Search tips
Search criteria

Results 1-25 (868501)

Clipboard (0)

Related Articles

1.  Induction of Heterosubtypic Cross-Protection against Influenza by a Whole Inactivated Virus Vaccine: The Role of Viral Membrane Fusion Activity 
PLoS ONE  2012;7(1):e30898.
The inability of seasonal influenza vaccines to effectively protect against infection with antigenically drifted viruses or newly emerging pandemic viruses underlines the need for development of cross-reactive influenza vaccines that induce immunity against a variety of virus subtypes. Therefore, potential cross-protective vaccines, e.g., whole inactivated virus (WIV) vaccine, that can target conserved internal antigens such as the nucleoprotein (NP) and/or matrix protein (M1) need to be explored.
Methodology/Principal Findings
In the current study we show that a WIV vaccine, through induction of cross-protective cytotoxic T lymphocytes (CTLs), protects mice from heterosubtypic infection. This protection was abrogated after depletion of CD8+ cells in vaccinated mice, indicating that CTLs were the primary mediators of protection. Previously, we have shown that different procedures used for virus inactivation influence optimal activation of CTLs by WIV, most likely by affecting the membrane fusion properties of the virus. Specifically, inactivation with formalin (FA) severely compromises fusion activity of the virus, while inactivation with β-propiolactone (BPL) preserves fusion activity. Here, we demonstrate that vaccination of mice with BPL-inactivated H5N1 WIV vaccine induces solid protection from lethal heterosubtypic H1N1 challenge. By contrast, vaccination with FA-inactivated WIV, while preventing death after lethal challenge, failed to protect against development of disease and severe body weight loss. Vaccination with BPL-inactivated WIV, compared to FA-inactivated WIV, induced higher levels of specific CD8+ T cells in blood, spleen and lungs, and a higher production of granzyme B in the lungs upon H1N1 virus challenge.
The results underline the potential use of WIV as a cross-protective influenza vaccine candidate. However, careful choice of the virus inactivation procedure is important to retain membrane fusion activity and full immunogenicity of the vaccine.
PMCID: PMC3267744  PMID: 22303469
2.  Heightened adaptive immune responses following vaccination with a temperature-sensitive, live-attenuated influenza virus compared to adjuvanted, whole-inactivated virus in pigs 
Vaccine  2012;30(40):5830-5838.
In the United States there are currently two influenza vaccine platforms approved for use in humans – conventional inactivated virus and live-attenuated influenza virus (LAIV). One of the major challenges for influenza A virus (IAV) vaccination is designing a platform that provides protection across strains. Pandemic H1N1 (pH1N1) IAV swept the globe in 2009 and crossed the species barrier, infecting swine in several countries. Pigs are a natural host for IAV and serve as a model for evaluating immune responses following vaccination and challenge. Recently, a temperature-sensitive (ts) LAIV was developed by introducing modifications in the polymerase genes of a swine-like triple reassortant (tr) virus and when paired with pandemic HA and NA, provided sterilizing immunity upon intratracheal challenge with virulent pH1N1 virus. The utility of a ts LAIV is expanded in this report to show vaccination of pigs induced a cell-mediated immune response characterized by an increased number of antigen-specific IFN-γ secreting cells and expanded T cell populations when compared to pigs vaccinated with a whole inactivated virus (WIV) vaccine. Following challenge, there was a significant increase in the percentage of proliferating lymphocytes in the LAIV group compared to the WIV group following restimulation with pH1N1 in vitro. Also, there was an increase in the percentage of CD4/CD8 double-positive memory T cells in LAIV vaccinated pigs compared to WIV vaccinated pigs. Hemagglutination inhibition and serum neutralization titers were significantly higher in the LAIV-vaccinated pigs compared to the WIV vaccinated pigs following the initial dose of vaccine. Taken together, these results indicate the ts LAIV vaccine, generated from a triple reassortant IAV, elicits greater cell-mediated and humoral immune responses in pigs.
PMCID: PMC3743435  PMID: 22835742
3.  Heterosubtypic cross‐protection induced by whole inactivated influenza virus vaccine in mice: influence of the route of vaccine administration 
Development of influenza vaccines capable of inducing broad protection against different virus subtypes is necessary given the ever‐changing viral genetic landscape. Previously, we showed that vaccination with whole inactivated virus (WIV) induces heterosubtypic protection against lethal virus infection in mice. Whole inactivated virus‐induced cross‐protection was found to be mediated primarily by flu‐specific CD8+ T cells.
As it has been demonstrated that the route of vaccine administration strongly influences both the quantity and quality of vaccine‐induced immunity, in this study, we determined which route of WIV administration induces optimal heterosubtypic cross‐protection.
We compared the magnitude of the immune response and heterosubtypic protection against lethal A/PR/8/34 (H1N1) infection after subcutaneous (SC), intramuscular (IM), and intranasal (IN) vaccination with A/NIBRG‐14 (H5N1) WIV.
Subcutaneous and IM administration was superior to IN administration of influenza WIV in terms of flu‐specific CD8+ T‐cell induction and protection of mice against lethal heterosubtypic challenge. Surprisingly, despite the very low flu‐specific CD8+ T‐cell responses detected in IN‐vaccinated mice, these animals were partially protected, most likely due to cross‐reactive IgA antibodies.
The results of this study show that the magnitude of WIV‐induced flu‐specific CD8+ T‐cell activity depends on the applied vaccination route. We conclude that parenteral administration of WIV vaccine, in particular IM injection, is superior to IN vaccine delivery for the induction of heterosubtypic cross‐protection and generally appears to elicit stronger immune responses than mucosal vaccination with WIV.
PMCID: PMC4112805  PMID: 24102979
Cross‐protection; cytotoxic T lymphocytes; influenza; mucosal vaccination; parenteral vaccination; whole inactivated virus
4.  Intranasal Vaccination with Replication-Defective Adenovirus Type 5 Encoding Influenza Virus Hemagglutinin Elicits Protective Immunity to Homologous Challenge and Partial Protection to Heterologous Challenge in Pigs 
Clinical and Vaccine Immunology : CVI  2012;19(11):1722-1729.
Influenza A virus (IAV) is widely circulating in the swine population and causes significant economic losses. To combat IAV infection, the swine industry utilizes adjuvanted whole inactivated virus (WIV) vaccines, using a prime-boost strategy. These vaccines can provide sterilizing immunity toward homologous virus but often have limited efficacy against a heterologous infection. There is a need for vaccine platforms that induce mucosal and cell-mediated immunity that is cross-reactive to heterologous viruses and can be produced in a short time frame. Nonreplicating adenovirus 5 vector (Ad5) vaccines are one option, as they can be produced rapidly and given intranasally to induce local immunity. Thus, we compared the immunogenicity and efficacy of a single intranasal dose of an Ad5-vectored hemagglutinin (Ad5-HA) vaccine to those of a traditional intramuscular administration of WIV vaccine. Ad5-HA vaccination induced a mucosal IgA response toward homologous IAV and primed an antigen-specific gamma interferon (IFN-γ) response against both challenge viruses. The Ad5-HA vaccine provided protective immunity to homologous challenge and partial protection against heterologous challenge, unlike the WIV vaccine. Nasal shedding was significantly reduced and virus was cleared from the lung by day 5 postinfection following heterologous challenge of Ad5-HA-vaccinated pigs. However, the WIV-vaccinated pigs displayed vaccine-associated enhanced respiratory disease (VAERD) following heterologous challenge, characterized by enhanced macroscopic lung lesions. This study demonstrates that a single intranasal vaccination with an Ad5-HA construct can provide complete protection from homologous challenge and partial protection from heterologous challenge, as opposed to VAERD, which can occur with adjuvanted WIV vaccines.
PMCID: PMC3491537  PMID: 22933397
5.  Full Inactivation of Human Influenza Virus by High Hydrostatic Pressure Preserves Virus Structure and Membrane Fusion While Conferring Protection to Mice against Infection 
PLoS ONE  2013;8(11):e80785.
Whole inactivated vaccines (WIVs) possess greater immunogenicity than split or subunit vaccines, and recent studies have demonstrated that WIVs with preserved fusogenic activity are more protective than non-fusogenic WIVs. In this work, we describe the inactivation of human influenza virus X-31 by high hydrostatic pressure (HHP) and analyze the effects on the structure by spectroscopic measurements, light scattering, and electron microscopy. We also investigated the effects of HHP on the glycoprotein activity and fusogenic activity of the viral particles. The electron microscopy data showed pore formation on the viral envelope, but the general morphology was preserved, and small variations were seen in the particle structure. The activity of hemagglutinin (HA) during the process of binding and fusion was affected in a time-dependent manner, but neuraminidase (NA) activity was not affected. Infectious activity ceased after 3 hours of pressurization, and mice were protected from infection after being vaccinated. Our results revealed full viral inactivation with overall preservation of viral structure and maintenance of fusogenic activity, thereby conferring protection against infection. A strong response consisting of serum immunoglobulin IgG1, IgG2a, and serum and mucosal IgA was also detected after vaccination. Thus, our data strongly suggest that applying hydrostatic pressure may be an effective method for developing new vaccines against influenza A as well as other viruses.
PMCID: PMC3840014  PMID: 24282553
6.  Solid Bioneedle-Delivered Influenza Vaccines Are Highly Thermostable and Induce Both Humoral and Cellular Immune Responses 
PLoS ONE  2014;9(3):e92806.
