Search tips
Search criteria

Results 1-25 (951570)

Clipboard (0)

Related Articles

1.  Short-Term Synaptic Depression Is Topographically Distributed in the Cochlear Nucleus of the Chicken 
The Journal of Neuroscience  2014;34(4):1314-1324.
In the auditory system, sounds are processed in parallel frequency-tuned circuits, beginning in the cochlea. Activity of auditory nerve fibers reflects this frequency-specific topographic pattern, known as tonotopy, and imparts frequency tuning onto their postsynaptic target neurons in the cochlear nucleus. In birds, cochlear nucleus magnocellularis (NM) neurons encode the temporal properties of acoustic stimuli by “locking” discharges to a particular phase of the input signal. Physiological specializations exist in gradients corresponding to the tonotopic axis in NM that reflect the characteristic frequency (CF) of their auditory nerve fiber inputs. One feature of NM neurons that has not been investigated across the tonotopic axis is short-term synaptic plasticity. NM offers a rather homogeneous population of neurons with a distinct topographical distribution of synaptic properties that is ideal for the investigation of specialized synaptic plasticity. Here we demonstrate for the first time that short-term synaptic depression (STD) is expressed topographically, where unitary high CF synapses are more robust with repeated stimulation. Correspondingly, high CF synapses drive spiking more reliably than their low CF counterparts. We show that postsynaptic AMPA receptor desensitization does not contribute to the observed difference in STD. Further, rate of recovery from depression, a presynaptic property, does not differ tonotopically. Rather, we show that another presynaptic feature, readily releasable pool (RRP) size, is tonotopically distributed and inversely correlated with vesicle release probability. Mathematical model results demonstrate that these properties of vesicle dynamics are sufficient to explain the observed tonotopic distribution of STD.
PMCID: PMC3898291  PMID: 24453322
tonotopy; topographic map; synaptic plasticity; short-term synaptic depression; release probability; readily releasable pool
2.  Spatial Tuning Curves Along the Chick Basilar Papilla in Normal and Sound-Exposed Ears 
Intense sound exposure destroys chick short hair cells and damages the tectorial membrane. Within a few days postexposure, signs of repair appear resulting in nearly complete structural recovery of the inner ear. Tectorial membrane repair, however, is incomplete, leaving a permanent defect on the sensory surface. The consequences of this defect on cochlear function, and particularly frequency analysis, are unclear. The present study organizes the sound-induced discharge activity of cochlear nerve units to describe the distribution of neural activity along the tonotopic axis of the basilar papilla. The distribution of this activity is compared in 12-day postexposed and age-matched control groups. Spontaneous activity, tuning curves, and rate–intensity functions were measured in each unit. Discharge activity at 60 frequency and intensity combinations was identified in the tuning curves of hundreds of units. Activity at each of these criterion frequency/intensity combinations was plotted against the unit’s characteristic frequency to construct spatial tuning curves (STCs). The STCs depict tone-driven cochlear nerve activity along the length of the papilla. Tuning sharpness, low- and high- frequency slopes, and the maximum response were quantified for each STC. The sharpness of tuning increased with increasing criterion frequency. However, within a frequency, increasing sound intensity yielded more broadly tuned STCs. Also, the high-frequency slope was consistently steeper than the low-frequency slope. The STCs of exposed ears exhibited slightly less frequency selectivity than control ears across all frequencies and larger maximum responses for STCs with criterion frequencies spanning the tectorial membrane defect. When rate–intensity types were segregated, differences were observed in the STCs between saturating and sloping-up units. We propose that STC shape may be determined by global mechanical events, as well as localized tuning and nonlinear processes associated with individual hair cells. The results indicated that 12 days after intense sound exposure, global and local contributions to spatially distributed neural activity are restored.
PMCID: PMC2538400  PMID: 15357419
cochlear nerve; single nerve units; chicks; acoustic overstimulation; hair cell regeneration; tuning curves; basilar papilla
3.  Evidence That Rapid Vesicle Replenishment of the Synaptic Ribbon Mediates Recovery from Short-Term Adaptation at the Hair Cell Afferent Synapse 
We have employed both in vitro patch clamp recordings of hair cell synaptic vesicle fusion and in vivo single unit recording of cochlear nerve activity to study, at the same synapse, the time course, control, and physiological significance of readily releasable pool dynamics. Exocytosis of the readily releasable pool was fast, saturating in less than 50 ms, and recovery was also rapid, regaining 95% of its initial amplitude following a 200-ms period of repolarization. Longer depolarizations (greater than 250 ms) yielded a second, slower kinetic component of exocytosis. Both the second component of exocytosis and recovery of the readily releasable pool were blocked by the slow calcium buffer, EGTA. Sound-evoked afferent synaptic activity adapted and recovered with similar time courses as readily releasable pool exhaustion and recovery. Comparison of readily releasable pool amplitude, capture distances of calcium buffers, and number of vesicles tethered to the synaptic ribbon suggested that readily releasable pool dynamics reflect the depletion of release-ready vesicles tethered to the synaptic ribbon and the reloading of the ribbon with vesicles from the cytoplasm. Thus, we submit that rapid recovery of the cochlear hair cell afferent fiber synapse from short-term adaptation depends on the timely replenishment of the synaptic ribbon with vesicles from a cytoplasmic pool. This apparent rapid reloading of the synaptic ribbon with vesicles underscores important functional differences between synaptic ribbons in the auditory and visual systems.
