PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (623717)

Clipboard (0)
None

Related Articles

1.  A Structure-Based Approach to Ligand Discovery for 2C-Methyl-d-erythritol-2,4-cyclodiphosphate Synthase: A Target for Antimicrobial Therapy† 
Journal of Medicinal Chemistry  2009;52(8):2531-2542.
The nonmevalonate route to isoprenoid biosynthesis is essential in Gram-negative bacteria and apicomplexan parasites. The enzymes of this pathway are absent from mammals, contributing to their appeal as chemotherapeutic targets. One enzyme, 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase (IspF), has been validated as a target by genetic approaches in bacteria. Virtual screening against Escherichia coli IspF (EcIspF) was performed by combining a hierarchical filtering methodology with molecular docking. Docked compounds were inspected and 10 selected for experimental validation. A surface plasmon resonance assay was developed and two weak ligands identified. Crystal structures of EcIspF complexes were determined to support rational ligand development. Cytosine analogues and Zn2+-binding moieties were characterized. One of the putative Zn2+-binding compounds gave the lowest measured KD to date (1.92 ± 0.18 μM). These data provide a framework for the development of IspF inhibitors to generate lead compounds of therapeutic potential against microbial pathogens.
doi:10.1021/jm801475n
PMCID: PMC2669732  PMID: 19320487
2.  2C-Methyl-d-erythritol 4-phosphate enhances and sustains cyclodiphosphate synthase IspF activity 
ACS chemical biology  2012;7(10):1702-1710.
There is significant progress toward understanding catalysis throughout the essential MEP pathway to isoprenoids in human pathogens; however, little is known about pathway regulation. The present study begins by testing the hypothesis that isoprenoid biosynthesis is regulated via feedback inhibition of the fifth enzyme cyclodiphosphate IspF by downstream isoprenoid diphosphates. Here, we demonstrate recombinant E. coli IspF is not inhibited by downstream metabolites and isopentenyl diphosphate (IDP), dimethylallyl diphosphate (DMADP), geranyl diphosphate (GDP) and farnesyl diphosphate (FDP) under standard assay conditions. However, 2C-methyl-d-erythritol 4-phosphate (MEP), the product of reductoisomerase IspC and first committed MEP pathway intermediate, activates and sustains this enhanced IspF activity, and the IspF-MEP complex is inhibited by FDP. We further show that the methylerythritol scaffold itself, which is unique to this pathway, drives the activation and stabilization of active IspF. Our results suggest a novel feed-forward regulatory mechanism for 2Cmethyl-d-erythritol 2,4-cyclodiphosphate (MEcDP) production and support an isoprenoid biosynthesis regulatory mechanism via feedback inhibition of the IspF-MEP complex by FDP. The results have important implications for development of inhibitors against the IspF-MEP complex, which may be the physiologically relevant form of the enzyme.
doi:10.1021/cb300243w
PMCID: PMC3477264  PMID: 22839733
cyclodiphosphate synthase; IspF; methylerythritol phosphate; MEP pathway regulation
3.  The Sorbitol Phosphotransferase System Is Responsible for Transport of 2-C-Methyl-d-Erythritol into Salmonella enterica Serovar Typhimurium 
Journal of Bacteriology  2004;186(2):473-480.
2-C-methyl-d-erythritol 4-phosphate is the first committed intermediate in the biosynthesis of the isoprenoid precursors isopentenyl diphosphate and dimethylallyl diphosphate. Supplementation of the growth medium with 2-C-methyl-d-erythritol has been shown to complement disruptions in the Escherichia coli gene for 1-deoxy-d-xylulose 5-phosphate synthase, the enzyme that synthesizes the immediate precursor of 2-C-methyl-d-erythritol 4-phosphate. In order to be utilized in isoprenoid biosynthesis, 2-C-methyl-d-erythritol must be phosphorylated. We describe the construction of Salmonella enterica serovar Typhimurium strain RMC26, in which the essential gene encoding 1-deoxy-d-xylulose 5-phosphate synthase has been disrupted by insertion of a synthetic mevalonate operon consisting of the yeast ERG8, ERG12, and ERG19 genes, responsible for converting mevalonate to isopentenyl diphosphate under the control of an arabinose-inducible promoter. Random mutagenesis of RMC26 produced defects in the sorbitol phosphotransferase system that prevented the transport of 2-C-methyl-d-erythritol into the cell. RMC26 and mutant strains of RMC26 unable to grow on 2-C-methyl-d-erythritol were incubated in buffer containing mevalonate and deuterium-labeled 2-C-methyl-d-erythritol. Ubiquinone-8 was isolated from these cells and analyzed for deuterium content. Efficient incorporation of deuterium was observed for RMC26. However, there was no evidence of deuterium incorporation into the isoprenoid side chain of ubiquinone Q8 in the RMC26 mutants.
doi:10.1128/JB.186.2.473-480.2004
PMCID: PMC305747  PMID: 14702317
4.  Synthesis of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate and kinetic studies of Mycobacterium tuberculosis IspF, a potential drug target 
Chemistry & biology  2010;17(2):117-122.
