Search tips
Search criteria

Results 1-25 (1336683)

Clipboard (0)

Related Articles

1.  Spatiotemporal Modeling of Ozone Levels in Quebec (Canada): A Comparison of Kriging, Land-Use Regression (LUR), and Combined Bayesian Maximum Entropy–LUR Approaches 
Environmental Health Perspectives  2014;122(9):970-976.
Background: Ambient air ozone (O3) is a pulmonary irritant that has been associated with respiratory health effects including increased lung inflammation and permeability, airway hyperreactivity, respiratory symptoms, and decreased lung function. Estimation of O3 exposure is a complex task because the pollutant exhibits complex spatiotemporal patterns. To refine the quality of exposure estimation, various spatiotemporal methods have been developed worldwide.
Objectives: We sought to compare the accuracy of three spatiotemporal models to predict summer ground-level O3 in Quebec, Canada.
Methods: We developed a land-use mixed-effects regression (LUR) model based on readily available data (air quality and meteorological monitoring data, road networks information, latitude), a Bayesian maximum entropy (BME) model incorporating both O3 monitoring station data and the land-use mixed model outputs (BME-LUR), and a kriging method model based only on available O3 monitoring station data (BME kriging). We performed leave-one-station-out cross-validation and visually assessed the predictive capability of each model by examining the mean temporal and spatial distributions of the average estimated errors.
Results: The BME-LUR was the best predictive model (R2 = 0.653) with the lowest root mean-square error (RMSE ;7.06 ppb), followed by the LUR model (R2 = 0.466, RMSE = 8.747) and the BME kriging model (R2 = 0.414, RMSE = 9.164).
Conclusions: Our findings suggest that errors of estimation in the interpolation of O3 concentrations with BME can be greatly reduced by incorporating outputs from a LUR model developed with readily available data.
Citation: Adam-Poupart A, Brand A, Fournier M, Jerrett M, Smargiassi A. 2014. Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy–LUR approaches. Environ Health Perspect 122:970–976;
PMCID: PMC4153742  PMID: 24879650
2.  A Cohort Study of Traffic-Related Air Pollution Impacts on Birth Outcomes 
Environmental Health Perspectives  2008;116(5):680-686.
Evidence suggests that air pollution exposure adversely affects pregnancy outcomes. Few studies have examined individual-level intraurban exposure contrasts.
We evaluated the impacts of air pollution on small for gestational age (SGA) birth weight, low full-term birth weight (LBW), and preterm birth using spatiotemporal exposure metrics.
With linked administrative data, we identified 70,249 singleton births (1999–2002) with complete covariate data (sex, ethnicity, parity, birth month and year, income, education) and maternal residential history in Vancouver, British Columbia, Canada. We estimated residential exposures by month of pregnancy using nearest and inverse-distance weighting (IDW) of study area monitors [carbon monoxide, nitrogen dioxide, nitric oxide, ozone, sulfur dioxide, and particulate matter < 2.5 (PM2.5) or < 10 (PM10) μm in aerodynamic diameter], temporally adjusted land use regression (LUR) models (NO, NO2, PM2.5, black carbon), and proximity to major roads. Using logistic regression, we estimated the risk of mean (entire pregnancy, first and last month of pregnancy, first and last 3 months) air pollution concentrations on SGA (< 10th percentile), term LBW (< 2,500 g), and preterm birth.
Residence within 50 m of highways was associated with a 26% increase in SGA [95% confidence interval (CI), 1.07–1.49] and an 11% (95% CI, 1.01–1.23) increase in LBW. Exposure to all air pollutants except O3 was associated with SGA, with similar odds ratios (ORs) for LUR and monitoring estimates (e.g., LUR: OR = 1.02; 95% CI, 1.00–1.04; IDW: OR = 1.05; 95% CI, 1.03–1.08 per 10-μg/m3 increase in NO). For preterm births, associations were observed with PM2.5 for births < 37 weeks gestation (and for other pollutants at < 30 weeks). No consistent patterns suggested exposure windows of greater relevance.
Associations between traffic-related air pollution and birth outcomes were observed in a population-based cohort with relatively low ambient air pollution exposure.
PMCID: PMC2367679  PMID: 18470315
air pollution; birth weight; carbon black; carbon monoxide; nitrogen dioxide; nitric oxide; particulate matter; pregnancy; pregnancy outcome; preterm birth; soot; sulfur dioxide; vehicle emissions
3.  Effect of short-term exposure to gaseous pollution on asthma hospitalisation in children: a bi-directional case-crossover analysis 
Study objective: Assess associations between short-term exposure to gaseous pollutants and asthma hospitalisation among boys and girls 6 to12 years of age.
Design: A bi-directional case-crossover analysis was used. Conditional logistic regression models were fitted to the data for boys and girls separately. Exposures averaged over periods ranging from one to seven days were used to assess the effects of gaseous pollutants on asthma hospitalisation. Estimated relative risks for asthma hospitalisation were calculated for an incremental exposure corresponding to the interquartile range in pollutant levels, adjusted for daily weather conditions and concomitant exposure to particulate matter.
Setting: Toronto, Ontario, Canada.
Participants: A total of 7319 asthma hospitalisations for children 6 to 12 years of age (4629 for boys and 2690 for girls) in Toronto between 1981 and 1993.
Main results: A significant acute effect of carbon monoxide on asthma hospitalisation was found in boys, and sulphur dioxide showed significant effects of prolonged exposure in girls. Nitrogen dioxide was positively associated with asthma admissions in both sexes. The lag time for certain gaseous pollutant effects seemed to be shorter in boys (around two to three days for carbon monoxide and nitrogen dioxide), as compared with girls (about six to seven days for sulphur dioxide and nitrogen dioxide). The effects of gaseous pollutants on asthma hospitalisation remained after adjustment of particulate matter. The data showed no association between ozone and asthma hospitalisation in children.
Conclusions: The study showed positive relations between gaseous pollutants (carbon monoxide, sulphur dioxide, and nitrogen dioxide) at comparatively low levels and asthma hospitalisation in children, using bi-directional case-crossover analyses. Though, the effects of certain specific gaseous pollutants were found to vary in boys and girls.
PMCID: PMC1732274  PMID: 12490649
4.  Air Pollution and the Microvasculature: A Cross-Sectional Assessment of In Vivo Retinal Images in the Population-Based Multi-Ethnic Study of Atherosclerosis (MESA) 
PLoS Medicine  2010;7(11):e1000372.
Sara Adar and colleagues show that residing in locations with higher air pollution concentrations and experiencing daily increases in air pollution are associated with narrower retinal arteriolar diameters in older individuals, thus providing a link between air pollution and cardiovascular disease.
Long- and short-term exposures to air pollution, especially fine particulate matter (PM2.5), have been linked to cardiovascular morbidity and mortality. One hypothesized mechanism for these associations involves microvascular effects. Retinal photography provides a novel, in vivo approach to examine the association of air pollution with changes in the human microvasculature.