PMCID: PMC2504567  PMID: 15675002
hair cell; exocytosis; adaptation; synaptic ribbon; synaptic vesicle; cochlea
4.  Inner-Ear Morphology of the New Zealand Kiwi (Apteryx mantelli) Suggests High-Frequency Specialization 
The sensory systems of the New Zealand kiwi appear to be uniquely adapted to occupy a nocturnal ground-dwelling niche. In addition to well-developed tactile and olfactory systems, the auditory system shows specializations of the ear, which are maintained along the central nervous system. Here, we provide a detailed description of the auditory nerve, hair cells, and stereovillar bundle orientation of the hair cells in the North Island brown kiwi. The auditory nerve of the kiwi contained about 8,000 fibers. Using the number of hair cells and innervating nerve fibers to calculate a ratio of average innervation density showed that the afferent innervation ratio in kiwi was denser than in most other birds examined. The average diameters of cochlear afferent axons in kiwi showed the typical gradient across the tonotopic axis. The kiwi basilar papilla showed a clear differentiation of tall and short hair cells. The proportion of short hair cells was higher than in the emu and likely reflects a bias towards higher frequencies represented on the kiwi basilar papilla. The orientation of the stereovillar bundles in the kiwi basilar papilla showed a pattern similar to that in most other birds but was most similar to that of the emu. Overall, many features of the auditory nerve, hair cells, and stereovilli bundle orientation in the kiwi are typical of most birds examined. Some features of the kiwi auditory system do, however, support a high-frequency specialization, specifically the innervation density and generally small size of hair-cell somata, whereas others showed the presumed ancestral condition similar to that found in the emu.
PMCID: PMC3441955  PMID: 22772440
hair cell; basilar papilla; auditory nerve; Paleognathae
5.  Changes Across Time in Spike Rate and Spike Amplitude of Auditory Nerve Fibers Stimulated by Electric Pulse Trains 
We undertook a systematic evaluation of spike rates and spike amplitudes of auditory nerve fiber (ANF) responses to trains of electric current pulses. Measures were obtained from acutely deafened cats to examine time-related changes free from the effects of hair-cell and synaptic adaptation. Such data relate to adaptation that likely occurs in ANFs of cochlear-implant users. A major goal was to determine and compare rate adaptation observed at different pulse rates (primarily 250, 1000, and 5000 pulse/s) and describe them using decaying exponential models similar to those used in acoustic studies. Rate-vs.-time functions were best described by two-exponent models and produced time constants similar to (although slightly greater than) the “rapid” and “short-term” components described in acoustic studies. There was little dependence of these time constants on onset spike rate, but pulse-rate effects were noted. Spike amplitude changes followed a time course different from that of rate adaptation consistent with a process related to ANF interspike intervals. The fact that two time constants governed rate adaptation in electrically stimulated and deafened fibers suggests that future computational models of adaptation should not only include hair cell and synapse components, but also components determined by fiber membrane characteristics.
PMCID: PMC2538432  PMID: 17562109
auditory nerve; electric stimulation; adaptation; cat; cochlear implant; single fiber
6.  Relationship between auditory thresholds, central spontaneous activity and hair cell loss after acoustic trauma 
The Journal of comparative neurology  2011;519(13):2637-2647.
Acoustic trauma caused by exposure to a very loud sound increases spontaneous activity in central auditory structures such as the inferior colliculus. This hyperactivity has been suggested as a neural substrate for tinnitus, a phantom hearing sensation. In previous studies we have described a tentative link between the frequency region of hearing impairment and the corresponding tonotopic regions in the inferior colliculus showing hyperactivity. In this study we further investigated the relationship between cochlear compound action potential threshold loss, cochlear outer and inner hair cell loss and central hyperactivity in inferior colliculus of guinea pigs. Two weeks after a 10 kHz pure tone acoustic trauma, a tight relationship was demonstrated between the frequency region of compound action potential threshold loss and frequency regions in the inferior colliculus showing hyperactivity. Extending the duration of the acoustic trauma from 1 to 2 h did not result in significant increases in final cochlear threshold loss, but did result in a further increase of spontaneous firing rates in the inferior colliculus. Interestingly, hair cell loss was not present in the frequency regions where elevated cochlear thresholds and central hyperactivity were measured, suggesting that subtle changes in hair cell or primary afferent neural function are sufficient for central hyperactivity to be triggered and maintained.
PMCID: PMC3140598  PMID: 21491427
tinnitus; inferior colliculus; guinea pig; cochleogram; compound action potential
7.  Electrophysiological Properties of Cochlear Implantation in the Gerbil Using a Flexible Array 
Ear and hearing  2012;33(4):534-542.
Cochlear implants (CI) perform especially well if residual acoustic hearing is retained and combined with the CI in the same ear (also termed hybrid or electric-acoustic stimulation). However, in most CI patients, residual hearing is at least partially compromised during surgery, and in some it is lost completely. At present, clinicians have no feedback on the functional status of the cochlea during electrode insertion. Development of an intraoperative physiological recording algorithm during electrode insertion could serve to detect reversible cochlear trauma and optimal placement relative to surviving hair cells. In this report, an animal model was used to assist in determining physiological markers for these conditions using a flexible electrode similar to human surgery.
The animal model was the normal-hearing gerbil. The flexible electrodes had 1 to 2 platinum-iridium contacts embedded in a 200 µm diameter silastic carrier. As control experiments some insertions were also made with much smaller (50 µm diameter) rigid electrodes. In either case, the electrode was positioned at or just inside the round window membrane and subsequently advanced into the scala tympani longitudinally in 50 to 100 µm increments. After each advancement, acoustic stimulation was used to elicit a cochlear microphonic (CM) and compound action potential (CAP). Stimuli were suprathreshold tone bursts of 1 to 16 kHz in octave steps with 2 msec rise and fall times and a 10 msec plateau. Anatomical integrity of the cochlea was subsequently assessed using a whole-mount preparation.
