PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (694020)

Clipboard (0)
None

Related Articles

1.  Immature Copper-Zinc Superoxide Dismutase and Familial Amyotrophic Lateral Sclerosis 
Mutations in human copper-zinc superoxide dismutase (SOD1) cause an inherited form of amyotrophic lateral sclerosis (ALS, Lou Gehrig’s disease, motor neuron disease). Insoluble forms of mutant SOD1 accumulate in neural tissues of human ALS patients and in spinal cords of transgenic mice expressing these polypeptides, suggesting that SOD1-linked ALS is a protein misfolding disorder. Understanding the molecular basis for how the pathogenic mutations give rise to SOD1 folding intermediates, which may themselves be toxic, is therefore of keen interest. A critical step on the SOD1 folding pathway occurs when the copper chaperone for SOD1 (CCS) modifies the nascent SOD1 polypeptide by inserting the catalytic copper cofactor and oxidizing its intrasubunit disulfide bond. Recent studies reveal that pathogenic SOD1 proteins coming from cultured cells and from the spinal cords of transgenic mice tend to be metal-deficient and/or lacking the disulfide bond, raising the possibility that the disease-causing mutations may enhance levels of SOD1-folding intermediates by preventing or hindering CCS-mediated SOD1 maturation. This mini-review explores this hypothesis by highlighting the structural and biophysical properties of the pathogenic SOD1 mutants in the context of what is currently known about CCS structure and action. Other hypotheses as to the nature of toxicity inherent in pathogenic SOD1 proteins are not covered.
doi:10.3181/0903-MR-104
PMCID: PMC2850267  PMID: 19596823
superoxide dismutase; SOD1; amyotrophic lateral sclerosis; motor neuron disease; protein misfolding; protein aggregation; protofibrils; amyloid
2.  Mutant SOD1 knockdown in all cell types ameliorates disease in G85R SOD1 mice with a limited additional effect over knockdown restricted to motor neurons 
Journal of neurochemistry  2010;113(1):166-174.
Approximately10% of patients with amyotrophic lateral sclerosis (ALS) have familial ALS (FALS), and 20% of FALS is caused by mutant Cu/Zn superoxide dismutase type 1 (MTSOD1). Previous studies have convincingly demonstrated that MTSOD1 expression in other cell types besides motor neurons (MNs) contributes to disease in MTSOD1 FALS transgenic mice. Using Cre/LoxP methods, we knocked down G85R SOD1 mRNA by 66% in all cell types in 3-month-old FALS transgenic mice, delaying disease onset and lengthening disease duration. Surprisingly, the effect on onset and early disease duration was similar to that seen with ~25% knockdown prenatally in G85R SOD1 mRNA restricted to MNs and some interneurons in FALS transgenic mice. These results demonstrate no clear cumulative effect on disease onset or early disease duration from knocking down G85R SOD1 in other cell types in addition to MNs/interneurons; the findings bring up the possibility that MTSOD1 has a pathogenic effect early in life that our later knockdown did not affect. Despite the more limited amelioration of disease than expected, the effect of the knockdown on disease supports the value of this approach in FALS patients and asymptomatic individuals with SOD1 mutations.
doi:10.1111/j.1471-4159.2010.06594.x
PMCID: PMC2913968  PMID: 20132483
familial amyotrophic lateral sclerosis (FALS); ALS; superoxide dismutase type 1 (SOD1); motor neuron; neurodegeneration
3.  Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS 
Nature neuroscience  2010;13(11):1396-1403.
Many mutations confer upon copper/zinc superoxide dismutase-1 (SOD1) one or more toxic function(s) that impair motor neuron viability and cause familial amyotrophic lateral sclerosis (FALS). Using a conformation-specific antibody that detects misfolded SOD1 (C4F6), we demonstrate that oxidized WT-SOD1 and mutant-SOD1 share a conformational epitope that is not present in normal WT-SOD1. In a subset of human sporadic ALS (SALS) cases, motor neurons in the lumbosacral spinal cord displayed striking C4F6 immunoreactivity, denoting the presence of aberrant WT-SOD1 species. Recombinant, oxidized WT-SOD1 and WT-SOD1 immunopurified from SALS tissues inhibited kinesin-based fast axonal transport in a manner similar to FALS-linked mutant SOD1. Studies here suggest that WT-SOD1 can be pathogenic in SALS and identifies an SOD1-dependent pathogenic mechanism common to FALS and SALS.
doi:10.1038/nn.2660
PMCID: PMC2967729  PMID: 20953194
4.  Cupric Ions Induce the Oxidation and Trigger the Aggregation of Human Superoxide Dismutase 1 
PLoS ONE  2013;8(6):e65287.
Background
Amyotrophic lateral sclerosis (ALS), partly caused by the mutations and aggregation of human copper, zinc superoxide dismutase (SOD1), is a fatal degenerative disease of motor neurons. Because SOD1 is a major copper-binding protein present at relatively high concentration in motor neurons and copper can be a harmful pro-oxidant, we want to know whether aberrant copper biochemistry could underlie ALS pathogenesis. In this study, we have investigated and compared the effects of cupric ions on the aggregation of ALS-associated SOD1 mutant A4V and oxidized wild-type SOD1.