SUMMARY
Many pathogenic bacteria utilize the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for the biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate, two major building blocks of isoprenoid compounds. The fifth enzyme in the MEP pathway, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) synthase (IspF), catalyzes the conversion of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to ME-CPP with a corresponding release of cytidine 5-monophosphate (CMP). Since there is no ortholog of IspF in human cells IspF is of interest as a potential drug target. However, study of IspF has been hindered by a lack of enantiopure CDP-ME2P. Herein, we report the first synthesis of enantiomerically pure CDP-ME2P from commercially available D-arabinose. Cloned, expressed, and purified M. tuberculosis IspF was able to utilize the synthetic CDP-ME2P as a substrate, a result confirmed by mass spectrometry. A convenient, sensitive, in vitro IspF assay was developed by coupling the CMP released during production of ME-CPP to mononucleotide kinase, which can be used for high throughput screening.
doi:10.1016/j.chembiol.2010.01.013
PMCID: PMC2837070  PMID: 20189102
5.  Characterization of the Mycobacterium tuberculosis 4-Diphosphocytidyl-2-C-Methyl-d-Erythritol Synthase: Potential for Drug Development▿  
Journal of Bacteriology  2007;189(24):8922-8927.
Mycobacterium tuberculosis utilizes the methylerythritol phosphate (MEP) pathway for biosynthesis of isopentenyl diphosphate and its isomer, dimethylallyl diphosphate, precursors of all isoprenoid compounds. This pathway is of interest as a source of new drug targets, as it is absent from humans and disruption of the responsible genes has shown a lethal phenotype for Escherichia coli. In the MEP pathway, 4-diphosphocytidyl-2-C-methyl-d-erythritol is formed from 2-C-methyl-d-erythritol 4-phosphate (MEP) and CTP in a reaction catalyzed by a 4-diphosphocytidyl-2-C-methyl-d-erythritol synthase (IspD). In the present work, we demonstrate that Rv3582c is essential for M. tuberculosis: Rv3582c has been cloned and expressed, and the encoded protein has been purified. The purified M. tuberculosis IspD protein was capable of catalyzing the formation of 4-diphosphocytidyl-2-C-methyl-d-erythritol in the presence of MEP and CTP. The enzyme was active over a broad pH range (pH 6.0 to 9.0), with peak activity at pH 8.0. The activity was absolutely dependent upon divalent cations, with 20 mM Mg2+ being optimal, and replacement of CTP with other nucleotide 5′-triphosphates did not support activity. Under the conditions tested, M. tuberculosis IspD had Km values of 58.5 μM for MEP and 53.2 μM for CTP. Calculated kcat and kcat/Km values were 0.72 min−1 and 12.3 mM−1 min−1 for MEP and 1.0 min−1 and 18.8 mM−1 min−1 for CTP, respectively.
doi:10.1128/JB.00925-07
PMCID: PMC2168624  PMID: 17921290
6.  A triclinic crystal form of Escherichia coli 4-diphosphocytidyl-2C-methyl-d-erythritol kinase and reassessment of the quaternary structure 
The structure of a triclinic crystal form of 4-diphosphocytidyl-2C-methyl-d-erythritol kinase has been determined. Comparisons with a previously reported monoclinic crystal form raise questions about our knowledge of the quaternary structure of this enzyme.
4-Diphosphocytidyl-2C-methyl-d-erythritol kinase (IspE; EC 2.7.1.148) contributes to the 1-deoxy-d-xylulose 5-phosphate or mevalonate-independent biosynthetic pathway that produces the isomers isopentenyl diphosphate and dimethylallyl diphosphate. These five-carbon compounds are the fundamental building blocks for the biosynthesis of isoprenoids. The mevalonate-independent pathway does not occur in humans, but is present and has been shown to be essential in many dangerous pathogens, i.e. Plasmodium species, which cause malaria, and Gram-negative bacteria. Thus, the enzymes involved in this pathway have attracted attention as potential drug targets. IspE produces 4-­diphosphos­phocytidyl-2C-methyl-d-erythritol 2-phosphate by ATP-dependent phosphorylation of 4-diphosphocytidyl-2C-methyl-d-erythritol. A triclinic crystal structure of the Escherichia coli IspE–ADP complex with two molecules in the asymmetric unit was determined at 2 Å resolution and compared with a monoclinic crystal form of a ternary complex of E. coli IspE also with two molecules in the asymmetric unit. The molecular packing is different in the two forms. In the asymmetric unit of the triclinic crystal form the substrate-binding sites of IspE are occluded by structural elements of the partner, suggesting that the ‘triclinic dimer’ is an artefact of the crystal lattice. The surface area of interaction in the triclinic form is almost double that observed in the monoclinic form, implying that the dimeric assembly in the monoclinic form may also be an artifact of crystallization.
