PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (908673)

Clipboard (0)
None

Related Articles

1.  Early Growth Response-1 Suppresses Epidermal Growth Factor Receptor–Mediated Airway Hyperresponsiveness and Lung Remodeling in Mice 
Transforming growth factor (TGF)-α and its receptor, the epidermal growth factor receptor, are induced after lung injury and are associated with remodeling in chronic pulmonary diseases, such as pulmonary fibrosis and asthma. Expression of TGF-α in the lungs of adult mice causes fibrosis, pleural thickening, and pulmonary hypertension, in addition to increased expression of a transcription factor, early growth response-1 (Egr-1). Egr-1 was increased in airway smooth muscle (ASM) and the vascular adventitia in the lungs of mice conditionally expressing TGF-α in airway epithelium (Clara cell secretory protein–rtTA+/−/[tetO]7–TGF-α+/−). The goal of this study was to determine the role of Egr-1 in TGF-α–induced lung disease. To accomplish this, TGF-α–transgenic mice were crossed to Egr-1 knockout (Egr-1ko/ko) mice. The lack of Egr-1 markedly increased the severity of TGF-α–induced pulmonary disease, dramatically enhancing airway muscularization, increasing pulmonary fibrosis, and causing greater airway hyperresponsiveness to methacholine. Smooth muscle hyperplasia, not hypertrophy, caused the ASM thickening in the absence of Egr-1. No detectable increases in pulmonary inflammation were found. In addition to the airway remodeling disease, vascular remodeling and pulmonary hypertension were also more severe in Egr-1ko/ko mice. Thus, Egr-1 acts to suppress epidermal growth factor receptor–mediated airway and vascular muscularization, fibrosis, and airway hyperresponsiveness in the absence of inflammation. This provides a unique model to study the processes causing pulmonary fibrosis and ASM thickening without the complicating effects of inflammation.
doi:10.1165/rcmb.2008-0470OC
PMCID: PMC2746988  PMID: 19188657
transforming growth factor-α; pulmonary fibrosis; asthma; pulmonary hypertension; vascular remodeling
2.  Regulation of the effects of TGF-β1 by activation of latent TGF-β1 and differential expression of TGF-β receptors (TβR-I and TβR-II) in idiopathic pulmonary fibrosis 
Thorax  2001;56(12):907-915.
BACKGROUND—Idiopathic pulmonary fibrosis (IPF) is characterised by subpleural fibrosis that progresses to involve all areas of the lung. The expression of transforming growth factor-β1 (TGF-β1), a potent regulator of connective tissue synthesis, is increased in lung sections of patients with IPF. TGF-β1 is generally released in a biologically latent form (L-TGF-β1). Before being biologically active, TGF-β must be converted to its active form and interact with both TGF-β receptors type I and II (TβR-I and TβR-II). TGF-β latency binding protein 1 (LTBP-1), which facilitates the release and activation of L-TGF-β1, is also important in the biology of TGF-β1.
METHODS—Open lung biopsy samples from patients with IPF and normal controls were examined to localise TβR-I, TβR-II, and LTBP-1. Alveolar macrophages (AM) and bronchoalveolar lavage (BAL) fluid were examined using the CCL-64 bioassay to determine if TGF-β is present in its active form in the lungs of patients with IPF.
RESULTS—Immunoreactive L-TGF-β1 was present in all lung cells of patients with IPF except for fibroblasts in the subepithelial regions of honeycomb cysts. LTBP-1 was detected primarily in AM and epithelial cells lining honeycomb cysts in areas of advanced IPF. In normal lungs LTBP-1 immunoreactivity was observed in a few AM. AM from the upper and lower lobes of patients with IPF secreted 1.6 (0.6) fmol and 4.1 (1.9) fmol active TGF-β, respectively, while AM from the lower lobes of control patients secreted no active TGF-β (p⩽0.01 for TGF-β in the conditioned media from AM obtained from the lower lobes of IPF patients v normal controls). The difference in percentage active TGF-β secreted by AM from the lower lobes of patients with IPF and the lower lobes of control patients was significant (p⩽0.01), but the difference between the total TGF-β secreted from these lobes was not significant. The difference in active TGF-β in conditioned media of AM from the upper and lower lobes of patients with IPF was also not statistically significant. BAL fluid from the upper and lower lobes of patients with IPF contained 0.7 (0.2) fmol and 2.9 (1.2) fmol active TGF-β, respectively (p⩽0.03). The percentage of active TGF-β in the upper and lower lobes was 17.6 (1.0)% and 78.4 (1.6)%, respectively (p⩽0.03). In contrast, BAL fluid from control patients contained small amounts of L-TGF-β. Using immunostaining, both TβR-I and TβR-II were present on all cells of normal lungs but TβR-I was markedly reduced in most cells in areas of honeycomb cysts except for interstitial myofibroblasts in lungs of patients with IPF. TGF-β1 inhibits epithelial cell proliferation and a lack of TβR-I expression by epithelial cells lining honeycomb cysts would facilitate repair of the alveoli by epithelial cell proliferation. However, the presence of both TβRs on fibroblasts is likely to result in a response to TGF-β1 for synthesis of connective tissue proteins. Our findings show that biologically active TGF-β1 is only present in the lungs of patients with IPF. In addition, the effects of TGF-β1 on cells may be further regulated by the expression of TβRs.
CONCLUSION—Activation of L-TGF-β1 and the differential expression of TβRs may be important in the pathogenesis of remodelling and fibrosis in IPF.


doi:10.1136/thorax.56.12.907
PMCID: PMC1745982  PMID: 11713352
3.  The Transcriptional Cofactor Nab2 Is Induced by TGF-β and Suppresses Fibroblast Activation: Physiological Roles and Impaired Expression in Scleroderma 
PLoS ONE  2009;4(10):e7620.