Methods and Findings
Chronic and acute associations between residential air pollution concentrations and retinal vessel diameters, expressed as central retinal arteriolar equivalents (CRAE) and central retinal venular equivalents (CRVE), were examined using digital retinal images taken in Multi-Ethnic Study of Atherosclerosis (MESA) participants between 2002 and 2003. Study participants (46 to 87 years of age) were without clinical cardiovascular disease at the baseline examination (2000–2002). Long-term outdoor concentrations of PM2.5 were estimated at each participant's home for the 2 years preceding the clinical exam using a spatio-temporal model. Short-term concentrations were assigned using outdoor measurements on the day preceding the clinical exam. Residential proximity to roadways was also used as an indicator of long-term traffic exposures. All associations were examined using linear regression models adjusted for subject-specific age, sex, race/ethnicity, education, income, smoking status, alcohol use, physical activity, body mass index, family history of cardiovascular disease, diabetes status, serum cholesterol, glucose, blood pressure, emphysema, C-reactive protein, medication use, and fellow vessel diameter. Short-term associations were further controlled for weather and seasonality. Among the 4,607 participants with complete data, CRAE were found to be narrower among persons residing in regions with increased long- and short-term levels of PM2.5. These relationships were observed in a joint exposure model with −0.8 µm (95% confidence interval [CI] −1.1 to −0.5) and −0.4 µm (95% CI −0.8 to 0.1) decreases in CRAE per interquartile increases in long- (3 µg/m3) and short-term (9 µg/m3) PM2.5 levels, respectively. These reductions in CRAE are equivalent to 7- and 3-year increases in age in the same cohort. Similarly, living near a major road was also associated with a −0.7 µm decrease (95% CI −1.4 to 0.1) in CRAE. Although the chronic association with CRAE was largely influenced by differences in exposure between cities, this relationship was generally robust to control for city-level covariates and no significant differences were observed between cities. Wider CRVE were associated with living in areas of higher PM2.5 concentrations, but these findings were less robust and not supported by the presence of consistent acute associations with PM2.5.
Residing in regions with higher air pollution concentrations and experiencing daily increases in air pollution were each associated with narrower retinal arteriolar diameters in older individuals. These findings support the hypothesis that important vascular phenomena are associated with small increases in short-term or long-term air pollution exposures, even at current exposure levels, and further corroborate reported associations between air pollution and the development and exacerbation of clinical cardiovascular disease.
Please see later in the article for the Editors' Summary
Editors' Summary
Cardiovascular disease (CVD)—disease that affects the heart and/or the blood vessels—is a common cause of illness and death among adults in developed countries. In the United States, for example, the leading cause of death is coronary heart disease, a CVD in which narrowing of the heart's arteries by atherosclerotic plaques (fatty deposits that build up with age) slows the blood supply to the heart and may eventually cause a heart attack (myocardial infarction). Other types of CVD include stroke (in which atherosclerotic plaques interrupt the brain's blood supply) and peripheral arterial disease (in which the blood supply to the limbs is blocked). Smoking, high blood pressure, high blood levels of cholesterol (a type of fat), having diabetes, being overweight, and being physically inactive all increase a person's risk of developing CVD. Treatments for CVD include lifestyle changes and taking drugs that lower blood pressure or blood cholesterol levels.
Why Was This Study Done?
Another risk factor for CVD is exposure to long-term and/or short-term air pollution. Fine particle pollution or PM2.5 is particularly strongly associated with an increased risk of CVD. PM2.5—particulate matter 2.5 µm in diameter or 1/30th the diameter of a human hair—is mainly produced by motor vehicles, power plants, and other combustion sources. Why PM2.5 increases CVD risk is not clear but one possibility is that it alters the body's microvasculature (fine blood vessels known as capillaries, arterioles, and venules), thereby impairing the blood flow through the heart and brain. In this study, the researchers use noninvasive digital retinal photography to investigate whether there is an association between air pollution and changes in the human microvasculature. The retina—a light-sensitive layer at the back of the eye that converts images into electrical messages and sends them to the brain—has a dense microvasculature. Retinal photography is used to check the retinal microvasculature for signs of potentially blinding eye diseases such as diabetic retinopathy. Previous studies have found that narrower than normal retinal arterioles and wider than normal retinal venules are associated with CVD.
What Did the Researchers Do and Find?
The researchers used digital retinal photography to measure the diameters of retinal blood vessels in the participants of the Multi-Ethnic Study of Atherosclerosis (MESA). This study is investigating CVD progression in people aged 45–84 years of various ethnic backgrounds who had no CVD symptoms when they enrolled in the study in 2000–2002. The researchers modeled the long-term outdoor concentration of PM2.5 at each participant's house for the 2-year period preceding the retinal examination (which was done between 2002 and 2003) using data on PM2.5 levels collected by regulatory monitoring stations as well as study-specific air samples collected outside of the homes and in the communities of study participants. Outdoor PM2.5 measurements taken the day before the examination provided short-term PM2.5 levels. Among the 4,607 MESA participants who had complete data, retinal arteriolar diameters were narrowed among those who lived in regions with increased long- and short-term PM2.5 levels. Specifically, an increase in long-term PM2.5 concentrations of 3 µg/m3 was associated with a 0.8 µm decrease in arteriolar diameter, a reduction equivalent to that seen for a 7-year increase in age in this group of people. Living near a major road, another indicator of long-term exposure to PM2.5 pollution, was also associated with narrowed arterioles. Finally, increased retinal venular diameters were weakly associated with long-term high PM2.5 concentrations.
What Do These Findings Mean?
These findings indicate that living in areas with long-term air pollution or being exposed to short-term air pollution is associated with narrowing of the retinal arterioles in older individuals. They also show that widening of retinal venules is associated with long-term (but not short-term) PM2.5 pollution. Together, these findings support the hypothesis that long- and short-term air pollution increases CVD risk through effects on the microvasculature. However, they do not prove that PM2.5 is the constituent of air pollution that drives microvascular changes—these findings could reflect the toxicity of another pollutant or the pollution mixture as a whole. Importantly, these findings show that microvascular changes can occur at the PM2.5 levels that commonly occur in developed countries, which are well below those seen in developing countries. Worryingly, they also suggest that the deleterious cardiovascular effects of air pollution could occur at levels below existing regulatory standards.
Additional Information
Please access these Web sites via the online version of this summary at 10.1371/journal.pmed.1000372.
The American Heart Association provides information for patients and caregivers on all aspects of cardiovascular disease (in several languages), including information on air pollution, heart disease, and stroke
The US Centers for Disease Control and Prevention has information on heart disease and on stroke
Information is available from the British Heart Foundation on cardiovascular disease
The UK National Health Service Choices website provides information for patients and caregivers about cardiovascular disease
MedlinePlus provides links to other sources of information on heart disease and on vascular disease (in English and Spanish)
The AIRNow site provides information about US air quality and about air pollution and health
The Air Quality Archive has up-to-date information about air pollution in the UK and information about the health effects of air pollution
The US Environmental Protection Agency has information on PM2.5
The following Web sites contain information available on the MESA and MESA Air studies
PMCID: PMC2994677  PMID: 21152417
5.  Ambient Air Pollution and Autism in Los Angeles County, California 
Environmental Health Perspectives  2012;121(3):380-386.
Background: The prevalence of autistic disorder (AD), a serious developmental condition, has risen dramatically over the past two decades, but high-quality population-based research addressing etiology is limited.