The potential of bioneedles to deliver influenza vaccines was investigated. Four influenza vaccine formulations were screened to determine the optimal formulation for use with bioneedles. The stability of the formulations after freeze-drying was checked to predict the stability of the influenza vaccines in the bioneedles. Subunit, split, virosomal and whole inactivated influenza (WIV) vaccine were formulated and lyophilized in bioneedles, and subsequently administered to C57BL/6 mice. Humoral and cellular immune responses were assessed after vaccination. The thermostability of lyophilized vaccines was determined after one-month storage at elevated temperatures. Bioneedle influenza vaccines induced HI titers that are comparable to those induced by intramuscular WIV vaccination. Delivery by bioneedles did not alter the type of immune response induced by the influenza vaccines. Stability studies showed that lyophilized influenza vaccines have superior thermostability compared to conventional liquid vaccines, and remained stable after one-month storage at 60°C. Influenza vaccines delivered by bioneedles are a viable alternative to conventional liquid influenza vaccines. WIV was determined to be the most potent vaccine formulation for administration by bioneedles. Lyophilized influenza vaccines in bioneedles are independent of a cold-chain, due to their increased thermostability, which makes distribution and stockpiling easier.
PMCID: PMC3966824  PMID: 24671048
7.  Optimizing the Dose of Pre-Pandemic Influenza Vaccines to Reduce the Infection Attack Rate 
PLoS Medicine  2007;4(6):e218.
The recent spread of avian influenza in wild birds and poultry may be a precursor to the emergence of a 1918-like human pandemic. Therefore, stockpiles of human pre-pandemic vaccine (targeted at avian strains) are being considered. For many countries, the principal constraint for these vaccine stockpiles will be the total mass of antigen maintained. We tested the hypothesis that lower individual doses (i.e., less than the recommended dose for maximum protection) may provide substantial extra community-level benefits because they would permit wider vaccine coverage for a given total size of antigen stockpile.
Methods and Findings
We used a mathematical model to predict infection attack rates under different policies. The model incorporated both an individual's response to vaccination at different doses and the process of person-to-person transmission of pandemic influenza. We found that substantial reductions in the attack rate are likely if vaccines are given to more people at lower doses. These results are applicable to all three vaccine candidates for which data are available. As a guide to the magnitude of the effect, we simulated epidemics based on historical studies of immunogenicity. For example, for one of the vaccines for which data are available, the attack rate would drop from 67.6% to 58.7% if 160 out of the total US population of 300 million were given an optimal dose rather than 20 out of 300 million given the maximally protective dose (as promulgated in the US National Pandemic Preparedness Plan). Our results are conservative with respect to a number of alternative assumptions about the precise nature of vaccine protection. We also considered a model variant that includes a single high-risk subgroup representing children. For smaller stockpile sizes that allow vaccine to be offered only to the high-risk group at the optimal dose, the predicted benefits of using the homogenous model formed a lower bound in the presence of a risk group, even when the high-risk group was twice as infective and twice as susceptible.
In addition to individual-level protection (i.e., vaccine efficacy), the population-level implications of pre-pandemic vaccine programs should be considered when deciding on stockpile size and dose. Our results suggest that a lower vaccine dose may be justified in order to increase population coverage, thereby reducing the infection attack rate overall.
Steven Riley and colleagues examine the potential benefits of "stretching" a limited supply of vaccine and suggest that substantial reductions in the attack rate are possible if vaccines are given to more people at lower doses.
Editors' Summary
Every winter, millions of people catch influenza, a viral infection of the nose, throat, and airways. Most recover quickly, but the disease can be deadly. In the US, seasonal influenza outbreaks (epidemics) cause 36,000 excess deaths annually. And now there are fears that an avian (bird) influenza virus might trigger a human influenza pandemic—a global epidemic that could kill millions. Seasonal epidemics occur because flu viruses continually make small changes to their hemagglutinin and neuraminidase molecules, the viral proteins (antigens) that the immune system recognizes. Because of this “antigenic drift,” an immune system response (which can be induced by catching flu or by vaccination with disabled circulating influenza strains) that combats flu one year may provide only partial protection the next year. “Antigenic shift” (large changes in flu antigens) can cause pandemics because communities have no immunity to the changed virus.
Why Was This Study Done?
Although avian influenza virus, which contains a hemagglutinin type that differs from currently circulating human flu viruses, has caused a few cases of human influenza, it has not started a human pandemic yet because it cannot move easily between people. If it acquires this property, which will probably involve further small antigenic changes, it could kill millions of people before scientists can develop an effective vaccine against it. To provide some interim protection, many countries are preparing stockpiles of “pre-pandemic” vaccines targeted against the avian virus. The US, for example, plans to store enough pre-pandemic vaccine to provide maximum protection to 20 million people (including key health workers) out of its population of 300 million. But, given a limited stockpile of pre-pandemic vaccine, might giving more people a lower dose of vaccine, which might reduce the number of people susceptible to infection and induce herd immunity by preventing efficient transmission of the flu virus, be a better way to limit the spread of pandemic influenza? In this study, the researchers have used mathematical modeling to investigate this question.
What Did the Researchers Do and Find?
To predict the infection rates associated with different vaccination policies, the researchers developed a mathematical model that incorporates data on human immune responses induced with three experimental vaccines against the avian virus and historical data on the person–person transmission of previous pandemic influenza viruses. For all the vaccines, the model predicts that giving more people a low dose of the vaccine would limit the spread of influenza better than giving fewer people the high dose needed for full individual protection. For example, the researchers estimate that dividing the planned US stockpile of one experimental vaccine equally between 160 million people instead of giving it at the fully protective dose to 20 million people might avert about 27 million influenza cases in less than year. However, giving the maximally protective dose to the 9 million US health-care workers and using the remaining vaccine at a lower dose to optimize protection within the general population might avert only 14 million infections.
What Do These Findings Mean?
These findings suggest that, given a limited stockpile of pre-pandemic vaccine, increasing the population coverage of vaccination by using low doses of vaccine might reduce the overall influenza infection rate more effectively than vaccinating fewer people with fully protective doses of vaccine. However, because the researchers' model includes many assumptions, it can only give an indication of how different strategies might perform, not firm numbers for how many influenza cases each strategy is likely to avert. Before public-health officials use this or a similar model to help them decide the best way to use pre-pandemic vaccines to control a human influenza pandemic, they will need more information about the efficacy of these vaccines and about transmission rates of currently circulating viruses. They will also need to know whether pre-pandemic vaccines actually provide good protection against the pandemic virus, as assumed in this study, before they can recommend mass immunization with low doses of pre-pandemic vaccine, selective vaccination with high doses, or a mixed strategy.
Additional Information.
Please access these Web sites via the online version of this summary at
US Centers for Disease Control and Prevention provide information on influenza and influenza vaccination for patients and health professionals (in English, Spanish, Filipino, Chinese, and Vietnamese)
The World Health Organization has a fact sheet on influenza and on the global response to avian influenza (in English, Spanish, French, Russian, Arabic, and Chinese)
The MedlinePlus online encyclopedia devotes a page to flu (in English and Spanish)
The UK Health Protection Agency information on avian, pandemic, and seasonal influenza
The US National Institute of Allergy and Infectious Diseases has a comprehensive feature called “focus on the flu”
PMCID: PMC1892041  PMID: 17579511
8.  Membrane-bound IL-12 and IL-23 serve as potent mucosal adjuvants when co-presented on whole inactivated influenza vaccines 
Virology Journal  2014;11:78.
Potent and safe adjuvants are needed to improve the efficacy of parenteral and mucosal vaccines. Cytokines, chemokines and growth factors have all proven to be effective immunomodulatory adjuvants when administered with a variety of antigens. We have previously evaluated the efficacy of membrane-anchored interleukins (IL) such as IL-2 and IL-4 co-presented as Cytokine-bearing Influenza Vaccines (CYT-IVACs) using a mouse model of influenza challenge.
Here, we describe studies evaluating the parenteral and mucosal adjuvanticity of membrane-bound IL-12 and IL-23 CYT-IVACs in young adult mice. Mucosal immunization using IL-12 and IL-23 bearing whole influenza virus vaccine (WIV) was more effective at eliciting virus-specific nasal IgA and reducing viral lung burden following challenge compared to control WIV vaccinated animals. Both IL-12 and IL-23 bearing WIV elicited the highest anti-viral IgA levels in serum and nasal washes.
This study highlights for the first time the mucosal adjuvant potential of IL-12 and IL-23 CYT-IVAC formulations in eliciting mucosal immune responses and reducing viral lung burden. The co-presentation of immunomodulators in direct context with viral antigen in whole inactivated viral vaccines may provide a means to significantly lower the dose of vaccine required for protection.
PMCID: PMC4036309  PMID: 24884849
Influenza; Whole inactivated virus vaccine; Adjuvant; Cytokine; IL-12; IL-23
9.  Incomplete protection, but suppression of virus burden, elicited by subunit simian immunodeficiency virus vaccines. 
Journal of Virology  1994;68(3):1843-1853.
