas aeruginosa▿ 
Journal of Bacteriology  2011;193(18):4859-4868.
Vfr, a transcription factor homologous to the Escherichia coli cyclic AMP (cAMP) receptor protein (CRP), regulates many aspects of virulence in Pseudomonas aeruginosa. Vfr, like CRP, binds to cAMP and then recognizes its target DNA and activates transcription. Here we report that Vfr has important functional differences from CRP in terms of ligand sensing and response. First, Vfr has a significantly higher cAMP affinity than does CRP, which might explain the mysteriously unidirectional functional complementation between the two proteins (S. E. H. West et al., J. Bacteriol. 176:7532–7542, 1994). Second, Vfr is activated by both cAMP and cGMP, while CRP is specific to cAMP. Mutagenic analyses show that Thr133 (analogous to Ser128 of CRP) is the key residue for both of these distinct Vfr properties. On the other hand, substitutions that cause cAMP-independent activity in Vfr are similar to those seen in CRP, suggesting that a common cAMP activation mechanism is present. In the course of these analyses, we found a remarkable class of Vfr variants that have completely reversed the regulatory logic of the protein: they are active in DNA binding without cAMP and are strongly inhibited by cAMP. The physiological impact of Vfr's ligand sensing and response is discussed, as is a plausible basis for the fundamental change in protein allostery in the novel group of Vfr variants.
PMCID: PMC3165676  PMID: 21764924
19.  CREB-independent regulation by CBP is a novel mechanism of human growth hormone gene expression 
Journal of Clinical Investigation  1999;104(8):1123-1130.
Hypothalamic growth hormone–releasing hormone (GHRH) stimulates growth hormone (GH) gene expression in anterior pituitary somatotrophs by binding to the GHRH receptor, a G-protein–coupled transmembrane receptor, and by mediating a cAMP-mediated protein kinase A (PKA) signal-transduction pathway. Two nonclassical cAMP-response element motifs (CGTCA) are located at nucleotides –187/–183 (distal cAMP-response element; dCRE) and –99/–95 (proximal cAMP-response element; pCRE) of the human GH promoter and are required for cAMP responsiveness, along with the pituitary-specific transcription factor Pit-1 (official nomenclature, POU1F1). Although a role for cAMP-response element binding protein (CREB) in GH stimulation by PKA has been suggested, it is unclear how the effect may be mediated. CREB binding protein (CBP) is a nuclear cofactor named for its ability to bind CREB. However, CBP also binds other nuclear proteins. We determined that CBP interacts with Pit-1 and is a cofactor for Pit-1–dependent activation of the human GH promoter. This pathway appears to be independent of CREB, with CPB being the likely target of phosphorylation by PKA.
PMCID: PMC408577  PMID: 10525051
20.  Rap1-Mediated Activation of Extracellular Signal-Regulated Kinases by Cyclic AMP Is Dependent on the Mode of Rap1 Activation 
Molecular and Cellular Biology  2006;26(6):2130-2145.
Like other small G proteins of the Ras superfamily, Rap1 is activated by distinct guanine nucleotide exchange factors (GEFs) in response to different signals to elicit cellular responses. Activation of Rap1 by cyclic AMP (cAMP) can occur via cAMP-dependent protein kinase A (PKA)-independent and PKA-dependent mechanisms. PKA-independent activation of Rap1 by cAMP is mediated by direct binding of cAMP to Rap1-guanine nucleotide exchange factors (Rap1-GEFs) Epac1 (exchange protein directly activated by cAMP 1) and Epac2 (Epac1 and Epac2 are also called cAMP-GEFI and -GEFII). The availability of cAMP analogues that selectively activate Epacs, but not PKA, provides a specific tool to activate Rap1. It has been argued that the inability of these analogues to regulate extracellular signal-regulated kinases (ERKs) signaling despite activating Rap1 provides evidence that Rap1 is incapable of regulating ERKs. We confirm that the PKA-independent activation of Rap1 by Epac1 activates a perinuclear pool of Rap1 and that this does not result in ERK activation. However, we demonstrate that this inability to regulate ERKs is not a property of Rap1 but is rather a property of Epacs themselves. The addition of a membrane-targeting motif to Epac1 (Epac-CAAX) relocalizes Epac1 from its normal perinuclear locale to the plasma membrane. In this new locale it is capable of activating ERKs in a Rap1- and cAMP-dependent manner. Rap1 activation by Epac-CAAX, but not wild-type Epac, triggers its association with B-Raf. Therefore, we propose that its intracellular localization prevents Epac1 from activating ERKs. C3G (Crk SH3 domain Guanine nucleotide exchanger) is a Rap1 exchanger that is targeted to the plasma membrane upon activation. We show that C3G can be localized to the plasma membrane by cAMP/PKA, as can Rap1 when activated by cAMP/PKA. Using a small interfering RNA approach, we demonstrate that C3G is required for the activation of ERKs and Rap1 by cAMP/PKA. This activation requires the GTP-dependent association of Rap1 with B-Raf. These data demonstrate that B-Raf is a physiological target of Rap1, but its utilization as a Rap1 effector is GEF specific. We propose a model that specific GEFs activate distinct pools of Rap1 that are differentially coupled to downstream effectors.