Methodology/Principal Findings
As revealed by 90° light scattering, dynamic light scattering, SDS-PAGE, and atomic force microscopy, free cupric ions in solution not only induce the oxidation of either apo A4V or Zn2-A4V and trigger the oligomerization and aggregation of oxidized A4V under copper-mediated oxidative conditions, but also trigger the aggregation of non-oxidized form of such a pathogenic mutant. As evidenced by mass spectrometry and SDS-PAGE, Cys-111 is a primary target for oxidative modification of pathological human SOD1 mutant A4V by either excess Cu2+ or hydrogen peroxide. The results from isothermal titration calorimetry show that A4V possesses two sets of independent binding sites for Cu2+: a moderate-affinity site (106 M-1) and a high-affinity site (108 M-1). Furthermore, Cu2+ binds to wild-type SOD1 oxidized by hydrogen peroxide in a way similar to A4V, triggering the aggregation of such an oxidized form.
Conclusions/Significance
We demonstrate that excess cupric ions induce the oxidation and trigger the aggregation of A4V SOD1, and suggest that Cu2+ plays a key role in the mechanism of aggregation of both A4V and oxidized wild-type SOD1. A plausible model for how pathological SOD1 mutants aggregate in ALS-affected motor neurons with the disruption of copper homeostasis has been provided.
doi:10.1371/journal.pone.0065287
PMCID: PMC3670862  PMID: 23755211
5.  Effects of ALS-related SOD1 mutants on dynein- and KIF5-mediated retrograde and anterograde axonal transport 
Biochimica et biophysica acta  2010;1802(9):707-716.
Transport of material and signals between extensive neuronal processes and the cell body is essential to neuronal physiology and survival. Slowing of axonal transport has been shown to occur before the onset of symptoms in amyotrophic lateral sclerosis (ALS). We have previously shown that several familial ALS-linked copper-zinc superoxide dismutase (SOD1) mutants (A4V, G85R and G93A) interacted and co-localized with the retrograde dynein-dynactin motor complex in cultured cells and affected tissues of ALS mice. We also found that the interaction between mutant SOD1 and the dynein motor played a critical role in the formation of large inclusions containing mutant SOD1. In this study, we showed that, in contrast to the dynein situation, mutant SOD1 did not interact with anterograde transport motors of the kinesin-1 family (KIF5A, B and C). Using dynein and kinesin accumulation at the sciatic nerve ligation sites as a surrogate measurement of axonal transport, we also showed that dynein mediated retrograde transport was slower in G93A than in WT mice at an early pre-symptomatic stage. While no decrease in KIF5A-mediated anterograde transport was detected, the anterograde transport of dynein heavy chain as a cargo was observed in the pre-symptomatic G93A mice. The results from this study along with other recently published work support that mutant SOD1 might only interact with and interfere with some kinesin members which in turn could result in the impairment of a selective subset of cargos. Although it remains to be further investigated how mutant SOD1 affect different axonal transport motor proteins and various cargos, it is evident that mutant SOD1 can induce defects in axonal transport, which subsequently contribute to the propagation of toxic effects and ultimately motor neuron death in ALS.
doi:10.1016/j.bbadis.2010.05.008
PMCID: PMC2907440  PMID: 20510358
amyotrophic lateral sclerosis; copper-zinc superoxide dismutase; axonal transport; kinesin; dynein
6.  Nuclear Localization of Human Superoxide Dismutase 1 (SOD1) and Mutant SOD1-Specific Disruption of Survival Motor Neuron Protein Complex in Transgenic Amyotrophic Lateral Sclerosis Mice 
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease that causes degeneration of motor neurons and paralysis. Approximately 20% of familial ALS cases have been linked to mutations in the copper/zinc superoxide dismutase (SOD1) gene but it is unclear how mutations in the protein result in motor neuron degeneration. Transgenic (tg) mice expressing mutated forms of human SOD1 (hSOD1) develop clinical and pathological features similar to those of ALS. We used tg mice expressing hSOD1-G93A, hSOD1-G37R, and hSOD1-wild type to investigate a new subcellular pathology involving mutant hSOD1 protein prominently localizing to the nuclear compartment and disruption of the architecture of nuclear gems. We developed methods for extracting relatively pure cell nucleus fractions from mouse CNS tissues and demonstrate low nuclear presence of endogenous SOD1 in mouse brain and spinal cord, but prominent nuclear accumulation of hSOD1-G93A, -G37R and -wild type in tg mice. hSOD1 concentrated in nuclei of spinal cord cells, particularly motor neurons, at a young age. The survival motor neuron protein (SMN) complex is disrupted in motor neuron nuclei prior to disease onset in hSOD1-G93A and -G37R mice; age-matched hSOD1-wild type mice did not show SMN disruption despite a nuclear presence. Our data suggest new mechanisms involving hSOD1 accumulation in the cell nucleus and mutant hSOD1-specific perturbations in SMN localization with disruption of the nuclear SMN complex in the ALS model mice and suggest overlap of pathogenic mechanisms with spinal muscular atrophy.
doi:10.1097/NEN.0b013e318244b635
PMCID: PMC3432922  PMID: 22249462
Cajal body; Gemin 1; Nuclear gems; Snurportin; Spinal muscular atrophy
7.  Early detachment of neuromuscular junction proteins in ALS mice with SODG93A mutation 
Neurology International  2009;1(1):e16.
