Search tips
Search criteria

Results 1-25 (1540280)

Clipboard (0)

Related Articles

1.  Macrophage metalloelastase (MMP-12) deficiency does not alter bleomycin-induced pulmonary fibrosis in mice 
Pulmonary fibrosis is characterized by excessive deposition of extracellular matrix in the interstitium resulting in respiratory failure. The role of remodeling mediators such as metalloproteinases (MMPs) and their inhibitors (TIMPs) in the fibrogenic process remains misunderstood. In particular, macrophage metalloelastase, also identified as MMP-12, is known to be involved in remodeling processes under pathological conditions. However, MMP-12 involvement in pulmonary fibrosis is unknown. Here we investigated fibrotic response to bleomycin in MMP-12 deficient mice.
Materials and methods
C57BL/6 mice, Balb/c mice and MMP-12 -/- mice with a C57BL/6 background received 0.3 mg bleomycin by intranasal administration. 14 days after, mice were anesthetized and underwent either bronchoalveolear lavage (BAL) or lung removal. Collagen deposition in lung tissue was determined by Sircol™ collagen assay, MMP activity in BAL fluid was analyzed by zymography, and other mediators were quantified in BAL fluid by ELISA. Real time PCR was performed to assess gene expression in lung removed one or 14 days after bleomycin administration. Student t test or Mann & Whitney tests were used when appropriate for statistical analysis.
The development of pulmonary fibrosis in "fibrosis prone" (C57BL/6) mice was associated with prominent MMP-12 expression in lung, whereas MMP-12 expression was weak in lung tissue of "fibrosis resistant" (Balb/c) mice. MMP-12 mRNA was not detected in MMP-12 -/- mice, in conformity with their genotype. Bleomycin elicited macrophage accumulation in BAL of MMP-12 -/- and wild type (WT) mice, and MMP-12 deficiency had no significant effect on BAL cells composition. Collagen content of lung was increased similarly in MMP-12 -/- and WT mice 14 days after bleomycin administration. Bleomycin elicit a raise of TGF-β protein, MMP-2 and TIMP-1 protein and mRNA in BAL fluids and lung respectively, and no significant difference was observed between MMP-12 -/- and WT mice considering those parameters.
The present study shows that MMP-12 deficiency has no significant effect on bleomycin-induced fibrosis.
PMCID: PMC1397817  PMID: 16504062
2.  Characterization of lung stem cell niches in a mouse model of bleomycin-induced fibrosis 
In lung fibrosis, alveolar epithelium degenerates progressively. The goal of regenerative medicine is to aid repair and regeneration of the lost tissues in parenchyma and airways for which mobilization of tissue-resident endogenous or bone marrow-derived exogenous stem cells niches is a critical step. We used a lung injury model in mice to identify and characterize functional lung stem cells to clarify how stem cell niches counteract this degenerative process.
Short term assay (STA) - Bleomycin-induced lung inflammation and fibrosis were assessed in a model of idiopathic pulmonary fibrosis in wild-type (WT), gp91phox-/- (NOX-/-), and gp91phoxMMP-12 double knockout (DKO) mice on C57Bl/6 background and Hoechst 33322 dye effluxing side population (SP) cells characterized. Long term assay (LTA) - In a bleomycin induced lung fibrosis model in C57Bl6 mice, the number of mature cells were quantified over 7, 14, and 21 days in bone marrow (BM), peripheral blood (PB), lung parenchyma (LP) and brochoalveolar lavage (BAL) fluid by FACS. BrdU pulse chase experiment (10 weeks) was used to identify label retaining cells (LRC). BrdU+ and BrdU- cells were characterized by hematopoietic (CD45+), pluripotency (TTF1+, Oct3/4+, SSEA-3+, SSEA-4+, Sca1+, Lin-, CD34+, CD31+), and lung lineage-specific (SPC+, AQP-5+, CC-10+) markers. Clonogenic potential of LRCs were measured by CFU-c assays.
STA- In lung, cellularity increased by 5-fold in WT and 6-fold in NOX-/- by d7. Lung epithelial markers were very low in expression in all SP flow sorted from lung of all three genotypes cultured ex vivo. (p < 0.01). Post-bleomycin, the SP in NOX-/- lung increased by 3.6-fold over WT where it increased by 20-fold over controls. Type I and II alveolar epithelial cells progressively diminished in all three genotypes by d21 post-bleomycin. D7 post-bleomycin, CD45+ cells in BALf in NOX-/- was 1.7-fold > WT, 57% of which were Mf that decreased by 67% in WT and 83% in NOX-/- by d21.LTA- Cellularity as a factor of time remained unchanged in BM, PB, LP and BAL fluid. BrdU+ (LRC) were the putative stem cells. BrdU+CD45+ cells increased by 0.7-fold and SPC+CC10+ bronchoalveolar stem cells (BASC), decreased by ~40-fold post-bleomycin. BrdU+VEGF+ cells decreased by 1.8-fold while BrdU-VEGF+ cells increased 4.6-fold. Most BrdU- cells were CD45-. BrdU- BASCs remained unchanged post-bleomycin. CFU-c of the flow-sorted BrdU+ cells remained similar in control and bleomycin-treated lungs.
STA- Inflammation is a pre-requisite for fibrosis; SP cells, being the putative stem cells in the lungs, were increased (either by self renewal or by recruitment from the exogenous bone marrow pool) post-bleomycin in NOX-/- but not in DKO indicating the necessity of cross-talk between gp91phox and MMP-12 in this process; ex vivo cultured SP progressively lose pluripotent markers, notably BASC (SPC+CC10+) - significance is unknown. LTA- The increase in the hematopoietic progenitor pool in lung indicated that exogenous progenitors from circulation contribute to lung regeneration. Most non-stem cells were non-hematopoietic in origin indicating that despite tissue turnover, BASCs are drastically depleted possibly necessitating recruitment of progenitors from the hematopoietic pool. Loss of VEGF+ LRC may indicate a signal for progenitor mobilization from niches. BrdU- BASC population may be a small quiescent population that remains as a reserve for more severe lung injury. Increase in VEGF+ non-LRC may indicate a checkpoint to counterbalance the mobilization of VEGF+ cells from the stem cell niche.
PMCID: PMC3392768  PMID: 22643035
3.  Rac2 is involved in bleomycin-induced lung inflammation leading to pulmonary fibrosis 
Respiratory Research  2014;15(1):71.
Pulmonary fibrotic diseases induce significant morbidity and mortality, for which there are limited therapeutic options available. Rac2, a ras-related guanosine triphosphatase expressed mainly in hematopoietic cells, is a crucial molecule regulating a diversity of mast cell, macrophage, and neutrophil functions. All these cell types have been implicated in the development of pulmonary fibrosis in a variety of animal models. For the studies described here we hypothesized that Rac2 deficiency protects mice from bleomycin-induced pulmonary fibrosis.
To determine the role of Rac2 in pulmonary fibrosis we used a bleomycin-induced mouse model. Anesthetized C57BL/6 wild type and rac2 -/- mice were instilled intratracheally with bleomycin sulphate (1.25 U/Kg) or saline as control. Bronchoalveolar lavage (BAL) samples were collected at days 3 and 7 of treatment and analyzed for matrix metalloproteinases (MMPs). On day 21 after bleomycin treatment, we measured airway resistance and elastance in tracheotomized animals. Lung sections were stained for histological analysis, while homogenates were analyzed for hydroxyproline and total collagen content.