Objectives: We studied the influence of exposures to traffic-related air pollution during pregnancy on the development of autism using data from air monitoring stations and a land use regression (LUR) model to estimate exposures.
Methods: Children of mothers who gave birth in Los Angeles, California, who were diagnosed with a primary AD diagnosis at 3–5 years of age during 1998–2009 were identified through the California Department of Developmental Services and linked to 1995–2006 California birth certificates. For 7,603 children with autism and 10 controls per case matched by sex, birth year, and minimum gestational age, birth addresses were mapped and linked to the nearest air monitoring station and a LUR model. We used conditional logistic regression, adjusting for maternal and perinatal characteristics including indicators of SES.
Results: Per interquartile range (IQR) increase, we estimated a 12–15% relative increase in odds of autism for ozone [odds ratio (OR) = 1.12, 95% CI: 1.06, 1.19; per 11.54-ppb increase] and particulate matter ≤ 2.5 µm (OR = 1.15; 95% CI: 1.06, 1.24; per 4.68-μg/m3 increase) when mutually adjusting for both pollutants. Furthermore, we estimated 3–9% relative increases in odds per IQR increase for LUR-based nitric oxide and nitrogen dioxide exposure estimates. LUR-based associations were strongest for children of mothers with less than a high school education.
Conclusion: Measured and estimated exposures from ambient pollutant monitors and LUR model suggest associations between autism and prenatal air pollution exposure, mostly related to traffic sources.
PMCID: PMC3621187  PMID: 23249813
air pollution; autism; land-use regression; pregnancy; traffic
6.  Comparing exposure assessment methods for traffic-related air pollution in an adverse pregnancy outcome study 
Environmental research  2011;111(5):685-692.
Previous studies reported adverse impacts of traffic-related air pollution exposure on pregnancy outcomes. Yet, little information exists on how effect estimates are impacted by the different exposure assessment methods employed in these studies.
To compare effect estimates for traffic-related air pollution exposure and preeclampsia, preterm birth (gestational age less than 37 weeks), and very preterm birth (gestational age less than 30 weeks) based on four commonly-used exposure assessment methods.
We identified 81,186 singleton births during 1997–2006 at four hospitals in Los Angeles and Orange Counties, California. Exposures were assigned to individual subjects based on residential address at delivery using the nearest ambient monitoring station data [carbon monoxide (CO), nitrogen dioxide (NO2), nitric oxide (NO), nitrogen oxides (NOx), ozone (O3), and particulate matter less than 2.5 (PM2.5) or less than 10 (PM10) μm in aerodynamic diameter], both unadjusted and temporally-adjusted land-use regression (LUR) model estimates (NO, NO2, and NOx), CALINE4 line-source air dispersion model estimates (NOx and PM2.5), and a simple traffic-density measure. We employed unconditional logistic regression to analyze preeclampsia in our birth cohort, while for gestational age-matched risk sets with preterm and very preterm birth we employed conditional logistic regression.
We observed elevated risks for preeclampsia, preterm birth, and very preterm birth from maternal exposures to traffic air pollutants measured at ambient stations (CO, NO, NO2, and NOx) and modeled through CALINE4 (NOx and PM2.5) and LUR (NO2 and NOx). Increased risk of preterm birth and very preterm birth were also positively associated with PM10 and PM2.5 air pollution measured at ambient stations. For LUR-modeled NO2 and NOx exposures, elevated risks for all the outcomes were observed in Los Angeles only – the region for which the LUR models were initially developed. Unadjusted LUR models often produced odds ratios somewhat larger in size than temporally-adjusted models. The size of effect estimates was smaller for exposures based on simpler traffic density measures than the other exposure assessment methods.
We generally confirmed that traffic-related air pollution was associated with adverse reproductive outcomes regardless of the exposure assessment method employed, yet the size of the estimated effect depended on how both temporal and spatial variations were incorporated into exposure assessment. The LUR model was not transferable even between two contiguous areas within the same large metropolitan area in Southern California.
PMCID: PMC3114297  PMID: 21453913
Air monitoring; CALINE4; land-use regression; preeclampsia; preterm birth
7.  GSTP1 and TNF Gene Variants and Associations between Air Pollution and Incident Childhood Asthma: The Traffic, Asthma and Genetics (TAG) Study 
Environmental Health Perspectives  2014;122(4):418-424.
Background: Genetics may partially explain observed heterogeneity in associations between traffic-related air pollution and incident asthma.
Objective: Our aim was to investigate the impact of gene variants associated with oxidative stress and inflammation on associations between air pollution and incident childhood asthma.
Methods: Traffic-related air pollution, asthma, wheeze, gene variant, and potential confounder data were pooled across six birth cohorts. Parents reported physician-diagnosed asthma and wheeze from birth to 7–8 years of age (confirmed by pediatric allergist in two cohorts). Individual estimates of annual average air pollution [nitrogen dioxide (NO2), particulate matter ≤ 2.5 μm (PM2.5), PM2.5 absorbance, ozone] were assigned to each child’s birth address using land use regression, atmospheric modeling, and ambient monitoring data. Effect modification by variants in GSTP1 (rs1138272/Ala114Val and rs1695/IIe105Val) and TNF (rs1800629/G-308A) was investigated.
Results: Data on asthma, wheeze, potential confounders, at least one SNP of interest, and NO2 were available for 5,115 children. GSTP1 rs1138272 and TNF rs1800629 SNPs were associated with asthma and wheeze, respectively. In relation to air pollution exposure, children with one or more GSTP1 rs1138272 minor allele were at increased risk of current asthma [odds ratio (OR) = 2.59; 95% CI: 1.43, 4.68 per 10 μg/m3 NO2] and ever asthma (OR = 1.64; 95% CI: 1.06, 2.53) compared with homozygous major allele carriers (OR = 0.95; 95% CI: 0.68, 1.32 for current and OR = 1.20; 95% CI: 0.98, 1.48 for ever asthma; Bonferroni-corrected interaction p = 0.04 and 0.01, respectively). Similarly, for GSTP1 rs1695, associations between NO2 and current and ever asthma had ORs of 1.43 (95% CI: 1.03, 1.98) and 1.36 (95% CI: 1.08, 1.70), respectively, for minor allele carriers compared with ORs of 0.82 (95% CI: 0.52, 1.32) and 1.12 (95% CI: 0.84, 1.49) for homozygous major allele carriers (Bonferroni-corrected interaction p-values 0.48 and 0.09). There were no clear differences by TNF genotype.
Conclusions: Children carrying GSTP1 rs1138272 or rs1695 minor alleles may constitute a susceptible population at increased risk of asthma associated with air pollution.
Citation: MacIntyre EA, Brauer M, Melén E, Bauer CP, Bauer M, Berdel D, Bergström A, Brunekreef B, Chan-Yeung M, Klümper C, Fuertes E, Gehring U, Gref A, Heinrich J, Herbarth O, Kerkhof M, Koppelman GH, Kozyrskyj AL, Pershagen G, Postma DS, Thiering E, Tiesler CM, Carlsten C, TAG Study Group. 2014. GSTP1 and TNF gene variants and associations between air pollution and incident childhood asthma: the traffic, asthma and genetics (TAG) Study. Environ Health Perspect 122:418–424;
PMCID: PMC3984232  PMID: 24465030
8.  Exposure to air pollution and respiratory symptoms during the first 7 years of life in an Italian birth cohort 
Ambient air pollution has been consistently associated with exacerbation of respiratory diseases in schoolchildren, but the role of early exposure to traffic-related air pollution in the first occurrence of respiratory symptoms and asthma is not yet clear.