PMCID: PMC1430276  PMID: 16507992
21.  Influence of cAMP and protein kinase A on neurite length from spiral ganglion neurons 
Hearing Research  2011;283(1-2):33-44.
Regrowth of peripheral spiral ganglion neuron (SGN) fibers is a primary objective in efforts to improve cochlear implant outcomes and to potentially reinnervate regenerated hair cells. Cyclic adenosine monophosphate (cAMP) regulates neurite growth and guidance via activation of protein kinase A (PKA) and Exchange Protein directly Activated by Cylic AMP (Epac). Here we explored the effects of cAMP signaling on SGN neurite length in vitro. We find that the cAMP analog, cpt-cAMP, exerts a biphasic effect on neurite length; increasing length at lower concentrations and reducing length at higher concentrations. This biphasic response occurs in cultures plated on laminin, fibronectin, or tenascin C suggesting that it is not substrate dependent. cpt-cAMP also reduces SGN neurite branching. The Epac-specific agonist, 8-pCPT-2’-O-Me-cAMP, does not alter SGN neurite length. Constitutively active PKA isoforms strongly inhibit SGN neurite length similar to higher levels of cAMP. Chronic membrane depolarization activates PKA in SGNs and also inhibits SGN neurite length. However, inhibition of PKA fails to rescue neurite length in depolarized cultures implying that activation of PKA is not necessary for the inhibition of SGN neurite length by chronic depolarization. Expression of constitutively active phosphatidylinositol 3-kinase, but not c-Jun N-terminal kinase, isoforms partially rescues SGN neurite length in the presence of activated PKA. Taken together, these results suggest that activation of cAMP/PKA represents a potential strategy to enhance SGN fiber elongation following deafness; however such therapies will likely require careful titration so as to simultaneously promote rather than inhibit nerve fiber regeneration.
PMCID: PMC3277666  PMID: 22154930
protein kinase A; axon; cyclic adenosine monophosphate; phosphatidylinositol 3-kinase; c-Jun N-terminal kinase
European biophysics journal : EBJ  2008;38(4):381-393.
Microtubule-associated proteins (MAPs) are involved in microtubule (MT) bundling and in crossbridges between MTs and other organelles. Previous studies have assigned the MT bundling function of MAPs to their MT-binding domain and its modulation by the projection domain. In the present work, we analyse the viscoelastic properties of MT suspensions in the presence or the absence of cAMP. The experimental data reveal the occurrence of interactions between MT polymers involving MAP2 and modulated by cAMP. Two distinct mechanisms of action of cAMP are identified, which involve on one hand the phosphorylation of MT proteins by the cAMP-dependent protein kinase A (PKA) bound to the end of the N-terminal projection of MAP2, and on the other hand the binding of cAMP to the RII subunit of the PKA affecting interactions between MTs in a phosphorylation-independent manner. These findings imply a role for the complex of PKA with the projection domain of MAP2 in MT-MT interactions and suggest that cAMP may influence directly the density and bundling of MT arrays in dendrites of neurons.