BLM-treated rac2 -/- mice had reduced MMP-9 levels in the BAL on day 3 and reduced neutrophilia and TNF and CCL3/MIP-1α levels in the BAL on day 7 compared to BLM-treated WT mice. We also showed that rac2 -/- mice had significantly lower mortality (30%) than WT mice (70%) at day 21 of bleomycin treatment. Lung function was diminished in bleomycin-treated WT mice, while it was unaffected in bleomycin-treated rac2 -/- mice. Histological analysis of inflammation and fibrosis as well as collagen and hydroxyproline content in the lungs did not show significant differences between BLM-treated rac2 -/- and WT and mice that survived to day 21.
Rac2 plays an important role in bleomycin-induced lung injury. It is an important signaling molecule leading to BLM-induced mortality and it also mediates the physiological changes seen in the airways after BLM-induced injury.
PMCID: PMC4082672  PMID: 24970330
Lung injury; Lung fibrosis; Bleomycin; Neutrophils; Rac2
4.  Pro-fibrotic Activities for Matrix Metalloproteinase-8 During Bleomycin-mediated Lung Injury1 
Matrix metalloproteinase-8 (MMP-8) is a potent interstitial collagenase thought to be expressed mainly by PMNs. To determine whether Mmp-8 regulates lung inflammatory or fibrotic responses to bleomycin, we delivered bleomycin by the intratracheal (IT) route to wild type (WT) vs. Mmp-8−/− mice and quantified Mmp-8 expression, and inflammation and fibrosis in the lung samples. Mmp-8 steady-state mRNA and protein levels increase in whole lung and bronchoalveolar lavage samples when WT mice are treated with bleomycin. Activated murine lung fibroblasts express Mmp-8 in vitro. MMP-8 expression is increased in leukocytes in the lungs of patients with idiopathic pulmonary fibrosis compared with control lung samples. Compared with bleomycin-treated WT mice, bleomycin-treated Mmp-8−/− mice have greater lung inflammation, but reduced lung fibrosis. While bleomycin-treated Mmp-8−/− and WT mice have similar lung levels of several pro- and anti-fibrotic mediators (Tgf-β, Il-13, JE, and Ifn-γ), Mmp-8−/− mice have higher lung levels of Ip-10 and Mip-1α. Genetically deleting either Ip-10 or Mip-1α in Mmp-8−/− mice abrogates their lung inflammatory response to bleomycin but reconstitutes their lung fibrotic response to bleomycin. Studies of bleomycin-treated Mmp-8 bone marrow-chimeric mice show that both leukocytes and lung parenchymal cells are sources of pro-fibrotic Mmp-8 during bleomycin-mediated lung fibrosis. Thus, during bleomycin-mediated lung injury, Mmp-8 dampens the lung acute inflammatory response but promotes lung fibrosis by reducing lung levels of Ip-10 and Mip-1α. These data indicate therapeutic strategies to reduce lung levels of MMP-8 may limit fibroproliferative responses to injury in the human lung.
PMCID: PMC3639121  PMID: 23487425
MMP-8; fibrosis; inflammation; IP-10; interferon-gamma; mice; bleomycin
5.  Caveolin-1 Deficiency Protects from Pulmonary Fibrosis by Modulating Epithelial Cell Senescence in Mice 
Idiopathic pulmonary fibrosis is associated with a decreased expression of caveolin-1 (cav-1), yet its role remains unclear. To investigate the role of cav-1, we induced pulmonary fibrosis in wild-type (WT) and cav-1–deficient (cav-1−/−) mice using intratracheal instillation of bleomycin. Contrary to expectations, significantly less collagen deposition was measured in tissue from cav-1−/− mice than in their WT counterparts, consistent with reduced mRNA expression of procollagen1a2 and procollagen3a1. Moreover, cav-1−/− mice demonstrated 77% less α-smooth muscle actin staining, suggesting reduced mesenchymal cell activation. Levels of pulmonary injury, assessed by tenascin-C mRNA expression and CD44v10 detection, were significantly increased at Day 21 after injury in WT mice, an effect significantly attenuated in cav-1−/− mice. The apparent protective effect against bleomycin-induced fibrosis in cav-1−/− mice was attributed to reduce cellular senescence and apoptosis in cav-1−/− epithelial cells during the early phase of lung injury. Reduced matrix metalloproteinase (MMP)-2 and MMP-9 expressions indicated a low profile of senescence-associated secretory phenotype (SASP) in the bleomycin-injured cav-1−/− mice. However, IL-6 and macrophage inflammatory protein 2 were increased in WT and cav-1−/− mice after bleomycin challenge, suggesting that bleomycin-induced inflammatory response substantiated the SASP pool. Thus, loss of cav-1 attenuates early injury response to bleomycin by limiting stress-induced cellular senescence/apoptosis in epithelial cells. In contrast, decreased cav-1 expression promotes fibroblast activation and collagen deposition, effects that may be relevant in later stages of reparative response. Hence, therapeutic strategies to modulate the expression of cav-1 should take into account cell-specific effects in the regenerative responses of the lung epithelium to injury.
PMCID: PMC3402795  PMID: 22362388
caveolin-1; lung injury; fibrosis; cellular senescence; apoptosis
6.  The absence of reactive oxygen species production protects mice against bleomycin-induced pulmonary fibrosis 
Respiratory Research  2005;6(1):11.
Reactive oxygen species and tissue remodeling regulators, such as metalloproteinases (MMPs) and their inhibitors (TIMPs), are thought to be involved in the development of pulmonary fibrosis. We investigated these factors in the fibrotic response to bleomycin of p47phox -/- (KO) mice, deficient for ROS production through the NADPH-oxidase pathway.
Mice are administered by intranasal instillation of 0.1 mg bleomycin. Either 24 h or 14 days after, mice were anesthetized and underwent either bronchoalveolar lavage (BAL) or lung removal.
BAL cells from bleomycin treated WT mice showed enhanced ROS production after PMA stimulation, whereas no change was observed with BAL cells from p47phox -/- mice. At day 1, the bleomycin-induced acute inflammatory response (increased neutrophil count and MMP-9 activity in the BAL fluid) was strikingly greater in KO than wild-type (WT) mice, while IL-6 levels increased significantly more in the latter. Hydroxyproline assays in the lung tissue 14 days after bleomycin administration revealed the absence of collagen deposition in the lungs of the KO mice, which had significantly lower hydroxyproline levels than the WT mice. The MMP-9/TIMP-1 ratio did not change at day 1 after bleomycin administration in WT mice, but increased significantly in the KO mice. By day 14, the ratio fell significantly from baseline in both strains, but more in the WT than KO strains.
These results suggest that NADPH-oxidase-derived ROS are essential to the development of pulmonary fibrosis. The absence of collagen deposition in KO mice seems to be associated with an elevated MMP-9/TIMP-1 ratio in the lungs. This finding highlights the importance of metalloproteinases and protease/anti-protease imbalances in pulmonary fibrosis.
PMCID: PMC548519  PMID: 15663794
7.  Mononuclear Phagocytes and Airway Epithelial Cells: Novel Sources of Matrix Metalloproteinase-8 (MMP-8) in Patients with Idiopathic Pulmonary Fibrosis 
PLoS ONE  2014;9(5):e97485.
Matrix metalloproteinase-8 (MMP-8) promotes lung fibrotic responses to bleomycin in mice. Although prior studies reported that MMP-8 levels are increased in plasma and bronchoalveolar lavage fluid (BALF) samples from IPF patients, neither the bioactive forms nor the cellular sources of MMP-8 in idiopathic pulmonary fibrosis (IPF) patients have been identified. It is not known whether MMP-8 expression is dys-regulated in IPF leukocytes or whether MMP-8 plasma levels correlate with IPF outcomes. Our goal was to address these knowledge gaps.