In contrast with the CAP, which was relatively stable during insertion, the CM showed a variety of changes related to electrode movement. To tone bursts of 1 to 8 kHz the CM typically remained stable or increased during the insertion before contact with cochlear structures. After contact, the potentials often dropped dramatically. The CM to 16 kHz was the most variable; in some cases it increased but in other cases it decreased early in the insertion and later showed large and abrupt increases. In some instances, this pattern was seen to progressively lower frequencies as well. Histological analysis and the gerbil frequency map indicate that electrode travel was limited to the basal turn (~4 mm from the hook) and did not intrude into the characteristic frequency regions of most frequencies used.
First, the CM provides a more sensitive indication of cochlear trauma than does the CAP. Second, stable or steady increases in the CM are a physiological marker for unimpeded travel through the scala tympani as the electrode approaches responding hair cells. Third, abrupt reductions in the CM across frequency are a physiological marker of contact with cochlear structures. Fourth, abrupt increases after a decline, which occurred primarily to 16 kHz but to a lesser degree to other frequencies as well, are a physiological marker for a release from contact. The interpretation is that as the tip of the electrode bends the shaft can move in the mediolateral dimension, sometimes contacting the basilar membrane and sometimes not. Overall, the results indicate that recordings during cochlear implantations can provide valuable feedback to the surgeon regarding electrode position and the integrity of surviving hair cells.
PMCID: PMC3613224  PMID: 22436408
8.  Evaluating Adaptation and Olivocochlear Efferent Feedback as Potential Explanations of Psychophysical Overshoot 
Masked detection threshold for a short tone in noise improves as the tone’s onset is delayed from the masker’s onset. This improvement, known as “overshoot,” is maximal at mid-masker levels and is reduced by temporary and permanent cochlear hearing loss. Computational modeling was used in the present study to evaluate proposed physiological mechanisms of overshoot, including classic firing rate adaptation and medial olivocochlear (MOC) feedback, for both normal hearing and cochlear hearing loss conditions. These theories were tested using an established model of the auditory periphery and signal detection theory techniques. The influence of several analysis variables on predicted tone-pip detection in broadband noise was evaluated, including: auditory nerve fiber spontaneous-rate (SR) pooling, range of characteristic frequencies, number of synapses per characteristic frequency, analysis window duration, and detection rule. The results revealed that overshoot similar to perceptual data in terms of both magnitude and level dependence could be predicted when the effects of MOC efferent feedback were included in the auditory nerve model. Conversely, simulations without MOC feedback effects never produced overshoot despite the model’s ability to account for classic firing rate adaptation and dynamic range adaptation in auditory nerve responses. Cochlear hearing loss was predicted to reduce the size of overshoot only for model versions that included the effects of MOC efferent feedback. These findings suggest that overshoot in normal and hearing-impaired listeners is mediated by some form of dynamic range adaptation other than what is observed in the auditory nerve of anesthetized animals. Mechanisms for this adaptation may occur at several levels along the auditory pathway. Among these mechanisms, the MOC reflex may play a leading role.
PMCID: PMC3085687  PMID: 21267622
auditory masking; temporal aspects of masking; auditory detection; psychophysical overshoot; computational modeling; adaptation; medial olivocochlear efferents; dynamic range adaptation; hearing impairment; auditory nerve; basilar membrane compression
9.  Modulation of hair cell efferents 
Hearing research  2010;279(1-2):1-12.
Outer hair cells (OHCs) amplify the sound-evoked motion of the basilar membrane to enhance acoustic sensitivity and frequency selectivity. Medial olivocochlear (MOC) efferents inhibit OHCs to reduce the sound-evoked response of cochlear afferent neurons. OHC inhibition occurs through the activation of postsynaptic α9α10 nicotinic receptors tightly coupled to calcium-dependent SK2 channels that hyperpolarize the hair cell. MOC neurons are cholinergic but a number of other neurotransmitters and neuromodulators have been proposed to participate in efferent transmission, with emerging evidence for both pre- and postsynaptic effects. Cochlear inhibition in vivo is maximized by repetitive activation of the efferents, reflecting facilitation and summation of transmitter release onto outer hair cells. This review summarizes recent studies on cellular and molecular mechanisms of cholinergic inhibition and the regulation of those molecular components, in particular the involvement of intracellular calcium. Facilitation at the efferent synapse is compared in a variety of animals, as well as other possible mechanisms of modulation of ACh release. These results suggest that short-term plasticity contributes to effective cholinergic inhibition of hair cells.
PMCID: PMC3125486  PMID: 21187136
10.  Excitability of Type II Cochlear Afferents 
The Journal of Neuroscience  2014;34(6):2365-2373.
Two types of sensory hair cells in the mammalian cochlea signal through anatomically distinct populations of spiral ganglion afferent neurons. The solitary inner hair cell ribbon synapse uses multivesicular release to trigger action potentials that encode acoustic timing, intensity, and frequency in each type I afferent. In contrast, cochlear outer hair cells (OHCs) have a far weaker effect on their postsynaptic targets, the type II spiral ganglion afferents. OHCs typically release single vesicles with low probability so that extensive summation is required to reach the relatively high action potential initiation threshold. These stark differences in synaptic transfer call into question whether type II neurons contribute to the cognitive perception of sound. Given the sparse and weak synaptic inputs from OHCs, the electrical properties of type II afferents are crucial in determining whether synaptic responses can sum to evoke an action potential to convey information to the cochlear nucleus. In the present work, dual-electrode recordings determined that type II afferents of rats have length constants that exceed the length of the distal, spiral process, enabling spatial summation from widespread OHCs. Focal application of tetrodotoxin localized the spike initiation zone to the type II proximal, radial process, near the spiral ganglion, in agreement with the high voltage threshold measured in the spiral process. These measured membrane properties were incorporated into a compartmental model of the type II neuron to demonstrate that neurotransmitter release from at least six OHCs is required to trigger an action potential in a type II neuron.