PMCID: PMC2895978  PMID: 19009287
microtubules; microtubule-associated protein 2; protein kinase A; cyclic AMP; interactions
23.  Epac1 mediates protein kinase A–independent mechanism of forskolin-activated intestinal chloride secretion 
Intestinal Cl− secretion is stimulated by cyclic AMP (cAMP) and intracellular calcium ([Ca2+]i). Recent studies show that protein kinase A (PKA) and the exchange protein directly activated by cAMP (Epac) are downstream targets of cAMP. Therefore, we tested whether both PKA and Epac are involved in forskolin (FSK)/cAMP-stimulated Cl− secretion. Human intestinal T84 cells and mouse small intestine were used for short circuit current (Isc) measurement in response to agonist-stimulated Cl− secretion. FSK-stimulated Cl− secretion was completely inhibited by the additive effects of the PKA inhibitor, H89 (1 µM), and the [Ca2+]i chelator, 1,2-bis-(o-aminophenoxy)-ethane-N,N,N’,N’-tetraacetic acid, tetraacetoxymethyl ester (BAPTA-AM; 25 µM). Both FSK and the Epac activator 8-pCPT-2’-O-Me-cAMP (50 µM) elevated [Ca2+]i, activated Ras-related protein 2, and induced Cl− secretion in intact or basolateral membrane–permeabilized T84 cells and mouse ileal sheets. The effects of 8-pCPT-2’-O-Me-cAMP were completely abolished by BAPTA-AM, but not by H89. In contrast, T84 cells with silenced Epac1 had a reduced Isc response to FSK, and this response was completely inhibited by H89, but not by the phospholipase C inhibitor U73122 or BAPTA-AM. The stimulatory effect of 8-pCPT-2’-O-Me-cAMP on Cl− secretion was not abolished by cystic fibrosis transmembrane conductance (CFTR) inhibitor 172 or glibenclamide, suggesting that CFTR channels are not involved. This was confirmed by lack of effect of 8-pCPT-2’-O-Me-cAMP on whole cell patch clamp recordings of CFTR currents in Chinese hamster ovary cells transiently expressing the human CFTR channel. Furthermore, biophysical characterization of the Epac1-dependent Cl− conductance of T84 cells mounted in Ussing chambers suggested that this conductance was hyperpolarization activated, inwardly rectifying, and displayed a Cl−>Br−>I− permeability sequence. These results led us to conclude that the Epac-Rap-PLC-[Ca2+]i signaling pathway is involved in cAMP-stimulated Cl− secretion, which is carried by a novel, previously undescribed Cl− channel.
PMCID: PMC2806414  PMID: 20038525
24.  cAMP Signaling Prevents Podocyte Apoptosis via Activation of Protein Kinase A and Mitochondrial Fusion 
PLoS ONE  2014;9(3):e92003.
Our previous in vitro studies suggested that cyclic AMP (cAMP) signaling prevents adriamycin (ADR) and puromycin aminonucleoside (PAN)-induced apoptosis in podocytes. As cAMP is an important second messenger and plays a key role in cell proliferation, differentiation and cytoskeleton formation via protein kinase A (PKA) or exchange protein directly activated by cAMP (Epac) pathways, we sought to determine the role of PKA or Epac signaling in cAMP-mediated protection of podocytes. In the ADR nephrosis model, we found that forskolin, a selective activator of adenylate cyclase, attenuated albuminuria and improved the expression of podocyte marker WT-1. When podocytes were treated with pCPT-cAMP (a selective cAMP/PKA activator), PKA activation was increased in a time-dependent manner and prevented PAN-induced podocyte loss and caspase 3 activation, as well as a reduction in mitochondrial membrane potential. We found that PAN and ADR resulted in a decrease in Mfn1 expression and mitochondrial fission in podocytes. pCPT-cAMP restored Mfn1 expression in puromycin or ADR-treated podocytes and induced Drp1 phosphorylation, as well as mitochondrial fusion. Treating podocytes with arachidonic acid resulted in mitochondrial fission, podocyte loss and cleaved caspase 3 production. Arachidonic acid abolished the protective effects of pCPT-cAMP on PAN-treated podocytes. Mdivi, a mitochondrial division inhibitor, prevented PAN-induced cleaved caspase 3 production in podocytes. We conclude that activation of cAMP alleviated murine podocyte caused by ADR. PKA signaling resulted in mitochondrial fusion in podocytes, which at least partially mediated the effects of cAMP.
PMCID: PMC3958405  PMID: 24642777
25.  Regulation of the Functional Interaction between Cyclin D1 and the Estrogen Receptor 
Molecular and Cellular Biology  2000;20(23):8667-8675.
We report that the functional interaction between cyclin D1 and the estrogen receptor (ER) is regulated by a signal transduction pathway involving the second messenger, cyclic AMP (cAMP). The cell-permeable cAMP analogue 8-bromo-cAMP caused a concentration-dependent enhancement of cyclin D1-ER complex formation, as judged both by coimmunoprecipitation and mammalian two-hybrid analysis. This effect was paralleled by increases in ligand-independent ER-mediated transcription from an estrogen response element containing reporter construct. These effects of 8-bromo-cAMP were antagonized by a specific protein kinase A (PKA) inhibitor, indicating that the signaling pathway involved was PKA dependent. Further, we show that culture of MCF-7 cells on a cellular substratum of murine preadipocytes also enhanced the functional interaction between cyclin D1 and ER in a PKA-dependent manner. These findings demonstrate a collaboration between cAMP signaling and cyclin D1 in the ligand-independent activation of ER-mediated transcription in mammary epithelial cells and show that the functional associations of cyclin D1 are regulated as a function of cellular context.
PMCID: PMC86475  PMID: 11073968

Results 1-25 (644998)