doi:10.1107/S1744309109054591
PMCID: PMC2833027  PMID: 20208151
mevalonate-independent pathway; isoprenoid biosynthesis; kinases
7.  The structure of Mycobacteria 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase, an essential enzyme, provides a platform for drug discovery 
Background
The prevalence of tuberculosis, the prolonged and expensive treatment that this disease requires and an increase in drug resistance indicate an urgent need for new treatments. The 1-deoxy-D-xylulose 5-phosphate pathway of isoprenoid precursor biosynthesis is an attractive chemotherapeutic target because it occurs in many pathogens, including Mycobacterium tuberculosis, and is absent from humans. To underpin future drug development it is important to assess which enzymes in this biosynthetic pathway are essential in the actual pathogens and to characterize them.
Results
The fifth enzyme of this pathway, encoded by ispF, is 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase (IspF). A two-step recombination strategy was used to construct ispF deletion mutants in M. tuberculosis but only wild-type double crossover strains were isolated. The chromosomal copy could be deleted when a second functional copy was provided on an integrating plasmid, demonstrating that ispF is an essential gene under the conditions tested thereby confirming its potential as a drug target. We attempted structure determination of the M. tuberculosis enzyme (MtIspF), but failed to obtain crystals. We instead analyzed the orthologue M. smegmatis IspF (MsIspF), sharing 73% amino acid sequence identity, at 2.2 Å resolution. The high level of sequence conservation is particularly pronounced in and around the active site. MsIspF is a trimer with a hydrophobic cavity at its center that contains density consistent with diphosphate-containing isoprenoids. The active site, created by two subunits, comprises a rigid CDP-Zn2+ binding pocket with a flexible loop to position the 2C-methyl-D-erythritol moiety of substrate. Sequence-structure comparisons indicate that the active site and interactions with ligands are highly conserved.
Conclusion
Our study genetically validates MtIspF as a therapeutic target and provides a model system for structure-based ligand design.
doi:10.1186/1472-6807-7-68
PMCID: PMC2151065  PMID: 17956607
8.  Absence of Substrate Channeling between Active Sites in the Agrobacterium tumefaciens IspDF and IspE Enzymes of the Methyl Erythritol Phosphate Pathway† 
Biochemistry  2006;45(11):3548-3553.
The conversion of 2C-methyl-d-erythritol 4-phosphate (MEP) to 2C-methyl-d-erythritol 2,4-cyclodiphosphate (cMEDP) in the MEP entry into the isoprenoid biosynthetic pathway occurs in three consecutive steps catalyzed by the IspD, IspE, and IspF enzymes, respectively. In Agrobacterium tumefaciens the ispD and ispF genes are fused to encode a bifunctional enzyme that catalyzes the first (synthesis of 4-diphosphocytidyl-2-C-methyl d-erythritol) and third (synthesis of 2C-methyl-d-erythritol 2,4-cyclodiphosphate) steps. Sedimentation velocity experiments indicate that the bifunctional IspDF enzyme and the IspE protein associate in solution raising the possibility of substrate channeling among the active sites in these two proteins. Kinetic evidence for substrate channeling was sought by measuring the time courses for product formation during incubations of MEP, CTP, and ATP with the IspDF and IspE proteins with and without an excess of the inactive IspE (D152A) mutant in presence or absence of 30% (v/v) glycerol. The time dependencies indicate that the enzyme-generated intermediates are not transferred from the IspD active site in IspDF to the active site of IspE or from the active site in IspE to the active site in the IspF module of IspDF.
doi:10.1021/bi0520075
PMCID: PMC2516919  PMID: 16533036
bifunctional; IspDF; IspE; non-channeling
9.  Trinuclear Metal Clusters in Catalysis by Terpenoid Synthases 
Terpenoid synthases are ubiquitous enzymes that catalyze the formation of structurally and stereochemically diverse isoprenoid natural products. Many isoprenoid coupling enzymes and terpenoid cyclases from bacteria, fungi, protists, plants, and animals share the class I terpenoid synthase fold. Despite generally low amino acid sequence identity among these examples, class I terpenoid synthases contain conserved metal binding motifs that coordinate to a trinuclear metal cluster. This cluster not only serves to bind and orient the flexible isoprenoid substrate in the precatalytic Michaelis complex, but it also triggers the departure of the diphosphate leaving group to generate a carbocation that initiates catalysis. Additional conserved hydrogen bond donors assist the metal cluster in this function. Crystal structure analysis reveals that the constellation of three metal ions required for terpenoid synthase catalysis is generally identical among all class I terpenoid synthases of known structure.