We assessed the association between indexes of exposure to traffic-related air pollution during different periods of life and respiratory outcomes in a birth cohort of 672 newborns (Rome, Italy). Direct interviews of the mother were conducted at birth and at 6, 15 months, 4 and 7 years. Exposure to traffic-related air pollution was assessed for each residential address during the follow-up period using a Land-Use Regression model (LUR) for nitrogen dioxide (NO2) and a Geographic Information System (GIS) variable of proximity to high-traffic roads (HTR) (>10 000vehicles/day). We used age-specific NO2 levels to develop indices of exposure at birth, current, and lifetime time-weighted average. The association of NO2 and traffic proximity with respiratory disorders were evaluated using logistic regression in a longitudinal approach (Generalised Estimating Equation). The exposure indexes were used as continuous and categorical variables (cut-off points based on the 75th percentile for NO2 and the 25th percentile for distance from HTRs).
The average NO2 exposure level at birth was 37.2 μg/m3 (SD 7.2, 10–90th range 29.2–46.1). There were no statistical significant associations between the exposure indices and the respiratory outcomes in the longitudinal model. The odds ratios for a 10-µg/m3 increase in time-weighted average NO2 exposure were: asthma incidence OR=1.09; 95 CI% 0.78 to 1.52, wheezing OR=1.07; 95 CI% 0.90 to 1.28, shortness of breath with wheezing OR=1.16; 95 CI% 0.94 to 1.43, cough or phlegm apart from cold OR=1.11; 95 CI% 0.92 to 1.33, and otitis OR=1.08; 95 CI% 0.89 to 1.32. Stronger but not significant associations were found considering the 75th percentile of the NO2 distribution as a cut-off, especially for incidence of asthma and prevalence of wheeze (OR=1.41; 95 CI% 0.88 to 2.28 and OR=1.27; 95 CI% 0.95 to 1.70, respectively); the highest OR was found for wheezing (OR=2.29; 95 CI% 1.15 to 4.56) at the 7-year follow-up. No association was found with distance from HTRs.
Exposure to traffic-related air pollution is only weakly associated with respiratory symptoms in young children in the first 7 years of life.
PMCID: PMC4033119  PMID: 24659182
Exposure assessment < Methodology, speciality; Pollution < Materials, exposures and occupational groups; Land Use Regression Model
9.  Gender Differences and Effect of Air Pollution on Asthma in Children with and without Allergic Predisposition: Northeast Chinese Children Health Study 
PLoS ONE  2011;6(7):e22470.
Males and females exhibit different health responses to air pollution, but little is known about how exposure to air pollution affects juvenile respiratory health after analysis stratified by allergic predisposition. The aim of the present study was to assess the relationship between air pollutants and asthmatic symptoms in Chinese children selected from multiple sites in a heavily industrialized province of China, and investigate whether allergic predisposition modifies this relationship.
Methodology/Principal Findings
30139 Chinese children aged 3-to-12 years were selected from 25 districts of seven cities in northeast China in 2009. Information on respiratory health was obtained using a standard questionnaire from the American Thoracic Society. Routine air-pollution monitoring data was used for particles with an aerodynamic diameter ≤10 µm (PM10), sulfur dioxide (SO2), nitrogen dioxides (NO2), ozone (O3) and carbon monoxide (CO). A two-stage regression approach was applied in data analyses. The effect estimates were presented as odds ratios (ORs) per interquartile changes for PM10, SO2, NO2, O3, and CO. The results showed that children with allergic predisposition were more susceptible to air pollutants than children without allergic predisposition. Amongst children without an allergic predisposition, air pollution effects on asthma were stronger in males compared to females; Current asthma prevalence was related to PM10 (ORs = 1.36 per 31 µg/m3; 95% CI, 1.08–1.72), SO2 (ORs = 1.38 per 21 µg/m3; 95%CI, 1.12–1.69) only among males. However, among children with allergic predisposition, more positively associations between air pollutants and respiratory symptoms and diseases were detected in females; An increased prevalence of doctor-diagnosed asthma was significantly associated with SO2 (ORs = 1.48 per 21 µg/m3; 95%CI, 1.21–1.80), NO2 (ORs = 1.26 per 10 µg/m3; 95%CI, 1.01–1.56), and current asthma with O3 (ORs = 1.55 per 23 µg/m3; 95%CI, 1.18–2.04) only among females.
Ambient air pollutions were more evident in males without an allergic predisposition and more associations were detected in females with allergic predisposition.
PMCID: PMC3139656  PMID: 21811617
10.  Early-Life Air Pollution and Asthma Risk in Minority Children. The GALA II and SAGE II Studies 
Rationale: Air pollution is a known asthma trigger and has been associated with short-term asthma symptoms, airway inflammation, decreased lung function, and reduced response to asthma rescue medications.
Objectives: To assess a causal relationship between air pollution and childhood asthma using data that address temporality by estimating air pollution exposures before the development of asthma and to establish the generalizability of the association by studying diverse racial/ethnic populations in different geographic regions.
Methods: This study included Latino (n = 3,343) and African American (n = 977) participants with and without asthma from five urban regions in the mainland United States and Puerto Rico. Residential history and data from local ambient air monitoring stations were used to estimate average annual exposure to five air pollutants: ozone, nitrogen dioxide (NO2), sulfur dioxide, particulate matter not greater than 10 μm in diameter, and particulate matter not greater than 2.5 μm in diameter. Within each region, we performed logistic regression to determine the relationship between early-life exposure to air pollutants and subsequent asthma diagnosis. A random-effects model was used to combine the region-specific effects and generate summary odds ratios for each pollutant.
Measurements and Main Results: After adjustment for confounders, a 5-ppb increase in average NO2 during the first year of life was associated with an odds ratio of 1.17 for physician-diagnosed asthma (95% confidence interval, 1.04–1.31).
Conclusions: Early-life NO2 exposure is associated with childhood asthma in Latinos and African Americans. These results add to a growing body of evidence that traffic-related pollutants may be causally related to childhood asthma.
PMCID: PMC3778732  PMID: 23750510
air pollution; minority; children; asthma
11.  Childhood Incident Asthma and Traffic-Related Air Pollution at Home and School 
Environmental Health Perspectives  2010;118(7):1021-1026.
Traffic-related air pollution has been associated with adverse cardiorespiratory effects, including increased asthma prevalence. However, there has been little study of effects of traffic exposure at school on new-onset asthma.
We evaluated the relationship of new-onset asthma with traffic-related pollution near homes and schools.