By stimulating collagen synthesis and myofibroblasts differentiation, transforming growth factor-β (TGF- β) plays a pivotal role in tissue repair and fibrosis. The early growth response-1 (Egr-1) transcription factor mediates profibrotic TGF-β responses, and its expression is elevated in biopsies from patients with scleroderma. NGF1-A-binding protein 2 (Nab2) is a conserved transcriptional cofactor that directly binds to Egr-1 and positively or negatively modulates Egr-1 target gene transcription. Despite the recognized importance of Nab2 in governing the intensity of Egr-1-dependent responses, the regulation and function of Nab2 in the context of fibrotic TGF-β signaling is unknown. Here we show that TGF-β caused a time-dependent stimulation of Nab2 protein and mRNA in normal fibroblasts. Ectopic expression of Nab2 in these cells blocked Egr-1-dependent transcriptional responses, and abrogated TGF-β-induced stimulation of collagen synthesis and myofibroblasts differentiation. These inhibitory effects of Nab2 involved recruitment of the NuRD chromatin remodeling complex to the COL1A2 promoter and were accompanied by reduced histone H4 acetylation. Mice with targeted deletion of Nab2 displayed increased collagen accumulation in the dermis, and genetic or siRNA-mediated loss of Nab2 in fibroblasts was associated with constitutively elevated collagen synthesis and accentuation of Egr-1-dependent TGF-β responses in vitro. Expression of Nab2 was markedly up-regulated in skin biopsies from patients with scleroderma, and was localized primarily to epidermal keratinocytes. In contrast, little Nab2 could be detected in dermal fibroblasts. These results identify Nab2 as a novel endogenous negative regulator of Egr-1-dependent TGF-β signaling responsible for setting the intensity of fibrotic responses. Defective Nab2 expression or function in dermal fibroblasts might play a role in persistent fibrotic responses in scleroderma.
doi:10.1371/journal.pone.0007620
PMCID: PMC2768752  PMID: 19888474
4.  Egr-1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis) 
The Journal of pathology  2012;229(2):286-297.
Fibroblasts and myofibroblasts are the key effector cells executing physiologic tissue repair leading to regeneration on one hand, and pathological fibrogenesis leading to chronic fibrosing conditions on the other. Recent studies identify the multifunctional transcription factor Early Growth Response-1(Egr-1) as an important mediator of fibroblast activation triggered by diverse stimuli. Egr-1 has potent stimulatory effects on fibrotic gene expression, and aberrant Egr-1 expression or function is associated with animal models of fibrosis and human fibrotic disorders including emphysema, pulmonary fibrosis, pulmonary hypertension and systemic sclerosis. Pharmacological suppression or genetic targeting of Egr-1 blocks fibrotic responses in vitro and ameliorates experimental fibrosis in the skin and lung. In contrast, Egr-1 appear to acts as a negative regulator of hepatic fibrosis in mouse models, suggesting a context-dependent role in fibrosis. The Egr-1-binding protein Nab2 is an endogenous inhibitor of Egr-1-mediated signaling, and abrogates the stimulation of fibrotic responses induced by transforming growth factor-ß (TGF-ß). Moreover, mice deficient in Nab2 show excessive collagen accumulation in the skin. These observations highlight a previously unsuspected fundamental physiologic function for the Egr-1/Nab2 signaling axis in regulating fibrogenesis, and suggest that Egr-1 may be a potential novel therapeutic target in human diseases complicated by fibrosis. This review summarizes recent advances in understanding the regulation and complex functional role of Egr-1 and its related proteins and inhibitors in pathological fibrosis.
doi:10.1002/path.4131
PMCID: PMC3965177  PMID: 23132749
Egr-1; Nab2; TGF-ß; fibrosis; scleroderma; fibroblast; myofibroblast; p300; c-Abl
5.  Semaphorin 7A plays a critical role in TGF-β1–induced pulmonary fibrosis 
The Journal of Experimental Medicine  2007;204(5):1083-1093.
Semaphorin (SEMA) 7A regulates neuronal and immune function. In these studies, we tested the hypothesis that SEMA 7A is also a critical regulator of tissue remodeling. These studies demonstrate that SEMA 7A and its receptors, plexin C1 and β1 integrins, are stimulated by transforming growth factor (TGF)-β1 in the murine lung. They also demonstrate that SEMA 7A plays a critical role in TGF-β1–induced fibrosis, myofibroblast hyperplasia, alveolar remodeling, and apoptosis. TGF-β1 stimulated SEMA 7A via a largely Smad 3–independent mechanism and stimulated SEMA 7A receptors, matrix proteins, CCN proteins, fibroblast growth factor 2, interleukin 13 receptor components, proteases, antiprotease, and apoptosis regulators via Smad 2/3–independent and SEMA 7A–dependent mechanisms. SEMA 7A also played an important role in the pathogenesis of bleomycin-induced pulmonary fibrosis. TGF-β1 and bleomycin also activated phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB)/AKT via SEMA 7A–dependent mechanisms, and PKB/AKT inhibition diminished TGF-β1–induced fibrosis. These observations demonstrate that SEMA 7A and its receptors are induced by TGF-β1 and that SEMA 7A plays a central role in a PI3K/PKB/AKT-dependent pathway that contributes to TGF-β1–induced fibrosis and remodeling. They also demonstrate that the effects of SEMA 7A are not specific for transgenic TGF-β1, highlighting the importance of these findings for other fibrotic stimuli.
doi:10.1084/jem.20061273
PMCID: PMC2118575  PMID: 17485510
6.  Early growth response transcription factors: key mediators of fibrosis and novel targets for anti-fibrotic therapy 
Fibrosis is a deregulated and ultimately defective form of tissue repair that underlies a large number of chronic human diseases, as well as obesity and aging. The pathogenesis of fibrosis involves multiple cell types and extracellular signals, of which transforming growth factor- β (TGF-β) is pre-eminent. The prevalence of fibrosis is rising worldwide, and to date no agents has shown clinical efficacy in the attenuating or reversing the process. Recent studies implicate the immediate-early response transcription factor Egr-1 in the pathogenesis of fibrosis. Egr-1 couples acute changes in the cellular environment to sustained alterations in gene expression, and mediates a broad spectrum of biological responses to injury and stress. In contrast to other ligand-activated transcription factors such as NF-κB, c-jun and Smad2/3 that undergo post-translational modification such as phosphorylation and nuclear translocation, Egr-1 activity is regulated via its biosynthesis. Aberrant Egr-1 expression or activity is implicated in cancer, inflammation, atherosclerosis, and ischemic injury and recent studies now indicate an important role for Egr-1 in TGF-β-dependent profibrotic responses. Fibrosis in various animal models and human diseases such as scleroderma (SSc) and idiopathic pulmonary fibrosis (IPF) is accompanied by aberrant Egr-1 expression. Moreover Egr-1 appears to be required for physiologic and pathological connective tissue remodeling, and Egr-1-null mice are protected from fibrosis. As a novel profibrotic mediator, Egr-1 thus appears to be a promising potential target for the development of anti-fibrotic therapies.
