Search tips
Search criteria

Results 1-25 (1096274)

Clipboard (0)

Related Articles

1.  Investigation of genome instability in patients with non-alcoholic steatohepatitis 
AIM: To evaluate the occurrence of micronucleus (MN), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) in the mitogen-stimulated lymphocytes of patients with non-alcoholic steatohepatitis (NASH).
METHODS: The study was performed in 25 (9 females, 16 males) patients newly diagnosed with NASH, and 25 healthy subjects of similar ages and genders were used as a control group. None of the controls was known to be receiving any drugs for medical or other reasons or using alcohol. Hepatosteatosis was further excluded by abdominal ultrasound imaging in the control group. The numbers of MN, NPBs and NBUDs scored in binucleated (BN) cells were obtained from the mitogen-stimulated lymphocytes of patients and control subjects. Statistical comparisons of the numbers of BN cells with MN, NPBs and NBUDs and ages between the patients with NASH and control subjects were performed.
RESULTS: The mean ages of the patients and the control group were 41.92 ± 13.33 and 41.80 ± 13.09 years (P > 0.05), respectively. The values of the mean body mass index (BMI), HOMA-IR, hemoglobin, creatinin, aspartate aminotransferase, alanine aminotransferase, triglyceride, high density lipoprotein, and low density lipoprotein were 31.19 ± 4.62 kg/m2 vs 25.07 ± 4.14 kg/m2, 6.71 ± 4.68 vs 1.40 ± 0.53, 14.73 ± 1.49 g/dL vs 14.64 ± 1.30 g/dL, 0.74 ± 0.15 mg/dL vs 0.80 ± 0.13 mg/dL, 56.08 ± 29.11 U/L vs 16.88 ± 3.33 U/L, 92.2 ± 41.43 U/L vs 15.88 ± 5.88 U/L, 219.21 ± 141.68 mg/dL vs 102.56 ± 57.98 mg/dL, 16.37 ± 9.65 mg/dL vs 48.72 ± 15.31 mg/dL, and 136.75 ± 30.14 mg/dL vs 114.63 ± 34.13 mg/dL in the patients and control groups, respectively. The total numbers and frequencies of BN cells with MN, NPBs and NBUDs, which were scored using the CBMN cytome assay on PHA-stimulated lymphocytes, were evaluated in the patients with NASH and control group. We found significantly higher numbers of MN, NPBs and NBUDs in the BN cells of patients with NASH than in those of the control subjects (21.60 ± 9.32 vs 6.88 ± 3.91; 29.28 ± 13.31 vs 7.84 ± 3.96; 15.60 ± 5.55 vs 4.20 ± 1.63, respectively, P < 0.0001).
CONCLUSION: The increased numbers of MN, NPBs and NBUDs observed in the lymphocytes obtained from patients with NASH may reflect genomic instability.
PMCID: PMC3752563  PMID: 23983432
Non-alcoholic steatohepatitis; Micronucleus; Nucleoplasmic bridges; Nuclear buds
2.  First Steps Towards an Understanding of a Mode ofCarcinogenic Action for Vanadium Pentoxide 
Journal of Toxicologic Pathology  2011;24(3):149-162.
Inhalation of vanadium pentoxide clearly increases the incidence of alveolar/bronchiolar neoplasms in male and female B6C3F1 mice at all concentrations tested (1, 2 or 4 mg/m3), whereas responses in F344/N rats was, at most, ambiguous. While vanadium pentoxide is mutagenic in vitro and possibly in vivo in mice, this does not explain the species or site specificity of the neoplastic response. A nose-only inhalation study was conducted in female B6C3F1 mice (0, 0.25, 1 and 4 mg/m3, 6 h/day for 16 days) to explore histopathological, biochemical (α-tocopherol, glutathione and F2-isoprostane) and genetic (comet assays and 9 specific DNA-oxo-adducts) changes in the lungs. No treatment related histopathology was observed at 0.25 mg/m3. At 1 and 4 mg/m3, exposure-dependent increases were observed in lung weight, alveolar histiocytosis, sub-acute alveolitis and/or granulocytic infiltration and a generally time-dependent increased cell proliferation rate of histiocytes. Glutathione was slightly increased, whereas there were no consistent