The transgenic animals with mutant copper/zinc superoxide dismutase (SOD1) DNA develop paralytic motor neuron disease resembling human amyotrophic lateral sclerosis (ALS) patients and are commonly used as models for ALS. In the transgenic (Tg) mice with the G93A mutation of the human SOD1 gene SOD1G93A mice), the loss of ventral root axons and the synapses between the muscles and the motor neurons suggested that the motor neuron degeneration might proceed in a dying-back degeneration pattern. To reveal the relationship between axonal degeneration and the progression of the muscle atrophy in the SOD1G93A mice, we investigated the status of the neuromuscular junction along the disease progression. As a presynaptic or postsynaptic marker of neuromuscular junction (NMJ), anti-synaptic vesicle protein 2 (anti-SV2) antibody and α-bungarotoxin (α-BuTX) were chosen in this study and, as a marker of synaptic cleft, anti-agrin antibody was chosen in this study. In the immunohistochemistry of α-BuTX and anti-SV2 antibody, the percentages of double positive NMJs among α-BuTX single positive were decreased in Tg mice through time from ten weeks. The number of postsynaptic acethylcholine receptor (AChR) clusters did not decrease in Tg mice even at the end stage. Immunohistochemistry of α-BuTX and anti-agrin antibody revealed that the increase of immunopositive area of anti-agrin antibody around the muscle fiber in Tg mice from ten weeks of age. In this study, we revealed that the detachment of nerve terminals started at ten weeks in Tg mice. The levels of AChR did not change throughout 5–20 weeks of age in both groups of mice, and AChR remains clustering at NMJs, suggesting that the muscle abnormality is the result of detachment of nerve terminals.
doi:10.4081/ni.2009.e16
PMCID: PMC3093225  PMID: 21577353
amyotrophic lateral sclerosis; neuromuscular junction; α-bungarotoxin; SV-2; agrin.
8.  A Drosophila Model for Amyotrophic Lateral Sclerosis Reveals Motor Neuron Damage by Human SOD1*♦ 
The Journal of Biological Chemistry  2008;283(36):24972-24981.
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease that leads to loss of motor function and early death. About 5% of cases are inherited, with the majority of identified linkages in the gene encoding copper, zinc-superoxide dismutase (SOD1). Strong evidence indicates that the SOD1 mutations confer dominant toxicity on the protein. To provide new insight into mechanisms of ALS, we have generated and characterized a model for familial ALS in Drosophila with transgenic expression of human SOD1. Expression of wild type or disease-linked (A4V, G85R) mutants of human SOD1 selectively in motor neurons induced progressive climbing deficits. These effects were accompanied by defective neural circuit electrophysiology, focal accumulation of human SOD1 protein in motor neurons, and a stress response in surrounding glia. However, toxicity was not associated with oligomerization of SOD1 and did not lead to neuronal loss. These studies uncover cell-autonomous injury by SOD1 to motor neurons in vivo, as well as non-autonomous effects on glia, and provide the foundation for new insight into injury and protection of motor neurons in ALS.
doi:10.1074/jbc.M804817200
PMCID: PMC2529125  PMID: 18596033
9.  ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes 
BMC Neuroscience  2003;4:16.
Background
Amyotrophic lateral sclerosis (ALS) is an age-dependent neurodegenerative disease that causes motor neuron degeneration, paralysis and death. Mutations in Cu, Zn superoxide dismutase (SOD1) are one cause for the familial form of this disease. Transgenic mice expressing mutant SOD1 develop age-dependent motor neuron degeneration, skeletal muscle weakness, paralysis and death similar to humans. The mechanism whereby mutant SOD1 induces motor neuron degeneration is not understood but widespread mitochondrial vacuolation has been observed during early phases of motor neuron degeneration. How this vacuolation develops is not clear, but could involve autophagic vacuolation, mitochondrial permeability transition (MPT) or uncharacterized mechanisms. To determine which of these possibilities are true, we examined the vacuolar patterns in detail in transgenic mice expressing mutant SOD1G93A.
Results
Vacuolar patterns revealed by electron microscopy (EM) suggest that vacuoles originate from the expansion of the mitochondrial intermembrane space and extension of the outer mitochondrial membrane. Immunofluorescence microscopy and immuno-gold electron microscopy reveal that vacuoles are bounded by SOD1 and mitochondrial outer membrane markers, but the inner mitochondrial membrane marker is located in focal areas inside the vacuoles. Small vacuoles contain cytochrome c while large vacuoles are porous and lack cytochrome c. Vacuoles lack lysosomal signal but contain abundant peroxisomes and SOD1 aggregates.
Conclusion
These findings demonstrate that mutant SOD1, possibly by toxicity associated with its aggregation, causes mitochondrial degeneration by inducing extension and leakage of the outer mitochondrial membrane, and expansion of the intermembrane space. This could release the pro-cell death molecules normally residing in the intermembrane space and initiate motor neuron degeneration. This Mitochondrial Vacuolation by Intermembrane Space Expansion (MVISE) fits neither MPT nor autophagic vacuolation mechanisms, and thus, is a previously uncharacterized mechanism of mitochondrial degeneration in mammalian CNS.
doi:10.1186/1471-2202-4-16
PMCID: PMC169170  PMID: 12864925
10.  Disease-associated Mutations at Copper Ligand Histidine Residues of Superoxide Dismutase 1 Diminish the Binding of Copper and Compromise Dimer Stability*… 
The Journal of biological chemistry  2006;282(1):345-352.