doi:10.1016/j.matbio.2011.03.005
PMCID: PMC3135176  PMID: 21511034
Egr-1; TGF-β; fibrosis; Scleroderma (systemic sclerosis); fibroblast
7.  Transgenic Modeling of Transforming Growth Factor-β1 
Inflammation and tissue remodeling with pathologic fibrosis are common consequences of Th2 responses in the lung and other organs. Interleukin (IL)-13 and transforming growth factor-β1 (TGF-β1) are frequently coexpressed in these responses and are believed to play important roles in the pathogenesis of Th2-induced pathologies. To shed light on the mechanisms of these responses, overexpression transgenic approaches were used to selectively target each of these cytokines to the murine lung. IL-13 proved to be a potent stimulator of eosinophilic inflammation, mucus metaplasia, tissue fibrosis, and alveolar remodeling. CC chemokines, specific chemokine receptors (CCR2, CCR1), adenosine metabolism, vascular endothelial growth factor, and IL-11 contributed to the genesis of these responses. IL-13 also induced tissue fibrosis, at least in part, via its ability to induce and activate TGF-β1. In the TGF-β1 transgenic mouse, epithelial apoptosis preceded the onset of tissue fibrosis and alveolar remodeling. In addition, chemical (Z-VAD-fmk) and genetic (null mutations of early growth response gene 1) interventions blocked apoptosis and ameliorated TGF-β1–induced fibrosis and alveolar restructuring. These studies define an IL-13–TGF-β1 pathway of tissue remodeling that regulates inflammation, mucus metaplasia, apoptosis, vascular responses, and fibrosis in the lung. They also highlight the intimate relationship between apoptosis and fibrosis induced by TGF-β1. By defining the complexities of this pathway, these studies highlight sites at which therapies can be directed to control these important responses.
doi:10.1513/pats.200602-017AW
PMCID: PMC2658706  PMID: 16799085
asthma; fibrosis; interleukin-13; transforming growth factor-β; 1; transgenic
8.  Egr-1 Induces a Profibrotic Injury/Repair Gene Program Associated with Systemic Sclerosis 
PLoS ONE  2011;6(9):e23082.
Transforming growth factor-ß (TGF-ß) signaling is implicated in the pathogenesis of fibrosis in scleroderma or systemic sclerosis (SSc), but the precise mechanisms are poorly understood. The immediate-early gene Egr-1 is an inducible transcription factor with key roles in mediating fibrotic TGF-ß responses. To elucidate Egr-1 function in SSc-associated fibrosis, we examined change in gene expression induced by Egr-1 in human fibroblasts at the genome-wide level. Using microarray expression analysis, we derived a fibroblast “Egr-1-responsive gene signature” comprising over 600 genes involved in cell proliferation, TGF-ß signaling, wound healing, extracellular matrix synthesis and vascular development. The experimentally derived “Egr-1-responsive gene signature” was then evaluated in an expression microarray dataset comprising skin biopsies from 27 patients with localized and systemic forms of scleroderma and six healthy controls. We found that the “Egr-1 responsive gene signature” was substantially enriched in the “diffuse-proliferation” subset comprising exclusively of patients with diffuse cutaneous SSc (dcSSc) of skin biopsies. A number of Egr-1-regulated genes was also associated with the “inflammatory” intrinsic subset. Only a minority of Egr-1-regulated genes was concordantly regulated by TGF-ß. These results indicate that Egr-1 induces a distinct profibrotic/wound healing gene expression program in fibroblasts that is associated with skin biopsies from SSc patients with diffuse cutaneous disease. These observations suggest that targeting Egr-1 expression or activity might be a novel therapeutic strategy to control fibrosis in specific SSc subsets.
doi:10.1371/journal.pone.0023082
PMCID: PMC3172216  PMID: 21931594
9.  p300 is elevated in systemic sclerosis and its expression is positively regulated by TGF-β: epigenetic feed-forward amplification of fibrosis 
Fibrosis, the hallmark of systemic sclerosis (SSc), is characterized by persistent fibroblast activation triggered by transforming growth factor-β (TGF-β). Since the acetyltransferase p300 plays a key role in fibrosis and its availability governs the intensity of fibrotic responses, we investigated p300 expression in SSc and the molecular basis of its regulation. We found that expression of p300 was markedly elevated in SSc skin biopsies, and was induced by TGF-β in explanted normal skin fibroblasts. Stimulation of p300 by TGF-β was independent of Smads, and involved the early-immediate transcription factor Egr-1, a key regulator of profibrotic TGF-β signaling. Indeed, Egr-1 was both sufficient and necessary for p300 regulation in vitro and in vivo. Increased p300 accumulation in TGF-β-treated fibroblasts was associated with histone hyperacetylation, whereas p300 depletion, or selective pharmacological blockade of its acetyltransferase activity, attenuated TGF-β-induced responses. Moreover, TGF-β enhanced both p300 recruitment and in vivo histone H4 acetylation at the COL1A2 locus. These findings implicate p300-mediated histone acetylation as a fundamental epigenetic mechanism in fibrogenesis, and place Egr-1 upstream in TGF-β-driven stimulation of p300 gene expression. The results establish a firm link between fibrosis with aberrant p300 expression and epigenetic activity to our knowledge previously unreported. Targeted disruption of p300-mediated histone acetylation might therefore represent a viable anti-fibrotic strategy.
doi:10.1038/jid.2012.479
PMCID: PMC3626729  PMID: 23303459
Acetyltransferase p300; TGF-β; fibroblast; systemic sclerosis; fibrosis; EGR-1; epigenetics
10.  P21 Regulates TGF-β1–Induced Pulmonary Responses via a TNF-α–Signaling Pathway 
Transforming growth factor (TGF)-β1 is an essential regulatory cytokine that has been implicated in the pathogenesis of diverse facets of the injury and repair responses in the lung. The types of responses that it elicits can be appreciated in studies from our laboratory that demonstrated that the transgenic (Tg) overexpression of TGF-β1 in the murine lung causes epithelial apoptosis followed by fibrosis, inflammation, and parenchymal destruction. Because a cyclin-dependent kinase inhibitor, p21, is a key regulator of apoptosis, we hypothesized that p21 plays an important role in the pathogenesis of TGF-β1–induced tissue responses. To test this hypothesis we evaluated the effect of TGF-β1 on the expression of p21 in the murine lung. We also characterized the effects of transgenic TGF-β1 in mice with wild-type and null mutant p21 loci. These studies demonstrate that TGF-β1 is a potent stimulator of p21 expression in the epithelial cells and macrophages in the murine lung. They also demonstrate that TGF-β1–induced lung inflammation, fibrosis, myofibroblast accumulation, and alveolar destruction are augmented in the absence of p21, and that these alterations are associated with exaggerated levels of apoptosis and caspase-3 activation. Finally, our studies further demonstrated that TGF-β1 induces p21 via a TNF-α–signaling pathway and that p21 is a negative modulator of TGF-β1–induced TNF-α expression. Collectively, our studies demonstrate that p21 regulates TGF-β1–induced apoptosis, inflammation, fibrosis, and alveolar remodeling by interacting with TNF-α–signaling pathways.