Parent-reported physician diagnosis of new-onset asthma (n = 120) was identified during 3 years of follow-up of a cohort of 2,497 kindergarten and first-grade children who were asthma- and wheezing-free at study entry into the Southern California Children’s Health Study. We assessed traffic-related pollution exposure based on a line source dispersion model of traffic volume, distance from home and school, and local meteorology. Regional ambient ozone, nitrogen dioxide (NO2), and particulate matter were measured continuously at one central site monitor in each of 13 study communities. Hazard ratios (HRs) for new-onset asthma were scaled to the range of ambient central site pollutants and to the residential interquartile range for each traffic exposure metric.
Asthma risk increased with modeled traffic-related pollution exposure from roadways near homes [HR 1.51; 95% confidence interval (CI), 1.25–1.82] and near schools (HR 1.45; 95% CI, 1.06–1.98). Ambient NO2 measured at a central site in each community was also associated with increased risk (HR 2.18; 95% CI, 1.18–4.01). In models with both NO2 and modeled traffic exposures, there were independent associations of asthma with traffic-related pollution at school and home, whereas the estimate for NO2 was attenuated (HR 1.37; 95% CI, 0.69–2.71).
Traffic-related pollution exposure at school and homes may both contribute to the development of asthma.
PMCID: PMC2920902  PMID: 20371422
air pollution; asthma; child; epidemiology; vehicular traffic
12.  Effect of Early Life Exposure to Air Pollution on Development of Childhood Asthma 
Environmental Health Perspectives  2009;118(2):284-290.
There is increasing recognition of the importance of early environmental exposures in the development of childhood asthma. Outdoor air pollution is a recognized asthma trigger, but it is unclear whether exposure influences incident disease. We investigated the effect of exposure to ambient air pollution in utero and during the first year of life on risk of subsequent asthma diagnosis in a population-based nested case–control study.
We assessed all children born in southwestern British Columbia in 1999 and 2000 (n = 37,401) for incidence of asthma diagnosis up to 3–4 years of age using outpatient and hospitalization records. Asthma cases were age- and sex-matched to five randomly chosen controls from the eligible cohort. We estimated each individual’s exposure to ambient air pollution for the gestational period and first year of life using high-resolution pollution surfaces derived from regulatory monitoring data as well as land use regression models adjusted for temporal variation. We used logistic regression analyses to estimate effects of carbon monoxide, nitric oxide, nitrogen dioxide, particulate matter ≤ 10 μm and ≤ 2.5 μm in aerodynamic diameter (PM10 and PM2.5), ozone, sulfur dioxide, black carbon, woodsmoke, and proximity to roads and point sources on asthma diagnosis.
A total of 3,482 children (9%) were classified as asthma cases. We observed a statistically significantly increased risk of asthma diagnosis with increased early life exposure to CO, NO, NO2, PM10, SO2, and black carbon and proximity to point sources. Traffic-related pollutants were associated with the highest risks: adjusted odds ratio = 1.08 (95% confidence interval, 1.04–1.12) for a 10-μg/m3 increase of NO, 1.12 (1.07–1.17) for a 10-μg/m3 increase in NO2, and 1.10 (1.06–1.13) for a 100-μg/m3 increase in CO. These data support the hypothesis that early childhood exposure to air pollutants plays a role in development of asthma.
PMCID: PMC2831931  PMID: 20123607
administrative data; air pollution; asthma; children’s health; in utero; respiratory; traffic
13.  Traffic-related pollution and asthma prevalence in children. Quantification of associations with nitrogen dioxide 
Ambient nitrogen dioxide is a widely available measure of traffic-related air pollution and is inconsistently associated with the prevalence of asthma symptoms in children. The use of this relationship to evaluate the health impact of policies affecting traffic management and traffic emissions is limited by the lack of a concentration-response function based on systematic review and meta-analysis of relevant studies. Using systematic methods, we identified papers containing quantitative estimates for nitrogen dioxide and the 12 month period prevalence of asthma symptoms in children in which the exposure contrast was within-community and dominated by traffic pollution. One estimate was selected from each study according to an a priori algorithm. Odds ratios were standardised to 10 μg/m3 and summary estimates were obtained using random- and fixed-effects estimates. Eighteen studies were identified. Concentrations of nitrogen dioxide were estimated for the home address (12) and/or school (8) using a range of methods; land use regression (6), study monitors (6), dispersion modelling (4) and interpolation (2). Fourteen studies showed positive associations but only two associations were statistically significant at the 5 % level. There was moderate heterogeneity (I2 = 32.8 %) and the random-effects estimate for the odds ratio was 1.06 (95 % CI 1.00 to 1.11). There was no evidence of small study bias. Individual studies tended to have only weak positive associations between nitrogen dioxide and asthma prevalence but the summary estimate bordered on statistical significance at the 5 % level. Although small, the potential impact on asthma prevalence could be considerable because of the high level of baseline prevalence in many cities. Whether the association is causal or indicates the effects of a correlated pollutant or other confounders, the estimate obtained by the meta-analysis would be appropriate for estimating impacts of traffic pollution on asthma prevalence.
Electronic supplementary material
The online version of this article (doi:10.1007/s11869-014-0265-8) contains supplementary material, which is available to authorized users.
PMCID: PMC4239711  PMID: 25431630
Air Pollution; Asthma prevalence; Traffic; Meta-analysis; Review
14.  Diesel Exhaust Exposure, Wheezing and Sneezing 
The rising incidence of allergic disorders in developed countries is unexplained. Exposure to traffic related air pollutants may be an important cause of wheezing and asthma in childhood. Experimental evidence from human studies suggests that diesel exhaust particles, constituents of fine particulate matter less than 2.5 microns (PM2.5), may act to enhance IgE mediated aeroallergen sensitization and Th2 directed cytokine responses. To date, epidemiologic investigations indicate that children living in close proximity to heavily travelled roads are more likely to be atopic and wheeze. The Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS) birth cohort study was initiated to test the hypothesis that early high exposure to traffic related air pollutants is associated with early aeroallergen sensitization and allergic respiratory phenotypes. Using an exposure cohort design, more than 700 infants born to atopic parents were recruited at age 1 living either less than 400 meters (high traffic pollutant exposure) or greater than 1,500 meters (low exposure) from a major road. Children were medically evaluated and underwent skin prick testing with aeroallergen at screening, and re-evaluated sequentially at ages 1, 2, 3, 4, and 7. In this study, both proximity and land use regression (LUR) models of traffic air pollutant exposure have been assessed. Proximity to stop and go traffic with large concentrations of bus and truck traffic predicted persistent wheezing during infancy. The LUR model estimated elemental carbon attributable to traffic (ECAT) as a proxy for diesel exhaust particulate exposure. High ECAT was significantly associated with wheezing at age 1 as well as persistent wheezing at age 3. High mold exposure predicted a well defined asthma phenotype at age 7.
PMCID: PMC3378923  PMID: 22754710
Air pollution; childhood; asthma; allergy; diesel
15.  Traffic-related air toxics and preterm birth: a population-based case-control study in Los Angeles county, California 
Environmental Health  2011;10:89.
Numerous studies have associated air pollutant exposures with adverse birth outcomes, but there is still relatively little information to attribute effects to specific emission sources or air toxics. We used three exposure data sources to examine risks of preterm birth in Los Angeles women when exposed to high levels of traffic-related air pollutants - including specific toxics - during pregnancy.
