PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1104429)

Clipboard (0)
None

Related Articles

1.  Global Mortality Estimates for the 2009 Influenza Pandemic from the GLaMOR Project: A Modeling Study 
PLoS Medicine  2013;10(11):e1001558.
Lone Simonsen and colleagues use a two-stage statistical modeling approach to estimate the global mortality burden of the 2009 influenza pandemic from mortality data obtained from multiple countries.
Please see later in the article for the Editors' Summary
Background
Assessing the mortality impact of the 2009 influenza A H1N1 virus (H1N1pdm09) is essential for optimizing public health responses to future pandemics. The World Health Organization reported 18,631 laboratory-confirmed pandemic deaths, but the total pandemic mortality burden was substantially higher. We estimated the 2009 pandemic mortality burden through statistical modeling of mortality data from multiple countries.
Methods and Findings
We obtained weekly virology and underlying cause-of-death mortality time series for 2005–2009 for 20 countries covering ∼35% of the world population. We applied a multivariate linear regression model to estimate pandemic respiratory mortality in each collaborating country. We then used these results plus ten country indicators in a multiple imputation model to project the mortality burden in all world countries. Between 123,000 and 203,000 pandemic respiratory deaths were estimated globally for the last 9 mo of 2009. The majority (62%–85%) were attributed to persons under 65 y of age. We observed a striking regional heterogeneity, with almost 20-fold higher mortality in some countries in the Americas than in Europe. The model attributed 148,000–249,000 respiratory deaths to influenza in an average pre-pandemic season, with only 19% in persons <65 y. Limitations include lack of representation of low-income countries among single-country estimates and an inability to study subsequent pandemic waves (2010–2012).
Conclusions
We estimate that 2009 global pandemic respiratory mortality was ∼10-fold higher than the World Health Organization's laboratory-confirmed mortality count. Although the pandemic mortality estimate was similar in magnitude to that of seasonal influenza, a marked shift toward mortality among persons <65 y of age occurred, so that many more life-years were lost. The burden varied greatly among countries, corroborating early reports of far greater pandemic severity in the Americas than in Australia, New Zealand, and Europe. A collaborative network to collect and analyze mortality and hospitalization surveillance data is needed to rapidly establish the severity of future pandemics.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Every winter, millions of people catch influenza—a viral infection of the airways—and hundreds of thousands of people (mainly elderly individuals) die as a result. These seasonal epidemics occur because small but frequent changes in the influenza virus mean that the immune response produced by infection with one year's virus provides only partial protection against the next year's virus. Influenza viruses also occasionally emerge that are very different. Human populations have virtually no immunity to these new viruses, which can start global epidemics (pandemics) that kill millions of people. The most recent influenza pandemic, which was first recognized in Mexico in March 2009, was caused by the 2009 influenza A H1N1 pandemic (H1N1pdm09) virus. This virus spread rapidly, and on 11 June 2009, the World Health Organization (WHO) declared that an influenza pandemic was underway. H1N1pdm09 caused a mild disease in most people it infected, but by the time WHO announced that the pandemic was over (10 August 2010), there had been 18,632 laboratory-confirmed deaths from H1N1pdm09.
Why Was This Study Done?
The modest number of laboratory-confirmed H1N1pdm09 deaths has caused commentators to wonder whether the public health response to H1N1pdm09 was excessive. However, as is the case with all influenza epidemics, the true mortality (death) burden from H1N1pdm09 is substantially higher than these figures indicate because only a minority of influenza-related deaths are definitively diagnosed by being confirmed in laboratory. Many influenza-related deaths result from secondary bacterial infections or from exacerbation of preexisting chronic conditions, and are not recorded as related to influenza infection. A more complete assessment of the impact of H1N1pdm09 on mortality is essential for the optimization of public health responses to future pandemics. In this modeling study (the Global Pandemic Mortality [GLaMOR] project), researchers use a two-stage statistical modeling approach to estimate the global mortality burden of the 2009 influenza pandemic from mortality data obtained from multiple countries.
What Did the Researchers Do and Find?
The researchers obtained weekly virology data from the World Health Organization FluNet database and national influenza centers to identify influenza active periods, and obtained weekly national underlying cause-of-death time series for 2005–2009 from collaborators in more than 20 countries (35% of the world's population). They used a multivariate linear regression model to measure the numbers and rates of pandemic influenza respiratory deaths in each of these countries. Then, in the second stage of their analysis, they used a multiple imputation model that took into account country-specific geographical, economic, and health indicators to project the single-country estimates to all world countries. The researchers estimated that between 123,000 and 203,000 pandemic influenza respiratory deaths occurred globally from 1 April through 31 December 2009. Most of these deaths (62%–85%) occurred in people younger than 65 years old. There was a striking regional heterogeneity in deaths, with up to 20-fold higher mortality in Central and South American countries than in European countries. Finally, the model attributed 148,000–249,000 respiratory deaths to influenza in an average pre-pandemic season. Notably, only 19% of these deaths occurred in people younger than 65 years old.
What Do These Findings Mean?
These findings suggest that respiratory mortality from the 2009 influenza pandemic was about 10-fold higher than laboratory-confirmed mortality. The true total mortality burden is likely to be even higher because deaths that occurred late in the winter of 2009–2010 and in later pandemic waves were missed in this analysis, and only pandemic influenza deaths that were recorded as respiratory deaths were included. The lack of single-country estimates from low-income countries may also limit the accuracy of these findings. Importantly, although the researchers' estimates of mortality from H1N1pdm09 and from seasonal influenza were of similar magnitude, the shift towards mortality among younger people means that more life-years were lost during the 2009 influenza pandemic than during an average pre-pandemic influenza season. Although the methods developed by the GLaMOR project can be used to make robust and comparable mortality estimates in future influenza pandemics, the lack of timeliness of such estimates needs to be remedied. One potential remedy, suggest the researchers, would be to establish a collaborative network that analyzes timely hospitalization and/or mortality data provided by sentinel countries. Such a network should be able to provide the rapid and reliable data about the severity of pandemic threats that is needed to guide public health policy decisions.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001558.
The US Centers for Disease Control and Prevention provides information about influenza for patients and professionals, including archived information on H1N1pdm09
Flu.gov, a US government website, provides access to information on seasonal and pandemic influenza H1N1pdm09
The World Health Organization provides information on influenza and on the global response to H1N1pdm09, including a publication on the evolution of H1N1pdm09 (some information in several languages). Information on FluNet, a global tool for influenza surveillance, is also available
Public Health England provides information on pandemic influenza and archived information on H1N1pdm09
More information for patients about H1N1pdm09 is available through Choices, an information resource provided by the UK National Health Service
More information about the GLaMOR project is available
doi:10.1371/journal.pmed.1001558
PMCID: PMC3841239  PMID: 24302890
2.  Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this analysis was to determine the effectiveness of the influenza vaccination and the pneumococcal vaccination in patients with chronic obstructive pulmonary disease (COPD) in reducing the incidence of influenza-related illness or pneumococcal pneumonia.
Clinical Need: Condition and Target Population
Influenza Disease
Influenza is a global threat. It is believed that the risk of a pandemic of influenza still exists. Three pandemics occurred in the 20th century which resulted in millions of deaths worldwide. The fourth pandemic of H1N1 influenza occurred in 2009 and affected countries in all continents.
Rates of serious illness due to influenza viruses are high among older people and patients with chronic conditions such as COPD. The influenza viruses spread from person to person through sneezing and coughing. Infected persons can transfer the virus even a day before their symptoms start. The incubation period is 1 to 4 days with a mean of 2 days. Symptoms of influenza infection include fever, shivering, dry cough, headache, runny or stuffy nose, muscle ache, and sore throat. Other symptoms such as nausea, vomiting, and diarrhea can occur.
Complications of influenza infection include viral pneumonia, secondary bacterial pneumonia, and other secondary bacterial infections such as bronchitis, sinusitis, and otitis media. In viral pneumonia, patients develop acute fever and dyspnea, and may further show signs and symptoms of hypoxia. The organisms involved in bacterial pneumonia are commonly identified as Staphylococcus aureus and Hemophilus influenza. The incidence of secondary bacterial pneumonia is most common in the elderly and those with underlying conditions such as congestive heart disease and chronic bronchitis.
Healthy people usually recover within one week but in very young or very old people and those with underlying medical conditions such as COPD, heart disease, diabetes, and cancer, influenza is associated with higher risks and may lead to hospitalization and in some cases death. The cause of hospitalization or death in many cases is viral pneumonia or secondary bacterial pneumonia. Influenza infection can lead to the exacerbation of COPD or an underlying heart disease.
Streptococcal Pneumonia
Streptococcus pneumoniae, also known as pneumococcus, is an encapsulated Gram-positive bacterium that often colonizes in the nasopharynx of healthy children and adults. Pneumococcus can be transmitted from person to person during close contact. The bacteria can cause illnesses such as otitis media and sinusitis, and may become more aggressive and affect other areas of the body such as the lungs, brain, joints, and blood stream. More severe infections caused by pneumococcus are pneumonia, bacterial sepsis, meningitis, peritonitis, arthritis, osteomyelitis, and in rare cases, endocarditis and pericarditis.
People with impaired immune systems are susceptible to pneumococcal infection. Young children, elderly people, patients with underlying medical conditions including chronic lung or heart disease, human immunodeficiency virus (HIV) infection, sickle cell disease, and people who have undergone a splenectomy are at a higher risk for acquiring pneumococcal pneumonia.
Technology
Influenza and Pneumococcal Vaccines
Trivalent Influenza Vaccines in Canada
In Canada, 5 trivalent influenza vaccines are currently authorized for use by injection. Four of these are formulated for intramuscular use and the fifth product (Intanza®) is formulated for intradermal use.
The 4 vaccines for intramuscular use are:
Fluviral (GlaxoSmithKline), split virus, inactivated vaccine, for use in adults and children ≥ 6 months;
Vaxigrip (Sanofi Pasteur), split virus inactivated vaccine, for use in adults and children ≥ 6 months;
Agriflu (Novartis), surface antigen inactivated vaccine, for use in adults and children ≥ 6 months; and
Influvac (Abbott), surface antigen inactivated vaccine, for use in persons ≥ 18 years of age.
FluMist is a live attenuated virus in the form of an intranasal spray for persons aged 2 to 59 years. Immunization with current available influenza vaccines is not recommended for infants less than 6 months of age.
Pneumococcal Vaccine
Pneumococcal polysaccharide vaccines were developed more than 50 years ago and have progressed from 2-valent vaccines to the current 23-valent vaccines to prevent diseases caused by 23 of the most common serotypes of S pneumoniae. Canada-wide estimates suggest that approximately 90% of cases of pneumococcal bacteremia and meningitis are caused by these 23 serotypes. Health Canada has issued licenses for 2 types of 23-valent vaccines to be injected intramuscularly or subcutaneously:
Pneumovax 23® (Merck & Co Inc. Whitehouse Station, NJ, USA), and
Pneumo 23® (Sanofi Pasteur SA, Lion, France) for persons 2 years of age and older.
Other types of pneumococcal vaccines licensed in Canada are for pediatric use. Pneumococcal polysaccharide vaccine is injected only once. A second dose is applied only in some conditions.
Research Questions
What is the effectiveness of the influenza vaccination and the pneumococcal vaccination compared with no vaccination in COPD patients?
What is the safety of these 2 vaccines in COPD patients?
What is the budget impact and cost-effectiveness of these 2 vaccines in COPD patients?
Research Methods
Literature search
Search Strategy
A literature search was performed on July 5, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2000 to July 5, 2010. The search was updated monthly through the AutoAlert function of the search up to January 31, 2011. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Articles with an unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established. Data extraction was carried out by the author.
Inclusion Criteria
studies comparing clinical efficacy of the influenza vaccine or the pneumococcal vaccine with no vaccine or placebo;
randomized controlled trials published between January 1, 2000 and January 31, 2011;
studies including patients with COPD only;
studies investigating the efficacy of types of vaccines approved by Health Canada;
English language studies.