doi:10.1165/rcmb.2007-0276OC
PMCID: PMC2258454  PMID: 17932374
TGF-β; p21; apoptosis; fibrosis; emphysema
11.  Endothelin-1 and Transforming Growth Factor-β1 Independently Induce Fibroblast Resistance to Apoptosis via AKT Activation 
Myofibroblast apoptosis is critical for the normal resolution of wound repair responses, and impaired myofibroblast apoptosis is associated with tissue fibrosis. Lung expression of endothelin (ET)-1, a soluble peptide implicated in fibrogenesis, is increased in murine models of pulmonary fibrosis and in the lungs of humans with pulmonary fibrosis. Mechanistically, ET-1 has been shown to induce fibroblast proliferation, differentiation, contraction, and collagen synthesis. In this study, we examined the role ET-1 in the regulation of lung fibroblast survival and apoptosis. ET-1 rapidly activates the prosurvival phosphatidylinositol 3′-OH kinase (PI3K)/AKT signaling pathway in normal and fibrotic human lung fibroblasts. ET-1–induced activation of PI3K/AKT is dependent on p38 mitogen-activated protein kinase (MAPK), but not extracellular signal-regulated kinase (ERK) 1/2, JNK, or transforming growth factor (TGF)-β1. Activation of the PI3K/AKT pathway by ET-1 inhibits fibroblast apoptosis, and this inhibition is reversed by blockade of p38 MAPK or PI3K. TGF-β1 has been shown to attenuate myofibroblast apoptosis through the p38 MAPK–dependent secretion of a soluble factor, which activates PI3K/AKT. In this study, we show that, although TGF-β1 induces fibroblast synthesis and secretion of ET-1, TGF-β1 activation of PI3K/AKT is not dependent on ET-1. We conclude that ET-1 and TGF-β1 independently promote fibroblast resistance to apoptosis through signaling pathways involving p38 MAPK and PI3K/AKT. These findings suggest the potential for novel therapies targeting the convergence of prosurvival signaling pathways activated by these two profibrotic mediators.
doi:10.1165/rcmb.2008-0447OC
PMCID: PMC2746991  PMID: 19188658
myofibroblast; fibrosis; Fas; p38 mitogen-activated protein kinase; mesenchymal cells
12.  Smad-independent transforming growth factor-ß signaling in fibroblasts via c-Abl and Egr-1: selective modulation by imatinib mesylate 
Oncogene  2009;28(10):1285-1297.
The non-receptor protein tyrosine kinase c-Abl regulates cell proliferation and survival. Recent studies provide evidence that implicate c-Abl as a mediator for fibrotic responses induced by Transforming growth factor-ß (TGF-ß), but the precise mechanisms underlying this novel oncogene function are unknown. Here we report that when expressed in normal fibroblasts, a constitutively active mutant of Abl mutant that causes chronic myelogenous leukemia stimulated the expression and transcriptional activity of the early growth response factor Egr-1. Mouse embryonic fibroblasts lacking c-Abl were resistant to TGF-ß. Sensitivity of these cells to TGF-ß could be rescued by wildtype c-Abl, but not by a kinase-deficient mutant form of c-Abl. Furthermore, Abl kinase activity was necessary for the induction of Egr-1 by TGF-ß in normal fibroblasts, and Egr-1 was required for stimulation of collagen by Bcr-Abl. Lesional skin fibroblasts in mice with bleomycin-induced scleroderma displayed evidence of c-Abl activation in situ, and elevated phospho-c-Abl correlated with increased local expression of Egr-1. Collectively, these results position Egr-1 downstream of c-Abl in the fibrotic response, delineate a novel Egr-1-dependent intracellular signaling mechanism that underlies the involvement of c-Abl in TGF-ß responses, and identify Egr-1 as a target of inhibition by imatinib. Furthermore, the findings demonstrate in situ activation of c-Abl paralleling the up-regulation tissue expression of Egr-1 in fibrosis. Pharmacological targeting of c-Abl and its downstream effector pathways may therefore represent a novel therapeutic approach to blocking TGF-ß-dependent fibrotic processes.
doi:10.1038/onc.2008.479
PMCID: PMC4006376  PMID: 19151753
c-Abl; imatinib mesylate; TGF-ß; Egr-1; fibrosis; fibroblast; Type I collagen
13.  Transforming Growth Factor-β1 Suppresses Airway Hyperresponsiveness in Allergic Airway Disease 
Rationale: Asthma is characterized by increases in airway resistance, pulmonary remodeling, and lung inflammation. The cytokine transforming growth factor (TGF)-β has been shown to have a central role in asthma pathogenesis and in mouse models of allergic airway disease.
Objectives: To determine the contribution of TGF-β to airway hyperresponsiveness (AHR), we examined the time course, source, and isoform specificity of TGF-β production in an in vivo mouse asthma model. To then elucidate the function of TGF-β in AHR, inflammation, and pulmonary fibrosis, we examined the effects of blocking TGF-β signaling with neutralizing antibody.
Methods: Mice were sensitized and challenged with ovalbumin (OVA) to establish allergic airway disease. TGF-β activity was neutralized by intranasal administration of monoclonal antibody.
Measurements and Main Results: TGF-β1 protein levels were increased in OVA-challenged lungs versus naive controls, and airway epithelial cells were shown to be a likely source of TGF-β1. In addition, TGF-β1 levels were elevated in OVA-exposed IL-5–null mice, which fail to recruit eosinophils into the airways. Neutralization of TGF-β1 with specific antibody had no significant effect on airway inflammation and eosinophilia, although anti–TGF-β1 antibody enhanced OVA-induced AHR and suppressed pulmonary fibrosis.
Conclusions: These data show that TGF-β1 is the main TGF-β isoform produced after OVA challenge, with a likely cellular source being the airway epithelium. The effects of blocking TGF-β1 signaling had differential effects on AHR, fibrosis, and inflammation. While TGF-β neutralization may be beneficial to abrogating airway remodeling, it may be detrimental to lung function by increasing AHR.
doi:10.1164/rccm.200702-334OC
PMCID: PMC2078678  PMID: 17761617
lung; mice; hypersensitivity; cytokines
14.  Syndecan-2 Exerts Antifibrotic Effects by Promoting Caveolin-1–mediated Transforming Growth Factor-β Receptor I Internalization and Inhibiting Transforming Growth Factor-β1 Signaling 
Rationale: Alveolar transforming growth factor (TGF)-β1 signaling and expression of TGF-β1 target genes are increased in patients with idiopathic pulmonary fibrosis (IPF) and in animal models of pulmonary fibrosis. Internalization and degradation of TGF-β receptor TβRI inhibits TGF-β signaling and could attenuate development of experimental lung fibrosis.