A subset of superoxide dismutase 1 (Cu/Zn-SOD1) mutants that cause familial amyotrophic lateral sclerosis (FALS) have heightened reactivity with −ONOO and H2O2 in vitro. This reactivity requires a copper ion bound in the active site and is a suggested mechanism of motor neuron injury. However, we have found that transgenic mice that express SOD1-H46R/H48Q, which combines natural FALS mutations at ligands for copper and which is inactive, develop motor neuron disease. Using a direct radioactive copper incorporation assay in transfected cells and the established tools of single crystal x-ray diffraction, we now demonstrate that this variant does not stably bind copper. We find that single mutations at copper ligands, including H46R, H48Q, and a quadruple mutant H46R/H48Q/H63G/H120G, also diminish the binding of radioactive copper. Further, using native polyacrylamide gel electrophoresis and a yeast two-hybrid assay, the binding of copper was found to be related to the formation of the stable dimeric enzyme. Collectively, our data demonstrate a relationship between copper and assembly of SOD1 into stable dimers and also define disease-causing SOD1 mutants that are unlikely to robustly produce toxic radicals via copper-mediated chemistry.
doi:10.1074/jbc.M604503200
PMCID: PMC2757151  PMID: 17092942
11.  Mutant TDP-43 Deregulates AMPK Activation by PP2A in ALS Models 
PLoS ONE  2014;9(3):e90449.
Bioenergetic abnormalities and metabolic dysfunction occur in amyotrophic lateral sclerosis (ALS) patients and genetic mouse models. However, whether metabolic dysfunction occurs early in ALS pathophysiology linked to different ALS genes remains unclear. Here, we investigated AMP-activated protein kinase (AMPK) activation, which is a key enzyme induced by energy depletion and metabolic stress, in neuronal cells and mouse models expressing mutant superoxide dismutase 1 (SOD1) or TAR DNA binding protein 43 (TDP-43) linked to ALS. AMPK phosphorylation was sharply increased in spinal cords of transgenic SOD1G93A mice at disease onset and accumulated in cytoplasmic granules in motor neurons, but not in pre-symptomatic mice. AMPK phosphorylation also occurred in peripheral tissues, liver and kidney, in SOD1G93A mice at disease onset, demonstrating that AMPK activation occurs late and is not restricted to motor neurons. Conversely, AMPK activity was drastically diminished in spinal cords and brains of presymptomatic and symptomatic transgenic TDP-43A315T mice and motor neuronal cells expressing different TDP-43 mutants. We show that mutant TDP-43 induction of the AMPK phosphatase, protein phosphatase 2A (PP2A), is associated with AMPK inactivation in these ALS models. Furthermore, PP2A inhibition by okadaic acid reversed AMPK inactivation by mutant TDP-43 in neuronal cells. Our results suggest that mutant SOD1 and TDP-43 exert contrasting effects on AMPK activation which may reflect key differences in energy metabolism and neurodegeneration in spinal cords of SOD1G93A and TDP-43A315T mice. While AMPK activation in motor neurons correlates with progression in mutant SOD1-mediated disease, AMPK inactivation mediated by PP2A is associated with mutant TDP-43-linked ALS.
doi:10.1371/journal.pone.0090449
PMCID: PMC3942426  PMID: 24595038
12.  A Role for Copper in the Toxicity of Zinc-Deficient Superoxide Dismutase to Motor Neurons in Amyotrophic Lateral Sclerosis 
Antioxidants & Redox Signaling  2009;11(7):1627-1639.
Abstract
In the 16 years since mutations to copper, zinc superoxide dismutase (SOD1) were first linked to familial amyotrophic lateral sclerosis (ALS), a multitude of apparently contradictory results have prevented any general consensus to emerge about the mechanism of toxicity. A decade ago, we showed that the loss of zinc from SOD1 results in the remaining copper in SOD1 to become extremely toxic to motor neurons in culture by a mechanism requiring nitric oxide. The loss of zinc causes SOD1 to become more accessible, more redox reactive, and a better catalyst of tyrosine nitration. Although SOD1 mutant proteins have a modestly reduced affinity for zinc, wild-type SOD1 can be induced to lose zinc by dialysis at slightly acidic pH. Our zinc-deficient hypothesis offers a compelling explanation for how mutant SOD1s have an increased propensity to become selectively toxic to motor neurons and also explains how wild-type SOD1 can be toxic in nonfamilial ALS patients. One critical prediction is that a therapeutic agent directed at zinc-deficient mutant SOD1 could be even more effective in treating sporadic ALS patients. Although transgenic mice experiments have yielded contradictory evidence to the zinc-deficient hypothesis, we will review more recent studies that support a role for copper in ALS. A more careful examination of the role of copper and zinc binding to SOD1 may help counter the growing disillusion in the ALS field about understanding the pathological role of SOD1. Antioxid. Redox Signal. 11, 1627–1639.
doi:10.1089/ars.2009.2574
PMCID: PMC2842582  PMID: 19309264
13.  Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice 
Neurobiology of Aging  2014;35(4):906-915.
Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1G93A mice. Here, we demonstrate that SMN protein is significantly reduced in the spinal cords of patients with sporadic ALS. To test the potential of SMN as a modifier of ALS, we overexpressed SMN in 2 different strains of SOD1G93A mice. Neuronal overexpression of SMN significantly preserved locomotor function, rescued motor neurons, and attenuated astrogliosis in spinal cords of SOD1G93A mice. Despite this, survival was not prolonged, most likely resulting from SMN mislocalization and depletion of gems in motor neurons of symptomatic mice. Our results reveal that SMN upregulation slows locomotor deficit onset and motor neuron loss in this mouse model of ALS. However, disruption of SMN nuclear complexes by high levels of mutant SOD1, even in the presence of SMN overexpression, might limit its survival promoting effects in this specific mouse model. Studies in emerging mouse models of ALS are therefore warranted to further explore the potential of SMN as a modifier of ALS.
doi:10.1016/j.neurobiolaging.2013.09.030
PMCID: PMC3919158  PMID: 24210254
Amyotrophic lateral sclerosis; Spinal muscular atrophy; Superoxide dismutase 1; Survival motor neuron
14.  SOD1 targeted to the mitochondrial intermembrane space prevents motor neuropathy in the Sod1 knockout mouse 
Brain  2010;134(1):196-209.
Motor axon degeneration is a critical but poorly understood event leading to weakness and muscle atrophy in motor neuron diseases. Here, we investigated oxidative stress-mediated axonal degeneration in mice lacking the antioxidant enzyme, Cu,Zn superoxide dismutase (SOD1). We demonstrate a progressive motor axonopathy in these mice and show that Sod1−/− primary motor neurons extend short axons in vitro with reduced mitochondrial density. Sod1−/− neurons also show oxidation of mitochondrial—but not cytosolic—thioredoxin, suggesting that loss of SOD1 causes preferential oxidative stress in mitochondria, a primary source of superoxide in cells. SOD1 is widely regarded as the cytosolic isoform of superoxide dismutase, but is also found in the mitochondrial intermembrane space. The functional significance of SOD1 in the intermembrane space is unknown. We used a transgenic approach to express SOD1 exclusively in the intermembrane space and found that mitochondrial SOD1 is sufficient to prevent biochemical and morphological defects in the Sod1−/− model, and to rescue the motor phenotype of these mice when followed to 12 months of age. These results suggest that SOD1 in the mitochondrial intermembrane space is fundamental for motor axon maintenance, and implicate oxidative damage initiated at mitochondrial sites in the pathogenesis of motor axon degeneration.
doi:10.1093/brain/awq314
PMCID: PMC3009841  PMID: 21078595
SOD; axon; neuromuscular junction; motor neuron disease; mitochondria
15.  Misfolded SOD1 Associated with Motor Neuron Mitochondria Alters Mitochondrial Shape and Distribution Prior to Clinical Onset 
PLoS ONE  2011;6(7):e22031.
Mutations in superoxide dismutase (SOD1) are causative for inherited amyotrophic lateral sclerosis. A proportion of SOD1 mutant protein is misfolded onto the cytoplasmic face of mitochondria in one or more spinal cord cell types. By construction of mice in which mitochondrially targeted enhanced green fluorescent protein is selectively expressed in motor neurons, we demonstrate that axonal mitochondria of motor neurons are primary in vivo targets for misfolded SOD1. Mutant SOD1 alters axonal mitochondrial morphology and distribution, with dismutase active SOD1 causing mitochondrial clustering at the proximal side of Schmidt-Lanterman incisures within motor axons and dismutase inactive SOD1 producing aberrantly elongated axonal mitochondria beginning pre-symptomatically and increasing in severity as disease progresses. Somal mitochondria are altered by mutant SOD1, with loss of the characteristic cylindrical, networked morphology and its replacement by a less elongated, more spherical shape. These data indicate that mutant SOD1 binding to mitochondria disrupts normal mitochondrial distribution and size homeostasis as early pathogenic features of SOD1 mutant-mediated ALS.
doi:10.1371/journal.pone.0022031
PMCID: PMC3136936  PMID: 21779368
16.  Mutant Cu,Zn superoxide dismutase in motor neuron disease 
Age  1998;21(2):85-89.
Cu,Zn superoxide dismutase (Cu,Zn SOD) is one of several anti-oxidant enzymes which defend the cell against damage by oxygen free radicals. Mutations of the SOD1 gene encoding Cu,Zn SOD are found familial amyotrophic lateral sclerosis, a progressive and fatal paralytic disease which is caused by the death of motor neurons in cortex, brainstem and spinal cord. The disease can be reproduced in transgenic mice by expression of mutant human Cu,Zn SOD. Recent studies both in vitro and in vivo suggest that the effect of mutation is to enhance the generation of oxygen radicals by the mutant enzyme. Thus, mutation converts a protective, antioxidant enzyme into a destructive pro-oxidant form which catalyzes free radical damage to which motor neurons are uniquely vulnerable.
doi:10.1007/s11357-998-0012-x
PMCID: PMC3455714  PMID: 23604357
17.  Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis 
Activation of the transcription factor Nrf2 in astrocytes coordinates the up-regulation of antioxidant defenses and confers protection to neighboring neurons. Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) cause familial forms of amyotrophic lateral sclerosis (ALS), a fatal disorder characterized by the progressive loss of motor neurons. Non-neuronal cells, including astrocytes, shape motor neuron survival in ALS and are a potential target to prevent motor neuron degeneration. The protective effect of Nrf2 activation in astrocytes has never been examined in a chronic model of neurodegeneration. We generated transgenic mice over-expressing Nrf2 selectively in astrocytes using the glial fibrillary acidic protein (GFAP) promoter. The toxicity of astrocytes expressing ALS-linked mutant hSOD1 to co-cultured motor neurons was reversed by Nrf2 over-expression. Motor neuron protection depended on increased glutathione secretion from astrocytes. This protective effect was also observed by crossing the GFAP-Nrf2 mice with two ALS-mouse models. Over-expression of Nrf2 in astrocytes significantly delayed onset and extended survival. These findings demonstrate that Nrf2 activation in astrocytes is a viable therapeutic target to prevent chronic neurodegeneration.