Exclusion Criteria
non-randomized controlled trials;
studies investigating vaccines for other diseases;
studies comparing different variations of vaccines;
studies in which patients received 2 or more types of vaccines;
studies comparing different routes of administering vaccines;
studies not reporting clinical efficacy of the vaccine or reporting immune response only;
studies investigating the efficacy of vaccines not approved by Health Canada.
Outcomes of Interest
Primary Outcomes
Influenza vaccination: Episodes of acute respiratory illness due to the influenza virus.
Pneumococcal vaccination: Time to the first episode of community-acquired pneumonia either due to pneumococcus or of unknown etiology.
Secondary Outcomes
rate of hospitalization and mechanical ventilation
mortality rate
adverse events
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses. The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Efficacy of the Influenza Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The influenza vaccination was associated with significantly fewer episodes of influenza-related acute respiratory illness (ARI). The incidence density of influenza-related ARI was:
All patients: vaccine group: (total of 4 cases) = 6.8 episodes per 100 person-years; placebo group: (total of 17 cases) = 28.1 episodes per 100 person-years, (relative risk [RR], 0.2; 95% confidence interval [CI], 0.06−0.70; P = 0.005).
Patients with severe airflow obstruction (forced expiratory volume in 1 second [FEV1] < 50% predicted): vaccine group: (total of 1 case) = 4.6 episodes per 100 person-years; placebo group: (total of 7 cases) = 31.2 episodes per 100 person-years, (RR, 0.1; 95% CI, 0.003−1.1; P = 0.04).
Patients with moderate airflow obstruction (FEV1 50%−69% predicted): vaccine group: (total of 2 cases) = 13.2 episodes per 100 person-years; placebo group: (total of 4 cases) = 23.8 episodes per 100 person-years, (RR, 0.5; 95% CI, 0.05−3.8; P = 0.5).
Patients with mild airflow obstruction (FEV1 ≥ 70% predicted): vaccine group: (total of 1 case) = 4.5 episodes per 100 person-years; placebo group: (total of 6 cases) = 28.2 episodes per 100 person-years, (RR, 0.2; 95% CI, 0.003−1.3; P = 0.06).
The Kaplan-Meier survival analysis showed a significant difference between the vaccinated group and the placebo group regarding the probability of not acquiring influenza-related ARI (log-rank test P value = 0.003). Overall, the vaccine effectiveness was 76%. For categories of mild, moderate, or severe COPD the vaccine effectiveness was 84%, 45%, and 85% respectively.
With respect to hospitalization, fewer patients in the vaccine group compared with the placebo group were hospitalized due to influenza-related ARIs, although these differences were not statistically significant. The incidence density of influenza-related ARIs that required hospitalization was 3.4 episodes per 100 person-years in the vaccine group and 8.3 episodes per 100 person-years in the placebo group (RR, 0.4; 95% CI, 0.04−2.5; P = 0.3; log-rank test P value = 0.2). Also, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD.
Fewer patients in the vaccine group compared with the placebo group required mechanical ventilation due to influenza-related ARIs. However, these differences were not statistically significant. The incidence density of influenza-related ARIs that required mechanical ventilation was 0 episodes per 100 person-years in the vaccine group and 5 episodes per 100 person-years in the placebo group (RR, 0.0; 95% CI, 0−2.5; P = 0.1; log-rank test P value = 0.4). In addition, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD. The effectiveness of the influenza vaccine in preventing influenza-related ARIs and influenza-related hospitalization was not related to age, sex, severity of COPD, smoking status, or comorbid diseases.
safety
Overall, significantly more patients in the vaccine group than the placebo group experienced local adverse reactions (vaccine: 17 [27%], placebo: 4 [6%]; P = 0.002). Significantly more patients in the vaccine group than the placebo group experienced swelling (vaccine 4, placebo 0; P = 0.04) and itching (vaccine 4, placebo 0; P = 0.04). Systemic reactions included headache, myalgia, fever, and skin rash and there were no significant differences between the 2 groups for these reactions (vaccine: 47 [76%], placebo: 51 [81%], P = 0.5).
With respect to lung function, dyspneic symptoms, and exercise capacity, there were no significant differences between the 2 groups at 1 week and at 4 weeks in: FEV1, maximum inspiratory pressure at residual volume, oxygen saturation level of arterial blood, visual analogue scale for dyspneic symptoms, and the 6 Minute Walking Test for exercise capacity.
There was no significant difference between the 2 groups with regard to the probability of not acquiring total ARIs (influenza-related and/or non-influenza-related); (log-rank test P value = 0.6).
Summary of Efficacy of the Pneumococcal Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The Kaplan-Meier survival analysis showed no significant differences between the group receiving the penumoccocal vaccination and the control group for time to the first episode of community-acquired pneumonia due to pneumococcus or of unknown etiology (log-rank test 1.15; P = 0.28). Overall, vaccine efficacy was 24% (95% CI, −24 to 54; P = 0.33).
With respect to the incidence of pneumococcal pneumonia, the Kaplan-Meier survival analysis showed a significant difference between the 2 groups (vaccine: 0/298; control: 5/298; log-rank test 5.03; P = 0.03).
Hospital admission rates and median length of hospital stays were lower in the vaccine group, but the difference was not statistically significant. The mortality rate was not different between the 2 groups.
Subgroup Analysis
The Kaplan-Meier survival analysis showed significant differences between the vaccine and control groups for pneumonia due to pneumococcus and pneumonia of unknown etiology, and when data were analyzed according to subgroups of patients (age < 65 years, and severe airflow obstruction FEV1 < 40% predicted). The accumulated percentage of patients without pneumonia (due to pneumococcus and of unknown etiology) across time was significantly lower in the vaccine group than in the control group in patients younger than 65 years of age (log-rank test 6.68; P = 0.0097) and patients with a FEV1 less than 40% predicted (log-rank test 3.85; P = 0.0498).
Vaccine effectiveness was 76% (95% CI, 20−93; P = 0.01) for patients who were less than 65 years of age and −14% (95% CI, −107 to 38; P = 0.8) for those who were 65 years of age or older. Vaccine effectiveness for patients with a FEV1 less than 40% predicted and FEV1 greater than or equal to 40% predicted was 48% (95% CI, −7 to 80; P = 0.08) and −11% (95% CI, −132 to 47; P = 0.95), respectively. For patients who were less than 65 years of age (FEV1 < 40% predicted), vaccine effectiveness was 91% (95% CI, 35−99; P = 0.002).
Cox modelling showed that the effectiveness of the vaccine was dependent on the age of the patient. The vaccine was not effective in patients 65 years of age or older (hazard ratio, 1.53; 95% CI, 0.61−a2.17; P = 0.66) but it reduced the risk of acquiring pneumonia by 80% in patients less than 65 years of age (hazard ratio, 0.19; 95% CI, 0.06−0.66; P = 0.01).
safety
No patients reported any local or systemic adverse reactions to the vaccine.
PMCID: PMC3384373  PMID: 23074431
3.  Monitoring the Impact of Influenza by Age: Emergency Department Fever and Respiratory Complaint Surveillance in New York City 
PLoS Medicine  2007;4(8):e247.
Background
The importance of understanding age when estimating the impact of influenza on hospitalizations and deaths has been well described, yet existing surveillance systems have not made adequate use of age-specific data. Monitoring influenza-related morbidity using electronic health data may provide timely and detailed insight into the age-specific course, impact and epidemiology of seasonal drift and reassortment epidemic viruses. The purpose of this study was to evaluate the use of emergency department (ED) chief complaint data for measuring influenza-attributable morbidity by age and by predominant circulating virus.
Methods and Findings
We analyzed electronically reported ED fever and respiratory chief complaint and viral surveillance data in New York City (NYC) during the 2001–2002 through 2005–2006 influenza seasons, and inferred dominant circulating viruses from national surveillance reports. We estimated influenza-attributable impact as observed visits in excess of a model-predicted baseline during influenza periods, and epidemic timing by threshold and cross correlation. We found excess fever and respiratory ED visits occurred predominantly among school-aged children (8.5 excess ED visits per 1,000 children aged 5–17 y) with little or no impact on adults during the early-2002 B/Victoria-lineage epidemic; increased fever and respiratory ED visits among children younger than 5 y during respiratory syncytial virus-predominant periods preceding epidemic influenza; and excess ED visits across all ages during the 2003–2004 (9.2 excess visits per 1,000 population) and 2004–2005 (5.2 excess visits per 1,000 population) A/H3N2 Fujian-lineage epidemics, with the relative impact shifted within and between seasons from younger to older ages. During each influenza epidemic period in the study, ED visits were increased among school-aged children, and each epidemic peaked among school-aged children before other impacted age groups.
Conclusions
Influenza-related morbidity in NYC was highly age- and strain-specific. The impact of reemerging B/Victoria-lineage influenza was focused primarily on school-aged children born since the virus was last widespread in the US, while epidemic A/Fujian-lineage influenza affected all age groups, consistent with a novel antigenic variant. The correspondence between predominant circulating viruses and excess ED visits, hospitalizations, and deaths shows that excess fever and respiratory ED visits provide a reliable surrogate measure of incident influenza-attributable morbidity. The highly age-specific impact of influenza by subtype and strain suggests that greater age detail be incorporated into ongoing surveillance. Influenza morbidity surveillance using electronic data currently available in many jurisdictions can provide timely and representative information about the age-specific epidemiology of circulating influenza viruses.
Don Olson and colleagues report that influenza-related morbidity in NYC from 2001 to 2006 was highly age- and strain-specific and conclude that surveillance using electronic data can provide timely and representative information about the epidemiology of circulating influenza viruses.
Editors' Summary
Background.
Seasonal outbreaks (epidemics) of influenza (a viral infection of the nose, throat, and airways) send millions of people to their beds every winter. Most recover quickly, but flu epidemics often disrupt daily life and can cause many deaths. Seasonal epidemics occur because influenza viruses continually make small changes to the viral proteins (antigens) that the human immune system recognizes. Consequently, an immune response that combats influenza one year may provide partial or no protection the following year. Occasionally, an influenza virus with large antigenic changes emerges that triggers an influenza pandemic, or global epidemic. To help prepare for both seasonal epidemics and pandemics, public-health officials monitor influenza-related illness and death, investigate unusual outbreaks of respiratory diseases, and characterize circulating strains of the influenza virus. While traditional influenza-related illness surveillance systems rely on relatively slow voluntary clinician reporting of cases with influenza-like illness symptoms, some jurisdictions have also started to use “syndromic” surveillance systems. These use electronic health-related data rather than clinical impression to track illness in the community. For example, increased visits to emergency departments for fever or respiratory (breathing) problems can provide an early warning of an influenza outbreak.
Why Was This Study Done?
Rapid illness surveillance systems have been shown to detect flu outbreaks earlier than is possible through monitoring deaths from pneumonia or influenza. Increases in visits to emergency departments by children for fever or respiratory problems can provide an even earlier indicator. Researchers have not previously examined in detail how fever and respiratory problems by age group correlate with the predominant circulating respiratory viruses. Knowing details like this would help public-health officials detect and respond to influenza epidemics and pandemics. In this study, the researchers have used data collected between 2001 and 2006 in New York City emergency departments to investigate these aspects of syndromic surveillance for influenza.
What Did the Researchers Do and Find?
The researchers analyzed emergency department visits categorized broadly into a fever and respiratory syndrome (which provides an estimate of the total visits attributable to influenza) or more narrowly into an influenza-like illness syndrome (which specifically indicates fever with cough and/or sore throat) with laboratory-confirmed influenza surveillance data. They found that emergency department visits were highest during peak influenza periods, and that the affect on different age groups varied depending on the predominant circulating viruses. In early 2002, an epidemic reemergence of B/Victoria-lineage influenza viruses caused increased visits among school-aged children, while adult visits did not increase. By contrast, during the 2003–2004 season, when the predominant virus was an A/H3N2 Fujian-lineage influenza virus, excess visits occurred in all age groups, though the relative increase was greatest and earliest among school-aged children. During periods of documented respiratory syncytial virus (RSV) circulation, increases in fever and respiratory emergency department visits occurred in children under five years of age regardless of influenza circulation. Finally, the researchers found that excess visits to emergency departments for fever and respiratory symptoms preceded deaths from pneumonia or influenza by about two weeks.