We compared the efficacy of immunization with either simian immunodeficiency virus (SIV) Env glycoprotein (Env), Env plus Gag proteins (Gag-Env), or whole inactivated virus (WIV), with or without recombinant live vaccinia vector (VV) priming, in protecting 23 rhesus macaques (six vaccine and two control groups) from challenge with SIVmac251 clone BK28. Vaccination elicited high titers of syncytium-inhibiting and anti-Env (gp120/gp160) antibodies in all vaccinated macaques and anti-Gag (p27) antibodies in groups immunized with WIV or Gag-Env. Only WIV-immunized macaques developed anticell (HuT78) antibodies. After homologous low-dose intravenous virus challenge, we used frequency of virus isolation, provirus burden, and change in antibody titers to define four levels of resistance to SIV infection as follows. (i) No infection ("sterilizing" immunity) was induced only in WIV-immunized animals. (ii) Abortive infection (strong immunity) was defined when virus or provirus were detected early in the postchallenge period but not thereafter and no evidence of virus or provirus was detected in terminal tissues. This response was observed in two animals (one VV-Env and one Gag-Env). (iii) Suppression of infection (incomplete or partial immunity) described a gradient of virus suppression manifested by termination of viremia, declining postchallenge antibody titers, and low levels (composite mean = 9.1 copies per 10(6) cells) of provirus detectable in peripheral blood mononuclear cells or lymphoid tissues at termination (40 weeks postchallenge). This response occurred in the majority (8 of 12) of subunit-vaccinated animals. (iv) Active infection (no immunity) was characterized by persistent virus isolation from blood mononuclear cells, increasing viral antibody titers postchallenge, and high levels (composite mean = 198 copies per 10(6) cells) of provirus in terminal tissues and blood. Active infection developed in all controls and two of three VV-Gag-Env-immunized animals. The results of this study restate the protective effect of inactivated whole virus vaccines produced in heterologous cells but more importantly demonstrate that a gradient of suppression of challenge virus growth, reflecting partial resistance to SIV infection, is induced by subunit vaccination. The latter finding may be pertinent to studies with human immunodeficiency virus vaccines, in which it is plausible that vaccination may elicit significant suppression of virus infection and pathogenicity rather than sterilizing immunity.
PMCID: PMC236647  PMID: 8107246
10.  TLR7 Recognition Is Dispensable for Influenza Virus A Infection but Important for the Induction of Hemagglutinin-Specific Antibodies in Response to the 2009 Pandemic Split Vaccine in Mice 
Journal of Virology  2012;86(20):10988-10998.
Recognition of pathogen-associated molecular patterns by pattern recognition receptors of the innate immune system is crucial for the initiation of innate and adaptive responses and for immunological memory. We investigated the role of TLR7 in the induction of adaptive immunity and long-term memory following influenza virus infection and vaccination in C57BL/6 mice. During infection with influenza A/PR8/34 virus, the absence of either TLR7 or MyD88 leads to reduced virus-specific antibodies in the serum and antibody-secreting cells in their secondary lymphoid organs, particularly in bone marrow. In spite of this, the absence of TLR7/MyD88 signaling did not impair the production of protective antibodies. Following immunization with the 2009 pandemic inactivated split vaccine, TLR7−/− mice had significantly lower levels of germinal center formation, antibody-secreting cells, and circulating influenza virus-specific antibodies than control animals. Consequently, TLR7−/− mice failed to develop protective immunological memory upon challenge. Furthermore, the immunogenicity of the split vaccine was likely due to TLR7 recognition of virion RNA, as its removal from the split vaccine significantly reduced the levels of influenza virus-specific antibodies and compromised the vaccine protective efficacy in mice. Taken together, our data demonstrate that TLR7 plays an important role in vaccine-induced humoral immune responses to influenza virus through the interaction with viral RNA present in the split vaccine.
PMCID: PMC3457183  PMID: 22837197
11.  An Adjuvant for the Induction of Potent, Protective Humoral Responses to an H5N1 Influenza Virus Vaccine with Antigen-Sparing Effect in Mice ▿ †  
Journal of Virology  2010;84(17):8639-8649.
Intramuscular administration of inactivated influenza virus vaccine is the main vaccine platform used for the prevention of seasonal influenza virus infection. In clinical trials, inactivated H5N1 vaccines have been shown to be safe and capable of eliciting immune correlates of protection. However, the H5N1 vaccines are poorly immunogenic compared to seasonal influenza virus vaccines. Needle-free vaccination would be more efficient and economical in a pandemic, and the development of an effective and safe mucosal adjuvant will be an important milestone. A stabilized chemical analog of double-stranded RNA, PIKA, was previously reported to be a potent mucosal adjuvant in a murine model. While PIKA stimulates dendritic cells in vitro, little was known about its receptor and adjuvanting mechanism in vivo. In this study, we demonstrated that the immunostimulatory effect of PIKA resulted in an increased number of mature antigen-presenting cells, with the induction of proinflammatory cytokines at the inoculation site. In addition, coadministration of PIKA with a poorly immunogenic H5N1 subunit vaccine led to antigen sparing and quantitative and qualitative improvements of the immune responses over those achieved with an unadjuvanted vaccine in mice. The adjuvanted vaccine provided protection against lethal challenge with homologous and heterologous H5N1 wild-type viruses. Mice lacking functional TLR3 showed diminished cytokine production with PIKA stimulation, diminished antibody responses, and reduced protective efficacy against wild-type virus challenge following vaccination. These data suggest that TLR3 is important for the optimal performance of PIKA as an adjuvant. With its good safety profile and antigen-sparing effect, PIKA could be an attractive adjuvant for use in future pandemics.
PMCID: PMC2919013  PMID: 20538850
12.  Live, Attenuated Influenza A H5N1 Candidate Vaccines Provide Broad Cross-Protection in Mice and Ferrets 
PLoS Medicine  2006;3(9):e360.
Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic.
Methods and Findings
Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA) and a wild-type (wt) N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca) influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2), were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 106 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3) that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses.
The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans.
Promising preclinical results on safety, immunogenicity, and efficacy against diverse H5N1 strains provide support for careful evaluation of live, attenuated H5N1 vaccines in clinical trials in humans.
Editors' Summary
Influenza A viruses are classified into subtypes according to two of the proteins from the virus surface, the hemagglutinin (HA) and neuraminidase (NA) proteins, each of which occurs naturally in several different versions. For example, the global epidemic (pandemic) of 1918–1919 was caused by an influenza virus containing subtype 1 hemagglutinin and subtype 1 neuraminidase (H1N1), the 1957–1958 pandemic involved an H2N2 virus, and the 1969 pandemic, H3N2. Since 1997, several serious outbreaks of H5N1 infection have occurred in poultry and in humans, raising concerns that H5N1 “bird flu” may cause the next human influenza pandemic. Although human-to-human transmission of H5N1 viruses appears limited, mortality rates in human outbreaks of the disease have been alarmingly high—approximately 50%. A protective vaccine against H5N1 influenza might not only benefit regions where transmission from poultry to humans occurs, but could conceivably avert global catastrophe in the event that H5N1 evolves such that human-to-human spread becomes more frequent.
Why Was This Study Done?
Several approaches are in progress to develop vaccines against H5N1 viruses. To date, the products that have been tested in humans have not been very effective in producing a strong immune response. To be optimal for human use, a vaccine would have to be very safe, remain stable in storage, and provide protection against influenza caused by naturally occurring H5N1 viruses that are not precisely identical to the ones used to make the vaccine. This study was done to develop a new H5N1 vaccine and to test it in animals.
What Did the Researchers Do and Find?
The researchers developed vaccines using three artificially constructed, weakened forms of the H5N1 influenza virus. The three vaccine viruses were constructed using flu virus proteins other than HA and NA from an artificially weakened (attenuated) strain of influenza. These were combined in laboratory-grown cells with HA and NA proteins from H5N1 viruses isolated from human cases during three different years: 2004, 2003, and 1997. They grew larger quantities of the resulting viruses in hen's eggs, and tested the vaccines in chickens, ferrets, and mice.
In tests of safety, the study found that, unlike the natural viruses from which they were derived, the vaccine strains did not cause death when injected into the bloodstream of chickens, and did not even cause infection when given through the birds' breathing passages. Similarly, while the natural viruses were lethal in mice at various doses, the vaccine strains did not cause death even at the highest dose. In ferrets, infection with the vaccine strains was limited to the upper respiratory tract, while the natural viruses spread to the lungs and other organs.
In tests of protection, all mice that had received any of the three vaccines survived following infection with any of the natural viruses (so-called viral challenge), while unvaccinated mice died following viral challenge. This occurred even though standard blood tests could not detect a strong immune responses following a single dose of vaccine. Challenge virus was detected in the lungs of the immunized mice, but at lower levels than in the unvaccinated mice. Mice given two doses of a vaccine showed stronger immunity on blood tests, and almost complete protection from respiratory infection following challenge. In addition, mice and ferrets that had received two doses of vaccine were protected against challenge with H5N1 strains from more recent outbreaks in Asia that differed substantially from the strains that were used for the vaccine.
What Do These Findings Mean?
This study shows that it is possible to create a live, attenuated vaccine based on a single H5N1 virus that can provide protection (in mice and ferrets, at least) against different H5N1 viruses that emerge years later. Attenuated influenza virus vaccines of this sort are unlikely to be useful to protect fowl because they do not infect or induce an immune response in chickens. However, while the safety and protection found in small animals are encouraging, it is not possible to know without human testing whether a vaccine that protects mice and ferrets will work in humans, or how this type of vaccine may compare with others being developed for use in humans against H5N1 influenza. Tests of one of the vaccines in human volunteers in carefully conducted clinical trials are currently under way.
Additional Information.
Please access these Web sites via the online version of this summary at
WHO Influenza Pandemic Preparedness page
US Department of Health and Human Services Avian and Pandemic flu information site
Wikipedia entry on H5N1 (note: Wikipedia is a free Internet encyclopedia that anyone can edit)
CDC Avian Influenza Web page
PMCID: PMC1564176  PMID: 16968127
13.  Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at:
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at:
For more information on the economic analysis, please visit the PATH website:
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website:
The objective of this analysis was to determine the effectiveness of the influenza vaccination and the pneumococcal vaccination in patients with chronic obstructive pulmonary disease (COPD) in reducing the incidence of influenza-related illness or pneumococcal pneumonia.