doi:10.1351/PAC-CON-09-09-37
PMCID: PMC3090183  PMID: 21562622
enzyme catalysis; inorganic pyrophosphate; geranyl diphosphate; farnesyl diphosphate; Mg2+
10.  Crystal structures of IspF from Plasmodium falciparum and Burkholderia cenocepacia: comparisons inform antimicrobial drug target assessment 
Background
2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase (IspF) catalyzes the conversion of 4-diphosphocytidyl-2C-methyl-D-erythritol-2-phosphate to 2C-methyl-D-erythritol-2,4-cyclodiphosphate and cytidine monophosphate in production of isoprenoid-precursors via the methylerythritol phosphate biosynthetic pathway. IspF is found in the protozoan Plasmodium falciparum, a parasite that causes cerebral malaria, as well as in many Gram-negative bacteria such as Burkholderia cenocepacia. IspF represents a potential target for development of broad-spectrum antimicrobial drugs since it is proven or inferred as essential in these pathogens and absent from mammals. Structural studies of IspF from these two important yet distinct pathogens, and comparisons with orthologues have been carried out to generate reagents, to support and inform a structure-based approach to early stage drug discovery.
Results
Efficient recombinant protein production and crystallization protocols were developed, and high-resolution crystal structures of IspF from P. falciparum (Emphasis/Emphasis>IspF) and B. cenocepacia (BcIspF) in complex with cytidine nucleotides determined. Comparisons with orthologues, indicate a high degree of order and conservation in parts of the active site where Zn2+ is bound and where recognition of the cytidine moiety of substrate occurs. However, conformational flexibility is noted in that area of the active site responsible for binding the methylerythritol component of substrate. Unexpectedly, one structure of BcIspF revealed two molecules of cytidine monophosphate in the active site, and another identified citrate coordinating to the catalytic Zn2+. In both cases interactions with ligands appear to help order a flexible loop at one side of the active site. Difficulties were encountered when attempting to derive complex structures with other ligands.
Conclusions
High-resolution crystal structures of IspF from two important human pathogens have been obtained and compared to orthologues. The studies reveal new data on ligand binding, with citrate coordinating to the active site Zn2+ and when present in high concentrations cytidine monophosphate displays two binding modes in the active site. Ligand binding appears to order a part of the active site involved in substrate recognition. The high degree of structural conservation in and around the IspF active site suggests that any structural model might be suitable to support a program of structure-based drug discovery.
doi:10.1186/1472-6807-14-1
PMCID: PMC3927217  PMID: 24410837
Antimicrobial drug target; Isoprenoid biosynthesis; X-ray crystallography; Zn2+-dependent enzyme
11.  Cloning and characterization of bifunctional enzyme farnesyl diphosphate/geranylgeranyl diphosphate synthase from Plasmodium falciparum 
Malaria Journal  2013;12:184.
Background
Isoprenoids are the most diverse and abundant group of natural products. In Plasmodium falciparum, isoprenoid synthesis proceeds through the methyl erythritol diphosphate pathway and the products are further metabolized by farnesyl diphosphate synthase (FPPS), turning this enzyme into a key branch point of the isoprenoid synthesis. Changes in FPPS activity could alter the flux of isoprenoid compounds downstream of FPPS and, hence, play a central role in the regulation of a number of essential functions in Plasmodium parasites.
Methods
The isolation and cloning of gene PF3D7_18400 was done by amplification from cDNA from mixed stage parasites of P. falciparum. After sequencing, the fragment was subcloned in pGEX2T for recombinant protein expression. To verify if the PF3D7_1128400 gene encodes a functional rPfFPPS protein, its catalytic activity was assessed using the substrate [4-14C] isopentenyl diphosphate and three different allylic substrates: dimethylallyl diphosphate, geranyl diphosphate or farnesyl diphosphate. The reaction products were identified by thin layer chromatography and reverse phase high-performance liquid chromatography. To confirm the product spectrum formed of rPfFPPS, isoprenic compounds were also identified by mass spectrometry. Apparent kinetic constants KM and Vmax for each substrate were determined by Michaelis–Menten; also, inhibition assays were performed using risedronate.