What Do These Findings Mean?
These findings indicate that excess emergency department visits for fever and respiratory symptoms can provide a reliable and timely surrogate measure of illness due to influenza. They also provide new insights into how different influenza viruses affect people of different ages and how the timing and progression of each influenza season differs. These results, based on data collected over only five years in one city, might not be generalizable to other settings or years, warn the researchers. However, the present results strongly suggest that the routine monitoring of influenza might be improved by using electronic health-related data, such as emergency department visit data, and by examining it specifically by age group. Furthermore, by showing that school-aged children can be the first people to be affected by seasonal influenza, these results highlight the important role this age group plays in community-wide transmission of influenza, an observation that could influence the implementation of public-health strategies such as vaccination that aim to protect communities during influenza epidemics and pandemics.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040247.
• US Centers for Disease Control and Prevention provides information on influenza for patients and health professionals and on influenza surveillance in the US (in English, Spanish, and several other languages)
• World Health Organization has a fact sheet on influenza and on global surveillance for influenza (in English, Spanish, French, Russian, Arabic, and Chinese)
• The MedlinePlus encyclopedia contains a page on flu (in English and Spanish)
• US National Institute of Allergy and Infectious Diseases has a feature called “focus on flu”
• A detailed report from the US Centers for Disease Control and Prevention titled “Framework for Evaluating Public Health Surveillance Systems for Early Detection of Outbreaks” includes a simple description of syndromic surveillance
• The International Society for Disease Surveillance has a collaborative syndromic surveillance public wiki
• The Anthropology of the Contemporary Research Collaboratory includes working papers and discussions by cultural anthropologists studying modern vital systems security and syndromic surveillance
doi:10.1371/journal.pmed.0040247
PMCID: PMC1939858  PMID: 17683196
4.  Impact of primary influenza infection on the immune response to secondary bacterial infection in aged mice 
Influenza and other respiratory viruses  2011;5(Suppl 1):198-201.
Background
Increased susceptibility of older populations to secondary bacterial pneumonia-like infections following influenza infection has been well documented.1 Recent evidence in mouse models suggests that this increased risk from secondary bacterial infection occurs through a desensitization of the innate immune response.2 This recent finding, however, does not account for potential differences in immune responsiveness due to age.
Materials and methods
To address this parameter, we used three age groups (aged, adult, and young mice) to evaluate the role of age in influenza-mediated vulnerability to secondary bacterial challenge with Pseudomonas aeruginosa. All mice were evaluated for multiple parameters including: (i) survival; (ii) lung bacterial load; (iii) total lung protein content; (iv) immune cell infiltration; (v) cytokine/chemokine expression; and (vi) toll-like receptor (TLR) RNA expression profiles.
Results
Prior challenge with influenza contributed to aberrant cytokine/chemokine profiles and increased lung cellular infiltrate in response to secondary bacterial infection across all age groups, supporting a critical role for influenza infection in the alteration of immune responses to other pathogens. Also similar to human influenza, these changes were exacerbated by age in mice as demonstrated by increased bacterial load, mortality, and total lung protein content (an indicator of lung damage) after P. aeruginosa challenge.
Conclusions
These data support a potential role for virus-mediated and age-mediated alteration of innate immune effectors in the pathogenesis of influenza and the increased susceptibility of influenza virus infected mice to secondary bacterial infection. The understanding of the complex interaction of host and pathogen – and the role of age – in human influenza is critical in the development of novel therapeutics and improved vaccine approaches for influenza. Our results support further examination of influenza-mediated alterations in innate immune responses in aged and non-aged animals to allow elucidation of the molecular mechanisms of influenza pathogenesis in humans.
PMCID: PMC4172348  PMID: 21477139
Aging; bacteria; innate immunity; secondary infection; secondary infection; toll-like receptors
5.  Association between Respiratory Syncytial Virus Activity and Pneumococcal Disease in Infants: A Time Series Analysis of US Hospitalization Data 
PLoS Medicine  2015;12(1):e1001776.
Daniel Weinberger and colleagues examine a possible interaction between two serious respiratory infections in children under 2 years of age.
Please see later in the article for the Editors' Summary
Background
The importance of bacterial infections following respiratory syncytial virus (RSV) remains unclear. We evaluated whether variations in RSV epidemic timing and magnitude are associated with variations in pneumococcal disease epidemics and whether changes in pneumococcal disease following the introduction of seven-valent pneumococcal conjugate vaccine (PCV7) were associated with changes in the rate of hospitalizations coded as RSV.
Methods and Findings
We used data from the State Inpatient Databases (Agency for Healthcare Research and Quality), including >700,000 RSV hospitalizations and >16,000 pneumococcal pneumonia hospitalizations in 36 states (1992/1993–2008/2009). Harmonic regression was used to estimate the timing of the average seasonal peak of RSV, pneumococcal pneumonia, and pneumococcal septicemia. We then estimated the association between the incidence of pneumococcal disease in children and the activity of RSV and influenza (where there is a well-established association) using Poisson regression models that controlled for shared seasonal variations. Finally, we estimated changes in the rate of hospitalizations coded as RSV following the introduction of PCV7. RSV and pneumococcal pneumonia shared a distinctive spatiotemporal pattern (correlation of peak timing: ρ = 0.70, 95% CI: 0.45, 0.84). RSV was associated with a significant increase in the incidence of pneumococcal pneumonia in children aged <1 y (attributable percent [AP]: 20.3%, 95% CI: 17.4%, 25.1%) and among children aged 1–2 y (AP: 10.1%, 95% CI: 7.6%, 13.9%). Influenza was also associated with an increase in pneumococcal pneumonia among children aged 1–2 y (AP: 3.2%, 95% CI: 1.7%, 4.7%). Finally, we observed a significant decline in RSV-coded hospitalizations in children aged <1 y following PCV7 introduction (−18.0%, 95% CI: −22.6%, −13.1%, for 2004/2005–2008/2009 versus 1997/1998–1999/2000). This study used aggregated hospitalization data, and studies with individual-level, laboratory-confirmed data could help to confirm these findings.
Conclusions
These analyses provide evidence for an interaction between RSV and pneumococcal pneumonia. Future work should evaluate whether treatment for secondary bacterial infections could be considered for pneumonia cases even if a child tests positive for RSV.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Respiratory infections—bacterial and viral infections of the lungs and the airways (the tubes that take oxygen-rich air to the lungs)—are major causes of illness and death in children worldwide. Pneumonia (infection of the lungs) alone is responsible for about 15% of all child deaths. The leading cause of bacterial pneumonia in children is Streptococcus pneumoniae, which is transmitted through contact with infected respiratory secretions. S. pneumoniae usually causes noninvasive diseases such as bronchitis, but sometimes the bacteria invade the lungs, the bloodstream, or the covering of the brain, where they cause pneumonia, septicemia, or meningitis, respectively. These potentially fatal invasive pneumococcal diseases can be treated with antibiotics but can also be prevented by vaccination with pneumococcal conjugate vaccines such as PCV7. The leading cause of viral pneumonia is respiratory syncytial virus (RSV), which is also readily transmitted through contact with infected respiratory secretions. Almost all children have an RSV infection before their second birthday—RSV usually causes a mild cold-like illness. However, some children infected with RSV develop pneumonia and have to be admitted to hospital for supportive care such as the provision of supplemental oxygen; there is no specific treatment for RSV infection.
Why Was This Study Done?
Co-infections with bacteria and viruses can sometimes have a synergistic effect and lead to more severe disease than an infection with either type of pathogen (disease-causing organism) alone. For example, influenza infections increase the risk of invasive pneumococcal disease. But does pneumococcal disease also interact with RSV infection? It is important to understand the interaction between pneumococcal disease and RSV to improve the treatment of respiratory infections in young children, but the importance of bacterial infections following RSV infection is currently unclear. Here, the researchers undertake a time series analysis of US hospitalization data to investigate the association between RSV activity and pneumococcal disease in infants. Time series analysis uses statistical methods to analyze data collected at successive, evenly spaced time points.
What Did the Researchers Do and Find?
For their analysis, the researchers used data collected between 1992/1993 and 2008/2009 by the State Inpatient Databases on more than 700,000 hospitalizations for RSV and more than 16,000 hospitalizations for pneumococcal pneumonia or septicemia among children under two years old in 36 US states. Using a statistical technique called harmonic regression to measure seasonal variations in disease incidence (the rate of occurrence of new cases of a disease), the researchers show that RSV and pneumococcal pneumonia shared a distinctive spatiotemporal pattern over the study period. Next, using Poisson regression models (another type of statistical analysis), they show that RSV was associated with significant increases (increases unlikely to have happened by chance) in the incidence of pneumococcal disease. Among children under one year old, 20.3% of pneumococcal pneumonia cases were associated with RSV activity; among children 1–2 years old, 10.1% of pneumococcal pneumonia cases were associated with RSV activity. Finally, the researchers report that following the introduction of routine vaccination in the US against S. pneumoniae with PCV7 in 2000, there was a significant decline in hospitalizations for RSV among children under one year old.
What Do These Findings Mean?
These findings provide evidence for an interaction between RSV and pneumococcal pneumonia and indicate that RSV is associated with increases in the incidence of pneumococcal pneumonia, particularly in young infants. Notably, the finding that RSV hospitalizations declined after the introduction of routine pneumococcal vaccination suggests that some RSV hospitalizations may have a joint viral–bacterial etiology (cause), although it is possible that PCV7 vaccination reduced the diagnosis of RSV because fewer children were hospitalized with pneumococcal disease and subsequently tested for RSV. Because this is an ecological study (an observational investigation that looks at risk factors and outcomes in temporally and geographically defined populations), these findings do not provide evidence for a causal link between hospitalizations for RSV and pneumococcal pneumonia. The similar spatiotemporal patterns for the two infections might reflect another unknown factor shared by the children who were hospitalized for RSV or pneumococcal pneumonia. Moreover, because pooled hospitalization discharge data were used in this study, these results need to be confirmed through analysis of individual-level, laboratory-confirmed data. Importantly, however, these findings support the initiation of studies to determine whether treatment for bacterial infections should be considered for children with pneumonia even if they have tested positive for RSV.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001776.
The US National Heart, Lung, and Blood Institute provides information about the respiratory system and about pneumonia
The US Centers for Disease Control and Prevention provides information on all aspects of pneumococcal disease and pneumococcal vaccination, including personal stories and information about RSV infection
The UK National Health Service Choices website provides information about pneumonia (including a personal story) and about pneumococcal diseases
KidsHealth, a website provided by the US-based non-profit Nemours Foundation, includes information on pneumonia and on RSV (in English and Spanish)
MedlinePlus provides links to other resources about pneumonia, RSV infections, and pneumococcal infections (in English and Spanish)
HCUPnet provides aggregated hospitalization data from the State Inpatient Databases used in this study
doi:10.1371/journal.pmed.1001776
PMCID: PMC4285401  PMID: 25562317
6.  Evaluation of Coseasonality of Influenza and Invasive Pneumococcal Disease: Results from Prospective Surveillance 
PLoS Medicine  2011;8(6):e1001042.
Using a combination of modeling and statistical analyses, David Fisman and colleagues show that influenza likely influences the incidence of invasive pneumococcal disease by enhancing risk of invasion in colonized individuals.
Background
The wintertime co-occurrence of peaks in influenza and invasive pneumococcal disease (IPD) is well documented, but how and whether wintertime peaks caused by these two pathogens are causally related is still uncertain. We aimed to investigate the relationship between influenza infection and IPD in Ontario, Canada, using several complementary methodological tools.