Clinical Need: Condition and Target Population
Influenza Disease
Influenza is a global threat. It is believed that the risk of a pandemic of influenza still exists. Three pandemics occurred in the 20th century which resulted in millions of deaths worldwide. The fourth pandemic of H1N1 influenza occurred in 2009 and affected countries in all continents.
Rates of serious illness due to influenza viruses are high among older people and patients with chronic conditions such as COPD. The influenza viruses spread from person to person through sneezing and coughing. Infected persons can transfer the virus even a day before their symptoms start. The incubation period is 1 to 4 days with a mean of 2 days. Symptoms of influenza infection include fever, shivering, dry cough, headache, runny or stuffy nose, muscle ache, and sore throat. Other symptoms such as nausea, vomiting, and diarrhea can occur.
Complications of influenza infection include viral pneumonia, secondary bacterial pneumonia, and other secondary bacterial infections such as bronchitis, sinusitis, and otitis media. In viral pneumonia, patients develop acute fever and dyspnea, and may further show signs and symptoms of hypoxia. The organisms involved in bacterial pneumonia are commonly identified as Staphylococcus aureus and Hemophilus influenza. The incidence of secondary bacterial pneumonia is most common in the elderly and those with underlying conditions such as congestive heart disease and chronic bronchitis.
Healthy people usually recover within one week but in very young or very old people and those with underlying medical conditions such as COPD, heart disease, diabetes, and cancer, influenza is associated with higher risks and may lead to hospitalization and in some cases death. The cause of hospitalization or death in many cases is viral pneumonia or secondary bacterial pneumonia. Influenza infection can lead to the exacerbation of COPD or an underlying heart disease.
Streptococcal Pneumonia
Streptococcus pneumoniae, also known as pneumococcus, is an encapsulated Gram-positive bacterium that often colonizes in the nasopharynx of healthy children and adults. Pneumococcus can be transmitted from person to person during close contact. The bacteria can cause illnesses such as otitis media and sinusitis, and may become more aggressive and affect other areas of the body such as the lungs, brain, joints, and blood stream. More severe infections caused by pneumococcus are pneumonia, bacterial sepsis, meningitis, peritonitis, arthritis, osteomyelitis, and in rare cases, endocarditis and pericarditis.
People with impaired immune systems are susceptible to pneumococcal infection. Young children, elderly people, patients with underlying medical conditions including chronic lung or heart disease, human immunodeficiency virus (HIV) infection, sickle cell disease, and people who have undergone a splenectomy are at a higher risk for acquiring pneumococcal pneumonia.
Influenza and Pneumococcal Vaccines
Trivalent Influenza Vaccines in Canada
In Canada, 5 trivalent influenza vaccines are currently authorized for use by injection. Four of these are formulated for intramuscular use and the fifth product (Intanza®) is formulated for intradermal use.
The 4 vaccines for intramuscular use are:
Fluviral (GlaxoSmithKline), split virus, inactivated vaccine, for use in adults and children ≥ 6 months;
Vaxigrip (Sanofi Pasteur), split virus inactivated vaccine, for use in adults and children ≥ 6 months;
Agriflu (Novartis), surface antigen inactivated vaccine, for use in adults and children ≥ 6 months; and
Influvac (Abbott), surface antigen inactivated vaccine, for use in persons ≥ 18 years of age.
FluMist is a live attenuated virus in the form of an intranasal spray for persons aged 2 to 59 years. Immunization with current available influenza vaccines is not recommended for infants less than 6 months of age.
Pneumococcal Vaccine
Pneumococcal polysaccharide vaccines were developed more than 50 years ago and have progressed from 2-valent vaccines to the current 23-valent vaccines to prevent diseases caused by 23 of the most common serotypes of S pneumoniae. Canada-wide estimates suggest that approximately 90% of cases of pneumococcal bacteremia and meningitis are caused by these 23 serotypes. Health Canada has issued licenses for 2 types of 23-valent vaccines to be injected intramuscularly or subcutaneously:
Pneumovax 23® (Merck & Co Inc. Whitehouse Station, NJ, USA), and
Pneumo 23® (Sanofi Pasteur SA, Lion, France) for persons 2 years of age and older.
Other types of pneumococcal vaccines licensed in Canada are for pediatric use. Pneumococcal polysaccharide vaccine is injected only once. A second dose is applied only in some conditions.
Research Questions
What is the effectiveness of the influenza vaccination and the pneumococcal vaccination compared with no vaccination in COPD patients?
What is the safety of these 2 vaccines in COPD patients?
What is the budget impact and cost-effectiveness of these 2 vaccines in COPD patients?
Research Methods
Literature search
Search Strategy
A literature search was performed on July 5, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2000 to July 5, 2010. The search was updated monthly through the AutoAlert function of the search up to January 31, 2011. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Articles with an unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established. Data extraction was carried out by the author.
Inclusion Criteria
studies comparing clinical efficacy of the influenza vaccine or the pneumococcal vaccine with no vaccine or placebo;
randomized controlled trials published between January 1, 2000 and January 31, 2011;
studies including patients with COPD only;
studies investigating the efficacy of types of vaccines approved by Health Canada;
English language studies.
Exclusion Criteria
non-randomized controlled trials;
studies investigating vaccines for other diseases;
studies comparing different variations of vaccines;
studies in which patients received 2 or more types of vaccines;
studies comparing different routes of administering vaccines;
studies not reporting clinical efficacy of the vaccine or reporting immune response only;
studies investigating the efficacy of vaccines not approved by Health Canada.
Outcomes of Interest
Primary Outcomes
Influenza vaccination: Episodes of acute respiratory illness due to the influenza virus.
Pneumococcal vaccination: Time to the first episode of community-acquired pneumonia either due to pneumococcus or of unknown etiology.
Secondary Outcomes
rate of hospitalization and mechanical ventilation
mortality rate
adverse events
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses. The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Efficacy of the Influenza Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The influenza vaccination was associated with significantly fewer episodes of influenza-related acute respiratory illness (ARI). The incidence density of influenza-related ARI was:
All patients: vaccine group: (total of 4 cases) = 6.8 episodes per 100 person-years; placebo group: (total of 17 cases) = 28.1 episodes per 100 person-years, (relative risk [RR], 0.2; 95% confidence interval [CI], 0.06−0.70; P = 0.005).
Patients with severe airflow obstruction (forced expiratory volume in 1 second [FEV1] < 50% predicted): vaccine group: (total of 1 case) = 4.6 episodes per 100 person-years; placebo group: (total of 7 cases) = 31.2 episodes per 100 person-years, (RR, 0.1; 95% CI, 0.003−1.1; P = 0.04).
Patients with moderate airflow obstruction (FEV1 50%−69% predicted): vaccine group: (total of 2 cases) = 13.2 episodes per 100 person-years; placebo group: (total of 4 cases) = 23.8 episodes per 100 person-years, (RR, 0.5; 95% CI, 0.05−3.8; P = 0.5).
Patients with mild airflow obstruction (FEV1 ≥ 70% predicted): vaccine group: (total of 1 case) = 4.5 episodes per 100 person-years; placebo group: (total of 6 cases) = 28.2 episodes per 100 person-years, (RR, 0.2; 95% CI, 0.003−1.3; P = 0.06).
The Kaplan-Meier survival analysis showed a significant difference between the vaccinated group and the placebo group regarding the probability of not acquiring influenza-related ARI (log-rank test P value = 0.003). Overall, the vaccine effectiveness was 76%. For categories of mild, moderate, or severe COPD the vaccine effectiveness was 84%, 45%, and 85% respectively.
With respect to hospitalization, fewer patients in the vaccine group compared with the placebo group were hospitalized due to influenza-related ARIs, although these differences were not statistically significant. The incidence density of influenza-related ARIs that required hospitalization was 3.4 episodes per 100 person-years in the vaccine group and 8.3 episodes per 100 person-years in the placebo group (RR, 0.4; 95% CI, 0.04−2.5; P = 0.3; log-rank test P value = 0.2). Also, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD.
Fewer patients in the vaccine group compared with the placebo group required mechanical ventilation due to influenza-related ARIs. However, these differences were not statistically significant. The incidence density of influenza-related ARIs that required mechanical ventilation was 0 episodes per 100 person-years in the vaccine group and 5 episodes per 100 person-years in the placebo group (RR, 0.0; 95% CI, 0−2.5; P = 0.1; log-rank test P value = 0.4). In addition, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD. The effectiveness of the influenza vaccine in preventing influenza-related ARIs and influenza-related hospitalization was not related to age, sex, severity of COPD, smoking status, or comorbid diseases.
Overall, significantly more patients in the vaccine group than the placebo group experienced local adverse reactions (vaccine: 17 [27%], placebo: 4 [6%]; P = 0.002). Significantly more patients in the vaccine group than the placebo group experienced swelling (vaccine 4, placebo 0; P = 0.04) and itching (vaccine 4, placebo 0; P = 0.04). Systemic reactions included headache, myalgia, fever, and skin rash and there were no significant differences between the 2 groups for these reactions (vaccine: 47 [76%], placebo: 51 [81%], P = 0.5).