Results
The expressed protein of P. falciparum FPPS (rPfFPPS) catalyzes the synthesis of farnesyl diphosphate, as well as geranylgeranyl diphosphate, being therefore a bifunctional FPPS/geranylgeranyl diphosphate synthase (GGPPS) enzyme. The apparent KM values for the substrates dimethylallyl diphosphate, geranyl diphosphate and farnesyl diphosphate were, respectively, 68 ± 5 μM, 7.8 ± 1.3 μM and 2.06 ± 0.4 μM. The protein is expressed constitutively in all intra-erythrocytic stages of P. falciparum, demonstrated by using transgenic parasites with a haemagglutinin-tagged version of FPPS. Also, the present data demonstrate that the recombinant protein is inhibited by risedronate.
Conclusions
The rPfFPPS is a bifunctional FPPS/GGPPS enzyme and the structure of products FOH and GGOH were confirmed mass spectrometry. Plasmodial FPPS represents a potential target for the rational design of chemotherapeutic agents to treat malaria.
doi:10.1186/1475-2875-12-184
PMCID: PMC3679732  PMID: 23734739
Plasmodium falciparum; Malaria; Isoprenoids; Farnesyl diphosphate; Farnesyl diphosphate synthase; Geranylgeranyl diphosphate; Geranylgeranyl diphosphate synthase
12.  Isopentenyl Diphosphate Isomerase. Mechanism-Based Inhibition by Diene Analogues of Isopentenyl Diphosphate and Dimethylallyl Diphosphate 
Journal of the American Chemical Society  2005;127(49):17433-17438.
Isopentenyl diphosphate isomerase (IDI) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). This is an essential step in the mevalonate entry into the isoprenoid biosynthetic pathway. The isomerization catalyzed by type I IDI involves protonation of the carbon-carbon double bond in IPP or DMAPP to form a tertiary carbocation, followed by deprotonation. Diene analogs for DMAPP (E-2-OPP and Z-2-OPP) and IPP (4-OPP) were synthesized and found to be potent active-site directed irreversible inhibitors of the enzyme. X-ray analysis of the E·I complex between E. coli IDI and 4-OPP reveals the presence of two isomers that differ in the stereochemistry of the newly formed C3-C4 double bond in the hydrocarbon chain of the inhibitor. In both adducts C5 of the inhibitor is joined to the sulfur of C67. In these structures the methyl group formed upon protonation of the diene moiety in 4-OPP is located near E116, implicating that residue in the protonation step.
doi:10.1021/ja056187h
PMCID: PMC2528281  PMID: 16332094
13.  1-Deoxy-d-Xylulose 5-Phosphate Synthase, the Gene Product of Open Reading Frame (ORF) 2816 and ORF 2895 in Rhodobacter capsulatus 
Journal of Bacteriology  2001;183(1):1-11.
In eubacteria, green algae, and plant chloroplasts, isopentenyl diphosphate, a key intermediate in the biosynthesis of isoprenoids, is synthesized by the methylerythritol phosphate pathway. The five carbons of the basic isoprenoid unit are assembled by joining pyruvate and d-glyceraldehyde 3-phosphate. The reaction is catalyzed by the thiamine diphosphate-dependent enzyme 1-deoxy-d-xylulose 5-phosphate synthase. In Rhodobacter capsulatus, two open reading frames (ORFs) carry the genes that encode 1-deoxy-d-xylulose 5-phosphate synthase. ORF 2816 is located in the photosynthesis-related gene cluster, along with most of the genes required for synthesis of the photosynthetic machinery of the bacterium, whereas ORF 2895 is located elsewhere in the genome. The proteins encoded by ORF 2816 and ORF 2895, 1-deoxy-d-xylulose 5-phosphate synthase A and B, containing a His6 tag, were synthesized in Escherichia coli and purified to greater than 95% homogeneity in two steps. 1-Deoxy-d-xylulose 5-phosphate synthase A appears to be a homodimer with 68 kDa subunits. A new assay was developed, and the following steady-state kinetic constants were determined for 1-deoxy-d-xylulose 5-phosphate synthase A and B: Kmpyruvate = 0.61 and 3.0 mM, Kmd-glyceraldehyde 3-phosphate = 150 and 120 μM, and Vmax = 1.9 and 1.4 μmol/min/mg in 200 mM sodium citrate (pH 7.4). The ORF encoding 1-deoxy-d-xylulose 5-phosphate synthase B complemented the disrupted essential dxs gene in E. coli strain FH11.
doi:10.1128/JB.183.1.1-11.2001
PMCID: PMC94844  PMID: 11114895
14.  GcpE Is Involved in the 2-C-Methyl-d-Erythritol 4-Phosphate Pathway of Isoprenoid Biosynthesis in Escherichia coli 
Journal of Bacteriology  2001;183(8):2411-2416.