We identified births during 6/1/04-3/31/06 to women residing within five miles of a Southern California Air Quality Management District (SCAQMD) Multiple Air Toxics Exposure Study (MATES III) monitoring station. We identified preterm cases and, using a risk set approach, matched cases to controls based on gestational age at birth. Pregnancy period exposure averages were estimated for a number of air toxics including polycyclic aromatic hydrocarbons (PAHs), source-specific PM2.5 (fine particulates with aerodynamic diameter less than 2.5 μm) based on a Chemical Mass Balance model, criteria air pollutants based on government monitoring data, and land use regression (LUR) estimates of nitric oxide (NO), nitrogen dioxide (NO2) and nitrogen oxides (NOx). Associations between these metrics and odds of preterm birth were estimated using conditional logistic regression.
Odds of preterm birth increased 6-21% per inter-quartile range increase in entire pregnancy exposures to organic carbon (OC), elemental carbon (EC), benzene, and diesel, biomass burning and ammonium nitrate PM2.5, and 30% per inter-quartile increase in PAHs; these pollutants were positively correlated and clustered together in a factor analysis. Associations with LUR exposure metrics were weaker (3-4% per inter-quartile range increase).
These latest analyses provide additional evidence of traffic-related air pollution's impact on preterm birth for women living in Southern California and indicate PAHs as a pollutant of concern that should be a focus of future studies. Other PAH sources besides traffic were also associated with higher odds of preterm birth, as was ammonium nitrate PM2.5, the latter suggesting potential importance of secondary pollutants. Future studies should focus on accurate modeling of both local and regional spatial and temporal distributions, and incorporation of source information.
PMCID: PMC3204282  PMID: 21981989
16.  Near-Roadway Pollution and Childhood Asthma: Implications for Developing “Win–Win” Compact Urban Development and Clean Vehicle Strategies 
Environmental Health Perspectives  2012;120(11):1619-1626.
Background: The emerging consensus that exposure to near-roadway traffic-related pollution causes asthma has implications for compact urban development policies designed to reduce driving and greenhouse gases.
Objectives: We estimated the current burden of childhood asthma-related disease attributable to near-roadway and regional air pollution in Los Angeles County (LAC) and the potential health impact of regional pollution reduction associated with changes in population along major traffic corridors.
Methods: The burden of asthma attributable to the dual effects of near-roadway and regional air pollution was estimated, using nitrogen dioxide and ozone as markers of urban combustion-related and secondary oxidant pollution, respectively. We also estimated the impact of alternative scenarios that assumed a 20% reduction in regional pollution in combination with a 3.6% reduction or 3.6% increase in the proportion of the total population living near major roads, a proxy for near-roadway exposure.
Results: We estimated that 27,100 cases of childhood asthma (8% of total) in LAC were at least partly attributable to pollution associated with residential location within 75 m of a major road. As a result, a substantial proportion of asthma-related morbidity is a consequence of near-roadway pollution, even if symptoms are triggered by other factors. Benefits resulting from a 20% regional pollution reduction varied markedly depending on the associated change in near-roadway proximity.
Conclusions: Our findings suggest that there are large and previously unappreciated public health consequences of air pollution in LAC and probably in other metropolitan areas with dense traffic corridors. To maximize health benefits, compact urban development strategies should be coupled with policies to reduce near-roadway pollution exposure.
PMCID: PMC3556611  PMID: 23008270
air pollution; asthma; burden of disease; children; compact urban growth; risk assessment; vehicle emissions
17.  Spatial and temporal estimation of air pollutants in New York City: exposure assignment for use in a birth outcomes study 
Environmental Health  2013;12:51.
Recent epidemiological studies have examined the associations between air pollution and birth outcomes. Regulatory air quality monitors often used in these studies, however, were spatially sparse and unable to capture relevant within-city variation in exposure during pregnancy.
This study developed two-week average exposure estimates for fine particles (PM2.5) and nitrogen dioxide (NO2) during pregnancy for 274,996 New York City births in 2008–2010. The two-week average exposures were constructed by first developing land use regression (LUR) models of spatial variation in annual average PM2.5 and NO2 data from 150 locations in the New York City Community Air Survey and emissions source data near monitors. The annual average concentrations from the spatial models were adjusted to account for city-wide temporal trends using time series derived from regulatory monitors. Models were developed using Year 1 data and validated using Year 2 data. Two-week average exposures were then estimated for three buffers of maternal address and were averaged into the last six weeks, the trimesters, and the entire period of gestation. We characterized temporal variation of exposure estimates, correlation between PM2.5 and NO2, and correlation of exposures across trimesters.
The LUR models of average annual concentrations explained a substantial amount of the spatial variation (R2 = 0.79 for PM2.5 and 0.80 for NO2). In the validation, predictions of Year 2 two-week average concentrations showed strong agreement with measured concentrations (R2 = 0.83 for PM2.5 and 0.79 for NO2). PM2.5 exhibited greater temporal variation than NO2. The relative contribution of temporal vs. spatial variation in the estimated exposures varied by time window. The differing seasonal cycle of these pollutants (bi-annual for PM2.5 and annual for NO2) resulted in different patterns of correlations in the estimated exposures across trimesters. The three levels of spatial buffer did not make a substantive difference in estimated exposures.
The combination of spatially resolved monitoring data, LUR models and temporal adjustment using regulatory monitoring data yielded exposure estimates for PM2.5 and NO2 that performed well in validation tests. The interaction between seasonality of air pollution and exposure intervals during pregnancy needs to be considered in future studies.
PMCID: PMC3704849  PMID: 23802774
Air pollution; Birth outcomes; Particulate matter; Nitrogen dioxide; Land use regression; NYCCAS; Temporal adjustment
18.  Assessing the Influence of Traffic-related Air Pollution on Risk of Term Low Birth Weight on the Basis of Land-Use-based Regression Models and Measures of Air Toxics 
American Journal of Epidemiology  2012;175(12):1262-1274.
Few studies have examined associations of birth outcomes with toxic air pollutants (air toxics) in traffic exhaust. This study included 8,181 term low birth weight (LBW) children and 370,922 term normal-weight children born between January 1, 1995, and December 31, 2006, to women residing within 5 miles (8 km) of an air toxics monitoring station in Los Angeles County, California. Additionally, land-use-based regression (LUR)-modeled estimates of levels of nitric oxide, nitrogen dioxide, and nitrogen oxides were used to assess the influence of small-area variations in traffic pollution. The authors examined associations with term LBW (≥37 weeks’ completed gestation and birth weight <2,500 g) using logistic regression adjusted for maternal age, race/ethnicity, education, parity, infant gestational age, and gestational age squared. Odds of term LBW increased 2%–5% (95% confidence intervals ranged from 1.00 to 1.09) per interquartile-range increase in LUR-modeled estimates and monitoring-based air toxics exposure estimates in the entire pregnancy, the third trimester, and the last month of pregnancy. Models stratified by monitoring station (to investigate air toxics associations based solely on temporal variations) resulted in 2%–5% increased odds per interquartile-range increase in third-trimester benzene, toluene, ethyl benzene, and xylene exposures, with some confidence intervals containing the null value. This analysis highlights the importance of both spatial and temporal contributions to air pollution in epidemiologic birth outcome studies.
