Search tips
Search criteria

Results 1-25 (1372712)

Clipboard (0)

Related Articles

1.  Activation of aldosterone secretion in primary aldosteronism 
Angiotensin infusion evokes marked increases in aldosterone secretion in primary aldosteronism and little change in secondary aldosteronism. The low plasma renin activity of primary aldosteronism and the elevated plasma renin activity of secondary aldosteronism are thought to account for this differential response. The effect of angiotensin on aldosterone and 18-hydroxycorticosterone secretion was studied during adrenal vein catheterization in seven patients with primary aldosteronism (whose plasma renin activity had been elevated following spironolactone therapy), one hypertensive patient with normal plasma renin activity and normal aldosterone secretion, two patients with secondary aldosteronism who had elevated plasma renin activity, and one anephric patient whose plasma renin activity was 0. Adrenal venous aldosterone and 18-hydroxycorticosterone were measured before and after a ten min sub-pressor angiotensin infusion.
The cells of the aldosterone-producing adenoma (APA) respond to small increases in plasma angiotensin with large increases in secretion of aldosterone and 18-hydroxycorticosterone. The dose of angiotensin capable of evoking this response from the aldosterone-producing adenoma produces little or no change in the secretion of the steroids from nontumorous glands. The augmentation of aldosterone secretion, induced by angiotensin, in primary aldosteronism is due solely to increased secretion by the adenoma and not by the contralateral zona glomerulosa. The increased sensitivity of the aldosterone-producing adenoma is characteristic of the tumor. This response is independent of fluctuations in endogenous plasma renin activity. This sensitivity is not blunted by high plasma renin activity, nor is it a function of tumor mass for the effect is observed in aldosterone-producing adenomas regardless of size. ACTH injection after angiotensin infusion resulted in a marked increase in aldosterone concentration in the effluent from the nontumorous adrenal, but was not capable of producing further increases in aldosterone concentration in the effluent from the APA. In view of this exquisite sensitivity to infused angiotensin, it may be that the small variations in endogenous plasma renin activity that have been observed in primary aldosteronism may be capable of evoking large changes in aldosterone secretion in patients with aldosterone-producing adenomas.
PMCID: PMC322195  PMID: 4303791
2.  Comparison of 24-h Urinary Aldosterone Level and Random Urinary Aldosterone-to-Creatinine Ratio in the Diagnosis of Primary Aldosteronism 
PLoS ONE  2013;8(6):e67417.
Historically, urinary aldosterone level measurement was a commonly employed confirmatory test to detect primary aldosteronism (PA). However, 24-h urine collection is inconvenient and cumbersome. We hypothesized that random urinary aldosterone measurements with correction for creatinine concentration might be comparable to 24-h urinary aldosterone levels (Uald-24 h) in the diagnosis of PA.
The non-concurrent prospective study was conducted between June 2006 and March 2008 in patients admitted for confirmation of aldosteronism by salt loading test. A 24-h urine sample, which was collected during hospitalization on the day before saline infusion testing after restoration of serum hypokalemia, was collected from all subjects. Moreover, participants were asked to collect a first bladder voiding random urine sample during clinic visits. Uald-24 h and the random urinary aldosterone-to-creatinine ratio (UACR) were calculated accordingly.
A total of 102 PA patients (71 patients diagnosed of aldosterone-producing adenoma, 31 with idiopathic hyperaldosteronism) and 65 patients with EH were enrolled. The receiver operating characteristic curve showed comparable areas under the curves of UACR and Uald-24 h. The Bland-Altman plot showed mean bias but no obvious heteroscedasticity between the two tests. When using random UACR >3.0 ng/mg creatinine as the cutoff value, we obtained a specificity of 90.6% to confirm PA from essential hypertension.
Our study reinforce that the diagnostic accuracy of random UACR was comparable to that of Uald-24 h in PA patients. With the quickness and simplicity of the UACR method and its equivalence to Uald-24 h, this assay could be a good alternative diagnostic tool for PA confirmation.
PMCID: PMC3696056  PMID: 23840695
3.  Aldosterone-producing adenoma and other surgically correctable forms of primary aldosteronism 
Surgically correctable forms of primary aldosteronism are characterized by unilateral aldosterone hypersecretion and renin suppression, associated with varying degrees of hypertension and hypokalemia. Unilateral aldosterone hypersecretion is caused by an aldosterone-producing adenoma (also known as Conn's adenoma and aldosteronoma), primary unilateral adrenal hyperplasia and rare cases of aldosterone-producing adrenocortical carcinoma. In these forms, unilateral adrenalectomy can cure aldosterone excess and hypokalemia, but not necessarily hypertension. The prevalence of primary aldosteronism in the general population is not known. Its prevalence in referred hypertensive populations is estimated to be between 6 and 13%, of which 1.5 to 5% have an aldosterone-producing adenoma or primary unilateral adrenal hyperplasia. Taking into account referral biases, the prevalence of surgically correctable primary aldosteronism is probably less than 1.5% in the hypertensive population and less than 0.3% in the general adult population. Surgically correctable primary aldosteronism is sought in patients with hypokalemic, severe or resistant forms of hypertension. Recent recommendations suggest screening for primary aldosteronism using the aldosterone to renin ratio. Patients with a raised ratio then undergo confirmatory suppression tests. The differential diagnosis of hypokalemic hypertension with low renin includes mineralocorticoid excess, with the mineralocorticoid being cortisol or 11-deoxycorticosterone, apparent mineralocorticoid excess, pseudo-hypermineralocorticoidism in Liddle syndrome or exposure to glycyrrhizic acid. Once the diagnosis is confirmed, adrenal computed tomography is performed for all patients. If surgery is considered, taking into consideration the clinical context and the desire of the patient, adrenal vein sampling is performed to detect whether or not aldosterone hypersecretion is unilateral. Laparoscopic surgery for unilateral aldosterone hypersecretion is associated with a morbidity of about 8%, with most complications being minor. It generally results in the normalization of aldosterone secretion and kalemia, and in a large decrease in blood pressure, but normotension without treatment is only achieved in half of all cases. Normotension following adrenalectomy is more frequent in young patients with recent hypertension than in patients with long-standing hypertension or a family history of hypertension.