doi:10.1523/JNEUROSCI.4099-08.2008
PMCID: PMC2866507  PMID: 19074031
Nrf2; astrocytes; glutathione; motor neurons
18.  Motor neuron cell death in wobbler mutant mice follows overexpression of the G-protein-coupled, protease-activated receptor for thrombin. 
Molecular Medicine  2000;6(5):410-429.
BACKGROUND: Mechanisms underlying neurodegeneration are actively sought for new therapeutic strategies. Transgenic, knockout and genetic mouse models greatly aid our understanding of the mechanisms for neuronal cell death. A naturally occurring, autosomal recessive mutant, known as wobbler, and mice transgenic for familial amyotrophic lateral sclerosis (FALS) superoxide dismutase (SOD)1 mutations are available, but the molecular mechanisms remain equally unknown. Both phenotypes are detectable after birth. Wobbler is detectable in the third week of life, when homozygotes (wr/wr) exhibit prominent gliosis and significant motor neuron loss in the cervical, but not in lumbar, spinal cord segments. To address molecular mechanisms, we evaluated "death signals" associated with the multifunctional serine protease, thrombin, which leads to apoptotic motor neuronal cell death in culture by cleavage of a G-protein coupled, protease-activated receptor 1 (PAR-1). MATERIALS AND METHODS: Thrombin activities were determined with chromogenic substrate assays, Western immunoblots and immunohistochemistry were performed with anti-PAR-1 to observe localizations of the receptor and anti-GFAP staining was used to monitor astrocytosis. PAR-1 mRNA levels and locations were determined by reverse transcription polymerase chain reaction (qRT-PCR) and in situ hybridizations. Cell death was monitored with in situ DNA fragmentation assays. RESULTS: In preliminary studies we found a 5-fold increase in PAR-1 mRNA in cervical spinal cords from wr/wr, compared with wild-type (wt) littermates. Our current studies suggested that reactive astrocytosis and motor neuron cell death were causally linked with alterations in thrombin signaling. PAR-1 protein expression was increased, as demonstrated by immunocytochemistry and confirmed with in situ hybridization, in phenotypic wr/wr motor neurons, compared with wt, but not in astrocytes. This increase was much greater in cervical, compared with lumbar, segments, paralleling motor neuron degeneration. We also found, using reverse transcription polymerase chain reaction (qRT-PCR) with RNA from genotyped embryos, that PAR-1 was already increased in wr/wr cords at E12, the earliest time examined. CONCLUSIONS: Thus, motor neuron degeneration and death follows PAR-1 expression both temporally and topographically in wobbler mice. Since our culture studies show that thrombin mobilized [Ca2+]i by activating PAR-1, eventually leading to motor neuron apoptosis, up-regulation of PAR-1 during development may contribute both to "appropriate" as well as "inappropriate" neuronal death in wobbler.
PMCID: PMC1949954  PMID: 10952021
19.  Inducible nitric oxide synthase is present in motor neuron mitochondria and Schwann cells and contributes to disease mechanisms in ALS mice 
Brain structure & function  2009;214(2-3):219-234.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of motor neurons (MNs). The molecular pathogenesis of ALS is not understood, thus effective therapies for this disease are lacking. Some forms of ALS are inherited by mutations in the superoxide dismutase-1 (SOD1) gene. Transgenic mice expressing human Gly93 → Ala (G93A) mutant SOD1 (mSOD1) develop severe MN disease, oxidative and nitrative damage, and mitochondrial pathology that appears to involve nitric oxide-mediated mechanisms. We used G93A-mSOD1 mice to test the hypothesis that the degeneration of MNs is associated with an aberrant up-regulation of the inducible form of nitric oxide synthase (iNOS or NOS2) activity within MNs. Western blotting and immunoprecipitation showed that iNOS protein levels in mitochondrial-enriched membrane fractions of spinal cord are increased significantly in mSOD1 mice at pre-symptomatic stages of disease. The catalytic activity of iNOS was also increased significantly in mitochondrial-enriched membrane fractions of mSOD1 mouse spinal cord at pre-symptomatic stages of disease. Reverse transcription-PCR showed that iNOS mRNA was present in the spinal cord and brainstem MN regions in mice and was increased in pre-symptomatic and early symptomatic mice. Immunohistochemistry showed that iNOS immunoreactivty was up-regulated first in spinal cord and brainstem MNs in pre-symptomatic and early symptomatic mice and then later in the course of disease in numerous microglia and few astrocytes. iNOS accumulated in the mitochondria in mSOD1 mouse MNs. iNOS immunoreactivity was also up-regulated in Schwann cells of peripheral nerves and was enriched particularly at the paranodal regions of the nodes of Ranvier. Drug inhibitors of iNOS delayed disease onset and significantly extended the lifespan of G93A-mSOD1 mice. This work identifies two new potential early mechanisms for MN degeneration in mouse ALS involving iNOS at MN mitochondria and Schwann cells and suggests that therapies targeting iNOS might be beneficial in treating human ALS.