In a variety of organisms, including plants and several eubacteria, isoprenoids are synthesized by the mevalonate-independent 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. Although different enzymes of this pathway have been described, the terminal biosynthetic steps of the MEP pathway have not been fully elucidated. In this work, we demonstrate that the gcpE gene of Escherichia coli is involved in this pathway. E. coli cells were genetically engineered to utilize exogenously provided mevalonate for isoprenoid biosynthesis by the mevalonate pathway. These cells were then deleted for the essential gcpE gene and were viable only if the medium was supplemented with mevalonate or the cells were complemented with an episomal copy of gcpE.
doi:10.1128/JB.183.8.2411-2416.2001
PMCID: PMC95155  PMID: 11274098
15.  Type-2 Isopentenyl Diphosphate Isomerase. Evidence for a Stepwise Mechanism 
Journal of the American Chemical Society  2011;133(47):19017-19019.
Isopentenyl diphosphate isomerase (IDI) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). These two molecules are the building blocks for construction of isoprenoid carbon skeletons in nature. Two structurally unrelated forms of IDI are known. A variety of studies support a proton addition/proton elimination mechanism for both enzymes. During studies with Thermus thermophilus IDI-2, we discovered that the olefinic hydrogens of a vinyl thiomethyl analogue of isopentenyl diphosphate exchanged with solvent when the enzyme was incubated with D2O without concomitant isomerization of the double bond. These results suggest that the enzyme-catalyzed isomerization reaction is not concerted.
doi:10.1021/ja208331q
PMCID: PMC3237117  PMID: 22047048
16.  Mutations in Escherichia coli aceE and ribB Genes Allow Survival of Strains Defective in the First Step of the Isoprenoid Biosynthesis Pathway 
PLoS ONE  2012;7(8):e43775.
A functional 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is required for isoprenoid biosynthesis and hence survival in Escherichia coli and most other bacteria. In the first two steps of the pathway, MEP is produced from the central metabolic intermediates pyruvate and glyceraldehyde 3-phosphate via 1-deoxy-D-xylulose 5-phosphate (DXP) by the activity of the enzymes DXP synthase (DXS) and DXP reductoisomerase (DXR). Because the MEP pathway is absent from humans, it was proposed as a promising new target to develop new antibiotics. However, the lethal phenotype caused by the deletion of DXS or DXR was found to be suppressed with a relatively high efficiency by unidentified mutations. Here we report that several mutations in the unrelated genes aceE and ribB rescue growth of DXS-defective mutants because the encoded enzymes allowed the production of sufficient DXP in vivo. Together, this work unveils the diversity of mechanisms that can evolve in bacteria to circumvent a blockage of the first step of the MEP pathway.
doi:10.1371/journal.pone.0043775
PMCID: PMC3424233  PMID: 22928031
17.  Characterization of the Depletion of 2-C-Methyl-d-Erythritol-2,4-Cyclodiphosphate Synthase in Escherichia coli and Bacillus subtilis 
Journal of Bacteriology  2002;184(20):5609-5618.
The ispF gene product in Escherichia coli has been shown to catalyze the formation of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (MEC) in the deoxyxylulose (DOXP) pathway for isoprenoid biosynthesis. In this work, the E. coli gene ispF and its Bacillus subtilis orthologue, yacN, were deleted and conditionally complemented by expression of these genes from distant loci in the respective organisms. In E. coli, complementation was achieved through integration of ispF at the araBAD locus with control from the arabinose-inducible araBAD promoter, while in B. subtilis, yacN was placed at amyE under control of the xylose-inducible xylA promoter. In both cases, growth was severely retarded in the absence of inducer, consistent with these genes being essential for survival. E. coli cells depleted of MEC synthase revealed a filamentous phenotype. This was in contrast to the depletion of MEC synthase in B. subtilis, which resulted in a loss of rod shape, irregular septation, multicompartmentalized cells, and thickened cell walls. To probe the nature of the predominant deficiency of MEC synthase-depleted cells, we investigated the sensitivity of these conditionally complemented mutants, grown with various concentrations of inducer, to a wide variety antibiotics. Synthetic lethal behavior in MEC synthase-depleted cells was prevalent for cell wall-active antibiotics.
doi:10.1128/JB.184.20.5609-5618.2002
PMCID: PMC139617  PMID: 12270818
18.  Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei 
As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification of several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme.
doi:10.1007/s10969-011-9102-6
PMCID: PMC3123455  PMID: 21359640
SSGCID; Infectious disease; NMR; X-ray crystallography; Fragment-based screening; MEP pathway; MECP synthase; IspF; Burkholderia pseudomallei
19.  A photoactive isoprenoid diphosphate analogue containing a stable phosphonate linkage: synthesis and biochemical studies with prenyltransferases 
The Journal of organic chemistry  2007;72(13):4587-4595.