PMCID: PMC2889888  PMID: 20482833
4.  Confirmatory testing in primary aldosteronism: extensive medication switching is not needed in all patients 
European Journal of Endocrinology  2012;166(4):679-686.
Confirmatory testing of suspected primary aldosteronism (PA) requires an extensive medication switch that can be difficult for patients with severe complicated hypertension and/or refractory hypokalemia. For this reason, we investigated the effect of chronic antihypertensive medication on confirmatory testing results. To allow the results to be interpreted, the reproducibility of confirmatory testing was also evaluated.
Design and methods
The study enrolled 114 individuals with suspected PA who underwent two confirmatory tests. The patients were divided into two groups. In Group A, both tests were performed on the guidelines-recommended therapy, i.e. not interfering with the renin–angiotensin–aldosterone system. In Group B, the first test was performed on chronic therapy with the exclusion of thiazides, loop diuretics, and aldosterone antagonists; and the second test was performed on guidelines-recommended therapy. Saline infusion, preceded by oral sodium loading, was used to suppress aldosterone secretion.
Agreement in the interpretation of the two confirmatory tests was observed in 84 and 66% of patients in Groups A and B respectively. For all 20 individuals in Group A who ever had end-test serum aldosterone levels ≥240 pmol/l, aldosterone was concordantly nonsuppressible during the other test. Similarly, for all 16 individuals in Group B who had end-test serum aldosterone levels ≥240 pmol/l on modified chronic therapy, aldosterone remained nonsuppressible with guidelines-recommended therapy.
Confirmatory testing performed while the patient is on chronic therapy without diuretics and aldosterone antagonists can confirm the diagnosis of PA, provided serum aldosterone remains markedly elevated at the end of saline infusion.
PMCID: PMC3315831  PMID: 22253400
5.  Primary aldosteronism among newly diagnosed and untreated hypertensive patients in a Swedish primary care area 
To evaluate the prevalence of primary aldosteronism (PA) in newly diagnosed and untreated hypertensive patients in primary care using the aldosterone/renin ratio (ARR), and to assess clinical and biochemical characteristics in patients with high and normal ARR.
Patient survey study.
Setting and subjects
A total of 200 consecutive patients with newly diagnosed and untreated hypertension from six primary health care centres in Sweden were included.
Main outcome measures
ARR was calculated from serum aldosterone and plasma renin concentrations. The cut-off level for ARR was 65. Patients with an increased ARR were considered for confirmatory testing with the fludrocortisone suppression test (FST), followed by adrenal computed tomographic radiology (CT) and adrenal venous sampling (AVS).
Of 200 patients, 36 patients had an ARR > 65. Of these 36 patients, 11 patients had an incomplete aldosterone inhibition during FST. Three patients were diagnosed with an aldosterone producing adenoma (APA) and eight with bilateral adrenal hyperplasia (BHA). Except for moderately lower level of P-K in patients with an ARR > 65 and in patients with PA, there were no biochemical or clinical differences found among hypertensive patients with PA compared with patients without PA.
Eleven of 200 evaluated patients (5.5%) were considered to have PA. The diagnosis of PA should therefore be considered in newly diagnosed hypertensive subjects and screening for the diagnosis is warranted.
PMCID: PMC3347934  PMID: 21323498
Aldosterone; aldosterone to renin ratio; family practice; hypertension; primary aldosteronism; renin
6.  Does the aldosterone: renin ratio predict the efficacy of spironolactone over bendroflumethiazide in hypertension? A clinical trial protocol for RENALDO (RENin-ALDOsterone) study 
High blood pressure is an important determinant of cardiovascular disease risk. Treated hypertensives do not attain a risk level equivalent to normotensives. This may be a consequence of suboptimal blood pressure control to which indiscriminate use of antihypertensive drugs may contribute. Indeed the recent ALLHAT[1]study suggests that thiazides should be given first to virtually all hypertensives. Whether this is correct or whether different antihypertensive therapies should be targeted towards different patients is a major unresolved issue, which we address in this study.
The measurement of the ratio of aldosterone: renin is used to identify hypertensive subjects who may respond well to treatment with the aldosterone antagonist spironolactone. It is not known if subjects with a high ratio have aldosteronism or aldosterone-sensitive hypertension is debated but it is important to know whether spironolactone is superior to other diuretics such as bendroflumethiazide in this setting.
The study is a double-blind, randomised, crossover, controlled trial that will randomise 120 hypertensive subjects to 12 weeks treatment with spironolactone 50 mg once daily and 12 weeks treatment with bendroflumethiazide 2.5 mg once daily. The 2 treatment periods are separated by a 2-week washout period. Randomisation is stratified by aldosterone: renin ratio to include equal numbers of subjects with high and low aldosterone: renin ratios.
Primary Objective – To test the hypothesis that the aldosterone: renin ratio predicts the antihypertensive response to spironolactone, specifically that the effect of spironolactone 50 mg is greater than that of bendroflumethiazide 2.5 mg in hypertensive subjects with high aldosterone: renin ratios.