Methods and Findings
We evaluated a total number of 38,501 positive influenza tests in Central Ontario and 6,191 episodes of IPD in the Toronto/Peel area, Ontario, Canada, between 1 January 1995 and 3 October 2009, reported through population-based surveillance. We assessed the relationship between the seasonal wave forms for influenza and IPD using fast Fourier transforms in order to examine the relationship between these two pathogens over yearly timescales. We also used three complementary statistical methods (time-series methods, negative binomial regression, and case-crossover methods) to evaluate the short-term effect of influenza dynamics on pneumococcal risk. Annual periodicity with wintertime peaks could be demonstrated for IPD, whereas periodicity for influenza was less regular. As for long-term effects, phase and amplitude terms of pneumococcal and influenza seasonal sine waves were not correlated and meta-analysis confirmed significant heterogeneity of influenza, but not pneumococcal phase terms. In contrast, influenza was shown to Granger-cause pneumococcal disease. A short-term association between IPD and influenza could be demonstrated for 1-week lags in both case-crossover (odds ratio [95% confidence interval] for one case of IPD per 100 influenza cases  = 1.10 [1.02–1.18]) and negative binomial regression analysis (incidence rate ratio [95% confidence interval] for one case of IPD per 100 influenza cases  = 1.09 [1.05–1.14]).
Conclusions
Our data support the hypothesis that influenza influences bacterial disease incidence by enhancing short-term risk of invasion in colonized individuals. The absence of correlation between seasonal waveforms, on the other hand, suggests that bacterial disease transmission is affected to a lesser extent.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Although some pathogens (disease-causing organisms) cause illness all year round, others are responsible for seasonal peaks of illness. These peaks occur because of a complex interplay of factors such as the loss of immunity to the pathogen over time and seasonal changes in the pathogen's ability to infect new individuals. Thus, in temperate countries in the northern hemisphere, illness caused by influenza viruses (pathogens that infect the nose, throat, and airways) usually peaks between December and March, perhaps because weather conditions during these months favor the survival of influenza virus in the environment and thus increase its chances of being transferred among people. Another illness that peaks during the winter months in temperate regions is pneumonia, a severe lung infection that is often caused by Streptococcus pneumoniae. These bacteria can colonize the back of the throat without causing disease but occasionally spread into the lungs and other organs where they cause potentially fatal invasive pneumococcal disease (IPD).
Why Was This Study Done?
Although the co-occurrence of seasonal peaks of influenza and IPD is well documented, it is unclear whether (or how) these peaks are causally related. For example, do the peaks of influenza and IPD both occur in the winter because influenza enhances person-to-person transmission of S. pneumoniae (hypothesis 1)? Alternatively, do the diseases co-occur because influenza infection increases the risk of IPD in individuals who are already colonized with S. pneumoniae (hypothesis 2)? Healthcare professionals need to know whether there is a causal relationship between influenza and IPD so that they can target vaccination for both diseases to those individuals most at risk of developing the potentially serious complications of these diseases. In this study, the researchers use several mathematical and statistical methods and data on influenza and IPD collected in Ontario, Canada to investigate the relationship between these seasonal illnesses.
What Did the Researchers Do and Find?
Between January 1995 and October 2009, 38,501 positive influenza tests were recorded in Ontario by the Canadian national influenza surveillance network. Over the same time period, the Toronto Invasive Bacterial Diseases Network (a group of hospitals, laboratories, and doctors that undertakes population-based surveillance for serious bacterial infections in the Toronto and Peel Regions of Ontario) recorded 6,191 IPD episodes. The researchers used a mathematical method called fast Fourier transforms that compares the shape of wave forms to look for any relationship between infections with the two pathogens over yearly timescales (a test of hypothesis 1) and three statistical methods to evaluate the short-term effect of influenza dynamics on IPD risk (tests of hypothesis 2). Although they found wintertime peaks for infections with both pathogens, there was no correlation between the seasonal wave forms for influenza and IPD. That is, there was no relationship between the seasonal patterns of the two infections. By contrast, two of the statistical methods used to test hypothesis 2 revealed a short-term association between infections with influenza and with IPD. Moreover, the third statistical method (the Granger causality Wald test, a type of time-series analysis) provided evidence that data collected at intervals on influenza can be used to predict peaks in IPD infections.
What Do These Findings Mean?
These findings support (but do not prove) the hypothesis that influenza influences IPD incidence by enhancing the short-term risk of bacterial invasion in individuals already colonized with S. pneumoniae, possibly by increasing the permeability of the lining of the airways to bacteria. By contrast, the lack of correlation between the seasonal wave forms for the two diseases suggests that person-to-person transfer of S. pneumoniae is affected by influenza infections to a lesser extent. These findings have important implications for disease control policy. First, they suggest that the increased number of influenza infections in pandemic years may not necessarily be accompanied by a marked surge in IPD. Second, because the findings suggest that some cases of IPD may be influenza-attributable, the extension of influenza vaccination to school-age children and young adults (a group of people at particular risk of IPD who are not normally vaccinated against influenza) could reduce the incidence of IPD as well as the incidence of influenza.
Additional Information
Please access these Web sites via the online version of this summary at http://www.plosone.org/article/info:doi/10.1371/journal.pone.0015493
A related research article by the same authors evaluating links between respiratory viruses and invasive meningococcal disease can be found in PLoS One (e0015493)
The US Centers for Disease Control and Prevention provides information for patients and health professionals on all aspects of seasonal influenza and pneumococcal disease and pneumococcal vaccination
The UK National Health Service Choices website also provides information for patients about seasonal influenza and pneumococcal infection
MedlinePlus has links to further information about influenza and pneumococcal infections (in English and Spanish)
FluWatch is the Canadian national surveillance system for influenza
More information about the Toronto Invasive Bacterial Network is available
The International Association for Ecology and Health provides information on the physical environment and its influence on health
doi:10.1371/journal.pmed.1001042
PMCID: PMC3110256  PMID: 21687693
7.  Detrimental Contribution of the Toll-Like Receptor (TLR)3 to Influenza A Virus–Induced Acute Pneumonia 
PLoS Pathogens  2006;2(6):e53.
Influenza A virus (IAV) is the etiological agent of a highly contagious acute respiratory disease that causes epidemics and considerable mortality annually. Recently, we demonstrated, using an in vitro approach, that the pattern recognition Toll-like receptor (TLR)3 plays a key role in the immune response of lung epithelial cells to IAV. In view of these data and the fact that the functional role of TLR3 in vivo is still debated, we designed an investigation to better understand the role of TLR3 in the mechanisms of IAV pathogenesis and host immune response using an experimental murine model. The time-course of several dynamic parameters, including animal survival, respiratory suffering, viral clearance, leukocyte recruitment into the airspaces and secretion of critical inflammatory mediators, was compared in infected wild-type and TLR3−/− mice. First, we found that the pulmonary expression of TLR3 is constitutive and markedly upregulated following influenza infection in control mice. Notably, when compared to wild-type mice, infected TLR3−/− animals displayed significantly reduced inflammatory mediators, including RANTES (regulated upon activation, normal T cell expressed and secreted), interleukin-6, and interleukin-12p40/p70 as well as a lower number of CD8+ T lymphocytes in the bronchoalveolar airspace. More important, despite a higher viral production in the lungs, mice deficient in TLR3 had an unexpected survival advantage. Hence, to our knowledge, our findings show for the first time that TLR3-IAV interaction critically contributes to the debilitating effects of a detrimental host inflammatory response.
Synopsis
Influenza A virus (IAV) is responsible for highly contagious acute respiratory disease. Recent concerns have risen concerning a possible influenza pandemic in the near future. Thus, a better understanding of the molecular mechanisms of IAV pathogenesis and host immune responses is required for the development of more efficient means of prevention and treatment of influenza. The Toll-like receptor (TLR)3 is a member of a family of receptors that detects microbes and triggers host defenses. We previously demonstrated using an in vitro approach, that the TLR3 plays a key role in the response of lung epithelial cells to IAV. Here, we used a mouse model to dissect the in vivo importance of TLR3-dependent responses during influenza. The time-course of several parameters, including animal survival, respiratory distress, viral clearance, and inflammation, was compared in infected control wild-type and TLR3-deficient mice. Our findings reveal that TLR3−/− mice have an unexpected advantage against IAV challenge as we show for the first time that a reduction of TLR3-mediated inflammatory response reduces the clinical manifestations of IAV-induced pneumonia.
doi:10.1371/journal.ppat.0020053
PMCID: PMC1475659  PMID: 16789835
8.  Infection with Human Metapneumovirus Predisposes Mice to Severe Pneumococcal Pneumonia ▿  
Journal of Virology  2008;83(3):1341-1349.
Human metapneumovirus (hMPV) is a recently described paramyxovirus that causes respiratory tract infections. Prior clinical studies have highlighted the importance of respiratory viruses, such as influenza virus, in facilitating secondary bacterial infections and increasing host immunopathology. The objective of the present work was to evaluate the effects of initial viral infection with hMPV or influenza A virus followed by Streptococcus pneumoniae superinfection 5 days later in a murine model. Both groups of superinfected mice demonstrated significant weight loss (mean of 15%) and higher levels of airway obstruction (mean enhanced pause value of 2.7) compared to those of mice infected with hMPV, influenza virus, or pneumococcus alone. Bacterial counts increased from 5 × 102 CFU/lung in mice infected with pneumococcus only to 107 and 109 CFU/lung in mice with prior infections with hMPV and influenza A virus, respectively. A more pronounced interstitial and alveolar inflammation correlated with higher levels of inflammatory cytokines and chemokines such as interleukin-1α (IL-1α), IL-1β, IL-6, IL-12, monocyte chemotactic protein 1, macrophage inflammatory protein 1α, KC, and granulocyte colony-stimulating factor, as well as greater expression of Toll-like receptor 2 (TLR2), TLR6, TLR7, and TLR13 in the lungs of superinfected animals compared to results for single infections, with similar immunological effects seen in both coinfection models. Prior infection with either hMPV or influenza A virus predisposes mice to severe pneumococcus infection.
doi:10.1128/JVI.01123-08
PMCID: PMC2620891  PMID: 19019962
9.  The Synthetic Bacterial Lipopeptide Pam3CSK4 Modulates Respiratory Syncytial Virus Infection Independent of TLR Activation 
PLoS Pathogens  2010;6(8):e1001049.
Respiratory syncytial virus (RSV) is an important cause of acute respiratory disease in infants, immunocompromised subjects and the elderly. However, it is unclear why most primary RSV infections are associated with relatively mild symptoms, whereas some result in severe lower respiratory tract infections and bronchiolitis. Since RSV hospitalization has been associated with respiratory bacterial co-infections, we have tested if bacterial Toll-like receptor (TLR) agonists influence RSV-A2-GFP infection in human primary cells or cell lines. The synthetic bacterial lipopeptide Pam3-Cys-Ser-Lys4 (Pam3CSK4), the prototype ligand for the heterodimeric TLR1/TLR2 complex, enhanced RSV infection in primary epithelial, myeloid and lymphoid cells. Surprisingly, enhancement was optimal when lipopeptides and virus were added simultaneously, whereas addition of Pam3CSK4 immediately after infection had no effect. We have identified two structurally related lipopeptides without TLR-signaling capacity that also modulate RSV infection, whereas Pam3CSK4-reminiscent TLR1/2 agonists did not, and conclude that modulation of infection is independent of TLR activation. A similar TLR-independent enhancement of infection could also be demonstrated for wild-type RSV strains, and for HIV-1, measles virus and human metapneumovirus. We show that the effect of Pam3CSK4 is primarily mediated by enhanced binding of RSV to its target cells. The N-palmitoylated cysteine and the cationic lysines were identified as pivotal for enhanced virus binding. Surprisingly, we observed inhibition of RSV infection in immortalized epithelial cell lines, which was shown to be related to interactions between Pam3CSK4 and negatively charged glycosaminoglycans on these cells, which are known targets for binding of laboratory-adapted but not wild-type RSV. These data suggest a potential role for bacterial lipopeptides in enhanced binding of RSV and other viruses to their target cells, thus affecting viral entry or spread independent of TLR signaling. Moreover, our results also suggest a potential application for these synthetic lipopeptides as adjuvants for live-attenuated viral vaccines.