PMCID: PMC3913877  PMID: 24501375
auditory; cochlea; dendrite; excitability; outer hair cell; spiral ganglion
11.  Efferent Feedback Slows Cochlear Aging 
The Journal of Neuroscience  2014;34(13):4599-4607.
The inner ear receives two types of efferent feedback from the brainstem: one pathway provides gain control on outer hair cells' contribution to cochlear amplification, and the other modulates the excitability of the cochlear nerve. Although efferent feedback can protect hair cells from acoustic injury and thereby minimize noise-induced permanent threshold shifts, most prior studies focused on high-intensity exposures (>100 dB SPL). Here, we show that efferents are essential for long-term maintenance of cochlear function in mice aged 1 year post-de-efferentation without purposeful acoustic overexposure. Cochlear de-efferentation was achieved by surgical lesion of efferent pathways in the brainstem and was assessed by quantitative analysis of immunostained efferent terminals in outer and inner hair cell areas. The resultant loss of efferent feedback accelerated the age-related amplitude reduction in cochlear neural responses, as seen in auditory brainstem responses, and increased the loss of synapses between hair cells and the terminals of cochlear nerve fibers, as seen in confocal analysis of the organ of Corti immunostained for presynaptic and postsynaptic markers. This type of neuropathy, also seen after moderate noise exposure, has been termed “hidden hearing loss”, because it does not affect thresholds, but can be seen in the suprathreshold amplitudes of cochlear neural responses, and likely causes problems with hearing in a noisy environment, a classic symptom of age-related hearing loss in humans. Since efferent reflex strength varies among individuals and can be measured noninvasively, a weak reflex may be an important risk factor, and prognostic indicator, for age-related hearing impairment.
PMCID: PMC3965785  PMID: 24672005
auditory neuropathy; feedback; hair cells; hearing conservation
12.  Auditory Nerve Spike Generator Modeled as a Variable Attenuator Based on a Saddle Node on Invariant Circle Bifurcation 
PLoS ONE  2012;7(9):e45326.
Mammalian inner hair cells transduce the sound waves amplified by the cochlear amplifier (CA) into a graded neurotransmitter release that activates channels on auditory nerve fibers (ANF). These synaptic channels then charge its dendritic spike generator. While the outer hair cells of the CA employ positive feedback, poising on Andronov-Hopf type instabilities which make them extremely sensitive to faint sounds and make CA output strongly nonlinear, the ANF appears to be based on different principles and a different type of dynamical instability. Its spike generator “digitizes” CA output into trains of action potentials and behaves as a linear filter, rate-coding sound intensity across a wide dynamic range. Here we model the spike generator as a 3 dimensional version of a saddle node on invariant circle (SNIC) bifurcation. The generic 2d SNIC increases its spike rate as the square root of the input current above its spiking threshold. We add negative feedback in the form of a low voltage-threshold potassium conductance that slows down the generator’s rate of increase of its spike rate. A Poisson random source simulates an inner hair cell, outputting a series of noisy periodic current pulses to the model ANF whose spikes phase lock to these pulses and have a linear frequency to current relation with a wide dynamic range. Also, the spike generator compartment has a cholinergic feedback connection from the olive and experiments show that such feedback is able to alter the amount of H conductance inside the generator compartment. We show that an olive able to decrease H would be able to shift the spike generator’s dynamic range to higher sound intensities. In a quiet environment by increasing H the olive would be able to make spike trains similar to those caused by synaptic input.
PMCID: PMC3445452  PMID: 23028935
13.  synaptojanin1 Is Required for Temporal Fidelity of Synaptic Transmission in Hair Cells 
PLoS Genetics  2009;5(5):e1000480.
To faithfully encode mechanosensory information, auditory/vestibular hair cells utilize graded synaptic vesicle (SV) release at specialized ribbon synapses. The molecular basis of SV release and consequent recycling of membrane in hair cells has not been fully explored. Here, we report that comet, a gene identified in an ENU mutagenesis screen for zebrafish larvae with vestibular defects, encodes the lipid phosphatase Synaptojanin 1 (Synj1). Examination of mutant synj1 hair cells revealed basal blebbing near ribbons that was dependent on Cav1.3 calcium channel activity but not mechanotransduction. Synaptojanin has been previously implicated in SV recycling; therefore, we tested synaptic transmission at hair-cell synapses. Recordings of post-synaptic activity in synj1 mutants showed relatively normal spike rates when hair cells were mechanically stimulated for a short period of time at 20 Hz. In contrast, a sharp decline in the rate of firing occurred during prolonged stimulation at 20 Hz or stimulation at a higher frequency of 60 Hz. The decline in spike rate suggested that fewer vesicles were available for release. Consistent with this result, we observed that stimulated mutant hair cells had decreased numbers of tethered and reserve-pool vesicles in comparison to wild-type hair cells. Furthermore, stimulation at 60 Hz impaired phase locking of the postsynaptic activity to the mechanical stimulus. Following prolonged stimulation at 60 Hz, we also found that mutant synj1 hair cells displayed a striking delay in the recovery of spontaneous activity. Collectively, the data suggest that Synj1 is critical for retrieval of membrane in order to maintain the quantity, timing of fusion, and spontaneous release properties of SVs at hair-cell ribbon synapses.