PMCID: PMC3372317  PMID: 22586068
air pollution; benzene; fetal growth retardation; hydrocarbons, aromatic; infant, low birth weight; pregnancy
19.  Outdoor air pollution and emergency department visits for asthma among children and adults: A case-crossover study in northern Alberta, Canada 
Environmental Health  2007;6:40.
Recent studies have observed positive associations between outdoor air pollution and emergency department (ED) visits for asthma. However, few have examined the possible confounding influence of aeroallergens, or reported findings among very young children.
A time stratified case-crossover design was used to examine 57,912 ED asthma visits among individuals two years of age and older in the census metropolitan area of Edmonton, Canada between April 1, 1992 and March 31, 2002. Daily air pollution levels for the entire region were estimated from three fixed-site monitoring stations. Similarly, daily levels of aeroallergens were estimated using rotational impaction sampling methods for the period between 1996 and 2002. Odds ratios and their corresponding 95% confidence intervals were estimated using conditional logistic regression with adjustment for temperature, relative humidity and seasonal epidemics of viral related respiratory disease.
Positive associations for asthma visits with outdoor air pollution levels were observed between April and September, but were absent during the remainder of the year. Effects were strongest among young children. Namely, an increase in the interquartile range of the 5-day average for NO2 and CO levels between April and September was associated with a 50% and 48% increase, respectively, in the number of ED visits among children 2 – 4 years of age (p < 0.05). Strong associations were also observed with these pollutants among those 75 years of age and older. Ozone and particulate matter were also associated with asthma visits. Air pollution risk estimates were largely unchanged after adjustment for aeroallergen levels.
Our findings, taken together, suggest that exposure to ambient levels of air pollution is an important determinant of ED visits for asthma, particularly among young children and the elderly.
PMCID: PMC2254596  PMID: 18157917
20.  Traffic density and stationary sources of air pollution associated with wheeze, asthma, and immunoglobulin E from birth to age 5 years among New York City children 
Environmental research  2011;111(8):1222-1229.
Exposures to ambient air traffic-related pollutants and their sources have been associated with respiratory and asthma morbidity in children. However, longitudinal investigation of the effects of traffic-related exposures during early childhood is limited. We examined associations of residential proximity and density of traffic and stationary sources of air pollution with wheeze, asthma, and immunoglobulin (Ig) E among New York City children between birth and age 5 years.
Subjects included 593 Dominican and African American participants from the Columbia Center for Children’s Environmental Health cohort. Prenatally, through age 5 years, residential and respiratory health data were collected every 3-6 months. At ages 2, 3, and 5 years, serum IgE was measured. Spatial data on the proximity and density of roadways and built environment were collected for a 250 meter buffer around subjects’ homes. Associations of wheeze, asthma, total IgE, and allergen-specific IgE with prenatal, earlier childhood, and concurrent exposures to air pollution sources were analyzed using generalized estimating equations or logistic regression. In repeated measures analyses, concurrent residential density of four-way intersections was associated significantly with wheeze (odds ratio: 1.26; 95% confidence interval [CI]: 1.01, 1.57). Age 1 exposures also were associated with wheeze at subsequent ages. Concurrent proximity to highway was associated more strongly with total IgE (ratio of the geometric mean levels: 1.25; 95% CI: 1.09, 1.42) than were prenatal or earlier childhood exposures. Positive associations also were observed between percent commercial building area and asthma, wheeze, and IgE and between proximity to stationary sources of air pollution and asthma.
Longitudinal investigation suggests that among Dominican and African American children living in Northern Manhattan and South Bronx during ages 0 to 5 years, residence in neighborhoods with high density of traffic and industrial facilities may contribute to chronic respiratory morbidity, and concurrent, prenatal, and earlier childhood exposures may be important. These findings may have broad implications for other urban populations that commonly have high asthma prevalence and exposure to a high density of traffic and stationary air pollution sources.
PMCID: PMC3210909  PMID: 21855059
Traffic; Asthma; IgE; Geographic information systems; Air pollution
21.  Traffic-Related Air Toxics and Term Low Birth Weight in Los Angeles County, California 
Environmental Health Perspectives  2011;120(1):132-138.
Background: Numerous studies have linked criteria air pollutants with adverse birth outcomes, but there is less information on the importance of specific emission sources, such as traffic, and air toxics.
Objectives: We used three exposure data sources to examine odds of term low birth weight (LBW) in Los Angeles, California, women when exposed to high levels of traffic-related air pollutants during pregnancy.
Methods: We identified term births during 1 June 2004 to 30 March 2006 to women residing within 5 miles of a South Coast Air Quality Management District (SCAQMD) Multiple Air Toxics Exposure Study (MATES III) monitoring station. Pregnancy period average exposures were estimated for air toxics, including polycyclic aromatic hydrocarbons (PAHs), source-specific particulate matter < 2.5 μm in aerodynamic diameter (PM2.5) based on a chemical mass balance model, criteria air pollutants from government monitoring data, and land use regression (LUR) model estimates of nitric oxide (NO), nitrogen dioxide (NO2) and nitrogen oxides (NOx). Associations between these metrics and odds of term LBW (< 2,500 g) were examined using logistic regression.
Results: Odds of term LBW increased approximately 5% per interquartile range increase in entire pregnancy exposures to several correlated traffic pollutants: LUR measures of NO, NO2, and NOx, elemental carbon, and PM2.5 from diesel and gasoline combustion and paved road dust (geological PM2.5).
Conclusions: These analyses provide additional evidence of the potential impact of traffic-related air pollution on fetal growth. Particles from traffic sources should be a focus of future studies.
PMCID: PMC3261935  PMID: 21835727
air pollution; air toxics; intrauterine growth retardation; low birth weight; traffic
22.  Comparing universal kriging and land-use regression for predicting concentrations of gaseous oxides of nitrogen (NOx) for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) 
Epidemiological studies that assess the health effects of long-term exposure to ambient air pollution are used to inform public policy. These studies rely on exposure models that use data collected from pollution monitoring sites to predict exposures at subject locations. Land use regression (LUR) and universal kriging (UK) have been suggested as potential prediction methods. We evaluate these approaches on a dataset including measurements from three seasons in Los Angeles, CA.
The measurements of gaseous oxides of nitrogen (NOx) used in this study are from a “snapshot” sampling campaign that is part of the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). The measurements in Los Angeles were collected during three two-week periods in the summer, autumn, and winter, each with about 150 sites. The design included clusters of monitors on either side of busy roads to capture near-field gradients of traffic-related pollution.
LUR and UK prediction models were created using geographic information system (GIS)-based covariates. Selection of covariates was based on 10-fold cross-validated (CV) R2 and root mean square error (RMSE). Since UK requires specialized software, a computationally simpler two-step procedure was also employed to approximate fitting the UK model using readily available regression and GIS software.
UK models consistently performed as well as or better than the analogous LUR models. The best CV R2 values for season-specific UK models predicting log(NOx) were 0.75, 0.72, and 0.74 (CV RMSE 0.20, 0.17, and 0.15) for summer, autumn, and winter, respectively. The best CV R2 values for season-specific LUR models predicting log(NOx) were 0.74, 0.60, and 0.67 (CV RMSE 0.20, 0.20, and 0.17). The two-stage approximation to UK also performed better than LUR and nearly as well as the full UK model with CV R2 values 0.75, 0.70, and 0.70 (CV RMSE 0.20, 0.17, and 0.17) for summer, autumn, and winter, respectively.