We measured MMP-8 levels and forms in blood and lung samples from IPF patients versus controls using ELISAs, western blotting, and qPCR, and assessed whether MMP-8 plasma levels in 73 IPF patients correlate with rate of lung function decline and mortality. We used immunostaining to localize MMP-8 expression in IPF lungs. We quantified MMP-8 levels and forms in blood leukocytes from IPF patients versus controls.
IPF patients have increased BALF, whole lung, and plasma levels of soluble MMP-8 protein. Active MMP-8 is the main form elevated in IPF lungs. MMP-8 mRNA levels are increased in monocytes from IPF patients, but IPF patients and controls have similar levels of MMP-8 in PMNs. Surprisingly, macrophages and airway epithelial cells are the main cells expressing MMP-8 in IPF lungs. Plasma and BALF MMP-8 levels do not correlate with decline in lung function and/or mortality in IPF patients.
Blood and lung MMP-8 levels are increased in IPF patients. Active MMP-8 is the main form elevated in IPF lungs. Surprisingly, blood monocytes, lung macrophages, and airway epithelial cells are the main cells in which MMP-8 is upregulated in IPF patients. Plasma and BALF MMP-8 levels are unlikely to serve as a prognostic biomarker for IPF patients. These results provide new information about the expression patterns of MMP-8 in IPF patients.
PMCID: PMC4020836  PMID: 24828408
8.  Induction of pulmonary fibrosis by cerium oxide nanoparticles 
Toxicology and applied pharmacology  2012;262(3):255-264.
Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO2) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO2-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO2 in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO2 by a single intratracheal instillation. Alveolar macrophages (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-β1 in the fibrotic process were investigated. The results showed that CeO2 exposure significantly increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO2 induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5 mg/kg CeO2 and euthanized at 28 days post-exposure. Collectively, our studies show that CeO2 induced fibrotic lung injury in rats, suggesting it may cause potential health effects.
PMCID: PMC4697452  PMID: 22613087
Cerium oxide; Nanoparticle; Pulmonary fibrosis; Metalloproteinases; Phospholipidosis
9.  Intratracheal Instillation of High Dose Adenoviral Vectors Is Sufficient to Induce Lung Injury and Fibrosis in Mice 
PLoS ONE  2014;9(12):e116142.
Replication deficient adenoviruses (Ad) vectors are common tools in gene therapy. Since Ad vectors are known to activate innate and adaptive immunity, we investigated whether intratracheal administration of Ad vectors alone is sufficient to induce lung injury and pulmonary fibrosis.
We instilled Ad viruses ranging from 107 to 1.625×109 ifu/mouse as well as the same volume of PBS and bleomycin. 14 and 21 days after administration, we collected bronchoalveolar lavage fluid (BALF) and mouse lung tissues. We measured the protein concentration, total and differential cell counts, and TGF-β1 production, performed Trichrome staining and Sircol assay, determined gene and protein levels of profibrotic cytokines, MMPs, and Wnt signaling proteins, and conducted TUNEL staining and co-immunofluorescence for GFP and α-SMA staining.
Instillation of high dose Ad vectors (1.625×109 ifu/mouse) into mouse lungs induced high levels of protein content, inflammatory cells, and TGF-β1 in BALF, comparable to those in bleomycin-instilled lungs. The collagen content and mRNA levels of Col1a1, Col1a2, PCNA, and α-SMA were also increased in the lungs. Instillation of both bleomycin and Ad vectors increased expression levels of TNFα and IL-1β but not IL-10. Instillation of bleomycin but not Ad increased the expression of IL-1α, IL-13 and IL-16. Treatment with bleomycin or Ad vectors increased expression levels of integrin α1, α5, and αv, MMP9, whereas treatment with bleomycin but not Ad vectors induced MMP2 expression levels. Both bleomycin and Ad vectors induced mRNA levels of Wnt2, 2b, 5b, and Lrp6. Intratracheal instillation of Ad viruses also induced DNA damages and Ad viral infection-mediated fibrosis is not limited to the infection sites.
Our results suggest that administration of Ad vectors induces an inflammatory response, lung injury, and pulmonary fibrosis in a dose dependent manner.
PMCID: PMC4281082  PMID: 25551570
10.  A prostacyclin analogue, iloprost, protects from bleomycin-induced pulmonary fibrosis in mice 
Respiratory Research  2010;11(1):34.
Metabolites of arachidonic acid such as prostacyclin (PGI2) have been shown to participate in the pathogenesis of pulmonary fibrosis by inhibiting the expression of pro-inflammatory and pro-fibrotic mediators. In this investigation, we examined whether iloprost, a stable PGI2 analogue, could prevent bleomycin-induced pulmonary inflammation and fibrosis in a mouse model.
Mice received a single intratracheal injection of bleomycin with or without intraperitoneal iloprost. Pulmonary inflammation and fibrosis were analysed by histological evaluation, cellular composition of bronchoalveolar lavage (BAL) fluid, and hydroxyproline content. Lung mechanics were measured. We also analysed the expression of inflammatory mediators in BAL fluid and lung tissue.
Administration of iloprost significantly improved survival rate and reduced weight loss in the mice induced by bleomycin. The severe inflammatory response and fibrotic changes were significantly attenuated in the mice treated with iloprost as shown by reduction in infiltration of inflammatory cells into the airways and pulmonary parenchyma, diminution in interstitial collagen deposition, and lung hydroxyproline content. Iloprost significantly improved lung static compliance and tissue elastance. It increased the expression of IFNγ and CXCL10 in lung tissue measured by RT-PCR and their levels in BAL fluid as measured by ELISA. Levels of TNFα, IL-6 and TGFβ1 were lowered by iloprost.
Iloprost prevents bleomycin-induced pulmonary fibrosis, possibly by upregulating antifibrotic mediators (IFNγ and CXCL10) and downregulating pro-inflammatory and pro-fibrotic cytokines (TNFα, IL-6, and TGFβ1). Prostacyclin may represent a novel pharmacological agent for treating pulmonary fibrotic diseases.
PMCID: PMC2848635  PMID: 20302663
11.  Role of the SDF-1/CXCR4 Axis in the Pathogenesis of Lung Injury and Fibrosis 
Stromal cell–derived factor-1 (SDF-1) participates in mobilizing bone marrow–derived stem cells, via its receptor CXCR4. We studied the role of the SDF-1/CXCR4 axis in a rodent model of bleomycin-induced lung injury in C57BL/6 wild-type and matrix metalloproteinase (MMP)-9 knockout mice. After intratracheal instillation of bleomycin, SDF-1 levels in serum and bronchial alveolar lavage fluid increased. These changes were accompanied by increased numbers of CXCR4+ cells in the lung and a decrease in a population of CXCR4+ cells in the bone marrow that did not occur in MMP-9−/− mice. Both SDF-1 and lung lysates from bleomycin-treated mice induced migration of bone marrow–derived stem cells in vitro that was blocked by a CXCR4 antagonist, TN14003. Treatment of mice with TN14003 with bleomycin-induced lung injury significantly attenuated lung fibrosis. Lung tissue from patients with idiopathic pulmonary fibrosis had higher numbers of cells expressing both SDF-1 and CXCR4 than did normal lungs. Our data suggest that the SDF-1/CXCR4 axis is important in the complex sequence of events triggered by bleomycin exposure that eventuates in lung repair. SDF-1 participates in mobilizing bone marrow–derived stem cells, via its receptor CXCR4.