A number of biochemical processes rely on isoprenoids, including the post-translational modification of signaling proteins and the biosynthesis of a wide array of compounds. Photoactivatable analogues have been developed to study isoprenoid utilizing enzymes such as the isoprenoid synthases and prenyltransferases. While these initial analogues proved to be excellent structural analogues with good cross linking capability, they lack the stability needed when the goals include isolation of cross-linked species, tryptic digestion, and subsequent peptide sequencing. Here, the synthesis of a benzophenone-based farnesyl diphosphate analogue containing a stable phosphonophosphate group is described. Inhibition kinetics, photolabeling experiments, as well as x-ray crystallographic analysis with a protein prenyltransferase are described, verifying this compound as a good isoprenoid mimetic. In addition, the utility of this new analogue was explored by using it to photoaffinity label crude protein extracts obtained from Hevea brasiliensis latex. Those experiments suggest that a small protein, Rubber Elongation Factor, interacts directly with farnesyl diphosphate during rubber biosynthesis. These results indicate that this benzophenone-based isoprenoid analogue will be useful for identifying enzymes that utilize farnesyl diphosphate as a substrate.
doi:10.1021/jo0623033
PMCID: PMC2561318  PMID: 17477573
20.  Structure-activity relationships at the 5-position of thiolactomycin: an intact (5R)-isoprene unit is required for activity against the condensing enzymes from Mycobacterium tuberculosis and Escherichia coli 
Journal of medicinal chemistry  2006;49(1):159-171.
Thiolactomycin inhibits bacterial cell growth through inhibition of the β-ketoacyl-ACP synthase activity of type II fatty acid synthases. The effect of modifications of the 5-position isoprenoid side chain on both IC50 and MIC were determined. Synthesis and screening of a structurally diverse set of 5-position analogues revealed very little tolerance for substitution in purified enzyme assays but a few analogues retained MIC, presumably through another target. Even subtle modifications such as reducing one or both double bonds of the diene were not tolerated. The only permissible structural modifications were removal of the isoprene methyl group or addition of a methyl group to the terminus. Co-crystallization of these two inhibitors with the condensing enzyme from E. coli revealed that they retained the TLM binding mode at the active site with reduced affinity. These results suggest a strict requirement for a conjugated, planar side chain inserting within the condensing enzyme active site.
doi:10.1021/jm050825p
PMCID: PMC1462948  PMID: 16392800
21.  Terpene Biosynthesis: Modularity Rules 
Terpenes are the largest class of small molecule natural products on Earth, and the most abundant by mass. Here, we summarize recent developments in elucidating the structure and function of the proteins involved in their biosynthesis. There are 6 main building blocks or modules (α,β,γ,δ,ε and ζ) that make up the structures of these enzymes: the αα and αδ head-to-tail trans-prenyl transferases that produce trans-isoprenoid diphosphates from C5 precursors; the ε head-to-head prenyl transferases that convert these diphosphates into the tri-and tetra-terpene precursors of sterols, hopanoids and carotenoids; the βγ di- and tri-terpene synthases; the ζ head-to-tail cis-prenyl transferases that produce the cis-isoprenoid diphosphates involved in bacterial cell wall biosynthesis, and finally the α, αβ and αβγ terpene synthases that produce plant terpenes, with many of these modular enzymes having originated from ancestral α and β domain proteins. We also review progress in determining the structure and function of the two 4Fe-4S reductases involved in formation of the C5 diphosphates in many bacteria, where again, highly modular structures are found.
doi:10.1002/anie.201103110
PMCID: PMC3769779  PMID: 22105807
terpenes; isoprenoids; biosynthesis; protein structure; evolution; metalloproteins
22.  Structure of 2-methylisoborneol synthase from Streptomyces coelicolor and implications for the cyclization of a non-canonical C-methylated monoterpenoid substrate† 
Biochemistry  2012;51(14):3011-3020.