Objectives: To demonstrate that after experimental lung injury, human syndecan-2 confers antifibrotic effects by inhibiting TGF-β1 signaling in alveolar epithelial cells.
Methods: Microarray assays were performed to identify genes differentially expressed in alveolar macrophages of patients with IPF versus control subjects. Transgenic mice that constitutively overexpress human syndecan-2 in macrophages were developed to test the antifibrotic properties of syndecan-2. In vitro assays were performed to determine syndecan-2–dependent changes in epithelial cell TGF-β1 signaling, TGF-β1, and TβRI internalization and apoptosis. Wild-type mice were treated with recombinant human syndecan-2 during the fibrotic phase of bleomycin-induced lung injury.
Measurements and Main Results: We observed significant increases in alveolar macrophage syndecan-2 levels in patients with IPF. Macrophage-specific overexpression of human syndecan-2 in transgenic mice conferred antifibrotic effects after lung injury by inhibiting TGF-β1 signaling and downstream expression of TGF-β1 target genes, reducing extracellular matrix production and alveolar epithelial cell apoptosis. In vitro, syndecan-2 promoted caveolin-1–dependent internalization of TGF-β1 and TβRI in alveolar epithelial cells, which inhibited TGF-β1 signaling and epithelial cell apoptosis. Therapeutic administration of human syndecan-2 abrogated lung fibrosis in mice.
Conclusions: Alveolar macrophage syndecan-2 exerts antifibrotic effects by promoting caveolin-1–dependent TGF-β1 and TβRI internalization and inhibiting TGF-β1 signaling in alveolar epithelial cells. Hence, molecules that facilitate TβRI degradation via endocytosis represent potential therapies for pulmonary fibrosis.
doi:10.1164/rccm.201303-0434OC
PMCID: PMC3826270  PMID: 23924348
idiopathic pulmonary fibrosis; TGF-β1 signaling; syndecan-2; alveolar macrophage
15.  Rapamycin Prevents Transforming Growth Factor-α–Induced Pulmonary Fibrosis 
Transforming growth factor (TGF)-α is a ligand for the epidermal growth factor receptor (EGFR). EGFR activation is associated with fibroproliferative processes in human lung disease and animal models of pulmonary fibrosis. Overexpression of TGF-α in transgenic mice causes progressive and severe pulmonary fibrosis; however, the intracellular signaling pathways downstream of EGFR mediating this response are unknown. Using a doxycycline-regulatable transgenic mouse model of lung-specific TGF-α expression, we observed increased PCNA protein and phosphorylation of Akt and p70S6K in whole lung homogenates in association with induction of TGF-α. Induction in the lung of TGF-α caused progressive pulmonary fibrosis over a 7-week period. Daily administration of rapamycin prevented accumulation of total lung collagen, weight loss, and changes in pulmonary mechanics. Treatment of mice with rapamycin 4 weeks after the induction of TGF-α prevented additional weight loss, increases in total collagen, and changes in pulmonary mechanics. Rapamycin prevented further increases in established pulmonary fibrosis induced by EGFR activation. This study demonstrates that mammalian target of rapamycin (mTOR) is a major effector of EGFR-induced pulmonary fibrosis, providing support for further studies to determine the role of mTOR in the pathogenesis and treatment of pulmonary fibrosis.
doi:10.1165/rcmb.2008-0377OC
PMCID: PMC2778163  PMID: 19244201
epidermal growth factor receptor; PI3K; Akt; mTOR
16.  Overexpression of transforming growth factor-β1 in fetal monkey lung results in prenatal pulmonary fibrosis 
Altered transforming growth factor (TGF)-β expression levels have been linked to a variety of human respiratory diseases, including bronchopulmonary dysplasia and pulmonary fibrosis. However, a causative role for aberrant TGF-β in neonatal lung diseases has not been defined in primates.
Exogenous and transient TGF-β1 overexpression in fetal monkey lung was achieved by transabdominal ultrasound-guided fetal intrapulmonary injection of adenoviral vector expressing TGF-β1 at the second or third trimester of pregnancy. The lungs were then harvested near term, and fixed for histology and immunohistochemistry.
Lung hypoplasia was observed where TGF-β1 was overexpressed during the second trimester. The most clearly marked phenotype consisted of severe pulmonary and pleural fibrosis, which was independent of the gestational time point when TGF-β1 was overexpressed. Increased cell proliferation, particularly in α-smooth muscle actin-positive myofibroblasts, was detected within the fibrotic foci. But epithelium to mesenchyme transdifferentiation was not detected. Massive collagen fibres were deposited on the inner and outer sides of the pleural membrane, with an intact elastin layer in the middle. This induced fibrotic pathology persisted even after adenoviral-mediated TGF-β1 overexpression was no longer evident.
Therefore, overexpression of TGF-β1 within developing fetal monkey lung results in severe and progressive fibrosis in lung parenchyma and pleural membrane, in addition to pulmonary hypoplasia.
doi:10.1183/09031936.00011810
PMCID: PMC3074616  PMID: 20351039
Lung development; pulmonary fibrosis; transforming growth factor-β
17.  Therapeutic Value of Small Molecule Inhibitor to Plasminogen Activator Inhibitor–1 for Lung Fibrosis 
Fibrosis is a final stage of many lung diseases, with no effective treatment. Plasminogen activator inhibitor–1 (PAI-1), a primary inhibitor of tissue-type and urokinase-type plasminogen activators (tPA and uPA, respectively), plays a critical role in the development of fibrosis. In this study, we explored the therapeutic potential of an orally effective small molecule PAI-1 inhibitor, TM5275, in a model of lung fibrosis induced by transforming growth factor–β1 (TGF-β1), the most potent and ubiquitous profibrogenic cytokine, and in human lung fibroblasts (CCL-210 cells). The results show that an intranasal instillation of AdTGF-β1223/225, an adenovirus expressing constitutively active TGF-β1, increased the expression of PAI-1 and induced fibrosis in murine lung tissue. On the other hand, treating mice with 40 mg/kg of TM5275 for 10 days, starting 4 days after the instillation of AdTGF-β1223/225, restored the activities of uPA and tPA and almost completely blocked TGF-β1–induced lung fibrosis, as shown by collagen staining, Western blotting, and the measurement of hydroxyproline. No loss of body weight was evident under these treatment conditions with TM5275. Furthermore, we show that TM5275 induced apoptosis in both myofibroblasts (TGF-β1–treated) and naive (TGF-β1–untreated) human lung fibroblasts, and this apoptosis was associated with the activation of caspase-3/7, the induction of p53, and the inhibition of α–smooth muscle actin, fibronectin, and PAI-1 expression. Such an inhibition of fibrotic responses by TM5275 occurred even in cells pretreated with TGF-β1 for 6 hours. Together, the results suggest that TM5275 is a relatively safe and potent antifibrotic agent, with therapeutic potential in fibrotic lung disease.