PMCID: PMC1994230  PMID: 17463394
bone marrow–derived stem cells; pulmonary fibrosis; SDF-1; CXCR4
12.  Short course dexamethasone treatment following injury inhibits bleomycin induced fibrosis in rats 
Thorax  2003;58(9):765-771.
Background: Corticosteroids are routinely used in patients with pulmonary fibrosis. The timing for initiation of treatment is likely to be crucial for corticosteroids to exert an antifibrotic effect. Experimental studies in animals have examined the effect of corticosteroid treatment starting before or at the time of lung injury. However, this is not representative of the human condition as treatment only begins after disease has been established. We examined the effect of a short course corticosteroid treatment starting 3 days after bleomycin induced lung injury on the development of pulmonary fibrosis.
Methods: Bleomycin (1.5 mg/kg) was instilled intratracheally into rats to induce pulmonary fibrosis. The effect of a 3-day course of dexamethasone (0.5 mg/kg) initiated 3 days after bleomycin induced lung injury on cell proliferation and collagen deposition was examined by analysing bronchoalveolar lavage (BAL) fluid and lung tissue.
Results: Treating bleomycin exposed animals after injury with dexamethasone for 3 days inhibited lung collagen deposition compared with animals exposed to bleomycin without dexamethasone treatment (15.2 (2.2) mg collagen/lung v 22.5 (2.1) mg/lung; p<0.05). Dexamethasone treatment reduced pulmonary parenchymal cell proliferation in bleomycin exposed rats but did not influence BAL fluid mitogenic activity for lung fibroblasts or alter the BAL fluid levels of the fibrogenic mediators transforming growth factor-ß1, platelet derived growth factor-AB, and thrombin.
Conclusions: A 3 day course of dexamethasone treatment initiated 3 days after bleomycin induced lung injury reduces lung cell proliferation and collagen deposition by mechanisms other than through reduction of transforming growth factor-ß1, platelet derived growth factor-AB, and thrombin levels in BAL fluid. We propose that an early short course treatment with dexamethasone may be useful in inhibiting pulmonary fibrosis.
PMCID: PMC1746812  PMID: 12947134
13.  Matrix Metalloproteinases Promote Inflammation and Fibrosis in Asbestos-Induced Lung Injury in Mice 
Inhalation of asbestos fibers causes pulmonary inflammation and eventual pulmonary fibrosis (asbestosis). Although the underlying molecular events are poorly understood, protease/antiprotease and oxidant/antioxidant imbalances are believed to contribute to the disease. Implicated in other forms of pulmonary fibrosis, the matrix metalloproteinases (MMPs) have not been examined in asbestosis. We therefore hypothesized that MMPs play a pathogenic role in asbestosis development. Wild-type C57BL/6 mice were intratracheally instilled with 0.1 mg crocidolite asbestos, causing an inflammatory response at 1 d and a developing fibrotic response at 7, 14, and 28 d. Gelatin zymography demonstrated an increase in MMP-9 (gelatinase B) during the inflammatory phase, while MMP-2 (gelatinase A) was profoundly increased in the fibrotic phase. Immunohistochemistry revealed MMP-9 in and around bronchiolar and airspace neutrophils that were often associated with visible asbestos fibers. MMP-2 was found in fibrotic regions at 7, 14, and 28 d. No increases in RNA levels of MMP-2, MMP-9, or MMP-8 were found, but levels of MMP-7, MMP-12, and MMP-13 RNA did increase at 14 d. The MMP inhibitors, TIMP-1 and TIMP-2, were also increased at 7–28 d after asbestos exposure. To confirm the importance of MMP activity in disease progression, mice exposed to asbestos were given daily injections of the MMP inhibitor, GM6001. MMP inhibition reduced inflammation and fibrosis in asbestos-treated mice. Collectively, these data suggest that MMPs contribute to the pathogenesis of asbestosis through effects on inflammation and fibrosis development.
PMCID: PMC1820635  PMID: 16574944
asbestos; extracellular superoxide dismutase; matrix metalloproteinase; pulmonary fibrosis
14.  Matrix Metalloproteinases Promote Inflammation and Fibrosis in Asbestos-Induced Lung Injury in Mice 
Inhalation of asbestos fibers causes pulmonary inflammation and eventual pulmonary fibrosis (asbestosis). Although the underlying molecular events are poorly understood, protease/antiprotease and oxidant/antioxidant imbalances are believed to contribute to the disease. Implicated in other forms of pulmonary fibrosis, the matrix metalloproteinases (MMPs) have not been examined in asbestosis. We therefore hypothesized that MMPs play a pathogenic role in asbestosis development. Wild-type C57BL/6 mice were intratracheally instilled with 0.1 mg crocidolite asbestos, causing an inflammatory response at 1 d and a developing fibrotic response at 7, 14, and 28 d. Gelatin zymography demonstrated an increase in MMP-9 (gelatinase B) during the inflammatory phase, while MMP-2 (gelatinase A) was profoundly increased in the fibrotic phase. Immunohistochemistry revealed MMP-9 in and around bronchiolar and airspace neutrophils that were often associated with visible asbestos fibers. MMP-2 was found in fibrotic regions at 7, 14, and 28 d. No increases in RNA levels of MMP-2, MMP-9, or MMP-8 were found, but levels of MMP-7, MMP-12, and MMP-13 RNA did increase at 14 d. The MMP inhibitors, TIMP-1 and TIMP-2, were also increased at 7–28 d after asbestos exposure. To confirm the importance of MMP activity in disease progression, mice exposed to asbestos were given daily injections of the MMP inhibitor, GM6001. MMP inhibition reduced inflammation and fibrosis in asbestos-treated mice. Collectively, these data suggest that MMPs contribute to the pathogenesis of asbestosis through effects on inflammation and fibrosis development.
PMCID: PMC1820635  PMID: 16574944
asbestos; extracellular superoxide dismutase; matrix metalloproteinase; pulmonary fibrosis
15.  Active synovial matrix metalloproteinase-2 is associated with radiographic erosions in patients with early synovitis 
Arthritis Research  2000;2(2):145-153.
Serum and synovial tissue expression of the matrix metalloproteinase (MMP)-2 and -9 and their molecular regulators, MMP-14 and TIMP-2 was examined in 28 patients with inflammatory early synovitis and 4 healthy volunteers and correlated with the presence of erosions in the patients. Immunohistological staining of MMP-2, MMP-14 and TIMP-2 localized to corresponding areas in the synovial lining layer and was almost absent in normal synovium. Patients with radiographic erosions had significantly higher levels of active MMP-2 than patients with no erosions, suggesting that activated MMP-2 levels in synovial tissue may be a marker for a more aggressive synovial lesion.
In cancer the gelatinases [matrix metalloproteinase (MMP)-2 and MMP-9] have been shown to be associated with tissue invasion and metastatic disease. In patients with inflammatory arthritis the gelatinases are expressed in the synovial membrane, and have been implicated in synovial tissue invasion into adjacent cartilage and bone. It is hypothesized that an imbalance between the activators and inhibitors of the gelatinases results in higher levels of activity, enhanced local proteolysis, and bone erosion.
To determine whether the expression and activity levels of MMP-2 and MMP-9, and their regulators MMP-14 and tissue inhibitor of metalloproteinase (TIMP), are associated with early erosion formation in patients with synovitis of recent onset.