Author Summary
Ribbon synapses are found in the ear and eye and facilitate the transmission of sensory information to the brain. In hair cells of the ear, the molecules required for ribbon function have not been fully explored. Zebrafish are ideal for investigating molecular components of these specialized synapses because of the ability to study ribbon function using genetic, cellular, and physiological methods. Here, we explore the role of the lipid phosphatase Synaptojanin at the hair cell synapse. Synaptojanin has been previously implicated in synaptic vesicle recycling in conventional synapses, and we also find that the number of synaptic vesicles are reduced in mutant synaptojanin hair cells. Mutant synaptojanin larvae have obvious equilibrium defects, and our electrophysiological recordings revealed that synaptic transmission from hair cells to neurons projecting to the brain is impaired in terms of both rate and accuracy. When stimulated at high frequency or for prolonged periods, mutant synaptojanin hair cells release vesicles out of phase with mechanical stimuli, thus compromising the transfer of sensory information to the brain.
PMCID: PMC2673039  PMID: 19424431
14.  Topological and Developmental Gradients of Calbindin Expression in the Chick's Inner Ear  
Mobile intracellular calcium buffers play an important role in regulating calcium flux into mechanosensory hair cells and calbindin D-28k is expressed at high levels in the chick's basilar papilla. We have used RT-PCR, in situ hybridization, and immunohistology to demonstrate that calbindin expression varies systematically according to hair cell position and developmental age. RT-PCR using microdissected quarters of the posthatch basilar papilla showed that mRNA levels were lowest in the (low frequency) apex and higher in basal quadrants. In situ hybridization revealed calbindin mRNA in posthatch hair cells and supporting cells, with more intense labeling of hair cells from basal (high frequency) positions. A similar topology was obtained with calbindin antibodies. Neither calbindin riboprobe nor calbindin antibody labeled cochlear neurons. In contrast, a subset of large vestibular neurons and their calyciform endings onto Type I vestibular hair cells were strongly labeled by the calbindin antibody, while vestibular hair cells were negative for calbindin immunoreactivity. Likewise, calbindin in situ hybridization was negative for vestibular hair cells but positive in a subset of larger vestibular neurons. Calbindin mRNA was detected in hair cells of the basal half of the papilla at embryonic day 10 (E10) and calbindin immunoreactivity was detected at E12. Hair cells in the apical half of the papilla had equivalent calbindin expression two days later. Immunoreactivity appeared in abneural supporting cells days later than in hair cells, and not until E20 in neurally located supporting cells. These results demonstrate that calbindin message and protein levels are greater in high-frequency hair cells. This "tonotopic" gradient may result from the stabilization of a basal-to-apical developmental gradient and could be related at least in part to calcium channel expression along this axis.
PMCID: PMC3202366  PMID: 12083720
cochlea; hair cells; vestibule; mechanotransduction; embryonic; calcium buffering
15.  A gradient of Bmp7 specifies the tonotopic axis in the developing inner ear 
Nature communications  2014;5:3839.
The auditory systems of animals that perceive sounds in air are organized to separate sound stimuli into their component frequencies. Individual tones then stimulate mechanosensory hair cells located at different positions on an elongated frequency (tonotopic) axis. During development, immature hair cells located along the axis must determine their tonotopic position in order to generate frequency-specific characteristics. Expression profiling along the developing tonotopic axis of the chick basilar papilla (BP) identified a gradient of Bmp7. Disruption of that gradient in vitro or in ovo induces changes in hair cell morphologies consistent with a loss of tonotopic organization and the formation of an organ with uniform frequency characteristics. Further, the effects of Bmp7 in determination of positional identity are shown to be mediated through activation of the Mapk, Tak1. These results indicate that graded, Bmp7-dependent, activation of Tak1 signaling controls the determination of frequency-specific hair cell characteristics along the tonotopic axis.
PMCID: PMC4264580  PMID: 24845721
16.  Intraoperative Round Window Recordings to Acoustic Stimuli From Cochlear Implant Patients 
Acoustically evoked neural and hair cell potentials can be measured from the round window (RW) intraoperatively in the general population of cochlear implant recipients.
Cochlear implant performance varies greatly among patients. Improved methods to assess and monitor functional hair cell and neural substrate prior to and during implantation could potentially aid in enhanced non-traumatic intracochlear electrode placement and subsequent improved outcomes.
Subjects (1–80 years) undergoing cochlear implantation were included. A monopolar probe was placed at the RW after surgical access was obtained. The cochlear microphonic (CM), summating potential (SP), compound action potential (CAP), and auditory nerve neurophonic (ANN) were recorded in response to tone bursts at frequencies of 0.25 – 4 kHz at various levels.
Measurable hair cell/neural potentials were detected to one or more frequencies in 23 of 25 subjects. The greatest proportion and magnitude of cochlear responses were to low frequencies (<1000 Hz). At these low frequencies the ANN, when present, contributed to the ongoing response at the stimulus frequency. In many subjects the ANN was small or absent while hair cell responses remained.
In cochlear implant recipients, acoustically evoked cochlear potentials are detectable even if hearing is extremely limited. Sensitive measures of cochlear and neural status can characterize the state of hair cell and neural function prior to implantation. Whether this information correlates with speech performance outcomes, or can help in tailoring electrode type, placement or audiometric fitting, can be determined in future studies.
PMCID: PMC3632009  PMID: 23047261
Cochlear Implant; Cochlear Electrophysiology; Hearing Preservation; Electrocochleography; Intraoperative monitoring; Auditory Nerve Neurophonic; Cochlear Microphonic
17.  A search for factors specifying tonotopy implicates DNER in hair-cell development in the chick’s cochlea 
Developmental biology  2011;354(2):221-231.