doi:10.1007/s00429-009-0226-4
PMCID: PMC3010349  PMID: 19888600
Apoptosis-necrosis cell death continuum; Mitochondrial permeability transition pore; Mutant SOD1; Nitration; Node of Ranvier; Schwann cell
20.  Amyotrophic Lateral Sclerosis Model Derived from Human Embryonic Stem Cells Overexpressing Mutant Superoxide Dismutase 1 
An in vitro familial amyotrophic lateral sclerosis (FALS) model was established from human ESCs overexpressing either a wild-type or a mutant SOD1 (G93A) gene, and the phenotypes and survival of the spinal motor neurons were evaluated. This model is expected to help unravel the disease mechanisms involved in the development of FALS and also lead to potential drug discoveries based on the prevention of neurodegeneration.
The generation of amyotrophic lateral sclerosis (ALS) disease models is an important subject for investigating disease mechanisms and pharmaceutical applications. In transgenic mice, expression of a mutant form of superoxide dismutase 1 (SOD1) can lead to the development of ALS that closely mimics the familial type of ALS (FALS). Although SOD1 mutant mice show phenotypes similar to FALS, dissimilar drug responses and size differences limit their usefulness to study the disease mechanism(s) and identify potential therapeutic compounds. Development of an in vitro model system for ALS is expected to help in obtaining novel insights into disease mechanisms and discovery of therapeutics. We report the establishment of an in vitro FALS model from human embryonic stem cells overexpressing either a wild-type (WT) or a mutant SOD1 (G93A) gene and the evaluation of the phenotypes and survival of the spinal motor neurons (sMNs), which are the neurons affected in ALS patients. The in vitro FALS model that we developed mimics the in vivo human ALS disease in terms of the following: (a) selective degeneration of sMNs expressing the G93A SOD1 but not those expressing the WT gene; (b) susceptibility of G93A SOD1-derived sMNs to form ubiquitinated inclusions; (c) astrocyte-derived factor(s) in the selective degeneration of G93A SOD1 sMNs; and (d) cell-autonomous, as well as non-cell-autonomous, dependent sMN degeneration. Thus, this model is expected to help unravel the disease mechanisms involved in the development of FALS and also lead to potential drug discoveries based on the prevention of neurodegeneration.
doi:10.5966/sctm.2011-0061
PMCID: PMC3659703  PMID: 23197818
Embryonic stem cells; Experimental models; Neuron; Astrocytes
21.  VEGF overexpression delays neurodegeneration and prolongs survival in ALS mice 
We sought genetic evidence for involvement of neuronal vascular endothelial growth factor (VEGF) in amyotrophic lateral sclerosis (ALS). Mice expressing human ALS mutant superoxide dismutase-1 (SOD1) were crossed with mice that overexpress VEGF in neurons (VEGF+/+). We report that SOD1G93A/VEGF+/+ double-transgenic mice show delayed motor neuron loss, delayed motor impairment and prolonged survival compared to SOD1G93A single-transgenics. These findings indicate that neuronal VEGF protects against motor neuron degeneration, and may have therapeutic implications for ALS.
doi:10.1523/JNEUROSCI.4433-06.2007
PMCID: PMC2830908  PMID: 17215390
vascular endothelial growth factor; amyotrophic lateral sclerosis; motor neuron; superoxide dismutase-1; transgenic; neurodegeneration
22.  Mitochondrial dynamics and bioenergetic dysfunction is associated with synaptic alterations in mutant SOD1 motor neurons 
Mutations in Cu,Zn superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis (FALS), a rapidly fatal motor neuron disease. Mutant SOD1 has pleiotropic toxic effects on motor neurons, among which mitochondrial dysfunction has been proposed as one of the contributing factors in motor neuron demise. Mitochondria are highly dynamic in neurons; they are constantly reshaped by fusion and move along neurites to localize at sites of high-energy utilization, such as synapses. The finding of abnormal mitochondria accumulation in neuromuscular junctions, where the SOD1-FALS degenerative process is though to initiate, suggests that impaired mitochondrial dynamics in motor neurons may be involved in pathogenesis. We addressed this hypothesis by live imaging microscopy of photo-switchable fluorescent mitoDendra in transgenic rat motor neurons expressing mutant or wild type human SOD1. We demonstrate that mutant SOD1 motor neurons have impaired mitochondrial fusion in axons and cell bodies. Mitochondria also display selective impairment of retrograde axonal transport, with reduced frequency and velocity of movements. Fusion and transport defects are associated with smaller mitochondrial size, decreased mitochondrial density, and defective mitochondrial membrane potential. Furthermore, mislocalization of mitochondria at synapses among motor neurons, in vitro, correlates with abnormal synaptic number, structure, and function. Dynamics abnormalities are specific to mutant SOD1 motor neuron mitochondria, since they are absent in wild type SOD1 motor neurons, they do not involve other organelles, and they are not found in cortical neurons. Taken together, these results suggest that impaired mitochondrial dynamics may contribute to the selective degeneration of motor neurons in SOD1-FALS.
doi:10.1523/JNEUROSCI.1233-11.2012
PMCID: PMC3566782  PMID: 22219285
23.  MicroRNA-206: A Potential Circulating Biomarker Candidate for Amyotrophic Lateral Sclerosis 
PLoS ONE  2014;9(2):e89065.