With respect to lung function, dyspneic symptoms, and exercise capacity, there were no significant differences between the 2 groups at 1 week and at 4 weeks in: FEV1, maximum inspiratory pressure at residual volume, oxygen saturation level of arterial blood, visual analogue scale for dyspneic symptoms, and the 6 Minute Walking Test for exercise capacity.
There was no significant difference between the 2 groups with regard to the probability of not acquiring total ARIs (influenza-related and/or non-influenza-related); (log-rank test P value = 0.6).
Summary of Efficacy of the Pneumococcal Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The Kaplan-Meier survival analysis showed no significant differences between the group receiving the penumoccocal vaccination and the control group for time to the first episode of community-acquired pneumonia due to pneumococcus or of unknown etiology (log-rank test 1.15; P = 0.28). Overall, vaccine efficacy was 24% (95% CI, −24 to 54; P = 0.33).
With respect to the incidence of pneumococcal pneumonia, the Kaplan-Meier survival analysis showed a significant difference between the 2 groups (vaccine: 0/298; control: 5/298; log-rank test 5.03; P = 0.03).
Hospital admission rates and median length of hospital stays were lower in the vaccine group, but the difference was not statistically significant. The mortality rate was not different between the 2 groups.
Subgroup Analysis
The Kaplan-Meier survival analysis showed significant differences between the vaccine and control groups for pneumonia due to pneumococcus and pneumonia of unknown etiology, and when data were analyzed according to subgroups of patients (age < 65 years, and severe airflow obstruction FEV1 < 40% predicted). The accumulated percentage of patients without pneumonia (due to pneumococcus and of unknown etiology) across time was significantly lower in the vaccine group than in the control group in patients younger than 65 years of age (log-rank test 6.68; P = 0.0097) and patients with a FEV1 less than 40% predicted (log-rank test 3.85; P = 0.0498).
Vaccine effectiveness was 76% (95% CI, 20−93; P = 0.01) for patients who were less than 65 years of age and −14% (95% CI, −107 to 38; P = 0.8) for those who were 65 years of age or older. Vaccine effectiveness for patients with a FEV1 less than 40% predicted and FEV1 greater than or equal to 40% predicted was 48% (95% CI, −7 to 80; P = 0.08) and −11% (95% CI, −132 to 47; P = 0.95), respectively. For patients who were less than 65 years of age (FEV1 < 40% predicted), vaccine effectiveness was 91% (95% CI, 35−99; P = 0.002).
Cox modelling showed that the effectiveness of the vaccine was dependent on the age of the patient. The vaccine was not effective in patients 65 years of age or older (hazard ratio, 1.53; 95% CI, 0.61−a2.17; P = 0.66) but it reduced the risk of acquiring pneumonia by 80% in patients less than 65 years of age (hazard ratio, 0.19; 95% CI, 0.06−0.66; P = 0.01).
No patients reported any local or systemic adverse reactions to the vaccine.
PMCID: PMC3384373  PMID: 23074431
14.  Intranasal Vaccination Promotes Detrimental Th17-Mediated Immunity against Influenza Infection 
PLoS Pathogens  2014;10(1):e1003875.
Influenza disease is a global health issue that causes significant morbidity and mortality through seasonal epidemics. Currently, inactivated influenza virus vaccines given intramuscularly or live attenuated influenza virus vaccines administered intranasally are the only approved options for vaccination against influenza virus in humans. We evaluated the efficacy of a synthetic toll-like receptor 4 agonist CRX-601 as an adjuvant for enhancing vaccine-induced protection against influenza infection. Intranasal administration of CRX-601 adjuvant combined with detergent split-influenza antigen (A/Uruguay/716/2007 (H3N2)) generated strong local and systemic immunity against co-administered influenza antigens while exhibiting high efficacy against two heterotypic influenza challenges. Intranasal vaccination with CRX-601 adjuvanted vaccines promoted antigen-specific IgG and IgA antibody responses and the generation of polyfunctional antigen-specific Th17 cells (CD4+IL-17A+TNFα+). Following challenge with influenza virus, vaccinated mice transiently exhibited increased weight loss and morbidity during early stages of disease but eventually controlled infection. This disease exacerbation following influenza infection in vaccinated mice was dependent on both the route of vaccination and the addition of the adjuvant. Neutralization of IL-17A confirmed a detrimental role for this cytokine during influenza infection. The expansion of vaccine-primed Th17 cells during influenza infection was also accompanied by an augmented lung neutrophilic response, which was partially responsible for mediating the increased morbidity. This discovery is of significance in the field of vaccinology, as it highlights the importance of both route of vaccination and adjuvant selection in vaccine development
Author Summary
Influenza virus remains a global health risk causing significant morbidity and mortality each year, with the elderly (>65 years) and the very young particularly prone to severe respiratory disease. Scientists are working to develop highly efficacious vaccines capable of eliciting broad cross-clade protection from influenza infection. Adjuvants as well as the route of immunization are known to modulate the type, quality and breadth of immune responses to vaccines. In this study, we demonstrated intranasal vaccination with influenza antigens, and a novel synthetic TLR4-based adjuvant system provided protection against a lethal heterologous viral challenge. Immunization stimulated mucosal influenza-specific IgA antibody responses together with systemic IgG antibodies. While intranasal immunization stimulated the production of protective antibodies, vaccination via this route also promoted the generation of influenza-specific Th17 CD4+ T cells. These vaccine-induced Th17 cells increased inflammation and morbidity without contributing to viral clearance following challenge. Antibody neutralization of IL-17A during influenza infection significantly reduced the enhanced lung neutrophilic response, which was partially responsible for mediating the increased morbidity. This discovery is of significance in the field of vaccinology, as it demonstrates the importance of both route of immunization and adjuvant selection in vaccine development.
PMCID: PMC3900655  PMID: 24465206
15.  Emulsified Nanoparticles Containing Inactivated Influenza Virus and CpG Oligodeoxynucleotides Critically Influences the Host Immune Responses in Mice 
PLoS ONE  2010;5(8):e12279.
Antigen sparing and cross-protective immunity are regarded as crucial in pandemic influenza vaccine development. Both targets can be achieved by adjuvantation strategy to elicit a robust and broadened immune response. We assessed the immunogenicity of an inactivated H5N1 whole-virion vaccine (A/Vietnam/1194/2004 NIBRG-14, clade 1) formulated with emulsified nanoparticles and investigated whether it can induce cross-clade protecting immunity.
Methodology/Principal Findings
After formulation with PELC, a proprietary water-in-oil-in-water nanoemulsion comprising of bioresorbable polymer/Span®85/squalene, inactivated virus was intramuscularly administered to mice in either one-dose or two-dose schedule. We found that the antigen-specific serum antibody responses elicited after two doses of non-adjuvanted vaccine were lower than those observed after a single dose of adjuvanted vaccine, PELC and the conventional alum adjuvant as well. Moreover, 5 µg HA of PELC-formulated inactivated virus were capable of inducing higher antibodies than those obtained from alum-adjuvanted vaccine. In single-dose study, we found that encapsulating inactivated virus into emulsified PELC nanoparticles could induce better antibody responses than those formulated with PELC-adsorbed vaccine. However, the potency was rather reduced when the inactivated virus and CpG (an immunostimulatory oligodeoxynucleotide containing unmethylated cytosine-guanosine motifs) were co-encapsulated within the emulsion. Finally, the mice who received PELC/CpG(adsorption)-vaccine could easily and quickly reach 100% of seroprotection against a homologous virus strain and effective cross-protection against a heterologous virus strain (A/Whooper swan/Mongolia/244/2005, clade 2.2).
Encapsulating inactivated H5N1 influenza virus and CpG into emulsified nanoparticles critically influences the humoral responses against pandemic influenza. These results demonstrated that the use of PELC could be as antigen-sparing in preparation for a potential shortage of prophylactic vaccines against local infectious diseases, in particular pandemic influenza. Moreover, the cross-clade neutralizing antibody responses data verify the potential of such adjuvanted H5N1 candidate vaccine as an effective tool in pre-pandemic preparedness.
PMCID: PMC2924384  PMID: 20808862
16.  Memory Immune Responses against Pandemic (H1N1) 2009 Influenza Virus Induced by a Whole Particle Vaccine in Cynomolgus Monkeys Carrying Mafa-A1*052∶02 
PLoS ONE  2012;7(5):e37220.
We made an H1N1 vaccine candidate from a virus library consisting of 144 ( = 16 HA×9 NA) non-pathogenic influenza A viruses and examined its protective effects against a pandemic (2009) H1N1 strain using immunologically naïve cynomolgus macaques to exclude preexisting immunity and to employ a preclinical study since preexisting immunity in humans previously vaccinated or infected with influenza virus might make comparison of vaccine efficacy difficult. Furthermore, macaques carrying a major histocompatibility complex class I molecule, Mafa-A1*052∶02, were used to analyze peptide-specific CD8+ T cell responses. Sera of macaques immunized with an inactivated whole particle formulation without addition of an adjuvant showed higher neutralization titers against the vaccine strain A/Hokkaido/2/1981 (H1N1) than did sera of macaques immunized with a split formulation. Neutralization activities against the pandemic strain A/Narita/1/2009 (H1N1) in sera of macaques immunized twice with the split vaccine reached levels similar to those in sera of macaques immunized once with the whole particle vaccine. After inoculation with the pandemic virus, the virus was detected in nasal samples of unvaccinated macaques for 6 days after infection and for 2.67 days and 5.33 days on average in macaques vaccinated with the whole particle vaccine and the split vaccine, respectively. After the challenge infection, recall neutralizing antibody responses against the pandemic virus and CD8+ T cell responses specific for nucleoprotein peptide NP262-270 bound to Mafa-A1*052∶02 in macaques vaccinated with the whole particle vaccine were observed more promptly or more vigorously than those in macaques vaccinated with the split vaccine. These findings demonstrated that the vaccine derived from our virus library was effective for pandemic virus infection in macaques and that the whole particle vaccine conferred more effective memory and broader cross-reactive immune responses to macaques against pandemic influenza virus infection than did the split vaccine.