Secondary Objectives – To determine whether bendroflumethiazide induces adverse metabolic abnormalities, especially in subjects with high aldosterone: renin ratios and if baseline renin measurement predicts the antihypertensive response to spironolactone and/or bendrofluazide
The numerous deleterious effects of hypertension dictate the need for a systematic approach for its treatment. In spite of various therapies, resistant hypertension is widely prevalent. Among various factors, primary aldosteronism is an important cause of resistant hypertension and is now more commonly recognised. More significantly, hypertensives with primary aldosteronism are also exposed to various other deleterious effects of excess aldosterone. Hence treating hypertension with specific aldosterone antagonists may be a better approach in this group of patients. It may lead on to better blood pressures with fewer medications.
PMCID: PMC1877813  PMID: 17490489
7.  Laboratory Investigation of Primary Aldosteronism 
Availability and wider application of the plasma aldosterone/renin ratio (ARR) as a screening test for primary aldosteronism (PA) has led to the recognition that PA is the most common potentially curable and specifically treatable form of hypertension, possibly accounting for as many as 5–13% of patients. Aldosterone excess also has adverse cardiovascular consequences that go above and beyond hypertension development. These findings support the concept that PA plays an important role in cardiovascular disease states and should be systematically sought and specifically treated, and have led to the development of a US Endocrine Society clinical guideline for the detection, diagnosis and management of this condition. Reliable detection requires that interfering factors (including medications known to alter the ratio) are controlled before ARR measurement (or their effects taken into account), and reliable methods such as fludrocortisone suppression testing are used to confirm PA. Because computed tomography frequently misses aldosterone-producing adenomas yet demonstrates non-functioning nodules, adrenal venous sampling is the only dependable way to differentiate unilateral (surgically correctable) from bilateral (usually treated with aldosterone antagonist medications) forms of PA. For the glucocorticoid-remediable form of PA (familial hyperaldosteronism type I), genetic testing for the causative ‘hybrid’ 11beta-hydroxylase/aldosterone synthase gene has greatly facilitated detection. Laboratory assessment (including suppression testing post-operatively, and renin measurement during treatment with aldosterone antagonist medications) can assist in assessing therapeutic responses and in guiding ongoing management. Development of new, highly reliable high-throughput mass spectrometric methods for measuring aldosterone and renin should further enhance detection and reliability of diagnostic workup for PA.
PMCID: PMC2874431  PMID: 20498828
8.  Aldosterone suppression with dopamine infusion in low-renin hypertension. 
Journal of Clinical Investigation  1983;72(3):754-766.
A dopaminergic mechanism has been proposed to suppress aldosterone secretion. To assess the possibility that a defect in the dopaminergic mechanism might enhance aldosterone secretion in hypertensive patients, we determined basal and adrenocorticotropic hormone (ACTH)-stimulated plasma aldosterone (PA), cortisol, renin activity, and potassium concentrations before and during dopamine receptor stimulation with dopamine infusion and bromocriptine administration and dopamine receptor blockade with metoclopramide. The patient study groups included: (a) seven patients with low-renin hypertension and abnormal aldosterone suppression with sodium loading and presumed bilateral zona glomerulosa hyperplasia (ZGHP); (b) two patients with aldosterone-producing adenoma; (c) five patients with low-renin hypertension but normal aldosterone suppression with sodium loading; and (d) six patients with normal-renin hypertension. Dopamine infusion in patients with ZGHP caused PA to fall (P less than 0.01) into the normal range, but did not block the enhanced (P less than 0.05) aldosterone response to ACTH that is characteristic of these patients. Dopamine infusion in patients with low-renin hypertension but normal aldosterone suppression also suppressed PA (P less than 0.01), whereas it had no effect upon PA in patients with normal-renin hypertension or aldosterone-producing adenoma and did not blunt the PA response to ACTH in either group. Bromocriptine administration had no effect upon basal or ACTH-stimulated PA. Dopamine infusion in patients with ZGHP also enhanced (P less than 0.05) diuresis and natriuresis in comparison with normal-renin patients. Metoclopramide administration increased (P less than 0.01) PA in all patients. Thus, a dopaminergic mechanism appears to be important in the regulation of aldosterone secretion in patients with ZGHP and in other low-renin hypertensives with normal aldosterone suppression with sodium loading. In contrast, this latter group does not exhibit an enhanced aldosterone response to ACTH. Both of these groups differ from normal-renin hypertensives, who have no PA suppression with dopamine infusion.
PMCID: PMC1129240  PMID: 6309909
9.  Active renin mass concentration to determine aldosterone-to-renin ratio in screening for primary aldosteronism 
Active renin mass concentration (ARC) is independent of the endogenous level of angiotensinogen, and less variable and more reproducible than plasma renin activity. Reference values for the aldosterone-to-renin ratio (ARR) using ARC are still undefined. The objective of the present study was to determine the threshold of ARR using ARC measurement to screen for primary aldosteronism.
A total of 211 subjects were included in the study, comprising 78 healthy normotensive controls, 95 patients with essential hypertension, and 38 patients with confirmed primary aldosteronism (20 with surgery-confirmed aldosterone-producing adenoma and 18 with idiopathic adrenal hyperplasia). Blood samples were drawn from ambulatory patients and volunteers in the mid-morning without specific dietary restriction for measuring plasma aldosterone concentration, ARC, and serum potassium.
Most normotensive controls and essential hypertension patients had ARR results below 100 pmol/ng, a value which corresponded to 3.3 times the median of these two groups.
Patients with ARR values above this level should be considered for further investigation (confirmatory tests) or for repeat testing should ARR values be borderline. This study indicates that ARC can be used reliably in determining ARR for primary aldosteronism screening.