Patients and method:
A subset of 66 patients was selected from a larger early synovitis cohort on the basis of tissue availability for the study of synovial tissue and serum gelatinase expression. Patients with peripheral joint synovitis of less than 1 years' duration were evaluated clinically and serologically on four visits over a period of 12 months. At the initial visit, patients underwent a synovial tissue biopsy of one swollen joint, and patients had radiographic evaluation of hands and feet initially and at 1year. Serum MMP-1, MMP-2, MMP-9, MMP-14, and TIMP-1 and TIMP-2 levels were determined, and synovial tissue was examined by immunohistology for the expression of MMP-2 and MMP-9, and their molecular regulators. Gelatinolytic activity for MMP-2 and MMP-9 was quantified using a sensitive, tissue-based gel zymography technique. Four healthy individuals underwent closed synovial biopsy and their synovial tissues were similarly analyzed.
Of the 66 patients studied, 45 fulfilled American College of Rheumatology criteria for rheumatoid arthritis (RA), with 32 (71%) being rheumatoid factor positive. Of the 21 non-RA patients, seven had a spondylarthropathy and 14 had undifferentiated arthritis. Radiographically, 12 of the RA patients had erosions at multiple sites by 1 year, whereas none of the non-RA patients had developed erosive disease of this extent. In the tissue, latent MMP-2 was widely expressed in the synovial lining layer and in areas of stromal proliferation in the sublining layer and stroma, whereas MMP-9 was expressed more sparsely and focally. MMP-14, TIMP-2, and MMP-2 were all detected in similar areas of the lining layer on consecutive histologic sections. Tissue expression of MMP-14, the activator for pro-MMP-2, was significantly higher in RA than in non-RA patients (8.4 ± 5 versus 3.7 ± 4 cells/high-power field; P = 0.009). In contrast, the expression of TIMP-2, an inhibitor of MMP-2, was lower in the RA than in the non-RA samples (25 ± 12 versus 39 ± 9 cells/high-power field; P = 0.01). Synovial tissue expressions of MMP-2, MMP-14, and TIMP-2 were virtually undetectable in normal synovial tissue samples. The synovial tissue samples of patients with erosive disease had significantly higher levels of active MMP-2 than did those of patients without erosions (Fig. 1). Tissue expression of MMP-2 and MMP-9, however, did not correlate with the serum levels of these enzymes.
With the exception of serum MMP-2, which was not elevated over normal, serum levels of all of the other MMPs and TIMPs were elevated to varying degrees, and were not predictive of erosive disease. Interestingly, MMP-1 and C-reactive protein, both of which were associated with the presence of erosions, were positively correlated with each other (r = 0.42; P < 0.001).
MMP-2 and MMP-9 are thought to play an important role in the evolution of joint erosions in patients with an inflammatory arthritis. Most studies have concentrated on the contribution of MMP-9 to the synovitis, because synovial fluid and serum MMP-9 levels are markedly increased in inflammatory arthropathies. Previously reported serum levels of MMP-9 have varied widely. In the present sample of patients with synovitis of recent onset, serum MMP-9 levels were elevated in only 21%. Moreover, these elevations were not specific for RA, the tissue expression of MMP-9 was focal, and the levels of MMP-9 activity were not well correlated with early erosions. Although serum MMP-2 levels were not of prognostic value, high synovial tissue levels of MMP-2 activity were significantly correlated with the presence of early erosions. This may reflect augmented activation of MMP-2 by the relatively high levels of MMP-14 and low levels of TIMP-2 seen in these tissues. We were able to localize the components of this trimolecular complex to the synovial lining layer in consecutive tissue sections, a finding that is consistent with their colocalization.
In conclusion, we have provided evidence that active MMP-2 complexes are detectable in the inflamed RA synovium and may be involved in the development of early bony erosions. These results suggest that strategies to inhibit the activation of MMP-2 may have the potential for retarding or preventing early erosions in patients with inflammatory arthritis.
PMCID: PMC17808  PMID: 11062605
early synovitis; erosion; metalloproteinase; matrix metalloproteinase-2; rheumatoid arthritis
16.  The effects of 1α,25-dihydroxyvitamin D3 on matrix metalloproteinase and prostaglandin E2 production by cells of the rheumatoid lesion 
Arthritis Research  1999;1(1):63-70.
The biologically active metabolite of vitamin D3, 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], acts through vitamin D receptors, which were found in rheumatoid tissues in the present study. IL-1β-activated rheumatoid synovial fibroblasts and human articular chondrocytes were shown to respond differently to exposure to 1α,25(OH)2D3, which has different effects on the regulatory pathways of specific matrix metalloproteinases and prostaglandin E2.
1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], the biologically active metabolite of vitamin D3, acts through an intracellular vitamin D receptor (VDR) and has several immunostimulatory effects. Animal studies have shown that production of some matrix metalloproteinases (MMPs) may be upregulated in rat chondrocytes by administration of 1α,25(OH)2D3; and cell cultures have suggested that 1α,25(OH)2D3 may affect chondrocytic function. Discoordinate regulation by vitamin D of MMP-1 and MMP-9 in human mononuclear phagocytes has also been reported. These data suggest that vitamin D may regulate MMP expression in tissues where VDRs are expressed. Production of 1α,25(OH)2D3 within synovial fluids of arthritic joints has been shown and VDRs have been found in rheumatoid synovial tissues and at sites of cartilage erosion. The physiological function of 1α,25(OH)2D3 at these sites remains obscure. MMPs play a major role in cartilage breakdown in the rheumatoid joint and are produced locally by several cell types under strict control by regulatory factors. As 1α,25(OH)2D3 modulates the production of specific MMPs and is produced within the rheumatoid joint, the present study investigates its effects on MMP and prostaglandin E2 (PGE2) production in two cell types known to express chondrolytic enzymes.
To investigate VDR expression in rheumatoid tissues and to examine the effects of 1α,25-dihydroxyvitamin D3 on cultured rheumatoid synovial fibroblasts (RSFs) and human articular chondrocytes (HACs) with respect to MMP and PGE2 production.
Rheumatoid synovial tissues were obtained from arthroplasty procedures on patients with late-stage rheumatoid arthritis; normal articular cartilage was obtained from lower limb amputations. Samples were embedded in paraffin, and examined for presence of VDRs by immunolocalisation using a biotinylated antibody and alkaline-phosphatase-conjugated avidin-biotin complex system. Cultured synovial fibroblasts and chondrocytes were treated with either 1α,25(OH)2D3, or interleukin (IL)-1β or both. Conditioned medium was assayed for MMP and PGE2 by enzyme-linked immunosorbent assay (ELISA), and the results were normalised relative to control values.
The rheumatoid synovial tissue specimens (n = 18) immunostained for VDRs showed positive staining but at variable distributions and in no observable pattern. VDR-positive cells were also observed in association with some cartilage-pannus junctions (the rheumatoid lesion). MMP production by RSFs in monolayer culture was not affected by treatment with 1α,25(OH)2D3 alone, but when added simultaneously with IL-1β the stimulation by IL-1β was reduced from expected levels by up to 50%. In contrast, 1α,25(OH)2D3 had a slight stimulatory effect on basal production of MMPs 1 and 3 by monolayer cultures of HACs, but stimulation of MMP-1 by IL-1β was not affected by the simultaneous addition of 1α,25(OH)2D3 whilst MMP-3 production was enhanced (Table 1). The production of PGE2 by RSFs was unaffected by 1α,25(OH)2D3 addition, but when added concomitantly with IL-1β the expected IL-1 β-stimulated increase was reduced to almost basal levels. In contrast, IL-1β stimulation of PGE2 in HACs was not affected by the simultaneous addition of 1α,25(OH)2D3 (Table 2). Pretreatment of RSFs with 1α,25(OH)2D3 for 1 h made no significant difference to IL-1β-induced stimulation of PGE2, but incubation for 16 h suppressed the expected increase in PGE2 to control values. This effect was also noted when 1α,25(OH)2D3 was removed after the 16h and the IL-1 added alone. Thus it appears that 1α,25(OH)2D3 does not interfere with the IL-1β receptor, but reduces the capacity of RSFs to elaborate PGE2 after IL-1β induction.