PMCID: PMC3356377  PMID: 22623997
17.  Evaluations for In Vitro Correlates of Immunogenicity of Inactivated Influenza A H5, H7 and H9 Vaccines in Humans 
PLoS ONE  2012;7(12):e50830.
Serum antibody responses in humans to inactivated influenza A (H5N1), (H9N2) and A (H7) vaccines have been varied but frequently low, particularly for subunit vaccines without adjuvant despite hemagglutinin (HA) concentrations expected to induce good responses.
To help understand the low responses to subunit vaccines, we evaluated influenza A (H5N1), (H9N2), (H7N7) vaccines and 2009 pandemic (H1N1) vaccines for antigen uptake, processing and presentation by dendritic cells to T cells, conformation of vaccine HA in antibody binding assays and gel analyses, HA titers with different red blood cells, and vaccine morphology in electron micrographs (EM).
Antigen uptake, processing and presentation of H5, H7, H9 and H1 vaccine preparations evaluated in humans appeared normal. No differences were detected in antibody interactions with vaccine and matched virus; although H7 trimer was not detected in western blots, no abnormalities in the conformation of the HA antigens were identified. The lowest HA titers for the vaccines were <1∶4 for the H7 vaccine and 1∶661 for an H9 vaccine; these vaccines induced the fewest antibody responses. A (H1N1) vaccines were the most immunogenic in humans; intact virus and virus pieces were prominent in EM. A good immunogenic A (H9N2) vaccine contained primarily particles of viral membrane with external HA and NA. A (H5N1) vaccines intermediate in immunogenicity were mostly indistinct structural units with stellates; the least immunogenic A (H7N7) vaccine contained mostly small 5 to 20 nm structures.
Antigen uptake, processing and presentation to human T cells and conformation of the HA appeared normal for each inactivated influenza A vaccine. Low HA titer was associated with low immunogenicity and presence of particles or split virus pieces was associated with higher immunogenicity.
PMCID: PMC3519816  PMID: 23239987
18.  Developing vaccines against pandemic influenza. 
Pandemic influenza presents special problems for vaccine development. There must be a balance between rapid availability of vaccine and the safeguards to ensure safety, quality and efficacy of vaccine. Vaccine was developed for the pandemics of 1957, 1968, 1977 and for the pandemic alert of 1976. This experience is compared with that gained in developing vaccines for a possible H5N1 pandemic in 1997-1998. Our ability to mass produce influenza vaccines against a pandemic threat was well illustrated by the production of over 150 million doses of 'swine flu' vaccine in the USA within a 3 month period in 1976. However, there is cause for concern that the lead time to begin vaccine production is likely to be about 7-8 months. Attempts to reduce this time should receive urgent attention. Immunogenicity of vaccines in pandemic situations is compared over the period 1968-1998. A consistent feature of the vaccine trials is the demonstration that one conventional 15 microg haemagglutinin dose of vaccine is not sufficiently immunogenic in naive individuals. Much larger doses or two lower doses are needed to induce satisfactory immunity. There is some evidence that whole-virus vaccines are more immunogenic than split or subunit vaccines, but this needs substantiating by further studies. H5 vaccines appeared to be particularly poor immunogens and there is evidence that an adjuvant may be needed. Prospects for improving the development of pandemic vaccines are discussed.
PMCID: PMC1088574  PMID: 11779397
19.  Cross-Reactive Neuraminidase Antibodies Afford Partial Protection against H5N1 in Mice and Are Present in Unexposed Humans 
PLoS Medicine  2007;4(2):e59.
A pandemic H5N1 influenza outbreak would be facilitated by an absence of immunity to the avian-derived virus in the human population. Although this condition is likely in regard to hemagglutinin-mediated immunity, the neuraminidase (NA) of H5N1 viruses (avN1) and of endemic human H1N1 viruses (huN1) are classified in the same serotype. We hypothesized that an immune response to huN1 could mediate cross-protection against H5N1 influenza virus infection.
Methods and Findings
Mice were immunized against the NA of a contemporary human H1N1 strain by DNA vaccination. They were challenged with recombinant A/Puerto Rico/8/34 (PR8) viruses bearing huN1 (PR8-huN1) or avN1 (PR8-avN1) or with H5N1 virus A/Vietnam/1203/04. Additional naïve mice were injected with sera from vaccinated mice prior to H5N1 challenge. Also, serum specimens from humans were analyzed for reactivity with avN1. Immunization elicited a serum IgG response to huN1 and robust protection against the homologous challenge virus. Immunized mice were partially protected from lethal challenge with H5N1 virus or recombinant PR8-avN1. Sera transferred from immunized mice to naïve animals conferred similar protection against H5N1 mortality. Analysis of human sera showed that antibodies able to inhibit the sialidase activity of avN1 exist in some individuals.
These data reveal that humoral immunity elicited by huN1 can partially protect against H5N1 infection in a mammalian host. Our results suggest that a portion of the human population could have some degree of resistance to H5N1 influenza, with the possibility that this could be induced or enhanced through immunization with seasonal influenza vaccines.
Humoral immunity against endemic human H1N1 influenza viruses can partially protect mice against H5N1 challenge, raising the possibility that a portion of the human population could have some degree of resistance against avian flu.
Editors' Summary
Every winter, millions of people catch influenza—a viral infection of the airways. Most recover quickly but influenza can kill infants, elderly people, and chronically ill individuals. To minimize these deaths, the World Health Organization recommends that vulnerable people be vaccinated against influenza every autumn. Annual vaccination is necessary because flu viruses continually make small changes to the viral proteins (antigens) that the immune system recognizes. Each year's vaccine contains disabled versions of the circulating strains of influenza A type H1N1 and H3N2 viruses, and of influenza B virus. The H and N refer to the major influenza A antigens (hemagglutinin and neuraminidase), and the numbers refer to the type of each antigen; different H1N1 and H3N2 virus strains contain small variations in their respective hemagglutinin and neuraminidase type. Vaccines provide protection against seasonal influenza outbreaks, but sometimes flu viruses emerge that contain major antigenic changes, such as a different hemagglutinin type. These viruses can start pandemics (global outbreaks) because populations have little immunity to them. Many scientists believe that avian (bird) H5N1 influenza virus (which has caused about 250 confirmed cases of human flu and 150 deaths) could trigger the next human pandemic.
Why Was This Study Done?
Avian influenza H5N1 virus has not started a human pandemic yet because it cannot move easily between people. If it acquires this property, it could kill millions before an effective vaccine could be developed, so researchers are looking for other ways to provide protection against avian H5N1. One possibility is that an immune response to the human type 1 neuraminidase (huN1) in circulating H1N1 influenza virus strains and vaccines could provide some protection against avian H5N1 influenza virus, which contains the closely related avian type 1 neuraminidase (avN1). In this study, the researchers have investigated this possibility in mice and in a small human study.
What Did the Researchers Do and Find?
The researchers immunized mice with DNA encoding the huN1 present in a circulating H1N1 virus. They then examined the immune response of the mice to this huN1 and to avN1 from an avian H5N1 virus isolated from a human patient (A/Vietnam/1203/04). Most of the mice made antibodies (proteins that recognize antigens) against huN1; a few also made detectable levels of antibodies against avN1. All the vaccinated mice survived infection with a man-made flu virus containing huN1, and half also survived infection with low doses of a man-made virus containing avN1 or A/Vietnam/1203/04. To test whether the antibodies made by the vaccinated mice were responsible for this partial protection, the researchers collected serum (the liquid part of blood that contains the antibodies) from them and injected it into unvaccinated mice. Again, about half of the mice survived infection with the H5N1 virus, which indicates that the huN1-induced immunity against H5N1 is largely mediated by antibodies. Finally, the researchers tested serum samples from 38 human volunteers for their ability to inhibit neuraminidase from an H1N1 virus and two H5N1 viruses (antibodies to neuraminidase reduce viral replication and disease severity by inhibiting neuraminidase activity). Most of the sera inhibited the enzyme from the H1N1 virus; and seven also inhibited the enzyme from both H5N1 viruses.
What Do These Findings Mean?
These findings indicate that a vaccine containing huN1 induces the production of antibodies in mice that partly protect them against H5N1 infection. In addition, the human study suggests that some people may have some degree of resistance to H5N1 influenza because of exposure to H1N1 viruses or routine influenza vaccination. These results, while intriguing, don't show that there is actual protection, but it seems well worth doing additional work to address this question. The researchers also suggest that many more people might have been infected already with H5N1 but their strong H1N1 immunity meant they had only mild symptoms, and this hypothesis also deserves further investigation. Overall, these findings raise the possibility that seasonal influenza vaccination may provide some protection against pandemic H5N1. It is worth discussing whether, even while further studies are underway, seasonal vaccination should be increased, especially in areas where H5N1 is present in birds.
Additional Information.