PMCID: PMC3165909  PMID: 21912488
primary aldosteronism; active renin mass concentration; aldosterone-to-renin ratio
10.  Mineralocorticoid hypertension 
Hypertension affects about 10 – 25% of the population and is an important risk factor for cardiovascular and renal disease. The renin-angiotensin system is frequently implicated in the pathophysiology of hypertension, be it primary or secondary. The prevalence of primary aldosteronism increases with the severity of hypertension, from 2% in patients with grade 1 hypertension to 20% among resistant hypertensives. Mineralcorticoid hypertension includes a spectrum of disorders ranging from renin-producing pathologies (renin-secreting tumors, malignant hypertension, coarctation of aorta), aldosterone-producing pathologies (primary aldosteronism – Conns syndrome, familial hyperaldosteronism 1, 2, and 3), non-aldosterone mineralocorticoid producing pathologies (apparent mineralocorticoid excess syndrome, Liddle syndrome, deoxycorticosterone-secreting tumors, ectopic adrenocorticotropic hormones (ACTH) syndrome, congenitalvadrenal hyperplasia), and drugs with mineraocorticoid activity (locorice, carbenoxole therapy) to glucocorticoid receptor resistance syndromes. Clinical presentation includes hypertension with varying severity, hypokalemia, and alkalosis. Ratio of plasma aldosterone concentraion to plasma renin activity remains the best screening tool. Bilateral adrenal venous sampling is the best diagnostic test coupled with a CT scan. Treatment is either surgical (adrenelectomy) for unilateral adrenal disease versus medical therapy for idiopathic, ambiguous, or bilateral disease. Medical therapy focuses on blood pressure control and correction of hypokalemia using a combination of anti-hypertensives (calcium channel blockers, angiotensin converting enzyme inhibitors, or angiotensin receptor blockers) and potassium-raising therapies (mineralcorticoid receptor antagonist or potassium sparing diuretics). Direct aldosterone synthetase antagonists represent a promising future therapy.
PMCID: PMC3230101  PMID: 22145132
Aldosterone; aldosteronism; angiotensin; endocrine hypertension; hypertension; inherited hypertension; mineralocorticoid hypertension; renin; secondary hypertension
11.  Increased Adrenal Sensitivity to Angiotensin II in Low-Renin Essential Hypertension 
Journal of Clinical Investigation  1978;61(6):1456-1462.
Studies were undertaken to determine if the dissociation of aldosterone and plasma renin activity in low-renin essential hypertension is due to altered adrenal responsiveness to angiotensin II. The responsiveness of the adrenal glands to angiotensin II was determined by infusing graded doses of angiotensin II into normal subjects and into patients with essential hypertension and measuring changes in levels of plasma aldosterone in response to the infusion. To minimize the influence of endogenous angiotensin II and ACTH, supplemental sodium and dexamethasone were given before the infusions. Levels of plasma aldosterone and plasma renin activity were determined in normal subjects and in the same patients after the combined stimuli of furosemide and upright posture, a maneuver used to increase the level of endogenous angiotensin II. To determine if the changes in levels of plasma aldosterone during infusion of angiotensin II were due to alteration of the metabolic clearance of aldosterone, the metabolic clearance of aldosterone was measured before and during the infusion of angiotensin II.
After sodium loading, dexamethasone treatment, and supine posture, levels of plasma aldosterone of normal subjects and patients with essential hypertension were suppressed equally. In response to the infusion of angiotensin II, the levels of plasma aldosterone of patients with low-renin essential hypertension were significantly higher than those of normal subjects or of patients with normal-renin essential hypertension. After furosemide and upright posture, levels of plasma aldosterone of patients with low-renin essential hypertension were significantly higher than those of patients with normal-renin essential hypertension, despite a blunted response in plasma renin activity of the patients with low-renin essential hypertension. Decreases in metabolic clearance of aldosterone during infusion of angiotensin II were similar in patients with normal-renin essential hypertension and in patients with low-renin essential hypertension and accounted for only a small fraction of the marked increase in levels of plasma aldosterone of patients with low-renin essential hypertension. It is concluded that patients with low-renin essential hypertension have increased adrenal sensitivity to angiotensin II. This increased sensitivity may explain the dissociation of aldosterone and plasma renin activity in low-renin essential hypertension.
PMCID: PMC372671  PMID: 659608
12.  A clinical prediction score for diagnosing unilateral primary Aldosteronism may not be generalizable 
A published clinical prediction score indicated that a unilateral adrenal adenoma and either hypokalemia or an estimated glomerular filtration rate of 100 ml/min/1.73 m2 was 100% specific for unilateral primary aldosteronism. This study aimed to validate this score in a separate cohort of patients with primary aldosteronism.
A review of patients with primary aldosteronism from June 2005 to July 2013 at a single center’s hypertension clinic. One hundred twelve patients with primary aldosteronism underwent successful adrenal vein sampling and the 110 patients with full data available were included in the final analysis. Adrenal vein sampling was performed all patients desiring surgery by the simultaneous collection of sample prior to and 15 minutes after a cosyntropin infusion with a 3:1 aldosterone/cortisol ratio diagnosing unilateral primary aldosteronism. The derived score was applied to the cohort. Sensitivity and specificity were calculated for clinical prediction score of ≥5 points.
There were 64 patients found to have unilateral primary aldosteronism and 48 had bilateral disease. A score ≥5 points had 64% sensitivity (95% confidence interval, 51–76) and 85% specificity (95% confidence interval, 71–94) for unilateral disease. Four patients had lateralization of primary aldosteronism to the side contralateral to the adenoma.