Cells within the rheumatoid lesion which expressed VDR were fibroblasts, macrophages, lymphocytes and endothelial cells. These cells are thought to be involved in the degradative processes associated with rheumatoid arthritis (RA), thus providing evidence of a functional role of 1α,25(OH)2D3 in RA. MMPs may play important roles in the chondrolytic processes of the rheumatoid lesion and are known to be produced by both fibroblasts and chondrocytes. The 1α,25(OH)2D3 had little effect on basal MMP production by RSFs, although more pronounced differences were noted when IL-1β-stimulated cells were treated with 1α,25(OH)2D3, with the RSF and HAC showing quite disparate responses. These opposite effects may be relevant to the processes of joint destruction, especially cartilage loss, as the ability of 1α,25(OH)2D3 to potentiate MMP-1 and MMP-3 expression by 'activated' chondrocytes might facilitate intrinsic cartilage chondrolysis in vivo. By contrast, the MMP-suppressive effects observed for 1α,25(OH)2D3 treatment of 'activated' synovial fibroblasts might reduce extrinsic chondrolysis and also matrix degradation within the synovial tissue. Prostaglandins have a role in the immune response and inflammatory processes associated with RA. The 1α,25(OH)2D3 had little effect on basal PGE2 production by RSF, but the enhanced PGE2 production observed following IL-1β stimulation of these cells was markedly suppressed by the concomitant addition of 1α,25(OH)2D3. As with MMP production, there are disparate effects of 1α,25(OH)2D3 on IL-1β stimulated PGE2 production by the two cell types; 1α,25(OH)2D3 added concomitantly with IL-1β had no effect on PGE2 production by HACs. In summary, the presence of VDRs in the rheumatoid lesion demonstrates that 1α,25(OH)2D3 may have a functional role in the joint disease process. 1α,25(OH)2D3 does not appear to directly affect MMP or PGE2 production but does modulate cytokine-induced production.
Comparative effects of 1 α,25-dihydroxyvitamin D3 (1 α,25D3) on interleukin (IL)-1-stimulated matrix metalloproteinase (MMP)-1 and MMP-3 production by rheumatoid synovial fibroblasts and human articular chondrocytes in vivo
Data given are normalized relative to control values and are expressed ± SEM for three cultures of each cell type.
Comparative effects of 1α,25-dihydroxyvitamin D3 (1α,25D3) on Interleukin (IL)-1-stimulated prostaglandin E2 production by rheumatoid synovial fibroblasts and human articular chondrocyte in vivo
Data given are normalized relative to control values and are expressed ± SEM for three cultures of each cell type.
PMCID: PMC17774  PMID: 11056661
1α,25-dihydroxyvitamin D3; matrix metalloproteinase; prostaglandin E2; rheumatoid arthritis
17.  Pivotal Role of Matrix Metalloproteinase 13 in Extracellular Matrix Turnover in Idiopathic Pulmonary Fibrosis 
PLoS ONE  2013;8(9):e73279.
Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by excessive deposition of extracellular matrix (ECM).
We investigated the regulation of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in lung fibrosis.
MMP and TIMP expression, collagenolytic activity and collagen content was assessed in IPF (n=16) versus donor (n=6) lung homogenates and accomplished by in-situ-zymography for gelatinolytic and collagenolytic activities, combined with MMP antigen detection. Role of MMP13 was assessed employing the bleomycin model of lung fibrosis in MMP-13-/- versus wild-type mice.
Measurements and Main Results
In IPF, MMPs-1, 2, 7, 9 and 13, but not MMP-8, were significantly upregulated, whereas none of the TIMPs (1–4) were significantly altered. Collagen content was slightly increased and collagenolytic activity was most prominent in the airways and co-localized with MMP-13. We observed an exaggerated early inflammatory response and an augmented lung fibrosis in bleomycin-challenged MMP-13-/- versus wild-type mice, with elevated lung collagen content 28d after bleomycin challenge in the MMP-13-/- mice.
Our data suggest that i) collagen deposition in IPF lungs is not primarily due to excessive TIMP production, but rather due to overwhelming ECM production in face of an overall increased, but spatially imbalanced collagenolytic activity, ii) preferential distribution of collagenolytic activity, largely MMP-13, in the airways offers an explanation for the development of honeycomb cysts and iii) despite an overall increase in inflammatory cell content the presence of MMP-13 seems to limit the overall extent of ECM deposition in lung fibrosis.
PMCID: PMC3759404  PMID: 24023851
18.  Amniotic Fluid Stem Cells Inhibit the Progression of Bleomycin-Induced Pulmonary Fibrosis via CCL2 Modulation in Bronchoalveolar Lavage 
PLoS ONE  2013;8(8):e71679.
The potential for amniotic fluid stem cell (AFSC) treatment to inhibit the progression of fibrotic lung injury has not been described. We have previously demonstrated that AFSC can attenuate both acute and chronic-fibrotic kidney injury through modification of the cytokine environment. Fibrotic lung injury, such as in Idiopathic Pulmonary Fibrosis (IPF), is mediated through pro-fibrotic and pro-inflammatory cytokine activity. Thus, we hypothesized that AFSC treatment might inhibit the progression of bleomycin-induced pulmonary fibrosis through cytokine modulation. In particular, we aimed to investigate the effect of AFSC treatment on the modulation of the pro-fibrotic cytokine CCL2, which is increased in human IPF patients and is correlated with poor prognoses, advanced disease states and worse fibrotic outcomes. The impacts of intravenous murine AFSC given at acute (day 0) or chronic (day 14) intervention time-points after bleomycin injury were analyzed at either day 3 or day 28 post-injury. Murine AFSC treatment at either day 0 or day 14 post-bleomycin injury significantly inhibited collagen deposition and preserved pulmonary function. CCL2 expression increased in bleomycin-injured bronchoalveolar lavage (BAL), but significantly decreased following AFSC treatment at either day 0 or at day 14. AFSC were observed to localize within fibrotic lesions in the lung, showing preferential targeting of AFSC to the area of fibrosis. We also observed that MMP-2 was transiently increased in BAL following AFSC treatment. Increased MMP-2 activity was further associated with cleavage of CCL2, rendering it a putative antagonist for CCL2/CCR2 signaling, which we surmise is a potential mechanism for CCL2 reduction in BAL following AFSC treatment. Based on this data, we concluded that AFSC have the potential to inhibit the development or progression of fibrosis in a bleomycin injury model during both acute and chronic remodeling events.
PMCID: PMC3742516  PMID: 23967234
19.  Matrix Metalloproteinases as Therapeutic Targets for Idiopathic Pulmonary Fibrosis 
Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF.