Please access these Web sites via the online version of this summary at
A related PLoS Medicine Perspective article by Laura Gillim-Ross and Kanta Subbarao is available
US Centers for Disease Control and Prevention provides information about influenza for patients and professionals, including key facts about avian influenza and vaccination
US National Institute of Allergy and Infectious Disease has a feature on seasonal, avian and pandemic flu
World Health Organization has fact sheets on influenza and influenza vaccines, and information on avian influenza
UK Health Protection Agency provides information on seasonal, avian, and pandemic influenza
PMCID: PMC1796909  PMID: 17298168
20.  A phase II, open-label, multicentre study to evaluate the immunogenicity and safety of an adjuvanted prepandemic (H5N1) influenza vaccine in healthy Japanese adults 
BMC Infectious Diseases  2010;10:338.
Promising clinical data and significant antigen-sparing have been demonstrated for a pandemic H5N1 influenza split-virion vaccine adjuvanted with AS03A, an α-tocopherol-containing oil-in-water emulsion-based Adjuvant System. Although studies using this formulation have been reported, there have been no data for Japanese populations. This study therefore aimed to assess the immunogenicity and tolerability of a prepandemic (H5N1) influenza vaccine adjuvanted with AS03A in Japanese adults.
This open-label, single-group study was conducted at two centres in Japan in healthy Japanese males and females aged 20-64 years (n = 100). Subjects received two doses of vaccine, containing 3.75 μg haemagglutinin of the A/Indonesia/5/2005-like IBCDC-RG2 Clade 2.1 (H5N1) strain adjuvanted with AS03A, 21 days apart. The primary endpoint evaluated the humoral immune response in terms of H5N1 haemagglutination inhibition (HI) antibody titres against the vaccine strain (Clade 2.1) 21 days after the second dose. Ninety five percent confidence intervals for geometric mean titres, seroprotection, seroconversion and seropositivity rates were calculated. Secondary and exploratory endpoints included the assessment of the humoral response in terms of neutralising antibody titres, the response against additional H5N1 strains (Clade 1 and Clade 2.2), as well as the evaluation of safety and reactogenicity.
Robust immune responses were elicited after two doses of the prepandemic influenza vaccine adjuvanted with AS03A. Overall, vaccine HI seroconversion rates and seroprotection rates were 91% 21 days after the second vaccination. This fulfilled all regulatory acceptance criteria for the vaccine-homologous HI antibody level. A substantial cross-reactive humoral immune response was also observed against the virus strains A/turkey/Turkey/1/2005 (Clade 2.2) and A/Vietnam/1194/2004 (Clade 1) after the second vaccine administration. A marked post-vaccination response in terms of neutralising antibody titres was demonstrated and persistence of the immune response was observed 6 months after the first dose. The vaccine was generally well tolerated and there were no serious adverse events reported.
The H5N1 candidate vaccine adjuvanted with AS03A elicited a strong and persistent immune response against the vaccine strain A/Indonesia/5/2005 in Japanese adults. Vaccination with this formulation demonstrated a clinically acceptable reactogenicity profile and did not raise any safety concerns in this population.
Trial registration NCT00742885
PMCID: PMC3004909  PMID: 21108818
21.  Assessing Optimal Target Populations for Influenza Vaccination Programmes: An Evidence Synthesis and Modelling Study 
PLoS Medicine  2013;10(10):e1001527.
Marc Baguelin and colleagues use virological, clinical, epidemiological, and behavioral data to estimate how policies for influenza vaccination programs may be optimized in England and Wales.
Please see later in the article for the Editors' Summary
Influenza vaccine policies that maximise health benefit through efficient use of limited resources are needed. Generally, influenza vaccination programmes have targeted individuals 65 y and over and those at risk, according to World Health Organization recommendations. We developed methods to synthesise the multiplicity of surveillance datasets in order to evaluate how changing target populations in the seasonal vaccination programme would affect infection rate and mortality.
Methods and Findings
Using a contemporary evidence-synthesis approach, we use virological, clinical, epidemiological, and behavioural data to develop an age- and risk-stratified transmission model that reproduces the strain-specific behaviour of influenza over 14 seasons in England and Wales, having accounted for the vaccination uptake over this period. We estimate the reduction in infections and deaths achieved by the historical programme compared with no vaccination, and the reduction had different policies been in place over the period. We find that the current programme has averted 0.39 (95% credible interval 0.34–0.45) infections per dose of vaccine and 1.74 (1.16–3.02) deaths per 1,000 doses. Targeting transmitters by extending the current programme to 5–16-y-old children would increase the efficiency of the total programme, resulting in an overall reduction of 0.70 (0.52–0.81) infections per dose and 1.95 (1.28–3.39) deaths per 1,000 doses. In comparison, choosing the next group most at risk (50–64-y-olds) would prevent only 0.43 (0.35–0.52) infections per dose and 1.77 (1.15–3.14) deaths per 1,000 doses.
This study proposes a framework to integrate influenza surveillance data into transmission models. Application to data from England and Wales confirms the role of children as key infection spreaders. The most efficient use of vaccine to reduce overall influenza morbidity and mortality is thus to target children in addition to older adults.
Please see later in the article for the Editors' Summary
Editors' Summary
Every winter, millions of people catch influenza, a viral infection of the airways. Most infected individuals recover quickly, but seasonal influenza outbreaks (epidemics) kill about half a million people annually. In countries with advanced health systems, these deaths occur mainly among elderly people and among individuals with long-term illnesses such as asthma and heart disease that increase the risk of complications occurring after influenza virus infection. Epidemics of influenza occur because small but frequent changes in the influenza virus mean that an immune response produced one year through infection provides only partial protection against influenza the following year. Annual immunization with a vaccine that contains killed influenza viruses of the major circulating strains can greatly reduce a person's risk of catching influenza by preparing the immune system to respond quickly when challenged by a live influenza virus. Consequently, many countries run seasonal influenza vaccination programs that, in line with World Health Organization recommendations, target individuals 65 years old and older and people in high-risk groups.
Why Was This Study Done?
Is this approach the best use of available resources? Might, for example, vaccination of children—the main transmitters of influenza—provide more benefit to the whole population than vaccination of elderly people? Vaccination of children would not directly prevent as many influenza-related deaths as vaccination of elderly people, but it might indirectly prevent deaths in elderly adults by inducing herd immunity—vaccination of a large part of a population can protect unvaccinated members of the population by reducing the chances of an infection spreading. Policy makers need to know whether a change to an influenza vaccination program is likely to provide additional population benefits before altering the program. In this evidence synthesis and modeling study, the researchers combine (synthesize) longitudinal influenza surveillance datasets (data collected over time) from England and Wales, develop a mathematical model for influenza transmission based on these data using a Bayesian statistical approach, and use the model to evaluate the impact on influenza infections and deaths of changes to the seasonal influenza vaccination program in England and Wales.
What Did the Researchers Do and Find?
The researchers developed an influenza transmission model using clinical data on influenza-like illness consultations collected in a primary care surveillance scheme for each week of 14 influenza seasons in England and Wales, virological information on respiratory viruses detected in a subset of patients presenting with clinically suspected influenza, and data on vaccination coverage in the whole population (epidemiological data). They also incorporated data on social contacts (behavioral data) and on immunity to influenza viruses in the population (seroepidemiological data) into their model. To estimate the impact of potential changes to the current vaccination strategy in England and Wales, the researchers used their model, which replicated the patterns of disease observed in the surveillance data, to run simulated epidemics for each influenza season and for three strains of influenza virus under various vaccination scenarios. Compared to no vaccination, the current program (vaccination of people 65 years old and older and people in high-risk groups) averted 0.39 infections per dose of vaccine and 1.74 deaths per 1,000 doses. Notably, the model predicted that extension of the program to target 5–16-year-old children would increase the efficiency of the program and would avert 0.70 infections per dose and 1.95 deaths per 1,000 doses.
What Do These Findings Mean?
The finding that the transmission model developed by the researchers closely fit the available surveillance data suggests that the model should be able to predict what would have happened in England and Wales over the study period if an alternative vaccination regimen had been in place. The accuracy of such predictions may be limited, however, because the vaccination model is based on a series of simplifying assumptions. Importantly, given that influenza vaccination for children is being rolled out in England and Wales from September 2013, the model confirms that children are key spreaders of influenza and suggests that a vaccination program targeting children will reduce influenza infections and potentially influenza deaths in the whole population. More generally, the findings of this study support wider adoption of national vaccination strategies designed to block influenza transmission and to target those individuals most at risk from the complications of influenza infection.