The 100% specificity of the score for the unilateral origin of primary aldosteronism was not validated in this cohort with a score of ≥5 points. At best, a high score in this prediction rule may be an additional tool for helping to confirm a decision to offer patients adrenal vein sampling.
PMCID: PMC4320464  PMID: 25495254
13.  Bimodal Aldosterone Distribution in Low-Renin Hypertension 
American Journal of Hypertension  2013;26(9):1076-1085.
In low-renin hypertension (LRH), serum aldosterone levels are higher in those subjects with primary aldosteronism and may be lower in those with non-aldosterone mineralocorticoid excess or primary renal sodium retention. We investigated the hypothesis that the frequency distribution of aldosterone in LRH is bimodal.
Of the 3,532 attendees at the sixth examination cycle of the Framingham Offspring Study, 1,831 were included in this cross-sectional analysis after we excluded those with conditions or taking medications such as antihypertensive drugs that might affect renin or aldosterone.
Three hundred three subjects (17%) had untreated hypertension (SBP ≥140mm Hg or DBP ≥90mm Hg). LRH, defined as plasma renin ≤5 mU/L, was present in 93 of those 303 hypertensive subjects (31%). Aldosterone values were adjusted statistically for age, sex, and the urinary sodium/creatinine ratio. In the subjects with LRH, the adjusted aldosterone distribution was bimodal (dip test for unimodality, P = 0.008). The adjusted aldosterone distribution was unimodal in the normal subjects (P = 0.98) and in the hypertensive subjects with normal plasma renin (P = 0.94).
In this community-based sample of white subjects, those with low-renin hypertension had a bimodal adjusted aldosterone distribution. Subjects with normal-renin hypertension and subjects with normal blood pressure had unimodal adjusted aldosterone distributions. These findings suggest 2 pathophysiological variants of LRH, one that is aldosterone-dependent and one that is non-aldosterone-dependent.
PMCID: PMC3741228  PMID: 23757402
aldosterone; blood pressure; hypertension; low-renin hypertension; renin.
14.  Association of Leukocyte Telomere Length with Circulating Biomarkers of the Renin-Angiotensin-Aldosterone System: The Framingham Heart Study 
Circulation  2008;117(9):1138-1144.
Leucocyte telomere length (LTL) chronicles the cumulative burden of oxidative stress and inflammation over a life course. Activation of the renin-angiotensin-aldosterone system (RAAS) is associated with increased oxidative stress and inflammation. Therefore, LTL may be related to circulating biomarkers of the RAAS.
We evaluated the cross-sectional relations of LTL (dependent variable) to circulating renin and aldosterone concentrations and the renin-aldosterone ratio (all logarithmically-transformed; independent variables) in 1203 Framingham Study participants (mean age 59 years, 51% women). We used multivariable linear regression and adjusted for age, blood pressure, hypertension treatment, smoking, diabetes, body mass index, hormone replacement therapy, serum creatinine and the urine sodium-creatinine ratio.
Overall, multivariable-adjusted LTL was inversely related to renin (beta coefficient per unit increase [β]=-0.038; p= 0.036), directly related to aldosterone (β=0.099; p= 0.002), and inversely related to the renin-aldosterone ratio (β=-0.049; p= 0.003). Relations of LTL to biomarkers were stronger in those with hypertension, although a formal test of interaction was not statistically significant (p=0.20). Individuals with hypertension displayed significant associations of LTL with renin (β=-0.060; p= 0.005), aldosterone (β=0.134; p= 0.002) and renin-aldosterone ratio (β=-0.072; p<0.001). Participants with hypertension who were in the top tertile of the renin-aldosterone ratio had LTL that was 182 base pairs shorter relative to those in the lowest tertile.
In our community-based sample, LTL was shorter in individuals with a higher renin-aldosterone ratio, especially so in participants with hypertension. Additional investigations are warranted to confirm our observations.
PMCID: PMC3142671  PMID: 18268147
Telomere; Renin; Aldosterone; Hypertension; Epidemiology; Association; Salt; Oxidative stress
Hypertension  2012;59(5):999-1005.
Idiopathic primary hyperaldosteronism (IHA) and low-renin essential hypertension (LREH) are common forms of hypertension, characterized by an elevated aldosterone-renin ratio (ARR) and hypersensitivity to Angiotensin II (Ang II). They are suggested to be two states within a disease spectrum that progresses from LREH to IHA as the control of aldosterone production by the renin-angiotensin system is weakened. The mechanism(s) that drive this progression remain unknown. Deletion of Twik-related-acid-sensitive K+ channels (TASK) subunits, TASK-1 and TASK-3, in mice (T1T3KO) produces a model of human IHA. Here, we determine the effect of deleting only TASK-3 on the control of aldosterone production and blood pressure. We find that T3KO mice recapitulate key characteristics of human LREH: salt-sensitive hypertension, mild overproduction of aldosterone, decreased plasma renin concentration with elevated ARR, hypersensitivity to endogenous and exogenous Ang II, and failure to suppress aldosterone production with dietary sodium loading. The relative differences in levels of aldosterone output and ARR, and in autonomy of aldosterone production between T1T3KO and T3KO mice are reminiscent of differences in human hypertensive patients with LREH and IHA. Our studies establish a model of LREH and suggest that loss of TASK channel activity may be one mechanism that advances the syndrome of low renin hypertension.
PMCID: PMC3357084  PMID: 22493079
TASK channels; aldosterone; hyperaldosteronism; low renin essential hypertension
16.  Unilateral adrenal hyperplasia is a usual cause of primary hyperaldosteronism. Results from a Swedish screening study 
The existence of unilateral adrenal hyperplasia (AH) has been considered a rare cause of primary hyperaldosteronism (PA).