PMCID: PMC4742954  PMID: 26121236
matrix metalloproteinase; interstitial lung disease; idiopathic pulmonary fibrosis; lung; fibrosis
20.  Preventive Effects of Rhodiola rosea L. on Bleomycin-Induced Pulmonary Fibrosis in Rats 
Rhodiola rosea L. (RRL) possesses a wide range of pharmacological properties, including lung-protective activity, and has been utilized in folk medicine for several 100 years. However, the lung-protective mechanism remains unclear. This study investigated the possible lung-protective activity mechanism of RRL in a pulmonary fibrosis (PF) rat model. Lung fibrotic injury was induced in Sprague–Dawley rats by single intratracheal instillation of saline containing bleomycin (BLM; 5 mg/kg). The rats were administered 125, 250, or 500 mg/kg of a 95% ethanol extract of RRL for 28 days. The animals were killed to detect changes in body weight, serum levels of glutathione (GSH) and total superoxide dismutase (T-SOD), as well as lung tissue hydroxyproline (HYP) content. Tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), and interleukin 6 (IL-6) levels were measured in bronchoalveolar lavage fluid (BALF) by enzyme-linked immunosorbent assay. Hematoxylin and eosin, Masson’s trichrome, and immunohistochemical staining were performed to observe the histopathological changes in lung tissues. Additionally, target-related proteins were measured by Western blotting. RRL alleviated the loss of body weight induced by instilling BLM in PF rats, particularly at the 500 mg/kg per day dose. RRL reduced HYP (p < 0.01) and increased GSH and T-SOD contents. BALF levels of TNF-α, TGF-β1, and IL-6 decreased significantly in the RRL-treated groups. Expression levels of matrix metalloproteinase-9 (MMP-9) and α-smooth muscle actin decreased significantly in a dose-dependent manner in response to RRL. Moreover, the levels of TGF-β1 and tissue inhibitor of metalloproteinase-1 in lung tissues also decreased in the RRL-treated groups. RRL alleviated BLM-induced PF in rats. Our results reveal that the protective effects of RRL against fibrotic lung injury in rats are correlated with its anti-inflammatory, antioxidative, and anti-fibrotic properties. MMP-9 may play important roles in BLM-induced PF.
PMCID: PMC4926413  PMID: 27271612
Rhodiola rosea L.; pulmonary fibrosis; bleomycin; TGF-β1; MMP-9
21.  MMP1 and MMP7 as Potential Peripheral Blood Biomarkers in Idiopathic Pulmonary Fibrosis 
PLoS Medicine  2008;5(4):e93.
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic lung disease associated with substantial morbidity and mortality. The objective of this study was to determine whether there is a peripheral blood protein signature in IPF and whether components of this signature may serve as biomarkers for disease presence and progression.
Methods and Findings
We analyzed the concentrations of 49 proteins in the plasma of 74 patients with IPF and in the plasma of 53 control individuals. We identified a combinatorial signature of five proteins—MMP7, MMP1, MMP8, IGFBP1, and TNFRSF1A—that was sufficient to distinguish patients from controls with a sensitivity of 98.6% (95% confidence interval [CI] 92.7%–100%) and specificity of 98.1% (95% CI 89.9%–100%). Increases in MMP1 and MMP7 were also observed in lung tissue and bronchoalveolar lavage fluid obtained from IPF patients. MMP7 and MMP1 plasma concentrations were not increased in patients with chronic obstructive pulmonary disease or sarcoidosis and distinguished IPF compared to subacute/chronic hypersensitivity pneumonitis, a disease that may mimic IPF, with a sensitivity of 96.3% (95% CI 81.0%–100%) and specificity of 87.2% (95% CI 72.6%–95.7%). We verified our results in an independent validation cohort composed of patients with IPF, familial pulmonary fibrosis, subclinical interstitial lung disease (ILD), as well as with control individuals. MMP7 and MMP1 concentrations were significantly higher in IPF patients compared to controls in this cohort. Furthermore, MMP7 concentrations were elevated in patients with subclinical ILD and negatively correlated with percent predicted forced vital capacity (FVC%) and percent predicted carbon monoxide diffusing capacity (DLCO%).
Our experiments provide the first evidence for a peripheral blood protein signature in IPF to our knowledge. The two main components of this signature, MMP7 and MMP1, are overexpressed in the lung microenvironment and distinguish IPF from other chronic lung diseases. Additionally, increased MMP7 concentration may be indicative of asymptomatic ILD and reflect disease progression.
Naftali Kaminski and colleagues find increased levels of specific proteins in the bloodstream of individuals with idiopathic pulmonary fibrosis, and suggest that these proteins may ultimately provide a biomarker for the disease.
Editors' Summary
Idiopathic pulmonary fibrosis (IPF) is a serious disease in which the lungs become progressively scarred or thickened for unknown reasons. In healthy people, air is taken in through the mouth or nose and travels down the windpipe into tubes in the lungs called the airways. Each airway has many small branches that end in alveoli, tiny air sacs with thin walls that are surrounded by small blood vessels called capillaries. When air reaches the alveoli, the oxygen in it passes into the bloodstream and is taken to the organs of the body to keep them working. In IPF, the alveoli and the space around them (the “interstitial” area) gradually become scarred and thickened, which stops oxygen's movement into the bloodstream. When only small areas of the lung are scarred, IPF may cause no symptoms. But, as more of the lung becomes damaged, IPF eventually causes breathlessness, even when resting. There is no effective treatment for IPF, although steroids and drugs that suppress the body's immune system are often tried in an attempt to slow its progression. On average, half of the people with IPF die within three years of diagnosis, often from respiratory or heart failure.
Why Was This Study Done?
It can be difficult to diagnose IPF—there are many lung diseases with similar symptoms, including numerous other interstitial lung diseases—and currently, physicians can only follow the progression of IPF by repeatedly testing their patients' lung function or by doing multiple chest X-rays. If proteins could be identified whose level in blood indicated disease activity (so-called “peripheral blood biomarkers”), it would be easier to diagnose and monitor patients. In addition, the identification of such biomarkers might suggest new drug targets for the treatment of IPF. In this study, the researchers look for peripheral blood biomarkers in IPF by using a “multiplex analysis” system to measure the level of several proteins in patient blood samples simultaneously.
What Did the Researchers Do and Find?
The researchers measured the levels of 49 plasma proteins (plasma is the fluid part of blood) in 74 patients with IPF and 53 healthy people (controls) and used a technique called “recursive partitioning” to define a five-protein signature that distinguished patients from unaffected study participants (controls). Matrix metalloproteinase 7 (MMP7) and MMP1—the two plasma proteins whose levels were most increased in patients with IPF compared to controls—were key components of this signature. Concentrations of MMP7 and MMP1 were higher in bronchoalveolar lavage samples (fluid obtained by washing out the lungs with saline) and in lung tissue samples from patients with IPF than in similar samples taken from healthy individuals. Plasma concentrations of MMP7 and MMP1 were significantly higher in patients with IPF than in patients with hypersensitivity pneumonitis, an interstitial lung disease that mimics IPF, but not increased in patients with chronic obstructive pulmonary disease or sarcoidosis, two other lung diseases. In an independent validation group, patients with IPF and familial pulmonary fibrosis had increased plasma concentrations of MMP7 and MMP1 that correlated with the severity of their disease. In addition, MMP7 concentrations were raised in close relatives of people with familial pulmonary fibrosis who had normal lung function tests but some lung scarring.
What Do These Findings Mean?
These findings provide evidence for a protein signature in the blood for IPF and suggest MMP1 and MMP7 may be useful as biomarkers for IPF. These two matrix metalloproteinases have previously been suggested to be involved in the development of IPF. However, additional work is probably needed to confirm that increased plasma concentrations MMP7 and MMP1 are specific for IPF, since it may be that these markers will not distinguish IPF from other interstitial lung diseases.
Additional Information.