The accurate perception of sound frequency by vertebrates relies upon the tuning of hair cells, which are arranged along auditory organs according to frequency. This arrangement, which is termed a tonotopic gradient, results from the coordination of many cellular and extracellular features. Seeking the mechanisms that orchestrate those features and govern the tonotopic gradient, we used expression microarrays to identify genes differentially expressed between the high- and low-frequency cochlear regions of the chick (Gallus gallus). Of the three signaling systems that were represented extensively in the results, we focused on the notch pathway and particularly on DNER, a putative notch ligand, and PTPζ, a receptor phosphatase that controls DNER trafficking. Immunohistochemistry confirmed that both proteins are expressed more strongly in hair cells at the cochlear apex than in those at the base. At the apical surface of each hair cell, the proteins display polarized, mutually exclusive localization patterns. Using morpholinos to decrease the expression of DNER or PTPζ as well as a retroviral vector to overexpress DNER, we observed disturbances of hair-bundle morphology and orientation. Our results suggest a role for DNER and PTPζ in hair-cell development and possibly in the specification of tonotopy.
PMCID: PMC3137886  PMID: 21497156
auditory system; hair bundle; planar cell polarity; signaling
18.  Mutation of Npr2 Leads to Blurred Tonotopic Organization of Central Auditory Circuits in Mice 
PLoS Genetics  2014;10(12):e1004823.
Tonotopy is a fundamental organizational feature of the auditory system. Sounds are encoded by the spatial and temporal patterns of electrical activity in spiral ganglion neurons (SGNs) and are transmitted via tonotopically ordered processes from the cochlea through the eighth nerve to the cochlear nuclei. Upon reaching the brainstem, SGN axons bifurcate in a stereotyped pattern, innervating target neurons in the anteroventral cochlear nucleus (aVCN) with one branch and in the posteroventral and dorsal cochlear nuclei (pVCN and DCN) with the other. Each branch is tonotopically organized, thereby distributing acoustic information systematically along multiple parallel pathways for processing in the brainstem. In mice with a mutation in the receptor guanylyl cyclase Npr2, this spatial organization is disrupted. Peripheral SGN processes appear normal, but central SGN processes fail to bifurcate and are disorganized as they exit the auditory nerve. Within the cochlear nuclei, the tonotopic organization of the SGN terminal arbors is blurred and the aVCN is underinnervated with a reduced convergence of SGN inputs onto target neurons. The tonotopy of circuitry within the cochlear nuclei is also degraded, as revealed by changes in the topographic mapping of tuberculoventral cell projections from DCN to VCN. Nonetheless, Npr2 mutant SGN axons are able to transmit acoustic information with normal sensitivity and timing, as revealed by auditory brainstem responses and electrophysiological recordings from VCN neurons. Although most features of signal transmission are normal, intermittent failures were observed in responses to trains of shocks, likely due to a failure in action potential conduction at branch points in Npr2 mutant afferent fibers. Our results show that Npr2 is necessary for the precise spatial organization typical of central auditory circuits, but that signals are still transmitted with normal timing, and that mutant mice can hear even with these deficits.
Author Summary
Millions of people suffer from debilitating hearing defects, ranging from a complete inability to detect sound to more subtle changes in how sounds are encoded by the nervous system. Many forms of deafness are due to mutations in genes that impair the development or function of hair cells, which are responsible for changing sound into electrical signals that can be processed by the brain. Both mice and humans carrying these mutations fail standard hearing tests. In contrast, very little is known about the genetic basis of central auditory processing disorders, which are poorly defined and difficult to diagnose, since these patients can still detect sounds. By finding genes that are required for the normal wiring of central auditory circuits in mice, we can investigate how changes at the circuit level affect circuit function and therefore improve our understanding of central auditory processing disorders. Here, we show that the natriuretic peptide receptor Npr2 is required to establish frequency maps in the mouse central auditory system. Surprisingly, despite a dramatic change in circuit organization, Npr2 mutant mice are still able to respond to sounds with normal sensitivity and timing, underscoring the need for better hearing diagnostic methods in mice as in humans.
PMCID: PMC4256264  PMID: 25473838
19.  A Tale of Two Stories: Astrocyte Regulation of Synaptic Depression and Facilitation 
PLoS Computational Biology  2011;7(12):e1002293.
Short-term presynaptic plasticity designates variations of the amplitude of synaptic information transfer whereby the amount of neurotransmitter released upon presynaptic stimulation changes over seconds as a function of the neuronal firing activity. While a consensus has emerged that the resulting decrease (depression) and/or increase (facilitation) of the synapse strength are crucial to neuronal computations, their modes of expression in vivo remain unclear. Recent experimental studies have reported that glial cells, particularly astrocytes in the hippocampus, are able to modulate short-term plasticity but the mechanism of such a modulation is poorly understood. Here, we investigate the characteristics of short-term plasticity modulation by astrocytes using a biophysically realistic computational model. Mean-field analysis of the model, supported by intensive numerical simulations, unravels that astrocytes may mediate counterintuitive effects. Depending on the expressed presynaptic signaling pathways, astrocytes may globally inhibit or potentiate the synapse: the amount of released neurotransmitter in the presence of the astrocyte is transiently smaller or larger than in its absence. But this global effect usually coexists with the opposite local effect on paired pulses: with release-decreasing astrocytes most paired pulses become facilitated, namely the amount of neurotransmitter released upon spike i+1 is larger than that at spike i, while paired-pulse depression becomes prominent under release-increasing astrocytes. Moreover, we show that the frequency of astrocytic intracellular Ca2+ oscillations controls the effects of the astrocyte on short-term synaptic plasticity. Our model explains several experimental observations yet unsolved, and uncovers astrocytic gliotransmission as a possible transient switch between short-term paired-pulse depression and facilitation. This possibility has deep implications on the processing of neuronal spikes and resulting information transfer at synapses.