doi:10.1165/rcmb.2011-0139OC
PMCID: PMC3262658  PMID: 21852684
PAI-1 inhibitor; lung fibrosis therapy; (myo)fibroblast apoptosis; TGF-β1; animal model
18.  Quantitative analysis of transient and sustained transforming growth factor-β signaling dynamics 
Mathematical modeling and experimental analyses reveal that TGF-β ligand depletion has an important role in converting short-term graded signaling responses to long-term switch-like responses.
Cells respond in real time to the absolute number of TGF-β molecules in their environment.A single pulse of TGF-β stimulation results in transient SMAD activation whereas repeated short pulses of stimulation result in sustained SMAD activation.Ligand-induced short-term TGF-β/SMAD signaling activation is graded while long-term signaling response is switch-like or ultrasensitive.TGF-β ligand depletion is a major cause of conversion from graded short-term responses to ultrasensitive long-term responses.
The transforming growth factor-β (TGF-β) pathway is a prominent signaling pathway that regulates diverse aspects of cellular homeostasis, including proliferation, differentiation, migration, and death (Massague, 1998). Remarkably, the pleiotropic biological effects of TGF-β are mediated by a relatively simple signaling module (Clarke and Liu, 2008). An interesting question is how such an apparently straightforward and simple cascade can generate a wide array of biological responses depending on the cellular context.
Members of the TGF-β superfamily are frequently used as morphogens in early embryo development (Green, 2002). The best-studied examples include Dpp in Drosophila and Activin in Xenopus (Gurdon and Bourillot, 2001; Lander, 2007). In the developmental context, cells can respond to a graded ligand concentration and produce discrete biological responses (e.g., transcription of certain genes, proliferation, or differentiation; Green, 2002). To convert continuous morphogen stimulation into discrete responses, mechanisms must exist to provide a threshold for the cellular response. How variable TGF-β ligand doses quantitatively control intracellular signaling dynamics and how continuous ligand doses are translated into discontinuous cellular fate decisions remains poorly understood.
We have previously reported that ligand molecules per cell is the input variable to which the cells respond, and ligand number per cell is the best predictor of signaling responses (Zi and Klipp, 2007a; Clarke et al, 2009). Here, we developed an improved mathematical model to predict TGF-β signaling responses by calibrating the model with various experimental data sets from different TGF-β stimulations. Using a combined experimental and mathematical modeling approach, we showed that TGF-β pulse stimulation results in transient activation of the pathway while repeated short pulses at short time intervals lead to a sustained activation similar to persistent ligand exposure.
We next investigate the system response to variable doses of TGF-β in HaCaT cells. Our mathematical model predicts that the short-term Smad2 phosphorylation (after 45 min of TGF-β stimulation) is a graded response, while long-term Smad2 activation (after 24 h of TGF-β stimulation) is a switch-like response (Figure 5A and B). As shown in Figure 5A–D, both short- and long-term Smad2 phosphorylation can be saturated but doses of TGF-β that cause maximum response are quite different. Additionally, the shapes of response curves were different. The short-term Smad2 activation was a graded (Michaelis–Menten-like) response with a very low apparent Hill coefficient of about 0.8 (Figure 5A and C) while the long-term Smad2 activation (P-Smad2 at 24 h) yielded a switch-like response with an apparent Hill coefficient of about 4.5 (Figure 5B and D). Thus, the Smad2 response is initially graded and sharpens over time to become ultrasensitive. To address whether TGF-β-inducible gene expression responses are graded or switch-like in the short and long term, we measured mRNA levels of Smad7, an early responsive gene of TGF-β and protein levels of p21 and PAI-1 whose inductions are delayed and late, respectively. The experimental data show that Smad7 induction exhibits a graded response with corresponding Hill coefficients of about 1.3 (Figure 5E), which is consistent with the graded P-Smad2 response at 45 min (Figure 5A and C). PAI-1 induction in response to variable doses of TGF-β for 24 h is highly ultrasensitive with an apparent Hill coefficient of ∼5.3. Compared with Smad7 and PAI-1, p21 induction is only modest ultrasensitive (nHill≈2) (Figure 5G). These results suggest short-term gene induction by TGF-β appears to be graded while long-term targets are more switch-like. Finally, we measured the growth inhibitory response of HaCaT cells to variable doses of TGF-β. The level of BrdU incorporation is also ultrasensitive with an apparent Hill coefficient of about 4.3 (Figure 5H). Therefore, the long-term TGF-β growth inhibitory response also shows a switch-like behavior. Finally, we show that TGF-β depletion affects long-term Smad phosphorylation and switch-like response of TGF-β signaling system. These findings shed new light on how continuous ligand doses are translated into discontinuous cell fate decisions in biological systems.
In summary, we have shown that the dose and time course of TGF-β stimulation have profound effects on Smad signaling dynamics. The rate of ligand depletion controls the duration of Smad2 phosphorylation. Cells can respond to a short pulse of TGF-β stimulation, and periodic short ligand exposures are sufficient to generate long-term signaling responses. Short-term TGF-β stimulation causes only transient pathway activation and can be terminated by ligand depletion. TGF-β-induced Smad2 phosphorylation is graded in the short-term but ultrasensitive (switch-like) in the long-term (Figure 7). Additionally, cell growth arrest in response to TGF-β shows switch-like rather than graded behavior. Our modeling and experimental analyses suggest that ligand depletion is likely to be involved in sharpening a graded response into a switch-like response.