Please access these Web sites via the online version of this summary at
Read a related PLoS Medicine Perspective article
The MedlinePlus Encyclopedia has a page on idiopathic pulmonary fibrosis (in English and Spanish) and on pulmonary fibrosis
The US National Heart Lung and Blood Institute and the British Lung Foundation also provide information on IPF for patients and relatives
Some of the researchers involved in this study provide more details about what might go wrong in IPF in a recent PLoS Medicine article
PMCID: PMC2346504  PMID: 18447576
22.  Matrix metalloproteases in BAL fluid of patients with cystic fibrosis and their modulation by treatment with dornase alpha 
Thorax  2002;57(11):930-934.
Background: Matrix metalloproteinases (MMPs) are involved in the remodelling and degradation of extracellular matrix and may play a role in pulmonary tissue destruction in cystic fibrosis (CF).
Methods: Bronchoalveolar lavage (BAL) fluid levels of MMP-8, MMP-9, and their natural inhibitor TIMP-1 were measured on two occasions within 18 months in 23 children with mild CF, 13 of whom were treated with DNase.
Results: MMP-8 (39.3 (6.8) v 0.12 (0.01) ng/ml), MMP-9 (58.0 (11.4) v 0.5 (0.02) ng/ml), and the molar ratio of MMP-9/TIMP-1 (0.36 (0.05) v 0.048 (0.01)) were significantly higher in patients with CF than in control children without lung disease. Gelatine zymography showed the typical banding pattern of neutrophil derived MMP-9, including 130 kDa NGAL-MMP-9 complex and 92 kDa latent MMP-9 bands; 85 kDa bands (corresponding to active MMP-9) were seen in all patients. There was a close correlation between BAL fluid concentrations of MMPs and α2-macroglobulin, a marker of alveolocapillary leakage. After 18 months MMP levels were increased in untreated patients and decreased in patients treated with DNase.
Conclusions: Uninhibited MMPs may contribute to pulmonary tissue destruction even in CF patients with mild lung disease that may be positively affected by treatment with DNase.
PMCID: PMC1746216  PMID: 12403873
23.  The selected genetic polymorphisms of metalloproteinases MMP2, 7, 9 and MMP inhibitor TIMP2 in sarcoidosis 
Increased activity of metalloproteinases may play a role in the initiation and propagation of inflammation in sarcoidosis, and may also be one of the factors responsible for the development of lung fibrosis. The aim of this study was to verify whether polymorphisms of MMP2 C-735T, MMP7 A-181G, MMP9 T-1702A and tissue inhibitor of metalloproteinase (TIMP)2 G-418C predispose to sarcoidosis.
The study included 139 patients with sarcoidosis and 100 healthy subjects. MMPs and TIMP2 mRNA were measured in peripheral blood lysate using real-time RT-PCR. DNA for genetic polymorphism was extracted from peripheral blood by GTC method. Protein concentrations in peripheral blood lysates were measured by ELISA, and MMP2 and 9 activities in BAL fluid were estimated by gel zymography.
TT genotype in MMP9 T-1702A was more frequent in sarcoidosis (p<0.0001, OR=13.71, 95% CI 7.02–26.80) and resulted in higher expression of MMP9 mRNA (p<0.0001). No differences were found between TT and AT/AA patients in terms of radiological stage, lung function test parameters, activity markers and the presence/absence of Löfgren syndrome. There were no differences in the distribution of MMP2, MMP7 and TIMP2 polymorphisms. Messenger RNAs, as well as protein concentrations of MMP2, 7, 9, and TIMP2 were elevated in patients with sarcoidosis (p<0.0001 for each).
The TT homozygotes of MMP9 T-1702A genotype may be predisposed to sarcoidosis. Elevated MMP2, 7, 9, and TIMP2 mRNAs suggest their inducibility.
PMCID: PMC3539463  PMID: 21959615
sarcoidosis; metalloproteinases; genetic polymorphism
24.  Essential Role of MMP-12 in Fas-Induced Lung Fibrosis 
Acute lung injury (ALI) is characterized by an early inflammatory response followed by a late fibroproliferative phase, and by an increase in the bronchoalveolar lavage fluid (BALF) concentrations of bioactive soluble FasL (sFasL). Activation of Fas (CD95) has been associated with the development of lung fibrosis in mice. The goal of this study was to determine the mechanisms that link Fas activation with the development of fibrosis in the lungs. We treated mice with three daily intratracheal instillations of a Fas-activating monoclonal antibody (Jo2) or a control IgG, and studied the animals at sequential times. Mice treated with Jo2 had increased caspase-3 activation in alveolar wall cells on Days 2, 4, and 7; an inflammatory response peaking on Day 7, and increased total lung collagen on Day 21. Gene expression profiling performed on Days 2, 4, and 7 showed sequential activation of co-regulated profibrotic genes, including marked up-regulation of matrix metalloproteinase 12 (MMP-12). Targeted deletion of MMP-12 protected mice from Fas-induced pulmonary fibrosis, even though the inflammatory responses in the lungs were similar to those of wild-type mice. Compared with wild-type mice, the mmp12−/− mice showed decreased expression of the profibrotic genes egr1 and cyr61. We conclude that Fas activation in the lungs induces a complex response that includes apoptosis, inflammation, and eventually fibrosis, and that MMP-12 is essential for the fibrotic phenotype. We speculate that MMP-12 activity is required for activation of the profibrotic genes egr1 and cyr61.
PMCID: PMC1976544  PMID: 17446527
apoptosis; inflammation; MMP-12; Fas; CYR61/CCN1
25.  Protective Role of Matrix Metalloproteinase-9 in Ozone-Induced Airway Inflammation 
Environmental Health Perspectives  2007;115(11):1557-1563.
Exposure to ozone causes airway inflammation, hyperreactivity, lung hyper-permeability, and epithelial cell injury. An early inflammatory response induced by inhaled O3 is characterized primarily by release of inflammatory mediators such as cytokines, chemokines, and airway neutrophil accumulation. Matrix metalloproteinases (MMPs) have been implicated in the pathogenesis of oxidative lung disorders including acute lung injury, asthma, and chronic obstructive pulmonary disease.
We hypothesized that MMPs have an important role in the pathogenesis of O3-induced airway inflammation.
We compared the lung injury responses in either Mmp7- (Mmp7−/−) or Mmp9-deficient (Mmp9−/−) mice and their wild-type controls (Mmp7+/+, Mmp9+/+) after exposure to 0.3 ppm O3 or filtered air.
Relative to air-exposed controls, MMP-9 activity in bronchoalveolar lavage fluid (BALF) was significantly increased by O3 exposure in Mmp9+/+ mice. O3-induced increases in the concentration of total protein (a marker of lung permeability) and the numbers of neutrophils and epithelial cells in BALF were significantly greater in Mmp9−/− mice compared with Mmp9+/+ mice. Keratinocyte-derived chemokine (KC) and macrophage inflammatory protein (MIP)-2 levels in BALF were also significantly higher in Mmp9−/− mice than in Mmp9+/+ mice after O3 exposure, although no differences in mRNA expression for these chemokines were found between genotypes. Mean BALF protein concentration and numbers of inflammatory cells were not significantly different between Mmp7+/+ and Mmp7−/− mice after O3 exposure.
Results demonstrated a protective role of MMP-9 but not of MMP-7, in O3-induced lung neutrophilic inflammation and hyperpermeability. The mechanism through which Mmp9 limits O3-induced airway injury is not known but may be via posttranscriptional effects on proinflammatory CXC chemokines including KC and MIP-2.
PMCID: PMC2072825  PMID: 18007984
chemokine; knockout mice; lung; MMP-9; O3; oxidant

Results 1-25 (1540280)