Amyotrophic lateral sclerosis (ALS) is a lethal motor neuron disease that progressively debilitates neuronal cells that control voluntary muscle activity. Biomarkers are urgently needed to facilitate ALS diagnosis and prognosis, and as indicators of therapeutic response in clinical trials. microRNAs (miRNAs), small posttranscriptional modifiers of gene expression, are frequently altered in disease conditions. Besides their important regulatory role in variety of biological processes, miRNAs can also be released into the circulation by pathologically affected tissues and display remarkable stability in body fluids. In a mouse model of ALS that expresses mutated human superoxide dismutase 1 (SOD1-G93A) skeletal muscle is one of the tissues affected early by mutant SOD1 toxicity. To find biomarkers for ALS, we studied miRNA alterations from skeletal muscle and plasma of SOD1-G93A mice, and subsequently tested the levels of the affected miRNAs in the serum from human ALS patients. Fast-twitch and slow-twitch muscles from symptomatic SOD1-G93A mice (age 90 days) and their control littermates were first studied using miRNA microarrays and then evaluated with quantitative PCR from five age groups from neonatal to the terminal disease stage (10–120 days). Among those miRNA changed in various age/gender/muscle groups (miR-206, -1, -133a, -133b, -145, -21, -24), miR-206 was the only one consistently altered during the course of the disease pathology. In both sexes, mature miR-206 was increased in fast-twitch muscles preferably affected in the SOD1-G93A model, with highest expression towards the most severely affected animals. Importantly, miR-206 was also increased in the circulation of symptomatic animals and in a group of 12 definite ALS patients tested. We conclude that miR-206 is elevated in the circulation of symptomatic SOD1-G93A mice and possibly in human ALS patients. Although larger scale studies on ALS patients are warranted, miR-206 is a promising candidate biomarker for this motor neuron disease.
doi:10.1371/journal.pone.0089065
PMCID: PMC3930686  PMID: 24586506
24.  Sensory involvement in the SOD1-G93A mouse model of amyotrophic lateral sclerosis 
Experimental & Molecular Medicine  2009;41(3):140-150.
A subset of patients of amyotrophic lateral sclerosis (ALS) present with mutation of Cu/Zn superoxide dismutase 1 (SOD1), and such mutants caused an ALS-like disorder when expressed in rodents. These findings implicated SOD1 in ALS pathogenesis and made the transgenic animals a widely used ALS model. However, previous studies of these animals have focused largely on motor neuron damage. We report herein that the spinal cords of mice expressing a human SOD1 mutant (hSOD1-G93A), besides showing typical destruction of motor neurons and axons, exhibit significant damage in the sensory system, including Wallerian-like degeneration in axons of dorsal root and dorsal funiculus, and mitochondrial damage in dorsal root ganglia neurons. Thus, hSOD1-G93A mutation causes both motor and sensory neuropathies, and as such the disease developed in the transgenic mice very closely resembles human ALS.
doi:10.3858/emm.2009.41.3.017
PMCID: PMC2679239  PMID: 19293633
amyotrophic lateral sclerosis; mutation; nerve degeneration; spinal cord; spinal nerve roots; superoxide dismutase 1
25.  Endosomal accumulation of APP in wobbler motor neurons reflects impaired vesicle trafficking: Implications for human motor neuron disease 
BMC Neuroscience  2011;12:24.
Background
The cause of sporadic amyotrophic lateral sclerosis (ALS) is largely unknown but hypotheses about disease mechanisms include oxidative stress, defective axonal transport, mitochondrial dysfunction and disrupted RNA processing. Whereas familial ALS is well represented by transgenic mutant SOD1 mouse models, the mouse mutant wobbler (WR) develops progressive motor neuron degeneration due to a point mutation in the Vps54 gene, and provides an animal model for sporadic ALS. VPS54 protein as a component of a protein complex is involved in vesicular Golgi trafficking; impaired vesicle trafficking might also be mechanistic in the pathogenesis of human ALS.
Results
In motor neurons of homozygous symptomatic WR mice, a massive number of endosomal vesicles significantly enlarged (up to 3 μm in diameter) were subjected to ultrastructural analysis and immunohistochemistry for the endosome-specific small GTPase protein Rab7 and for amyloid precursor protein (APP). Enlarged vesicles were neither detected in heterozygous WR nor in transgenic SOD1(G93A) mice; in WR motor neurons, numerous APP/Rab7-positive vesicles were observed which were mostly LC3-negative, suggesting they are not autophagosomes.
Conclusions
We conclude that endosomal APP/Rab7 staining reflects impaired vesicle trafficking in WR mouse motor neurons. Based on these findings human ALS tissues were analysed for APP in enlarged vesicles and were detected in spinal cord motor neurons in six out of fourteen sporadic ALS cases. These enlarged vesicles were not detected in any of the familial ALS cases. Thus our study provides the first evidence for wobbler-like aetiologies in human ALS and suggests that the genes encoding proteins involved in vesicle trafficking should be screened for pathogenic mutations.
doi:10.1186/1471-2202-12-24
PMCID: PMC3058068  PMID: 21385376

Results 1-25 (694020)