High quality LUR and UK prediction models for NOx in Los Angeles were developed for the three seasons based on data collected for MESA Air. In our study, UK consistently outperformed LUR. Similarly, the 2-step approach was more effective than the LUR models, with performance equal to or slightly worse than UK.
PMCID: PMC3146303  PMID: 21808599
Universal kriging; land use regression; spatial modeling; air pollution; exposure assessment; Los Angeles
23.  Air pollution and asthma severity in adults 
There is evidence that exposure to air pollution affects asthma, but the effect of air pollution on asthma severity has not been addressed. The aim was to assess the relation between asthma severity during the past 12 months and home outdoor concentrations of air pollution.
Asthma severity over the last 12 months was assessed in two complementary ways among 328 adult asthmatics from the French Epidemiological study on the Genetics and Environment of Asthma (EGEA) examined between 1991 and 1995. The 4-class severity score integrated clinical events and type of treatment. The 5-level asthma score is based only on the occurrence of symptoms. Nitrogen dioxide (NO2), sulphur dioxide (SO2) and ozone (O3) concentrations were assigned to each residence using two different methods. The first was based on the closest monitor data from 1991–1995. The second consisted in spatial models that used geostatistical interpolations and then assigned air pollutants to the geo-coded residences (1998).
Higher asthma severity score was significantly related to the 8-hour average of ozone during April-September (O3-8hr) and the number of days (O3-days) with 8-hour ozone averages above 110 μg.m−3 (for a 36-day increase, equivalent to the inter quartile range, in O3-days, odds ratio (95% confidence interval) 2.22 (1.61–3.07) for one class difference in score). Adjustment for age, sex, smoking habits, occupational exposure, and educational level did not alter results. Asthma severity was unrelated to NO2. Both exposure assessment methods and severity scores resulted in very similar findings. SO2 correlated with severity but reached statistical significance only for the model based assignment of exposure.
The observed associations between asthma severity and air pollution, in particular O3, support the hypothesis that air pollution at levels far below current standards increases asthma severity.
PMCID: PMC2663354  PMID: 19017701
air pollution; asthma severity; ozone
24.  Air pollution and bronchitic symptoms in Southern California children with asthma. 
Environmental Health Perspectives  1999;107(9):757-760.
The association of air pollution with the prevalence of chronic lower respiratory tract symptoms among children with a history of asthma or related symptoms was examined in a cross-sectional study. Parents of a total of 3,676 fourth, seventh, and tenth graders from classrooms in 12 communities in Southern California completed questionnaires that characterized the children's histories of respiratory illness and associated risk factors. The prevalences of bronchitis, chronic phlegm, and chronic cough were investigated among children with a history of asthma, wheeze without diagnosed asthma, and neither wheeze nor asthma. Average ambient annual exposure to ozone, particulate matter (PM(10) and PM(2.5); [less than/equal to] 10 microm and < 2.5 microm in aerodynamic diameter, respectively), acid vapor, and nitrogen dioxide (NO(2)) was estimated from monitoring stations in each community. Positive associations between air pollution and bronchitis and phlegm were observed only among children with asthma. As PM(10) increased across communities, there was a corresponding increase in the risk per interquartile range of bronchitis [odds ratio (OR) 1.4/19 microg/m(3); 95% confidence interval (CI), 1.1-1.8). Increased prevalence of phlegm was significantly associated with increasing exposure to all ambient pollutants except ozone. The strongest association was for NO(2), based on relative risk per interquartile range in the 12 communities (OR 2.7/24 ppb; CI, 1.4-5.3). The results suggest that children with a prior diagnosis of asthma are more likely to develop persistent lower respiratory tract symptoms when exposed to air pollution in Southern California.
PMCID: PMC1566453  PMID: 10464077
25.  Association of asthma symptoms with peak particulate air pollution and effect modification by anti-inflammatory medication use. 
Environmental Health Perspectives  2002;110(10):A607-A617.
Maxima of hourly data from outdoor monitors may capture adverse effects of outdoor particulate matter (PM) exposures in asthmatic children better than do 24-hr PM averages, which form the basis of current regulations in the United States. Also, asthmatic children on anti-inflammatory medications may be protected against the proinflammatory effects of air pollutants and aeroallergens. We examined strengths of pollutant associations with asthma symptoms between subgroups of asthmatic children who were on versus not on regularly scheduled anti-inflammatory medications, and tested associations for different particle averaging times. This is a daily panel study of 22 asthmatic children (9-19 years of age) followed March through April 1996 (1,248 person-days). They lived in nonsmoking households in a semirural area of Southern California within the air inversion mixing zone (range, 1,200-2,100 feet) with transported air pollution from urban areas of Southern California. The dependent variable derived from diary ordinal scores is episodes of asthma symptoms that interfered with daily activities. Minimum to 90th-percentile levels of exposures at the outdoor monitoring site were 12-63 microg/m(3) for 1-hr PM < 10 microm in aerodynamic diameter (PM(10)); 8-46 microg/m(3) for 8-hr PM(10); 7-32 microg/m(3) for 24-hr PM(10); 45-88 ppb for 1-hr O(3); 6-26 ppb for 8-hr NO(2); 70-4,714 particles/m(3) for 12-hr daytime fungi; and 12-744 particles/m(3) for 24-hr pollen. Data were analyzed with generalized estimating equations controlling for autocorrelation. There was no confounding by weather, day of week, or linear time trend. Associations were notably stronger in 12 asthmatic children who were not taking anti-inflammatory medications versus 10 subjects who were. Odds ratios (95% confidence intervals) for asthma episodes in relation to lag 0 minimum to 90th-percentile pollutant changes were, respectively, 1-hr maximum PM(10), 1.92 (1.22-3.02) versus 0.96 (0.25-3.69); 8-hr maximum PM(10), 1.68 (0.91-3.09) versus 0.75 (0.18-3.04); 24-hr average PM(10), 1.35 (0.82-2.22) versus 0.80 (0.24-2.69); 1-hr maximum O(3), 1.28 (0.75-2.17) versus 0.76 (0.24-2.44); 8-hr maximum NO(2), 1.91 (1.07-3.39) versus 1.08 (0.30-3.93); 12-hr fungi, 1.89 (1.24-2.89) versus 0.90 (0.35-2.30); 24-hr pollen, 1.90 (0.99-3.67) versus 0.85 (0.18-3.91). Pollutant associations were stronger during respiratory infections in subjects not on anti-inflammatory medications. Although lag 0 1-hr maximum PM(10) showed the strongest association, the most robust associations were for lag 0 and 3-day moving averages (lags 0-2) of 8-hr maximum and 24-hr mean PM(10) in sensitivity analyses testing for thresholds. Most pollutant effects were largely driven by concentrations in the upper quintile. The divergence of exposure-response relationships by anti-inflammatory medication use is consistent with experimental data on inflammatory mechanisms of airborne pollutants and allergens.
PMCID: PMC1241047  PMID: 12361942

Results 1-25 (1336683)