In a prospective study we screened for PA in a non-selected (NSP) and selected hypertensive population (SP), to define the cause of PA. We included 353 consecutive patients with hypertension; age 20 to 88 years, 165 women and 188 men, from a university-based Hypertension and Nephrology Outpatient clinics (123 SP) and two primary care centres, (230 NSP) from the same catch-up area. Serum aldosterone and plasma renin activity (PRA) were measured and the ARR calculated. Verifying diagnostic procedure was performed in patients with both elevated aldosterone and ARR. Patients diagnosed with PA were invited for adrenal venous sampling (AVS) and offered laparoscopic adrenalectomy when AVS found the disease to be unilateral.
After screening, 46 patients, 13% of the whole population (22.8% SP and 7.8% NSP) had aldosterone and ARR above the locally defined cut-off limits (0.43 nmol/l and 1.28 respectively). After diagnostic verification, 20 patients (6%) had PA, (14.5% SP and 1.4% NSP). Imaging diagnostic procedures with CT-scans and scintigraphy were inconclusive. AVS, performed in 15 patients verified bilateral disease in 4 and unilateral in 10 patients. One AVS failed. After laparoscopic adrenalectomy, 4 patients were found to have adenoma and 5 unilateral AH. One patient denied operation.
The prevalence of PA was in agreement with previous studies. The study finds unilateral PA common and unilateral AH as half of those cases. As may be suspected PA is found in much higher frequency in specialised hypertensive units compared to primary care centers. AVS was mandatory in diagnosis of unilateral PA.
PMCID: PMC3515501  PMID: 22958674
Endocrine hypertension; Hyperaldosteronism; Aldosterone; Renin; Hypertension; Resistant hypertension; Adrenal hyperplasia
17.  Endocrine and Hypertensive Disorders of Potassium Regulation: Primary Aldosteronism 
Seminars in nephrology  2013;33(3):265-276.
The identification that primary aldosteronism is a common cause of resistant hypertension is a significant advance in our ability to care for patients with hypertension. Primary aldosteronism is common, and when unrecognized is associated with increased incidence of adverse cardiovascular outcomes. Identification of primary aldosteronism is based upon use of the plasma aldosterone level, plasma renin activity and the aldosterone:renin ratio (ARR). Differentiation between unilateral and bilateral autonomous adrenal aldosterone production then guides further therapy, with use of mineralocorticoid receptor blockers for those with bilateral autonomous adrenal aldosterone production and laparoscopic adrenalectomy for those with unilateral autonomous aldosterone production. In this review, we discuss in detail the pathogenesis of primary aldosteronism-induced hypertension and potassium disorders, the evaluation of the patient with suspected primary aldosteronism and the management of primary aldosteronism, both through medications and through surgery.
PMCID: PMC3748390  PMID: 23953804
18.  Low-Renin Hypertension With Relative Aldosterone Excess Is Associated With Impaired NO-Mediated Vasodilation 
Hypertension  2005;46(4):707-713.
Recent studies suggest that hypertension associated with low renin status and hyperaldosteronism is associated with increased risk for end-organ damage and cardiovascular events compared with other forms of hypertension. Additionally, experimental studies have demonstrated impaired nitric oxide-mediated bioactivity in these states. To investigate the relation between renin/aldosterone status and resistance vessel function, we examined plasma renin activity, serum aldosterone level, and forearm blood flow responses to the endothelium-dependent vasodilator methacholine and the endothelium-independent vasodilators sodium nitroprusside and verapamil using venous occlusion plethysmography in 130 volunteers (43 hypertensive, 87 normotensive). Low renin status was associated with impaired responses to methacholine and nitroprusside in patients with hypertension. Peak methacholine response was 8.7±5.6 mL/min per dL in the lowest renin quartile (0.1 to 0.3 ng/mL per hour) versus 14.3±7.3 mL/min per dL in the highest 3 renin quartiles combined (0.4 to 4.6 ng/mL per hour; P<0.001). Peak nitroprusside response was 5.6±2.3 mL/min per dL in the lowest renin quartile versus 13.3±4.1 mL/min per dL in the highest 3 renin quartiles combined (P<0.001). Blood pressure and other clinical characteristics were similar in all 4 quartiles. Vasodilator responses to verapamil did not relate to renin activity. Methacholine and nitroprusside responses did not relate to renin status in normotensive controls (P=0.34). Importantly, hypertensive patients with a high aldosterone/renin ratio also had impaired responses to methacholine. This study demonstrates that low-renin hypertension is associated with marked impairment of nitric oxide-mediated vasodilation of resistance vessels in the forearm vasculature of humans. This impairment could contribute to adverse outcomes in patients with low-renin hypertension and relative aldosterone excess.
PMCID: PMC2737344  PMID: 16172426
aldosterone; blood flow; endothelium; mineralocorticoids; renin
19.  The Adrenal Receptor for Angiotensin II is Altered in Essential Hypertension 
Journal of Clinical Investigation  1979;63(3):419-427.
To determine the mechanism underlying altered adrenal responsiveness in patients with essential hypertension, the renin-angiotensin-aldosterone axis was assessed in normotensive and hypertensive subjects using three pharmacological probes: SQ 20881, a converting enzyme inhibitor; saralasin, a competitive angiotensin antagonist with prominent agonist properties; and angiotensin itself. All subjects were studied while supine and in balance on a 10 meq Na/100 meq K intake. The decrement in plasma aldosterone with SQ 20881 in 26 hypertensive subjects (15±3 ng/dl) was normal (13±4 ng/dl), suggesting that the altered adrenal responsiveness in hypertensives is not because of a change in a postreceptor event or in the relative contribution of angiotensin to the control of aldosterone secretion.