Mammalian cells can decode the concentration of extracellular transforming growth factor-β (TGF-β) and transduce this cue into appropriate cell fate decisions. How variable TGF-β ligand doses quantitatively control intracellular signaling dynamics and how continuous ligand doses are translated into discontinuous cellular fate decisions remain poorly understood. Using a combined experimental and mathematical modeling approach, we discovered that cells respond differently to continuous and pulsating TGF-β stimulation. The TGF-β pathway elicits a transient signaling response to a single pulse of TGF-β stimulation, whereas it is capable of integrating repeated pulses of ligand stimulation at short time interval, resulting in sustained phospho-Smad2 and transcriptional responses. Additionally, the TGF-β pathway displays different sensitivities to ligand doses at different time scales. While ligand-induced short-term Smad2 phosphorylation is graded, long-term Smad2 phosphorylation is switch-like to a small change in TGF-β levels. Correspondingly, the short-term Smad7 gene expression is graded, while long-term PAI-1 gene expression is switch-like, as is the long-term growth inhibitory response. Our results suggest that long-term switch-like signaling responses in the TGF-β pathway might be critical for cell fate determination.
doi:10.1038/msb.2011.22
PMCID: PMC3130555  PMID: 21613981
mathematical model; Smad; TGF-β; ultrasensitivity
19.  Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. 
Journal of Clinical Investigation  1997;100(4):768-776.
Transforming growth factor (TGF)-beta1 has been implicated in the pathogenesis of fibrosis based upon its matrix-inducing effects on stromal cells in vitro, and studies demonstrating increased expression of total TGF-beta1 in fibrotic tissues from a variety of organs. The precise role in vivo of this cytokine in both its latent and active forms, however, remains unclear. Using replication-deficient adenovirus vectors to transfer the cDNA of porcine TGF-beta1 to rat lung, we have been able to study the effect of TGF-beta1 protein in the respiratory tract directly. We have demonstrated that transient overexpression of active, but not latent, TGF-beta1 resulted in prolonged and severe interstitial and pleural fibrosis characterized by extensive deposition of the extracellular matrix (ECM) proteins collagen, fibronectin, and elastin, and by emergence of cells with the myofibroblast phenotype. These results illustrate the role of TGF-beta1 and the importance of its activation in the pulmonary fibrotic process, and suggest that targeting active TGF-beta1 and steps involved in TGF-beta1 activation are likely to be valuable antifibrogenic therapeutic strategies. This new and versatile model of pulmonary fibrosis can be used to study such therapies.
PMCID: PMC508247  PMID: 9259574
20.  Transforming growth factor beta suppresses glutamate cysteine ligase gene expression and induces oxidative stress in a lung fibrosis model 
Free radical biology & medicine  2012;53(3):554-563.
The concentration of glutathione (GSH), the most abundant intracellular free thiol and an important antioxidant, is decreased in the lung in both fibrotic diseases and experimental fibrosis models. The underlying mechanisms and biological significance of GSH depletion, however, remain unclear. Transforming growth factor beta (TGF-β) is the most potent and ubiquitous profibrogenic cytokine and its expression is increased in almost all fibrotic diseases. In this study, we show that increasing TGF-β1 expression in mouse lung to a level comparable to those found in lung fibrotic diseases by intranasal instillation of AdTGF-β1223/225, an adenovirus expressing constitutively active TGF-β1, suppressed the expression of both catalytic and modifier subunits of glutamate cysteine ligase (GCL), the rate-limiting enzyme in de novo GSH synthesis, decreased GSH concentration, and increased protein and lipid peroxidation in mouse lung. Furthermore, we show that increasing TGF-β1 expression activated JNK and induced activating transcription factor 3 (ATF3), a transcriptional repressor involved in the regulation of the catalytic subunit of GCL (GCLC), in mouse lung. Control virus (AdDL70-3) had no significant effect on any of these parameters, compared to saline treated control. Concurrent with GSH depletion, TGF-β1 induced lung epithelial apoptosis and robust pulmonary fibrosis. Importantly, lung GSH levels returned to the normal whereas fibrosis persisted at least 21 days after TGF-β1 instillation. Together, the data suggest that increased TGF-β1 expression may contribute to the GSH depletion observed in pulmonary fibrosis diseases and that GSH depletion may be an early event in, rather than a consequence of, fibrosis development.
doi:10.1016/j.freeradbiomed.2012.05.016
PMCID: PMC3432394  PMID: 22634145
GSH depletion; lung fibrosis; transforming growth factor beta 1; glutamate cysteine ligase; oxidative stress
21.  Lactic Acid Is Elevated in Idiopathic Pulmonary Fibrosis and Induces Myofibroblast Differentiation via pH-Dependent Activation of Transforming Growth Factor-β 
Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex disease for which the pathogenesis is poorly understood. In this study, we identified lactic acid as a metabolite that is elevated in the lung tissue of patients with IPF.
Objectives: This study examines the effect of lactic acid on myofibroblast differentiation and pulmonary fibrosis.
Methods: We used metabolomic analysis to examine cellular metabolism in lung tissue from patients with IPF and determined the effects of lactic acid and lactate dehydrogenase-5 (LDH5) overexpression on myofibroblast differentiation and transforming growth factor (TGF)-β activation in vitro.
Measurements and Main Results: Lactic acid concentrations from healthy and IPF lung tissue were determined by nuclear magnetic resonance spectroscopy; α-smooth muscle actin, calponin, and LDH5 expression were assessed by Western blot of cell culture lysates. Lactic acid and LDH5 were significantly elevated in IPF lung tissue compared with controls. Physiologic concentrations of lactic acid induced myofibroblast differentiation via activation of TGF-β. TGF-β induced expression of LDH5 via hypoxia-inducible factor 1α (HIF1α). Importantly, overexpression of both HIF1α and LDH5 in human lung fibroblasts induced myofibroblast differentiation and synergized with low-dose TGF-β to induce differentiation. Furthermore, inhibition of both HIF1α and LDH5 inhibited TGF-β–induced myofibroblast differentiation.