Author Summary
Respiratory syncytial virus (RSV) infections are an important cause of hospitalization of infants during the winter season. However, RSV is often not the only detectable pathogen, but co-infections with respiratory bacteria are common. It has been hypothesized that this results from epithelial damage caused by the virus, facilitating colonization by pathogenic bacteria such as Streptococcus pneumoniae. However, an inverse order of events is not impossible: bacterial infections may activate respiratory epithelial cells through TLR signaling, resulting in increased susceptibility to virus infections. We tested this hypothesis by screening bacterial TLR agonists for their capacity to modulate RSV infection in different cell types, and identified the lipopeptide and prototype TLR1/2 agonist Pam3CSK4 as an enhancer of RSV infections. However, to our surprise this proved independent of TLR activation, but was mediated by enhancement of binding between virus and target cell. Two structurally related lipopeptides unable to stimulate TLR responses were identified that enhanced infections with RSV, but also with other enveloped viruses including HIV-1, human metapneumovirus, and measles virus. We speculate that bacterial infections may influence the pathogenesis of virus infections by facilitating binding to target cells.
doi:10.1371/journal.ppat.1001049
PMCID: PMC2924323  PMID: 20808895
10.  Rhinovirus Attenuates Non-typeable Hemophilus influenzae-stimulated IL-8 Responses via TLR2-dependent Degradation of IRAK-1 
PLoS Pathogens  2012;8(10):e1002969.
Bacterial infections following rhinovirus (RV), a common cold virus, are well documented, but pathogenic mechanisms are poorly understood. We developed animal and cell culture models to examine the effects of RV on subsequent infection with non-typeable Hemophilus influenzae (NTHi). We focused on NTHI-induced neutrophil chemoattractants expression that is essential for bacterial clearance. Mice infected with RV1B were superinfected with NTHi and lung bacterial density, chemokines and neutrophil counts determined. Human bronchial epithelial cells (BEAS-2B) or mouse alveolar macrophages (MH-S) were infected with RV and challenged with NHTi, TLR2 or TLR5 agonists. Chemokine levels were measured by ELISA and expression of IRAK-1, a component of MyD88-dependent TLR signaling, assessed by immunoblotting. While sham-infected mice cleared all NTHi from the lungs, RV-infected mice showed bacteria up to 72 h post-infection. However, animals in RV/NTHi cleared bacteria by day 7. Delayed bacterial clearance in RV/NTHi animals was associated with suppressed chemokine levels and neutrophil recruitment. RV-infected BEAS-2B and MH-S cells showed attenuated chemokine production after challenge with either NTHi or TLR agonists. Attenuated chemokine responses were associated with IRAK-1 protein degradation. Inhibition of RV-induced IRAK-1 degradation restored NTHi-stimulated IL-8 expression. Knockdown of TLR2, but not other MyD88-dependent TLRs, also restored IRAK-1, suggesting that TLR2 is required for RV-induced IRAK-1 degradation.
In conclusion, we demonstrate for the first time that RV infection delays bacterial clearance in vivo and suppresses NTHi-stimulated chemokine responses via degradation of IRAK-1. Based on these observations, we speculate that modulation of TLR-dependent innate immune responses by RV may predispose the host to secondary bacterial infection, particularly in patients with underlying chronic respiratory disorders.
Author Summary
Rhinovirus (RV) is responsible for the majority of common colds. RV infection is also associated with hospitalizations for lower respiratory tract illness, a significant proportion of which are accompanied by bacterial infections including acute otitis media, sinusitis and pneumonia. However, the mechanisms by which RV increases susceptibility to secondary bacterial infections are not understood. In this report, we demonstrate for the first time that RV infection promotes bacterial persistence of non-typeable Hemophilus influenzae (NTHi) in vivo, which was associated with reduced expression of neutrophil-attracting chemokines and neutrophil infiltration into the lungs. Further, RV infection attenuated NTHi or TLR2 or −5 agonist-stimulated chemokine responses in cultured bronchial epithelial cells and alveolar macrophages, suggesting that RV interferes with TLR-related innate immune responses. Next, we found that RV infection caused rapid degradation of IRAK-1, a key adaptor protein in the MyD88-dependent signaling. Inhibition of IRAK-1 degradation restored NTHi-stimulated chemokine responses in RV-infected bronchial epithelial cells. Finally, reductions in IRAK-1 were dependent on TLR2. Together, our results suggest that RV may increase the risk of acquiring secondary bacterial infection by attenuating TLR-dependent innate immune responses.
doi:10.1371/journal.ppat.1002969
PMCID: PMC3464227  PMID: 23055935
11.  Whole Blood Gene Expression Profiles to Assess Pathogenesis and Disease Severity in Infants with Respiratory Syncytial Virus Infection 
PLoS Medicine  2013;10(11):e1001549.
In this study, Mejias and colleagues found that specific blood RNA profiles of infants with RSV LRTI allowed for specific diagnosis, better understanding of disease pathogenesis, and better assessment of disease severity.
Please see later in the article for the Editors' Summary
Background
Respiratory syncytial virus (RSV) is the leading cause of viral lower respiratory tract infection (LRTI) and hospitalization in infants. Mostly because of the incomplete understanding of the disease pathogenesis, there is no licensed vaccine, and treatment remains symptomatic. We analyzed whole blood transcriptional profiles to characterize the global host immune response to acute RSV LRTI in infants, to characterize its specificity compared with influenza and human rhinovirus (HRV) LRTI, and to identify biomarkers that can objectively assess RSV disease severity.
Methods and Findings
This was a prospective observational study over six respiratory seasons including a cohort of infants hospitalized with RSV (n = 135), HRV (n = 30), and influenza (n = 16) LRTI, and healthy age- and sex-matched controls (n = 39). A specific RSV transcriptional profile was identified in whole blood (training cohort, n = 45 infants; Dallas, Texas, US) and validated in three different cohorts (test cohort, n = 46, Dallas, Texas, US; validation cohort A, n = 16, Turku, Finland; validation cohort B, n = 28, Columbus, Ohio, US) with high sensitivity (94% [95% CI 87%–98%]) and specificity (98% [95% CI 88%–99%]). It classified infants with RSV LRTI versus HRV or influenza LRTI with 95% accuracy. The immune dysregulation induced by RSV (overexpression of neutrophil, inflammation, and interferon genes, and suppression of T and B cell genes) persisted beyond the acute disease, and immune dysregulation was greatly impaired in younger infants (<6 mo). We identified a genomic score that significantly correlated with outcomes of care including a clinical disease severity score and, more importantly, length of hospitalization and duration of supplemental O2.
Conclusions
Blood RNA profiles of infants with RSV LRTI allow specific diagnosis, better understanding of disease pathogenesis, and assessment of disease severity. This study opens new avenues for biomarker discovery and identification of potential therapeutic or preventive targets, and demonstrates that large microarray datasets can be translated into a biologically meaningful context and applied to the clinical setting.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Lower respiratory tract infections (LRTIs)—bacterial and viral infections of the lungs and airways (the tubes that take oxygen-rich air to the lungs)—are major causes of illness and death in children worldwide. Pneumonia (infection of the lungs) alone is responsible for 14% of all child deaths. The leading cause of viral LTRIs in children is respiratory syncytial virus (RSV), which is readily transmitted from person to person by direct contact with nasal fluids or airborne droplets. Almost all children have an RSV infection before their second birthday, but most have only minor symptoms similar to those of a common cold and are cared for at home. Unfortunately, some children develop more serious conditions when they become infected with RSV, such as pneumonia or bronchiolitis (swelling and mucus build-up in the bronchioles, the smallest air passages in the lungs). These children have to be admitted to the hospital for supportive care—there is no specific treatment for RSV infection—such as the provision of supplemental oxygen.
Why Was This Study Done?
The lack of a treatment (and of a vaccine) for RSV is largely due to our incomplete understanding of the cellular events and reactions, including the host immune response, that occur during the development of an RSV infection (disease pathogenesis). Moreover, based on physical examination and available diagnostic tools, it is impossible to predict which children infected with RSV will develop a serious condition that requires hospitalization and which ones can be safely nursed at home. Here, the researchers use microarrays to analyze the global host response to acute RSV LTRI in infants, to define gene expression patterns that are specific to RSV infection rather than infection with other common respiratory viruses, and to identify biomarkers that indicate the severity of RSV infection. “Microarray” analysis allows researchers to examine gene expression patterns (“RNA transcriptional profiles”) in, for example, whole blood; a biomarker is a molecule whose level in bodily fluids or tissues indicates how a disease might develop and helps with patient classification.
What Did the Researchers Do and Find?
The researchers compared the RNA transcriptional profile in whole blood taken from children less than two years old hospitalized with RSV, human rhinovirus, or influenza virus infection (rhinovirus and influenza are two additional viral causes of LRTI), and from healthy infants. Using “statistical group comparisons,” they identified more than 2,000 transcripts that were differentially expressed in blood from 45 infants with RSV infection and from 14 healthy matched controls. Genes related to interferon function (interferons are released by host cells in response to the presence of disease-causing organisms) and neutrophil function (neutrophils are immune system cells that, like interferons, are involved in the innate immune response, the body's first line of defense against infection) were among the most overexpressed genes in infants infected with RSV. Genes regulating T and B cells (components of the adaptive immune response, the body's second-line of defense against infection) were among the most underexpressed genes. This specific transcriptional profile, which was validated in three additional groups of infants, accurately distinguished between infants infected with RSV and those infected with human rhinovirus or influenza virus. Finally, a “molecular distance to health” score (a numerical score that quantifies the transcriptional perturbation associated with an illness) was correlated with the clinical disease severity score of the study participants, with how long they needed supplemental oxygen, and with their duration of hospitalization.
What Do These Findings Mean?
These findings suggest that it might be possible to use whole blood RNA transcriptional profiles to distinguish between infants infected with RSV and those with other viruses that commonly cause LRTI. Moreover, if these findings can be replicated in more patients (including non-hospitalized children), gene expression profiling might provide a strategy for triaging patients with RSV infections when they first present to an emergency department and for monitoring clinical changes during the course of the infection, particularly given the development of molecular tools that might soon enable the “real time” acquisition of transcriptional profiles in the clinical setting. Finally, although certain aspects of the study design limit the accuracy and generalizability of the study's findings, these data provide new insights into the pathogenesis of RSV infection and open new avenues for the discovery of biomarkers for RSV infection and for the identification of therapeutic and preventative targets.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001549.
This study is further discussed in a PLOS Medicine Perspective by Peter Openshaw
The US Centers for Disease Control and Prevention provides information about RSV infection
The US National Heart, Lung, and Blood Institute provides information about the respiratory system and about RSV infections
The UK National Health Service Choices website provides information about bronchiolitis
The British Lung Foundation also provides information on RSV and on bronchiolitis
MedlinePlus provides links to other resources about RSV infections and about pneumonia (in English and Spanish); the MedlinePlus encyclopedia has a page on bronchiolitis (in English and Spanish)
PATH is an international non-profit organization investigating new RSV vaccines
doi:10.1371/journal.pmed.1001549
PMCID: PMC3825655  PMID: 24265599
12.  The Critical Role of Notch Ligand Delta-like 1 in the Pathogenesis of Influenza A Virus (H1N1) Infection 
PLoS Pathogens  2011;7(11):e1002341.