Additional Information
Please access these websites via the online version of this summary at
The UK National Health Service Choices website provides information for patients about seasonal influenza and about vaccination; Public Health England (formerly the Health Protection Agency) provides information on influenza surveillance in the UK, including information about the primary care surveillance database used in this study
The World Health Organization provides information on seasonal influenza (in several languages)
The European Influenzanet is a system to monitor the activity of influenza-like illness with the aid of volunteers via the Internet
The US Centers for Disease Control and Prevention also provides information for patients and health professionals on all aspects of seasonal influenza, including information about vaccination and about the US influenza surveillance system; its website contains a short video about personal experiences of influenza, a US government website, provides access to information on seasonal influenza and vaccination
MedlinePlus has links to further information about influenza and about immunization (in English and Spanish)
PMCID: PMC3793005  PMID: 24115913
22.  Feline Leukemia Virus Immunity Induced by Whole Inactivated Virus Vaccination 
A fraction of cats exposed to feline leukemia virus (FeLV) effectively contain virus and resist persistent antigenemia/viremia. Using real-time PCR (qPCR) to quantitate circulating viral DNA levels, previously we detected persistent FeLV DNA in blood cells of non-antigenemic cats considered to have resisted FeLV challenge. In addition, previously we used RNA qPCR to quantitate circulating viral RNA levels and determined that the vast majority of viral DNA is transcriptionally active, even in the absence of antigenemia. A single comparison of all USDA-licensed commercially available FeLV vaccines using these modern sensitive methods has not been reported. To determine whether FeLV vaccination would prevent nucleic acid persistence, we assayed circulating viral DNA, RNA, antigen, infectious virus, and virus neutralizing (VN) antibody in vaccinated and unvaccinated cats challenged with infectious FeLV. We identified challenged vaccinates with undetectable antigenemia and viremia concomitant with persistent FeLV DNA and/or RNA. Moreover, these studies demonstrated that two whole inactivated virus (WIV) adjuvanted FeLV vaccines (Fort Dodge Animal Health’s Fel-O-Vax Lv-K® and Schering-Plough Animal Health’s FEVAXYN FeLV®) provided effective protection against FeLV challenge. In nearly every recipient of these vaccines, neither viral DNA, RNA, antigen, nor infectious virus could be detected in blood after FeLV challenge. Interestingly, this effective viral containment occurred despite a weak to undetectable VN antibody response. The above findings reinforce the precept of FeLV infection as a unique model of effective retroviral immunity elicited by WIV vaccination, and as such holds valuable insights into retroviral immunoprevention and therapy.
PMCID: PMC2822011  PMID: 20004483
FeLV; vaccine; whole inactivated virus; immunity; diagnosis; pathogenesis
23.  Immunogenicity and Protective Efficacy of a Live Attenuated H5N1 Vaccine in Nonhuman Primates 
PLoS Pathogens  2009;5(5):e1000409.
The continued spread of highly pathogenic H5N1 influenza viruses among poultry and wild birds, together with the emergence of drug-resistant variants and the possibility of human-to-human transmission, has spurred attempts to develop an effective vaccine. Inactivated subvirion or whole-virion H5N1 vaccines have shown promising immunogenicity in clinical trials, but their ability to elicit protective immunity in unprimed human populations remains unknown. A cold-adapted, live attenuated vaccine with the hemagglutinin (HA) and neuraminidase (NA) genes of an H5N1 virus A/VN/1203/2004 (clade 1) was protective against the pulmonary replication of homologous and heterologous wild-type H5N1 viruses in mice and ferrets. In this study, we used reverse genetics to produce a cold-adapted, live attenuated H5N1 vaccine (AH/AAca) that contains HA and NA genes from a recent H5N1 isolate, A/Anhui/2/05 virus (AH/05) (clade 2.3), and the backbone of the cold-adapted influenza H2N2 A/AnnArbor/6/60 virus (AAca). AH/AAca was attenuated in chickens, mice, and monkeys, and it induced robust neutralizing antibody responses as well as HA-specific CD4+ T cell immune responses in rhesus macaques immunized twice intranasally. Importantly, the vaccinated macaques were fully protected from challenge with either the homologous AH/05 virus or a heterologous H5N1 virus, A/bar-headed goose/Qinghai/3/05 (BHG/05; clade 2.2). These results demonstrate for the first time that a cold-adapted H5N1 vaccine can elicit protective immunity against highly pathogenic H5N1 virus infection in a nonhuman primate model and provide a compelling argument for further testing of double immunization with live attenuated H5N1 vaccines in human trials.
Author Summary
H5N1 influenza viruses have caused human infections with more than 60% fatality in 14 countries and may yet be the source of the next pandemic. Therefore, the development of effective vaccines against these viruses is the highest priority for H5N1 pandemic preparedness. A high dosage or adjuvants improve the immunogenicity of H5N1 inactivated vaccines; however, limited production capacity for conventional inactivated influenza virus vaccines could severely hinder the ability to control the spread of H5N1 influenza through vaccination. Here, we generated and tested the efficacy of a cold-adapted, live attenuated H5N1 vaccine in mice and nonhuman primates. We found that the vaccine provided complete protection in these animals against homologous and heterologous H5N1 virus challenge. Since live vaccines require less processing than inactivated vaccines and do not require adjuvants, our study represents a major advance in vaccine development for H5N1 pandemic influenza.
PMCID: PMC2669169  PMID: 19412338
24.  Live Attenuated Influenza Vaccine Provides Superior Protection from Heterologous Infection in Pigs with Maternal Antibodies without Inducing Vaccine-Associated Enhanced Respiratory Disease 
Journal of Virology  2012;86(19):10597-10605.
Control of swine influenza A virus (IAV) in the United States is hindered because inactivated vaccines do not provide robust cross-protection against the multiple antigenic variants cocirculating in the field. Vaccine efficacy can be limited further for vaccines administered to young pigs that possess maternally derived immunity. We previously demonstrated that a recombinant A/sw/Texas/4199-2/1998 (TX98) (H3N2) virus expressing a truncated NS1 protein is attenuated in swine and has potential for use as an intranasal live attenuated influenza virus (LAIV) vaccine. In the present study, we compared 1 dose of intranasal LAIV with 2 intramuscular doses of TX98 whole inactivated virus (WIV) with adjuvant in weanling pigs with and without TX98-specific maternally derived antibodies (MDA). Pigs were subsequently challenged with wild-type homologous TX98 H3N2 virus or with an antigenic variant, A/sw/Colorado/23619/1999 (CO99) (H3N2). In the absence of MDA, both vaccines protected against homologous TX98 and heterologous CO99 shedding, although the LAIV elicited lower hemagglutination inhibition (HI) antibody titers in serum. The efficacy of both vaccines was reduced by the presence of MDA; however, WIV vaccination of MDA-positive pigs led to dramatically enhanced pneumonia following heterologous challenge, a phenomenon known as vaccine-associated enhanced respiratory disease (VAERD). A single dose of LAIV administered to MDA-positive pigs still provided partial protection from CO99 and may be a safer vaccine for young pigs under field conditions, where dams are routinely vaccinated and diverse IAV strains are in circulation. These results have implications not only for pigs but also for other influenza virus host species.
PMCID: PMC3457301  PMID: 22811541
25.  Innate Immune Sensing of Modified Vaccinia Virus Ankara (MVA) Is Mediated by TLR2-TLR6, MDA-5 and the NALP3 Inflammasome 
PLoS Pathogens  2009;5(6):e1000480.
Modified vaccinia virus Ankara (MVA) is an attenuated double-stranded DNA poxvirus currently developed as a vaccine vector against HIV/AIDS. Profiling of the innate immune responses induced by MVA is essential for the design of vaccine vectors and for anticipating potential adverse interactions between naturally acquired and vaccine-induced immune responses. Here we report on innate immune sensing of MVA and cytokine responses in human THP-1 cells, primary human macrophages and mouse bone marrow-derived macrophages (BMDMs). The innate immune responses elicited by MVA in human macrophages were characterized by a robust chemokine production and a fairly weak pro-inflammatory cytokine response. Analyses of the cytokine production profile of macrophages isolated from knockout mice deficient in Toll-like receptors (TLRs) or in the adapter molecules MyD88 and TRIF revealed a critical role for TLR2, TLR6 and MyD88 in the production of IFNβ-independent chemokines. MVA induced a marked up-regulation of the expression of RIG-I like receptors (RLR) and the IPS-1 adapter (also known as Cardif, MAVS or VISA). Reduced expression of RIG-I, MDA-5 and IPS-1 by shRNAs indicated that sensing of MVA by RLR and production of IFNβ and IFNβ-dependent chemokines was controlled by the MDA-5 and IPS-1 pathway in the macrophage. Crosstalk between TLR2-MyD88 and the NALP3 inflammasome was essential for expression and processing of IL-1β. Transcription of the Il1b gene was markedly impaired in TLR2−/− and MyD88−/− BMDM, whereas mature and secreted IL-1β was massively reduced in NALP3−/− BMDMs or in human THP-1 macrophages with reduced expression of NALP3, ASC or caspase-1 by shRNAs. Innate immune sensing of MVA and production of chemokines, IFNβ and IL-1β by macrophages is mediated by the TLR2-TLR6-MyD88, MDA-5-IPS-1 and NALP3 inflammasome pathways. Delineation of the host response induced by MVA is critical for improving our understanding of poxvirus antiviral escape mechanisms and for designing new MVA vaccine vectors with improved immunogenicity.
Author Summary
Modified vaccinia virus Ankara (MVA) is a highly attenuated, replication-deficient, poxvirus currently developed as a vaccine vector against a broad spectrum of infectious diseases including HIV, tuberculosis and malaria. It is well known that robust activation of innate immunity is essential to achieve an efficient vaccine response, and that poxviruses have developed numerous strategies to block the innate immune response. Yet, the precise mechanisms underlying innate immune sensing of MVA are poorly characterized. Toll-like receptors (TLR), RIG-I-like receptors (RLR) and NOD-like receptors (NLR) are families of membrane-bound and cytosolic sensors that detect the presence of microbial products and initiate host innate and adaptive immune responses. Here, we report the first comprehensive study of MVA sensing by innate immune cells, demonstrating that TLR2-TLR6-MyD88, MDA-5-IPS-1 and NALP3 inflammasome pathways play specific and coordinated roles in regulating cytokine, chemokine and interferon response to MVA poxvirus infection. Delineation of the pathways involved in the sensing of MVA by the host could help designing modified vectors with increased immunogenicity, which would be of particular importance since MVA is considered as a leading vaccine for HIV/AIDS vaccine following the recent failure of an adenovirus-mediated HIV vaccine trial.
PMCID: PMC2691956  PMID: 19543380

Results 1-25 (868501)