The crystal structure of 2-methylisoborneol synthase (MIBS) from Streptomyces coelicolor A3(2) has been determined in complex with substrate analogues geranyl-S-thiolodiphosphate and 2-fluorogeranyl diphosphate at 1.80 Å and 1.95 Å resolution, respectively. This terpenoid cyclase catalyzes the cyclization of the naturally-occuring, non-canonical C-methylated isoprenoid substrate, 2-methylgeranyl diphosphate, to form the bicyclic product 2-methylisoborneol, a volatile C11 homoterpene alcohol with an earthy, musty odor. While MIBS adopts the tertiary structure of a class I terpenoid cyclase, its dimeric quaternary structure differs from that previously observed in dimeric terpenoid cyclases from plants and fungi. The quaternary structure of MIBS is nonetheless similar in some respects to that of dimeric farnesyl diphosphate synthase, which is not a cyclase. The structures of MIBS complexed with substrate analogues provide insights regarding differences in the catalytic mechanism of MIBS and the mechanisms of (+)-bornyl diphosphate synthase and endo-fenchol synthase, plant cyclases that convert geranyl diphosphate into products with closely related bicyclic bornyl skeletons, but distinct structures and stereochemistries.
doi:10.1021/bi201827a
PMCID: PMC3323742  PMID: 22455514
23.  Metabolite Profiling Identified Methylerythritol Cyclodiphosphate Efflux as a Limiting Step in Microbial Isoprenoid Production 
PLoS ONE  2012;7(11):e47513.
Isoprenoids are natural products that are all derived from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). These precursors are synthesized either by the mevalonate (MVA) pathway or the 1-Deoxy-D-Xylulose 5-Phosphate (DXP) pathway. Metabolic engineering of microbes has enabled overproduction of various isoprenoid products from the DXP pathway including lycopene, artemisinic acid, taxadiene and levopimaradiene. To date, there is no method to accurately measure all the DXP metabolic intermediates simultaneously so as to enable the identification of potential flux limiting steps. In this study, a solid phase extraction coupled with ultra performance liquid chromatography mass spectrometry (SPE UPLC-MS) method was developed. This method was used to measure the DXP intermediates in genetically engineered E. coli. Unexpectedly, methylerythritol cyclodiphosphate (MEC) was found to efflux when certain enzymes of the pathway were over-expressed, demonstrating the existence of a novel competing pathway branch in the DXP metabolism. Guided by these findings, ispG was overexpressed and was found to effectively reduce the efflux of MEC inside the cells, resulting in a significant increase in downstream isoprenoid production. This study demonstrated the necessity to quantify metabolites enabling the identification of a hitherto unrecognized pathway and provided useful insights into rational design in metabolic engineering.
doi:10.1371/journal.pone.0047513
PMCID: PMC3487848  PMID: 23133596
24.  Structure of geranyl diphosphate C-methyltransferase from Streptomyces coelicolor and implications for the mechanism of isoprenoid modification† 
Biochemistry  2012;51(14):3003-3010.
Geranyl diphosphate C-methyltransferase (GPPMT) from Streptomyces coelicolor A3(2) is the first methyltransferase discovered that modifies an acyclic isoprenoid diphosphate, geranyl diphosphate (GPP), to yield a non-canonical acyclic allylic diphosphate product, 2-methylgeranyl diphosphate, which serves as the substrate for a subsequent cyclization reaction catalyzed by a terpenoid cyclase, methylisoborneol synthase. Here, we report the crystal structures of GPPMT in complex with GPP or the substrate analogue geranyl-S-thiolodiphosphate (GSPP) along with S-adenosyl-l-homocysteine in the cofactor binding site, resulting from in situ demethylation of S-adenosyl-l-methionine, at 2.05 Å and 1.82 Å resolution, respectively. These structures suggest that both GPP and GSPP can undergo catalytic methylation in crystalline GPPMT, followed by dissociation of the isoprenoid product. S-adenosyl-l-homocysteine remains bound in the active site, however, and does not exchange with a fresh molecule of cofactor S-adenosyl-l-methionine. These structures provide important clues regarding the molecular mechanism of the reaction, especially with regard to the face of the 2,3 double bond of GPP that is methylated as well as the stabilization of the resulting carbocation intermediate through cation-π interactions.
doi:10.1021/bi300109c
PMCID: PMC3323675  PMID: 22455498
25.  Unearthing the Roots of the Terpenome 
Summary
Although terpenoid synthases catalyze the most complex reactions in biology, these enzymes appear to play little role in the chemistry of catalysis other than to trigger the ionization and chaperone the conformation of flexible isoprenoid substrates and carbocation intermediates through multi-step reaction cascades. Fidelity and promiscuity in this chemistry, i.e., whether a terpenoid synthase generates one or several products, depends on the permissiveness of the active site template in chaperoning each step of an isoprenoid coupling or cyclization reaction. Structure-guided mutagenesis studies of terpenoid synthases such as farnesyl diphosphate synthase, 5-epi-aristolochene synthase, and γ-humulene synthase suggest that the vast diversity of terpenoid natural products is rooted in the facile evolution of α-helical folds shared by terpenoid synthases in all forms of life.
doi:10.1016/j.cbpa.2007.12.008
PMCID: PMC2430190  PMID: 18249199

Results 1-25 (623717)