Influenza A viral infections have been identified as the etiologic agents for historic pandemics, and contribute to the annual mortality associated with acute viral pneumonia. While both innate and acquired immunity are important in combating influenza virus infection, the mechanism connecting these arms of the immune system remains unknown. Recent data have indicated that the Notch system is an important bridge between antigen-presenting cells (APCs) and T cell communication circuits and plays a central role in driving the immune system to overcome disease. In the present study, we examine the role of Notch signaling during influenza H1N1 virus infection, focusing on APCs. We demonstrate here that macrophages, but not dendritic cells (DCs), increased Notch ligand Delta-like 1 (Dll1) expression following influenza virus challenge. Dll1 expression on macrophages was dependent on retinoic acid-inducible gene-I (RIG-I) induced type-I IFN pathway, and not on the TLR3-TRIF pathway. We also found that IFNα-Receptor knockout mice failed to induce Dll1 expression on lung macrophages and had enhanced mortality during influenza virus infection. Our results further showed that specific neutralization of Dll1 during influenza virus challenge induced higher mortality, impaired viral clearance, and decreased levels of IFN-γ. In addition, we blocked Notch signaling by using γ-secretase inhibitor (GSI), a Notch signaling inhibitor. Intranasal administration of GSI during influenza infection also led to higher mortality, and higher virus load with excessive inflammation and an impaired production of IFN-γ in lungs. Moreover, Dll1 expression on macrophages specifically regulates IFN-γ levels from CD4+and CD8+T cells, which are important for anti-viral immunity. Together, the results of this study show that Dll1 positively influences the development of anti-viral immunity, and may provide mechanistic approaches for modifying and controlling the immune response against influenza H1N1 virus infection.
Author Summary
Influenza viruses cause annual epidemics and occasional pandemics that have claimed the lives of millions. Both innate and acquired immunity are essential for protection against influenza virus, and Notch and Notch ligands provide a key bridge between innate and acquired immunity. However, the role of Notch system during influenza virus infection is unknown. Here, we show that Notch ligand Delta-like 1 (Dll1) expression was up-regulated in influenza virus H1N1 challenged macrophages, and was dependent on both retinoic-acid–inducible protein I (RIG-I) and IFNα receptor (IFNαR)-mediated pathways. IFNαR-deficient mice challenged with influenza virus in vivo also display a profoundly impaired Dll1 expression with increased mortality and abrogated IFN-γ production. Treatment of WT mice during influenza infection, with either neutralizing antibodies specific for Dll1 or a γ-secretase inhibitor (GSI), which blocks Notch signaling, resulted in increased mortality, impaired viral clearance, and lower IFN-γ production. In addition, Dll1 specifically regulated IFN-γ production from both CD4+and CD8+T cells in vitro. Together, these results suggest that Notch signaling through macrophage-dependent Dll1 is critical in providing an anti-viral response during influenza infection by linking innate and acquired immunity.
doi:10.1371/journal.ppat.1002341
PMCID: PMC3207886  PMID: 22072963
13.  Poly I:C Enhances Susceptibility to Secondary Pulmonary Infections by Gram-Positive Bacteria 
PLoS ONE  2012;7(9):e41879.
Secondary bacterial pneumonias are a frequent complication of influenza and other respiratory viral infections, but the mechanisms underlying viral-induced susceptibility to bacterial infections are poorly understood. In particular, it is unclear whether the host's response against the viral infection, independent of the injury caused by the virus, results in impairment of antibacterial host defense. Here, we sought to determine whether the induction of an “antiviral” immune state using various viral recognition receptor ligands was sufficient to result in decreased ability to combat common bacterial pathogens of the lung. Using a mouse model, animals were administered polyinosine-polycytidylic acid (poly I:C) or Toll-like 7 ligand (imiquimod or gardiquimod) intranasally, followed by intratracheal challenge with Streptococcus pneumoniae. We found that animals pre-exposed to poly I:C displayed impaired bacterial clearance and increased mortality. Poly I:C-exposed animals also had decreased ability to clear methicillin-resistant Staphylococcus aureus. Furthermore, we showed that activation of Toll-like receptor (TLR)3 and Retinoic acid inducible gene (RIG-I)/Cardif pathways, which recognize viral nucleic acids in the form of dsRNA, both contribute to poly I:C mediated impairment of bacterial clearance. Finally, we determined that poly I:C administration resulted in significant induction of type I interferons (IFNs), whereas the elimination of type I IFN signaling improved clearance and survival following secondary bacterial pneumonia. Collectively, these results indicate that in the lung, poly I:C administration is sufficient to impair pulmonary host defense against clinically important gram-positive bacterial pathogens, which appears to be mediated by type I IFNs.
doi:10.1371/journal.pone.0041879
PMCID: PMC3433467  PMID: 22962579
14.  Influenza A induced cellular signal transduction pathways 
Journal of Thoracic Disease  2013;5(Suppl 2):S132-S141.
Influenza A is a negative sense single stranded RNA virus that belongs to the Orthomyxoviridae Family. This enveloped virus contains 8 segments of viral RNA which encodes 11 viral proteins. Influenza A infects humans and is the causative agent of the flu. Annually it infects approximately 5% to 15% of the population world wide and results in an estimated 250,000 to 500,000 deaths a year. The nature of influenza A replication results in a high mutation rate which results in the need for seasonal vaccinations. In addition the zoonotic nature of the influenza virus allows for recombination of viral segments from different strains creating new variants that have not been encountered before. This type of mutation is the method by which pandemic strains of the flu arises. Infection with influenza results in a respiratory illness that for most individuals is self limiting. However in susceptible populations which include individuals with pre-existing pulmonary or cardiac conditions, the very young and the elderly fatal complications may arise. The most serious of these is the development of viral pneumonia which may be accompanied by secondary bacterial infections. Progression of pneumonia leads to the development of acute respiratory distress syndrome (ARDS), acute lung injury (ALI) and potentially respiratory failure. This progression is a combined effect of the host immune system response to influenza infection and the viral infection itself. This review will focus on molecular aspects of viral replication in alveolar cells and their response to infection. The response of select innate immune cells and their contribution to viral clearance and lung epithelial damage will also be discussed. Molecular aspects of antiviral response in the cells in particular the protein kinase RNA dependent response, and the oligoadenylate synthetase RNAse L system in relation to influenza infection.
doi:10.3978/j.issn.2072-1439.2013.07.42
PMCID: PMC3747532  PMID: 23977434
Influenza A; viral pneumonia; cellular signal transduction
15.  Limited Anti-Inflammatory Role for Interleukin-1 Receptor Like 1 (ST2) in the Host Response to Murine Postinfluenza Pneumococcal Pneumonia 
PLoS ONE  2013;8(3):e58191.
Interleukin-1 receptor like 1 (ST2) is a negative regulator of Toll-like receptor (TLR) signaling. TLRs are important for host defense during respiratory tract infections by both influenza and Streptococcus (S.) pneumoniae. Enhanced susceptibility to pneumococcal pneumonia is an important complication following influenza virus infection. We here sought to determine the role of ST2 in primary influenza A infection and secondary pneumococcal pneumonia. ST2 knockout (st2−/−) and wild-type (WT) mice were intranasally infected with influenza A virus; in some experiments mice were infected 2 weeks later with S. pneumoniae. Both mouse strains cleared the virus similarly during the first 14 days of influenza infection and had recovered their weights equally at day 14. Overall st2−/− mice tended to have a stronger pulmonary inflammatory response upon infection with influenza; especially 14 days after infection modest but statistically significant elevations were seen in lung IL-6, IL-1β, KC, IL-10, and IL-33 concentrations and myeloperoxidase levels, indicative of enhanced neutrophil activity. Interestingly, bacterial lung loads were higher in st2−/− mice during the later stages of secondary pneumococcal pneumonia, which was associated with relatively increased lung IFN-γ levels. ST2 deficiency did not impact on gross lung pathology in either influenza or secondary S. pneumoniae pneumonia. These data show that ST2 plays a limited anti-inflammatory role during both primary influenza and postinfluenza pneumococcal pneumonia.
doi:10.1371/journal.pone.0058191
PMCID: PMC3590127  PMID: 23483993
16.  Female resistance to pneumonia identifies lung macrophage nitric oxide synthase-3 as a therapeutic target 
eLife  2014;3:e03711.
To identify new approaches to enhance innate immunity to bacterial pneumonia, we investigated the natural experiment of gender differences in resistance to infections. Female and estrogen-treated male mice show greater resistance to pneumococcal pneumonia, seen as greater bacterial clearance, diminished lung inflammation, and better survival. In vitro, lung macrophages from female mice and humans show better killing of ingested bacteria. Inhibitors and genetically altered mice identify a critical role for estrogen-mediated activation of lung macrophage nitric oxide synthase-3 (NOS3). Epidemiologic data show decreased hospitalization for pneumonia in women receiving estrogen or statins (known to activate NOS3). Pharmacologic targeting of NOS3 with statins or another small-molecule compound (AVE3085) enhanced macrophage bacterial killing, improved bacterial clearance, and increased host survival in both primary and secondary (post-influenza) pneumonia. The data identify a novel mechanism for host defense via NOS3 and suggest a potential therapeutic strategy to reduce secondary bacterial pneumonia after influenza.
DOI: http://dx.doi.org/10.7554/eLife.03711.001
eLife digest
Pneumonia is a disease that is commonly caused by a bacterial infection and results in the lungs becoming inflamed. Pneumonia is a serious condition and can lead to hospitalization and sometimes death. However, women—and other female animals—are less likely than males to get pneumonia and are more likely to survive if they do. Understanding this sex-based difference may help to develop treatments or preventive actions that either reduce the number of people who get pneumonia or help infected patients to recover.
Bacteria from the nose—including those that cause pneumonia—frequently enter the lungs during sleep. Luckily, the body has very robust defense mechanisms against such invasions; the immune system immediately deploys cells called macrophages as a ‘first response’ to devour and kill invading bacteria in the lungs. However, this system is not perfect, particularly if an individual has a weakened immune system or if they are already suffering with a respiratory infection. Indeed, many individuals with severe influenza infections are hospitalized as a result of pneumonia.
Yang et al. studied why females are more able to fend off pneumonia and found that estrogen, the main female sex hormone, boosts the ability of the macrophages to kill bacteria. Treating male mice with estrogen also boosted their immune system's ability to kill off bacteria in the lungs.
Investigating further, Yang et al. found that the estrogen worked by increasing the number of proteins produced from one gene called NOS3. Female mice lacking NOS3 proteins lost their pneumonia-fighting advantage. A widely used class of drugs called statins, which are used to treat cardiovascular disease, boosts the activity of the NOS3 gene. Yang et al. therefore wondered whether treatment with either estrogen or statins might prevent pneumonia, or help patients with pneumonia fight off the infection.
Using a large database of information about healthcare in Denmark, Yang et al. assessed the relationship between taking these drugs and the risk of pneumonia. When several confounding factors (such as unrelated diseases that the patient was suffering from) are taken into account, the data show that the women were less likely to be hospitalized for pneumonia if they were taking statins or estrogens. Those taking both treatments had an even lower risk.
Yang et al. also found that treating mice with statins or an experimental drug that boosts NOS3 activity increased the ability of the animals to fight off pneumonia-causing bacteria—even if they also had influenza—and increased the likelihood that mice already infected with pneumonia would survive. Further studies will be needed to determine if statins or the experimental drug might also help to prevent pneumonia in human patients with influenza.
DOI: http://dx.doi.org/10.7554/eLife.03711.002
doi:10.7554/eLife.03711
PMCID: PMC4215537  PMID: 25317947
macrophages; innate immunity; pneumonia; nitric oxide; bacteria; gender; human; mouse
17.  Lethal Synergism of 2009 Pandemic H1N1 Influenza Virus and Streptococcus pneumoniae Coinfection Is Associated with Loss of Murine Lung Repair Responses 
mBio  2011;2(5):e00172-11.