Saralasin at a dose (0.1 μg/kg per min) that reduced aldosterone levels in all normals produced a normal aldosterone decrement (14±3 ng/dl) in 19 patients with renovascular hypertension (12±4 ng/dl). The same dose, however, had no net effect on plasma aldosterone levels in 70 patients with normal or high renin essential hypertension (−1±1 ng/dl) despite identical metabolic balance and control renin and angiotensin levels. The altered response could be explained by an agonist effect, aldosterone rising in 45 of the essential hypertensives. There were no significant differences between normal and abnormal responders in pre- and postcortisol, -potassium, -renin and -angiotensin concentrations.
Angiotensin was infused (0.1-3 ng/kg per min) in 15 patients with normal renin essential hypertension, previously studied with saralasin. A probit transformation defined the dose required to induce a 50% increase in aldosterone (ED50). In the patients in whom aldosterone rose with saralasin, the dose required to induce a 50% increase was significantly greater (P < 0.001) than in those in whom aldosterone fell normally (1.02±0.06 [SD] vs. 0.38±0.07 ng/kg per min). Vascular responses were similar in the various groups. We conclude that altered adrenal responsiveness to angiotensin in some essential hypertensive patients is secondary to a change in the interaction of angiotensin with its adrenal receptor.
PMCID: PMC371969  PMID: 219037
20.  Twenty-Four-Hour Urinary Aldosterone Predicts Inappropriate Left Ventricular Mass Index in Patients with Primary Aldosteronism 
The Scientific World Journal  2013;2013:294594.
Objective. Primary aldosteronism (PA) is associated with inappropriate left ventricular hypertrophy (LVH) in relation to a given gender and body size. There is no ideal parameter to predict the presence of LVH or inappropriate LVH in patients with PA. We investigate the performance of 24-hour urinary aldosterone level, plasma renin activity and aldosterone-to-renin ratio on this task. Methods. We performed echocardiography in 106 patients with PA and 31 subjects with essential hypertension (EH) in a tertiary teaching hospital. Plasma renin activity, aldosterone concentration, and 24-hour urinary aldosterone level were measured. Results. Only 24-hour urinary aldosterone was correlated with left ventricular mass index (LVMI) and excess LVMI among these parameters. The multivariate analysis revealed the urinary aldosterone level as an independent predictor for LVMI and excess LVMI. Analyzing the ability of urinary aldosterone, plasma aldosterone concentration, and plasma aldosterone-to-renin ratio to identify the presence of LVH (ROC AUC = 0.701, 0.568, 0.656, resp.) and the presence of inappropriate LV mass index (defined as measured LVMI in predicting LVMI ratio >135%) (ROC area under curve = 0.61, 0.43, 0.493, resp.) revealed the better performance of 24-hour urinary aldosterone. Conclusions. In conclusion, 24-hour urinary aldosterone level performed better to predict the presence of LVH and inappropriate LVMI in patients with PA.
PMCID: PMC3891226  PMID: 24459427
21.  Evolution features of hypertensive patients with primary aldosteronism - Prospective Study 
Journal of Medicine and Life  2012;5(3):354-359.
Background: Primary aldosteronism is the leading cause of secondary hypertension, the management of this disease requiring an interdisciplinary approach.
Objectives: Evaluation of evolutionary features of patients with secondary hypertension and primary aldosteronism.
Methodology: We have followed 26 patients diagnosed with secondary hypertension and primary aldosteronism, who were admitted consecutively to "C. I. Parhon" Endocrinology Institute between 2004-2009. Of the 26 patients, 17 had adenoma producer of aldosterone (APA), 8 had bilateral adrenal hyperplasia idiopathic (HIA) and one patient had adrenal carcinoma (with hypersecretion of aldosterone). The mean age of the cohort was of 49.3 years (44.9 years for adenomas and 52.6 years for bilateral hyperplasia). The evaluation of the patients included clinical examination, electrocardiogram, Holter BP, echocardiography and determination of plasma aldosterone and renin.
Results: The evolution of the patients with primary aldosteronism was different depending on the anatomoclinic type. In patients with idiopathic bilateral hyperplasia, medical treatment has improved control of hypertension and cardiac and cerebrovascular complications rate was moderate. In patients with unilateral adenoma producing aldosterone, blood pressure had higher values and more frequent complications, but surgical cure of adenomas significantly changed the prognosis of patients. In both cases, the presence of hypokalemia was an additional element of severity.
Conclusions: Regardless of the primary aldosteronism, hypertension was directly involved in cardiac and cerebrovascular complications. Individualization of treatment according to the anatomoclinic type determined a significant improvement of the patients’ prognosis.
PMCID: PMC3465007  PMID: 23049641
secondary hypertension; primary aldosteronism; hypokalemia; surgery
22.  Common variants of the beta and gamma subunits of the epithelial sodium channel and their relation to plasma renin and aldosterone levels in essential hypertension 
Rare mutations of the epithelial sodium channel (ENaC) result in the monogenic hypertension form of Liddle's syndrome. We decided to screen for common variants in the ENaC βand γ subunits in patients with essential hypertension and to relate their occurrence to the activity of circulating renin-angiotensin-aldosterone system.
Initially, DNA samples from 27 patients with low renin/low aldosterone hypertension were examined. The DNA variants were subsequently screened for in 347 patients with treatment-resistant hypertension, 175 male subjects with documented long-lasting normotension and 301 healthy Plasma renin and aldosterone levels were measured under baseline conditions and during postural and captopril challenge tests.