Author Summary
Synaptic plasticity is the capacity of a preexisting connection between two neurons to change in strength as a function of neuronal activity. Because it admittedly underlies learning and memory, the elucidation of its constituting mechanisms is of crucial importance in many aspects of normal and pathological brain function. Short-term presynaptic plasticity refers to changes occurring over short time scales (milliseconds to seconds) that are mediated by frequency-dependent modifications of the amount of neurotransmitter released by presynaptic stimulation. Recent experiments have reported that glial cells, especially hippocampal astrocytes, can modulate short-term plasticity, but the mechanism of such modulation is poorly understood. Here, we explore a plausible form of modulation of short-term plasticity by astrocytes using a biophysically realistic computational model. Our analysis indicates that astrocytes could simultaneously affect synaptic release in two ways. First, they either decrease or increase the overall synaptic release of neurotransmitter. Second, for stimuli that are delivered as pairs within short intervals, they systematically increase or decrease the synaptic response to the second one. Hence, our model suggests that astrocytes could transiently trigger switches between paired-pulse depression and facilitation. This property explains several challenging experimental observations and has a deep impact on our understanding of synaptic information transfer.
PMCID: PMC3228793  PMID: 22162957
20.  Detection of Intracochlear Damage with Cochlear Implantation in a Gerbil Model of Hearing Loss 
Cochlear trauma due to electrode insertion can be detected in acoustic responses to low frequencies in an animal model with a hearing condition similar to patients using electroacoustic stimulation.
Clinical evidence suggests that intracochlear damage during cochlear implantation negatively affects residual hearing. Recently, we demonstrated the utility of acoustically evoked potentials to detect cochlear trauma in normal hearing gerbils. Here, gerbils with noise-induced hearing loss were used to investigate the effects of remote trauma on residual hearing.
Gerbils underwent high-pass (4 kHz cutoff) noise exposure to produce sloping hearing loss. After one-month recovery, each animal’s hearing loss was determined from ABRs and baseline intracochlear recording of the cochlear microphonic (CM) and compound action potential (CAP) obtained at the round window. Subsequently, electrode insertions were performed to produce basal trauma while the acoustically generated potentials to a 1 kHz tone burst were recorded after each step of electrode advancement. Hair cell counts were made to characterize the noise damage and cochlear whole mounts were used to identify cochlear trauma due to the electrode.
The noise exposure paradigm produced a pattern of hair cell, ABR and intracochlear potential losses that closely mimicked that of EAS patients. Trauma in the basal turn, in the 15 – 30 kHz portion of the deafened region, remote from preserved hair cells, induced a decline in intracochlear acoustic responses to the hearing preserved frequency of 1 kHz.
The results indicate that a recording algorithm based on physiological markers to low frequency acoustic stimuli can identify cochlear trauma during implantation. Future work will focus on translating these results for use with current cochlear implant technology in humans.
PMCID: PMC3338854  PMID: 21921858
Cochlear Implant; Cochlear Electrophysiology; Noise Damage; Hearing Preservation; Electric-Acoustic Stimulation
21.  Somatic motility and hair bundle mechanics, are both necessary for cochlear amplification? 
Hearing research  2010;273(1-2):109-122.
Hearing organs have evolved to detect sounds across several orders of magnitude of both intensity and frequency. Detection limits are at the atomic level despite the energy associated with sound being limited thermodynamically. Several mechanisms have evolved to account for the remarkable frequency selectivity, dynamic range, and sensitivity of these various hearing organs, together termed the active process or cochlear amplifier. Similarities between hearing organs of disparate species provides insight into the factors driving the development of the cochlear amplifier. These properties include: a tonotopic map, the emergence of a two hair cell system, the separation of efferent and afferent innervations, the role of the tectorial membrane, and the shift from intrinsic tuning and amplification to a more end organ driven process. Two major contributors to the active process are hair bundle mechanics and outer hair cell electromotility, the former present in all hair cell organs tested, the latter only present in mammalian cochlear outer hair cells. Both of these processes have advantages and disadvantages, and how these processes interact to generate the active process in the mammalian system is highly disputed. A hypothesis is put forth suggesting that hair bundle mechanics provides amplification and filtering in most hair cells, while in mammalian cochlea, outer hair cell motility provides the amplification on a cycle by cycle basis driven by the hair bundle that provides frequency selectivity (in concert with the tectorial membrane) and compressive nonlinearity. Separating components of the active process may provide additional sites for regulation of this process.
PMCID: PMC2943979  PMID: 20430075
cochlea; active process; somatic motility; hair bundle; adaptation; auditory
22.  Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma 
Journal of neuroscience research  2008;86(11):2564-2578.
A long-standing hypothesis is that tinnitus, the perception of sound without an external acoustic source, is triggered by a distinctive pattern of cochlear hair cell (HC) damage and this subsequently leads to altered neural activity in the central auditory pathway. This hypothesis was tested by assessing behavioral evidence of tinnitus and spontaneous neural activity in the inferior colliculus (IC) after unilateral cochlear trauma. Chinchillas were assigned to 4 cochlear treatment groups. Each treatment produced a distinctive pattern of HC damage. Acoustic exposure (AEx): sparse low-frequency inner hair cell (IHC) and outer hair cell (OHC) loss; round window cisplatin (CisEx): pronounced OHC loss mixed with some IHC loss; round window carboplatin (CarbEx): pronounced IHC loss without OHC loss; control: no loss. Compared to controls, all experimental groups displayed significant and similar psychophysical evidence of tinnitus with features resembling a 1 kHz tone. Contralateral IC spontaneous activity was elevated in the AEx and CisEx groups, which showed increased spiking and increased cross-fiber synchrony. A multi-dimensional analysis identified a subpopulation of neurons more prevalent in animals with tinnitus. These units were characterized by high bursting, low ISI variance, and within-burst peak spiking of approximately 1000/sec. It was concluded that cochlear trauma in general, rather than its specific features, leads to multiple changes in central activity that underpin tinnitus. Particularly affected was a subpopulation ensemble of IC neurons with the described unique triad of features.