ABSTRACT
Secondary bacterial infections increase disease severity of influenza virus infections and contribute greatly to increased morbidity and mortality during pandemics. To study secondary bacterial infection following influenza virus infection, mice were inoculated with sublethal doses of 2009 seasonal H1N1 virus (NIH50) or pandemic H1N1 virus (Mex09) followed by inoculation with Streptococcus pneumoniae 48 h later. Disease was characterized by assessment of weight loss and survival, titration of virus and bacteria by quantitative reverse transcription-PCR (qRT-PCR), histopathology, expression microarray, and immunohistochemistry. Mice inoculated with virus alone showed 100% survival for all groups. Mice inoculated with Mex09 plus S. pneumoniae showed severe weight loss and 100% mortality with severe alveolitis, denuded bronchiolar epithelium, and widespread expression of apoptosis marker cleaved caspase 3. In contrast, mice inoculated with NIH50 plus S. pneumoniae showed increased weight loss, 100% survival, and slightly enhanced lung pathology. Mex09-S. pneumoniae coinfection also resulted in increased S. pneumoniae replication in lung and bacteremia late in infection. Global gene expression profiling revealed that Mex09-S. pneumoniae coinfection did not induce significantly more severe inflammatory responses but featured significant loss of epithelial cell reproliferation and repair responses. Histopathological examination for cell proliferation marker MCM7 showed significant staining of airway epithelial cells in all groups except Mex09-S. pneumoniae-infected mice. This study demonstrates that secondary bacterial infection during 2009 H1N1 pandemic virus infection resulted in more severe disease and loss of lung repair responses than did seasonal influenza viral and bacterial coinfection. Moreover, this study provides novel insights into influenza virus and bacterial coinfection by showing correlation of lethal outcome with loss of airway basal epithelial cells and associated lung repair responses.
IMPORTANCE
Secondary bacterial pneumonias lead to increased disease severity and have resulted in a significant percentage of deaths during influenza pandemics. To understand the biological basis for the interaction of bacterial and viral infections, mice were infected with sublethal doses of 2009 seasonal H1N1 and pandemic H1N1 viruses followed by infection with Streptococcus pneumoniae 48 h later. Only infection with 2009 pandemic H1N1 virus and S. pneumoniae resulted in severe disease with a 100% fatality rate. Analysis of the host response to infection during lethal coinfection showed a significant loss of responses associated with lung repair that was not observed in any of the other experimental groups. This group of mice also showed enhanced bacterial replication in the lung. This study reveals that the extent of lung damage during viral infection influences the severity of secondary bacterial infections and may help explain some differences in mortality during influenza pandemics.
doi:10.1128/mBio.00172-11
PMCID: PMC3175626  PMID: 21933918
18.  Toll-Like Receptor 2 Impairs Host Defense in Gram-Negative Sepsis Caused by Burkholderia pseudomallei (Melioidosis) 
PLoS Medicine  2007;4(7):e248.
Background
Toll-like receptors (TLRs) are essential in host defense against pathogens by virtue of their capacity to detect microbes and initiate the immune response. TLR2 is seen as the most important receptor for gram-positive bacteria, while TLR4 is regarded as the gram-negative TLR. Melioidosis is a severe infection caused by the gram-negative bacterium, Burkholderia pseudomallei, that is endemic in Southeast Asia. We aimed to characterize the expression and function of TLRs in septic melioidosis.
Methods and Findings
Patient studies: 34 patients with melioidosis demonstrated increased expression of CD14, TLR1, TLR2, and TLR4 on the cell surfaces of monocytes and granulocytes, and increased CD14, TLR1, TLR2, TLR4, LY96 (also known as MD-2), TLR5, and TLR10 mRNA levels in purified monocytes and granulocytes when compared with healthy controls. In vitro experiments: Whole-blood and alveolar macrophages obtained from TLR2 and TLR4 knockout (KO) mice were less responsive to B. pseudomallei in vitro, whereas in the reverse experiment, transfection of HEK293 cells with either TLR2 or TLR4 rendered these cells responsive to this bacterium. In addition, the lipopolysaccharide (LPS) of B. pseudomallei signals through TLR2 and not through TLR4. Mouse studies: Surprisingly, TLR4 KO mice were indistinguishable from wild-type mice with respect to bacterial outgrowth and survival in experimentally induced melioidosis. In contrast, TLR2 KO mice displayed a markedly improved host defenses as reflected by a strong survival advantage together with decreased bacterial loads, reduced lung inflammation, and less distant-organ injury.
Conclusions
Patients with melioidosis displayed an up-regulation of multiple TLRs in peripheral blood monocytes and granulocytes. Although both TLR2 and TLR4 contribute to cellular responsiveness to B. pseudomallei in vitro, TLR2 detects the LPS of B. pseudomallei, and only TLR2 impacts on the immune response of the intact host in vivo. Inhibition of TLR2 may be a novel treatment strategy in melioidosis.
Willem Wiersinga and colleagues find up-regulation of multiple Toll-like receptors (TLRs) in peripheral blood cells of patients with melioidosis. However, only TLR2 had an effect on the immune response in a mouse model.
Editors' Summary
Background.
Melioidosis is a severe tropical infection caused by the bacterium Burkholderia pseudomallei. This soil-dwelling pathogen (disease-causing organism) enters the body through cuts, by swallowed contaminated water, or by inhaled contaminated dust. Here, it can cause a severe lung infection or spread into the blood stream and around the body, where it causes widespread inflammation (sepsis) and organ failure. Untreated septic melioidosis is usually fatal. Even with antibiotic therapy, half the people who develop it in Thailand (a hot spot for melioidosis) die. B. pseudomallei is a “gram-negative” bacterium. That is, it is surrounded by a membrane that stops it taking up a stain used to detect bacteria. This membrane contains a molecule called lipopolysaccharide (LPS). Proteins on immune system cells called Toll-like receptors (TLRs), of which there are many, recognize LPS and other surface molecules common to different pathogens and tell the cells to make cytokines. These cytokines stimulate the immune system to kill the pathogen but also cause inflammation, the underlying problem in septic melioidosis and other forms of sepsis. In other words, TLRs are two-edged swords—they provide an essential first-line defense against pathogens, but cause life-threatening inflammation if overstimulated.
Why Was This Study Done?
It isn't known which TLRs are involved in melioidosis. TLR4 normally detects LPS, but the surface of B. pseudomallei also carries molecules that interact with TLR2. Understanding how B. pseudomallei interacts with TLRs might suggest new, more effective ways to treat septic melioidosis. Better remedies for this disease are badly needed because, as well as the infections it causes in the community, the US Centers for Disease Control and Prevention has identified B. pseudomallei as a potential bioterrorism agent. In this study, the researchers have characterized the expression and function of TLRs in septic melioidosis using human, in vitro (test tube), and animal approaches.
What Did the Researchers Do and Find?
The researchers isolated monocytes and granulocytes (immune system cells involved in first-line defenses against pathogens) from patients with melioidosis and from healthy people. The patients' cells made more TLR1, TLR2, TLR4, and CD14 (a protein that enhances the activation of immune system cells by LPS) than those of the healthy controls and more of the mRNAs encoding several other TLRs. Next, the researchers tested the ability of heat-killed B. pseudomallei to induce the release of TNFα (a cytokine produced in response to TLR signaling) from macrophages (immune system cells that swallow up pathogens) isolated from wild-type mice and from mice lacking TLR2 or TLR4. Macrophages isolated from wild-type mice made more TNFα than those from TLR2- or TLR4-deficient mice. In addition, a human kidney cell line engineered to express CD14/TLR2 or CD14/TLR4 but not the parent cell line released IL8 (another cytokine) when stimulated with heat-killed B. pseudomallei. Other experiments in these human cell lines showed that LPS purified from B. pseudomallei signals through TLR2 but not through TLR4. Finally, the researchers tested the ability of TLR2- and TLR4-deficient mice to survive after infection with live B. pseudomallei. Compared with TLR4-deficient or wild-type mice, the TLR2-deficient mice had a strong survival advantage, a lower bacterial load, reduced lung inflammation, and less organ damage.
What Do These Findings Mean?
These findings show that people with melioidosis have increased expression of several TLRs, any one of which might cause the sepsis associated with B. pseudomallei infection. The in vitro findings indicate that TLR2 and TLR4 both contribute to the responsiveness of immune cells to B. pseudomallei in test tubes, but that only TLR2 detects the LPS of this bacterium. This unexpected result—TLR4 normally responds to LPS—might indicate that there is something unique about the LPS of B. pseudomallei. Finally, the survival of TLR2-deficient mice after infection with B. pseudomallei suggests that TLR2-mediated dysregulation of the immune system in response to invasive B. pseudomallei might cause septic melioidosis. Although these results need confirming in people, they suggest that inhibition of TLR2 in combination with antibiotic therapy might improve outcomes for people with melioidosis.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040248.
Information is available from the US Centers for Disease Control and Prevention on melioidosis (in English and Spanish)
The UK Health Protection Agency provides information for the public and health professionals on melioidosis
Wikipedia has pages on melioidosis and on Toll-like receptors (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The MedlinePlus encyclopedia contains a page on sepsis (in English and Spanish)
doi:10.1371/journal.pmed.0040248
PMCID: PMC1950213  PMID: 17676990
19.  Live Attenuated Influenza Vaccine Enhances Colonization of Streptococcus pneumoniae and Staphylococcus aureus in Mice 
mBio  2014;5(1):e01040-13.
ABSTRACT
Community interactions at mucosal surfaces between viruses, like influenza virus, and respiratory bacterial pathogens are important contributors toward pathogenesis of bacterial disease. What has not been considered is the natural extension of these interactions to live attenuated immunizations, and in particular, live attenuated influenza vaccines (LAIVs). Using a mouse-adapted LAIV against influenza A (H3N2) virus carrying the same mutations as the human FluMist vaccine, we find that LAIV vaccination reverses normal bacterial clearance from the nasopharynx and significantly increases bacterial carriage densities of the clinically important bacterial pathogens Streptococcus pneumoniae (serotypes 19F and 7F) and Staphylococcus aureus (strains Newman and Wright) within the upper respiratory tract of mice. Vaccination with LAIV also resulted in 2- to 5-fold increases in mean durations of bacterial carriage. Furthermore, we show that the increases in carriage density and duration were nearly identical in all aspects to changes in bacterial colonizing dynamics following infection with wild-type (WT) influenza virus. Importantly, LAIV, unlike WT influenza viruses, had no effect on severe bacterial disease or mortality within the lower respiratory tract. Our findings are, to the best of our knowledge, the first to demonstrate that vaccination with a live attenuated viral vaccine can directly modulate colonizing dynamics of important and unrelated human bacterial pathogens, and does so in a manner highly analogous to that seen following wild-type virus infection.
IMPORTANCE
Following infection with an influenza virus, infected or recently recovered individuals become transiently susceptible to excess bacterial infections, particularly Streptococcus pneumoniae and Staphylococcus aureus. Indeed, in the absence of preexisting comorbidities, bacterial infections are a leading cause of severe disease during influenza epidemics. While this synergy has been known and is well studied, what has not been explored is the natural extension of these interactions to live attenuated influenza vaccines (LAIVs). Here we show, in mice, that vaccination with LAIV primes the upper respiratory tract for increased bacterial growth and persistence of bacterial carriage, in a manner nearly identical to that seen following wild-type influenza virus infections. Importantly, LAIV, unlike wild-type virus, did not increase severe bacterial disease of the lower respiratory tract. These findings may have consequences for individual bacterial disease processes within the upper respiratory tract, as well as bacterial transmission dynamics within LAIV-vaccinated populations
doi:10.1128/mBio.01040-13
PMCID: PMC3944816  PMID: 24549845
20.  Severe influenza cases in paediatric intensive care units in Germany during the pre-pandemic seasons 2005 to 2008 
BMC Infectious Diseases  2011;11:233.
Background
Data on complications in children with seasonal influenza virus infection are limited. We initiated a nation-wide three-year surveillance of children who were admitted to a paediatric intensive care unit (PICU) with severe seasonal influenza.