Conclusions: We have identified the metabolite lactic acid as an important mediator of myofibroblast differentiation via a pH-dependent activation of TGF-β. We propose that the metabolic milieu of the lung, and potentially other tissues, is an important driving force behind myofibroblast differentiation and potentially the initiation and progression of fibrotic disorders.
doi:10.1164/rccm.201201-0084OC
PMCID: PMC3480515  PMID: 22923663
lactate; idiopathic pulmonary fibrosis; myofibroblast; lactate dehydrogenase; hypoxia-inducible factor 1α
22.  Critical Role of Serum Response Factor in Pulmonary Myofibroblast Differentiation Induced by TGF-β 
Transforming growth factor-β (TGF-β) is a cytokine implicated in wound healing and in the pathogenesis of pulmonary fibrosis. TGF-β stimulates myofibroblast differentiation characterized by expression of contractile smooth muscle (SM)-specific proteins such as SM–α-actin. In the present study, we examined the role of serum response factor (SRF) in the mechanism of TGF-β–induced pulmonary myofibroblast differentiation of human lung fibroblasts (HLF). TGF-β stimulated SM–α-actin expression in HLF, which paralleled with a profound induction of SRF expression and activity. Inhibition of SRF by the pharmacologic SRF inhibitor (CCG-1423), or via adenovirus-mediated transduction of SRF short hairpin RNA (shSRF), blocked the expression of both SRF and SM–α-actin in response to TGF-β without affecting Smad-mediated signaling of TGF-β. However, forced expression of SRF on its own did not promote SM–α-actin expression, whereas expression of the constitutively transactivated SRF fusion protein (SRF-VP16) was sufficient to induce SM–α-actin expression, suggesting that both expression and transactivation of SRF are important. Activation of protein kinase A (PKA) by forskolin or iloprost resulted in a significant inhibition of SM–α-actin expression induced by TGF-β, and this was associated with inhibition of both SRF expression and activity, but not of Smad-mediated gene transcription. In summary, this is the first direct demonstration that TGF-β–induced pulmonary myofibroblast differentiation is mediated by SRF, and that inhibition of myofibroblast differentiation by PKA occurs through down-regulation of SRF expression levels and SRF activity, independent of Smad signaling.
doi:10.1165/rcmb.2008-0288OC
PMCID: PMC2742753  PMID: 19151320
transforming growth factor-β; serum response factor; myofibroblast; protein kinase A; Smad
23.  TGF-β: Titan of Lung Fibrogenesis 
Current enzyme inhibition  2010;6(2):10.2174/10067.
Pulmonary fibrosis is characterized by epithelial cell injury, accumulation of myofibroblasts, and excessive deposition of collagen and other extracellular matrix elements, leading to loss of pulmonary function. Studies in both humans and animal models strongly suggest that TGF-β1 plays a pivotal role in the pathogenesis of pulmonary fibrosis. This review will first give an overview of TGF-β signaling and the effects of its inhibition on lung fibrogenesis. This overview includes information on TGF-β signal transduction pathways, the importance of TGF-β in the accumulation of myofibroblasts, the role of TGF-β in epithelial injury and apoptosis, the role of TGF-β in extracellular matrix remodeling, and the effects of inhibiting TGF-β signaling in animal models of lung fibrosis. Subsequently this review will highlight recent advances in two areas of particular interest to our research group: (1) TGF-β and proteoglycans; (2) TGF-β and histone deacetylases. Although our understanding of the role of TGF-β and its mechanisms of action in lung fibrogenesis has increased dramatically in recent years, there is still much to be learned about this important molecule, especially how TGF-β function is modulated in vivo, and its complex interactions with other factors expressed during lung injury and repair. Research in these areas will help identify novel therapeutic targets for the treatment of pulmonary fibrosis that will hopefully improve the prognosis of this devastating illness.
doi:10.2174/10067
PMCID: PMC3812949  PMID: 24187529
TGF-β; pulmonary fibrosis; myofibroblasts; epithelial-mesenchymal transition; apoptosis; integrin; reactive oxygen species; proteoglycan; sulf; histone deacetylase
24.  Transforming Growth Factor β1-mediated Activation of the Smooth Muscle α-Actin Gene in Human Pulmonary Myofibroblasts Is Inhibited by Tumor Necrosis Factor-α via Mitogen-activated Protein Kinase Kinase 1-dependent Induction of the Egr-1 Transcriptional Repressor 
Molecular Biology of the Cell  2009;20(8):2174-2185.
Transforming growth factor (TGF) β1 is a mediator of myofibroblast differentiation in healing wounds in which it activates transcription of the smooth muscle α-actin (SMαA) gene via dynamic interplay of nuclear activators and repressors. Targeting components of TGFβ1 signaling may be an effective strategy for controlling myofibroblasts in chronic fibrotic diseases. We examined the ability of proinflammatory tumor necrosis factor (TNF)-α to antagonize TGFβ1-mediated human pulmonary myofibroblast differentiation. TNF-α abrogated TGFβ1-induced SMαA gene expression at the level of transcription without disrupting phosphorylation of regulatory Smads. Intact mitogen-activated protein kinase kinase (Mek)–extracellular signal-regulated kinase (Erk) kinase signaling was required for myofibroblast repression by TNF-α via induction of the early growth response factor-1 (Egr-1) DNA-binding protein. Egr-1 bound to the GC-rich SPUR activation element in the SMαA promoter and potently suppressed Smad3- and TGFβ1-mediated transcription. Reduction in Smad binding to the SMαA promoter in TNF-α–treated myofibroblasts was accompanied by an increase in Egr-1 and YB-1 repressor binding, suggesting that the molecular mechanism underlying repression may involve competitive interplay between Egr-1, YB-1, and Smads. The ability of TNF-α to attenuate myofibroblast differentiation via modulation of a Mek1/Erk/Egr-1 regulatory axis may be useful in designing new therapeutic targets to offset destructive tissue remodeling in chronic fibrotic disease.
doi:10.1091/mbc.E08-10-0994
PMCID: PMC2669025  PMID: 19261809
25.  Progressive pulmonary fibrosis is mediated by TGF-β isoform 1 but not TGF-β3 
Tissue repair is a well orchestrated biological process involving numerous soluble mediators, and an imbalance between these factors may result in impaired repair and fibrosis. Transforming growth factor (TGF) β is a key profibrotic element in this process and it is thought that its three isoforms act in a similar way. Here, we report that TGF-β3 administered to rat lungs using transient overexpression initiates profibrotic effects similar to those elicited by TGF-β1, but causes less severe and progressive changes. The data suggest that TGF-β3 does not lead to inhibition of matrix degradation in the same way as TGF-β1, resulting in non-fibrotic tissue repair. Further, TGF-β3 is able to downregulate TGF-β1 induced gene expression, suggesting a regulatory role of TGF-β3. TGF-β3 overexpression results in an upregulation of Smad proteins similar to TGF-β1, but is less efficient in inducing the ALK 5 and TGF-β type II receptor (TβRII). We provide evidence that this difference may contribute to the progressive nature of TGF-β1 induced fibrotic response, in contrast to the limited fibrosis observed following TGF-β3 overexpression. TGF-β3 is important in “normal wound healing”, but is outbalanced by TGF-β1 in “fibrotic wound healing” in the lung.
doi:10.1016/j.biocel.2007.08.016
PMCID: PMC2350199  PMID: 17931953

Results 1-25 (908673)