PMCID: PMC2614665  PMID: 18438941
acoustic trauma; carboplatin; cisplatin; spontaneous unit activity; silicon-substrate electrodes; chinchillas; tinnitus
23.  Efferent Feedback Minimizes Cochlear Neuropathy from Moderate Noise Exposure 
Although protective effects of the cochlea’s efferent feedback pathways have been well documented, prior work has focused on hair cell damage and cochlear threshold elevation and, correspondingly, on the high sound pressure levels (> 100 dB SPL) necessary to produce them. Here we explore the noise-induced loss of cochlear neurons that occurs with lower intensity exposures and in the absence of permanent threshold shifts. Using confocal microscopy to count synapses between hair cells and cochlear nerve fibers, and using measurement of auditory brainstem responses and otoacoustic emissions to assess cochlear pre- and post-synaptic function, we compare the damage from a weeklong exposure to moderate-level noise (84 dB SPL) in mice with varying degrees of cochlear de-efferentation induced by surgical lesion to the olivocochlear pathway. Such exposure causes minimal acute threshold shift and no chronic shifts in mice with normal efferent feedback. In de-efferented animals, there was up to 40% loss of cochlear nerve synapses and a corresponding decline in the amplitude of the auditory brainstem response. Quantitative analysis of the de-efferentation in inner vs. outer hair cell areas suggested that outer hair cell efferents are most important in minimizing this neuropathy, presumably by virtue of their sound-evoked feedback reduction of cochlear amplification. The moderate nature of this acoustic overexposure suggests that cochlear neurons are at risk even in everyday acoustic environments, and, thus, that the need for cochlear protection is plausible as a driving force in the design of this feedback pathway.
PMCID: PMC3640841  PMID: 23536069
Auditory neuropathy; olivocochlear; hair cells; cochlea; noise; acoustic injury; feedback
24.  Structural and functional effects of acoustic exposure in goldfish: evidence for tonotopy in the teleost saccule 
BMC Neuroscience  2011;12:19.
Mammalian and avian auditory hair cells display tonotopic mapping of frequency along the length of the cochlea and basilar papilla. It is not known whether the auditory hair cells of fishes possess a similar tonotopic organization in the saccule, which is thought to be the primary auditory receptor in teleosts. To investigate this question, we determined the location of hair cell damage in the saccules of goldfish (Carassius auratus) following exposure to specific frequencies. Subjects were divided into six groups of six fish each (five treatment groups plus control). The treatment groups were each exposed to one of five tones: 100, 400, 800, 2000, and 4000 Hz at 176 dB re 1 μPa root mean squared (RMS) for 48 hours. The saccules of each fish were dissected and labeled with phalloidin in order to visualize hair cell bundles. The hair cell bundles were counted at 19 specific locations in each saccule to determine the extent and location of hair cell damage. In addition to quantification of anatomical injury, hearing tests (using auditory evoked potentials) were performed on each fish immediately following sound exposure. Threshold shifts were calculated by subtracting control thresholds from post-sound exposure thresholds.
All sound-exposed fish exhibited significant hair cell and hearing loss following sound exposure. The location of hair cell loss varied along the length of the saccule in a graded manner with the frequency of sound exposure, with lower and higher frequencies damaging the more caudal and rostral regions of the saccule, respectively. Similarly, fish exposed to lower frequency tones exhibited greater threshold shifts at lower frequencies, while high-frequency tone exposure led to hearing loss at higher frequencies. In general, both hair cell and hearing loss declined as a function of increasing frequency of exposure tone, and there was a significant linear relationship between hair cell loss and hearing loss.
The pattern of hair cell loss as a function of exposure tone frequency and saccular rostral-caudal location is similar to the pattern of hearing loss as a function of exposure tone frequency and hearing threshold frequency. This data suggest that the frequency analysis ability of goldfish is at least partially driven by peripheral tonotopy in the saccule.
PMCID: PMC3050771  PMID: 21324138
25.  Muscarinic Signaling in the Cochlea: Presynaptic and Postsynaptic Effects on Efferent Feedback and Afferent Excitability 
The Journal of Neuroscience  2010;30(19):6751-6762.
Acetylcholine is the major neurotransmitter of the olivocochlear efferent system, which provides feedback to cochlear hair cells and sensory neurons. To study the role of cochlear muscarinic receptors, we studied receptor localization with immunohistochemistry and reverse transcription-PCR and measured olivocochlear function, cochlear responses, and histopathology in mice with targeted deletion of each of the five receptor subtypes. M2, M4, and M5 were detected in microdissected immature (postnatal days 10–13) inner hair cells and spiral ganglion cells but not outer hair cells. In the adult (6 weeks), the same transcripts were found in microdissected organ of Corti and spiral ganglion samples. M2 protein was found, by immunohistochemistry, in olivocochlear fibers in both outer and inner hair cell areas. M3 mRNA was amplified only from whole cochleas, and M1 message was never seen in wild-type ears. Auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) were unaffected by loss of Gq-coupled receptors (M1, M3, or M5), as were shock-evoked olivocochlear effects and vulnerability to acoustic injury. In contrast, loss of Gi-coupled receptors (M2 and/or M4) decreased neural responses without affecting DPOAEs (at low frequencies). This phenotype and the expression pattern are consistent with excitatory muscarinic signaling in cochlear sensory neurons. At high frequencies, both ABRs and DPOAEs were attenuated by loss of M2 and/or M4, and the vulnerability to acoustic injury was dramatically decreased. This aspect of the phenotype and the expression pattern are consistent with a presynaptic role for muscarinic autoreceptors in decreasing ACh release from olivocochlear terminals during high-level acoustic stimulation and suggest that muscarinic antagonists could enhance the resistance of the inner ear to noise-induced hearing loss.
PMCID: PMC3332094  PMID: 20463237

Results 1-25 (951570)