Methods
From October 2005 to July 2008, active surveillance was performed using an established reporting system for rare diseases (ESPED) including all paediatric hospitals in Germany. Cases to be reported were hospitalized children < 17 years of age with laboratory-confirmed influenza treated in a PICU or dying in hospital.
Results
Twenty severe influenza-associated cases were reported from 14 PICUs during three pre-pandemic influenza seasons (2005-2008). The median age of the patients (12 males/8 females) was 7.5 years (range 0.1-15 years). None had received vaccination against influenza. In 14 (70%) patients, the infection had been caused by influenza A and in five (25%) by influenza B; in one child (5%) the influenza type was not reported. Patients spent a median of 19 (IQR 12-38) days in the hospital and a median of 11 days (IQR 6-18 days) in the PICU; 10 (50%) needed mechanical ventilation. Most frequent diagnoses were influenza-associated pneumonia (60%), bronchitis/bronchiolitis (30%), encephalitis/encephalopathy (25%), secondary bacterial pneumonia (25%), and ARDS (25%). Eleven (55%) children had chronic underlying medical conditions, including 8 (40%) with chronic pulmonary diseases. Two influenza A- associated deaths were reported: i) an 8-year old boy with pneumococcal encephalopathy following influenza infection died from cerebral edema, ii) a 14-year-old boy with asthma bronchiale, cardiac malformation and Addison's disease died from cardiac and respiratory failure. For nine (45%) patients, possibly permanent sequelae were reported (3 neurological, 3 pulmonary, 3 other sequelae).
Conclusions
Influenza-associated pneumonia and secondary bacterial infections are relevant complications of seasonal influenza in Germany. The incidence of severe influenza cases in PICUs was relatively low. This may be either due to the weak to moderate seasonal influenza activity during the years 2005 to 2008 or due to under-diagnosis of influenza by physicians. Fifty% of the observed severe cases might have been prevented by following the recommendations for vaccination of risk groups in Germany.
doi:10.1186/1471-2334-11-233
PMCID: PMC3175218  PMID: 21880125
21.  Transcriptomic Analysis of Host Immune and Cell Death Responses Associated with the Influenza A Virus PB1-F2 Protein 
PLoS Pathogens  2011;7(8):e1002202.
Airway inflammation plays a major role in the pathogenesis of influenza viruses and can lead to a fatal outcome. One of the challenging objectives in the field of influenza research is the identification of the molecular bases associated to the immunopathological disorders developed during infection. While its precise function in the virus cycle is still unclear, the viral protein PB1-F2 is proposed to exert a deleterious activity within the infected host. Using an engineered recombinant virus unable to express PB1-F2 and its wild-type homolog, we analyzed and compared the pathogenicity and host response developed by the two viruses in a mouse model. We confirmed that the deletion of PB1-F2 renders the virus less virulent. The global transcriptomic analyses of the infected lungs revealed a potent impact of PB1-F2 on the response developed by the host. Thus, after two days post-infection, PB1-F2 invalidation severely decreased the number of genes activated by the host. PB1-F2 expression induced an increase in the number and level of expression of activated genes linked to cell death, inflammatory response and neutrophil chemotaxis. When generating interactive gene networks specific to PB1-F2, we identified IFN-γ as a central regulator of PB1-F2-regulated genes. The enhanced cell death of airway-recruited leukocytes was evidenced using an apoptosis assay, confirming the pro-apoptotic properties of PB1-F2. Using a NF-kB luciferase adenoviral vector, we were able to quantify in vivo the implication of NF-kB in the inflammation mediated by the influenza virus infection; we found that PB1-F2 expression intensifies the NF-kB activity. Finally, we quantified the neutrophil recruitment within the airways, and showed that this type of leukocyte is more abundant during the infection of the wild-type virus. Collectively, these data demonstrate that PB1-F2 strongly influences the early host response during IAV infection and provides new insights into the mechanisms by which PB1-F2 mediates virulence.
Author Summary
Influenza A viruses may cause severe respiratory disease. PB1-F2, a viral protein identified in 2001 is suspected to play a role in influenza-related pneumonia. In order to understand the impact of PB1-F2 in the pathogenesis underlying Influenza A virus infection, we engineered a mutant virus unable to express PB1-F2. By the use of high-throughput gene expression assays, we compared the host responses of the wild-type-infected and the PB1-F2 mutant-infected mice. We identified that PB1-F2 expression enhances the immune cell death and inflammatory responses of mice. The inflammatory response mediated by the PB1-F2 expression leads to a massive recruitment of leukocytes within the air spaces, a feature that characterizes the influenza-mediated immunopathology. Our results suggest that PB1-F2 is a virulence factor implicated in the deregulation of the inflammatory response observed in acute influenza virus pneumonia. These data underlie the complexities of virus-host interactions and help us understand by which mechanisms Influenza viruses mediate severe respiratory diseases.
doi:10.1371/journal.ppat.1002202
PMCID: PMC3161975  PMID: 21901097
22.  Type I Interferon Induction during Influenza Virus Infection Increases Susceptibility to Secondary Streptococcus pneumoniae Infection by Negative Regulation of γδ T Cells 
Journal of Virology  2012;86(22):12304-12312.
The majority of deaths following influenza virus infection result from secondary bacterial superinfection, most commonly caused by Streptococcus pneumoniae. Several models have been proposed to explain how primary respiratory viral infections exacerbate secondary bacterial disease, but the mechanistic explanations have been contradictory. In this study, mice were infected with S. pneumoniae at different days after primary influenza A (X31) virus infection. Our findings show that the induction of type I interferons (IFNs) during a primary nonlethal influenza virus infection is sufficient to promote a deadly S. pneumoniae secondary infection. Moreover, mice deficient in type I interferon receptor (IFNAR knockout [KO] mice) effectively cleared the secondary bacterial infection from their lungs, increased the recruitment of neutrophils, and demonstrated an enhanced innate expression of interleukin-17 (IL-17) relative to wild-type (WT) mice. Lung γδ T cells were responsible for almost all IL-17 production, and their function is compromised during secondary S. pneumoniae infection of WT but not IFNAR KO mice. Adoptive transfer of γδ T cells from IFNAR KO mice reduced the susceptibility to secondary S. pneumoniae infection in the lung of WT mice. Altogether, our study highlights the importance of type I interferon as a key master regulator that is exploited by opportunistic pathogens such as S. pneumoniae. Our findings may be utilized to design effective preventive and therapeutic strategies that may be beneficial for coinfected patients during influenza epidemics.
doi:10.1128/JVI.01269-12
PMCID: PMC3486468  PMID: 22951826
23.  Synergistic TLR2/6 and TLR9 Activation Protects Mice against Lethal Influenza Pneumonia 
PLoS ONE  2012;7(1):e30596.
Lower respiratory tract infections caused by influenza A continue to exact unacceptable worldwide mortality, and recent epidemics have emphasized the importance of preventative and containment strategies. We have previously reported that induction of the lungs' intrinsic defenses by aerosolized treatments can protect mice against otherwise lethal challenges with influenza A virus. More recently, we identified a combination of Toll like receptor (TLR) agonists that can be aerosolized to protect mice against bacterial pneumonia. Here, we tested whether this combination of synthetic TLR agonists could enhance the survival of mice infected with influenza A/HK/8/68 (H3N2) or A/California/04/2009 (H1N1) influenza A viruses. We report that the TLR treatment enhanced survival whether given before or after the infectious challenge, and that protection tended to correlate with reductions in viral titer 4 d after infection. Surprisingly, protection was not associated with induction of interferon gene expression. Together, these studies suggest that synergistic TLR interactions can protect against influenza virus infections by mechanisms that may provide the basis for novel therapeutics.
doi:10.1371/journal.pone.0030596
PMCID: PMC3267724  PMID: 22299046
24.  Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages 
Nature Communications  2013;4:2106.
While the presence of airway bacteria is known to be associated with improved immunity against influenza virus, the mechanism by which endogenous microbiota influence antiviral immunity remains unclear. Here we show that specific pathogen-free mice are more sensitive to influenza-mediated death than mice living in a natural environment. Priming with Toll-like receptor 2-ligand+ Staphylococcus aureus, which commonly colonizes the upper respiratory mucosa, significantly attenuates influenza-mediated lung immune injury. Toll-like receptor 2 deficiency or alveolar macrophage depletion abolishes this protection. S. aureus priming recruits peripheral CCR2+CD11b+ monocytes into the alveoli that polarize to M2 alveolar macrophages in an environment created by Toll-like receptor 2 signalling. M2 alveolar macrophages inhibit influenza-mediated lethal inflammation via anti-inflammatory cytokines and inhibitory ligands. Our results suggest a previously undescribed mechanism by which the airway microbiota may protect against influenza-mediated lethal inflammation.
Bacterial infections can influence disease outcome in influenza infection; however, the mechanisms mediating these complex interactions remain unclear. Wang et al. reveal how infection with a component of the airway microbiota enhances survival during influenza infection via induction of anti-inflammatory macrophages.
doi:10.1038/ncomms3106
PMCID: PMC3715851  PMID: 23820884
25.  Matrix Metalloprotease 9 Mediates Neutrophil Migration into the Airways in Response to Influenza Virus-Induced Toll-Like Receptor Signaling 
PLoS Pathogens  2012;8(4):e1002641.
The early inflammatory response to influenza virus infection contributes to severe lung disease and continues to pose a serious threat to human health. The mechanisms by which neutrophils gain entry to the respiratory tract and their role during pathogenesis remain unclear. Here, we report that neutrophils significantly contributed to morbidity in a pathological mouse model of influenza virus infection. Using extensive immunohistochemistry, bone marrow transfers, and depletion studies, we identified neutrophils as the predominant pulmonary cellular source of the gelatinase matrix metalloprotease (MMP) 9, which is capable of digesting the extracellular matrix. Furthermore, infection of MMP9-deficient mice showed that MMP9 was functionally required for neutrophil migration and control of viral replication in the respiratory tract. Although MMP9 release was toll-like receptor (TLR) signaling-dependent, MyD88-mediated signals in non-hematopoietic cells, rather than neutrophil TLRs themselves, were important for neutrophil migration. These results were extended using multiplex analyses of inflammatory mediators to show that neutrophil chemotactic factor, CCL3, and TNFα were reduced in the Myd88−/− airways. Furthermore, TNFα induced MMP9 secretion by neutrophils and blocking TNFα in vivo reduced neutrophil recruitment after infection. Innate recognition of influenza virus therefore provides the mechanisms to induce recruitment of neutrophils through chemokines and to enable their motility within the tissue via MMP9-mediated cleavage of the basement membrane. Our results demonstrate a previously unknown contribution of MMP9 to influenza virus pathogenesis by mediating excessive neutrophil migration into the respiratory tract in response to viral replication that could be exploited for therapeutic purposes.
Author Summary
Influenza-associated morbidity and mortality due to yearly epidemics and sporadic, devastating pandemics are a significant health and economic burden. Severe complications arising from highly virulent viruses are associated with rapid, massive inflammatory cell infiltration. Although neutrophils are the predominant cell population recruited to the lung in response to pandemic influenza viruses, the mechanisms by which they gain entry to the respiratory tract remain unclear. In this study, we show a previously unknown contribution of MMP9 to influenza pathogenesis by mediating excessive neutrophil migration into the lung, which not only controls viral replication, but also contributes to morbidity. The in vivo relevance of MMP9-derived enzymatic activity in neutrophils is controversial and understudied, but our data provide new evidence that innate recognition of influenza virus attracts neutrophils that secrete MMP9, which enables them to traverse the basement membrane of the lung by digesting the extracellular matrix. The dichotomy of MMP9 function in immunity versus pathology provides real challenges for targeting MMP9 for therapeutic purposes. Nevertheless, finding the balance to modulate neutrophil numbers following influenza virus infection will allow for innate immunity to be boosted whilst preventing pathology associated with pandemic strains.
doi:10.1371/journal.ppat.1002641
PMCID: PMC3320598  PMID: 22496659

Results 1-25 (1104429)