Two commonly occurring βENaC variants (G589S and a novel intronic i12-17CT substitution) and one novel γENaC variant (V546I) were detected. One of these variants occurred in a heterozygous form in 32 patients, a prevalence (9.2%) significantly higher than that in normotensive males (2.9%, p = 0.007) and blood donors (3.0%, p = 0.001). βENaC i12-17CT was significantly more prevalent in the hypertension group than in the two control groups combined (4.6% vs. 1.1%, p = 0.001). When expressed in Xenopus oocytes, neither of the two ENaC amino acid-changing variants showed a significant difference in activity compared with ENaC wild-type. No direct evidence for a mRNA splicing defect could be obtained for the βENaC intronic variant. The ratio of daily urinary potassium excretion to upright and mean (of supine and upright values) plasma renin activity was higher in variant allele carriers than in non-carriers (p = 0.034 and p = 0.048).
At least 9% of Finnish patients with hypertension admitted to a specialized center carry genetic variants of β and γENaC, a three times higher prevalence than in the normotensive individuals or in random healthy controls. Patients with the variant alleles showed an increased urinary potassium excretion rate in relation to their renin levels.
PMCID: PMC547905  PMID: 15661075
23.  Stimulation and suppression of aldosterone in plasma of normal man and in primary aldosteronism 
Journal of Clinical Investigation  1969;48(7):1230-1236.
The effect of stimulating and suppressive influences on plasma aldosterone in normal man and in patients with primary aldosteronism were studied using a sensitive double-isotope derivative assay for aldosterone.
In normal sitting subjects, values were 9.2±0.9 (SE) mμg/100 ml and in subjects supine for 1 hr plasma aldosterone was 5.2±0.4 (SE) mμg/100 ml. Adrenocorticotropic hormone (ACTH), 0.5 U/hr, produced a rise of 46.8±22 (SE) mμg which was similar to the 1-hr effect of an infusion of a synthetic ACTH (β1-24, Cortrosyn). Angiotensin II in pressor amounts also increased plasma aldosterone 21.5±2.9 (SE) without change in plasma cortisol, whereas a subpressor dose ([unk]) had minimal effect.
Fludrocortisone, 1.2 mg/day for 3 days, suppressed plasma aldosterone levels to 1.8±0.7 (SE) mμg/100 ml in five normal sitting subjects (P < 0.01); however, dexamethasone, 2 mg/day for 1-2 days, did not lower aldosterone concentration in plasma.
In six patients with primary aldosteronism, plasma aldosterone on a normal sodium diet was 39.1±4.4 (SE) which differed significantly from normal sitting or supine subjects (P < 0.001). In contrast to the normal subjects, neither a pressor infusion of angiotensin II for 1 hr, nor fludrocortisone, 1.2 mg/day for 3 days, impressively altered plasma aldosterone levels.
This approach appears to be useful for the study of the acute physiology and control mechanisms of aldosterone production in normal and hypertensive man.
PMCID: PMC322344  PMID: 4307457
24.  Changes in the Perceived Epidemiology of Primary Hyperaldosteronism 
Primary aldosteronism has been considered a rare disease in the past years, affecting 1% of the hypertensive population. Subsequently, growing evidence of its higher prevalence is present in literature, although the estimates of disease range from 5 up to 20%, as in type 2 diabetes and resistant hypertension. The main reasons for these variations are associated with the selection of patients and diagnostic procedures. If we consider that hypertension is present in about 20% of the adult population, primary aldosteronism can no longer be considered a rare disease. Patients with primary aldosteronism have a high incidence of cardiovascular, cerebrovascular and kidney complications. The identification of these patients has therefore a practical value on therapy, and to control morbidities derived from vascular damage. The ability to identify the prevalence of a disease depends on the number of subjects studied and the methods of investigation. Epidemiological studies are affected by these two problems: there is not consensus on patients who need to be investigated, although testing is recommended in subjects with resistant hypertension and diabetes. The question of how to determine aldosterone and renin levels is open, particularly if pharmacological wash-out is difficult to perform because of inadequate blood pressure control.
PMCID: PMC3151507  PMID: 21837271
25.  NP-59 SPECT/CT Imaging in Stage 1 Hypertensive and Atypical Primary Aldosteronism: A 5-Year Retrospective Analysis of Clinicolaboratory and Imaging Features 
The Scientific World Journal  2013;2013:317934.
Objective. We retrospectively analyzed all primary aldosteronism (PA) patients undergoing NP-59 SPECT/CT imaging with regard to their clinicolaboratory and imaging features, investigation, and outcomes. Material and Methods. 11 PA patients who presented to our hospital for NP-59 SPECT/CT imaging between April 2007 and March 2012 and managed here were analyzed. Results. Among 11 PA patients, eight (73%) had stage 1 hypertension, three (27%) stage 2 hypertension, four (36%) normal plasma aldosterone concentration, nine (82%) nonsuppressed plasma renin activity (PRA), six (55%) normal aldosterone-renin-ratio (ARR), eight (73%) serum potassium ≧3 mEq/L, seven (64%) subclinical presentation, seven (64%) negative confirmatory testing, and four (36%) inconclusive results on CT scan and seven (64%) on planar NP-59 scan. All 11 (100%) patients had positive results on NP-59 SPECT/CT scan. Two (18%) met typical triad and nine (82%) atypical triad. Among nine atypical PA patients, three (33%) had clinical presentation, six (67%) subclinical presentation, six (67%) negative confirmatory testing, and four (44%) inconclusive results on CT scan and six (67%) on planar NP-59 scan. All patients had improved outcomes. Significant differences between typical and atypical PA existed in PRA and ARR. Conclusions. NP-59 SPECT/CT may provide diagnostic potential in stage 1 hypertensive and atypical PA.
PMCID: PMC3818974  PMID: 24235884

Results 1-25 (1372712)