changes in α-tocopherol or 8-isoprostane F2α. There was no evidence for DNA strand breakage in lung or BAL cells, but there was an increase in 8-oxodGuo DNA lesions that could have been due to vanadium pentoxide induction of the lesions or inhibition of repair of spontaneous lesions. Thus, earlier reports of histopathological changes in the lungs after inhalation of vanadium pentoxide were confirmed, but no evidence has yet emerged for a genotoxic mode of action. Evidence is weak for oxidative stress playing any role in lung carcinogenesis at the lowest effective concentrations of vanadium pentoxide.
PMCID: PMC3234591  PMID: 22272055
comet assay; DNA lesions; mouse inhalation; oxidative stress; vanadium pentoxide
3.  Increased frequency of micronuclei in the lymphocytes of patients chronically infected with hepatitis B or hepatitis C virus 
In this study, we analysed the frequency of micronuclei (MN), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) and evaluated mutagen-induced sensitivity in the lymphocytes of patients chronically infected with hepatitis B virus (HBV) or hepatitis C virus (HCV). In total, 49 patients with chronic viral hepatitis (28 HBV-infected and 21 HCV-infected patients) and 33 healthy, non-infected blood donor controls were investigated. The frequencies (‰) of MN, NPBs and NBUDs in the controls were 4.41 ± 2.15, 1.15 ± 0.97 and 2.98 ± 1.31, respectively. The frequencies of MN and NPBs were significantly increased (p < 0.0001) in the patient group (7.01 ± 3.23 and 2.76 ± 2.08, respectively) compared with the control group. When considered separately, the HBV-infected patients (7.18 ± 3.57) and HCV-infected patients (3.27 ± 2.40) each had greater numbers of MN than did the controls (p < 0.0001). The HCV-infected patients displayed high numbers of NPBs (2.09 ± 1.33) and NBUDs (4.38 ± 3.28), but only the HBV-infected patients exhibited a significant difference (NPBs = 3.27 ± 2.40, p < 0.0001 and NBUDs = 4.71 ± 2.79, p = 0.03) in comparison with the controls. Similar results were obtained for males, but not for females, when all patients or the HBV-infected group was compared with the controls. The lymphocytes of the infected patients did not exhibit sensitivity to mutagen in comparison with the lymphocytes of the controls (p = 0.06). These results showed that the lymphocytes of patients who were chronically infected with HBV or HCV presented greater chromosomal instability.
PMCID: PMC4005534  PMID: 24626305
hepatitis B; hepatitis C; lymphocytes; micronucleus
4.  Sodium metavanadate exhibits carcinogenic tendencies in vitro in immortalized human bronchial epithelial cells† 
Pentavalent vanadium compounds induce intracellular changes in vitro that are consistent with those of other carcinogenic substances. While there is no clear evidence that vanadium compounds cause cancer in humans, vanadium pentoxide causes lung cancer in rodents after long-term inhalation exposures and in turn IARC has categorized it as a group 2B possible human carcinogen. The goal of this study was to investigate the carcinogenicity of NaVO3 in the human immortalized bronchial epithelial cell line, Beas-2B. Cells were treated with 10 μM NaVO3 for 5 weeks, with or without recovery time, followed by gene expression microarray analysis. In a separate experiment, cells were exposed to 1–10 μM NaVO3 for 4 weeks and then grown in soft agar to test for anchorage-independent growth. A dose-dependent increase in the number of colonies was observed. In scratch tests, NaVO3-transformed clones could repair a wound faster than controls. In a gene expression microarray analysis of soft agar clones there were 2010 differentially expressed genes (DEG) (adjusted p-value ≤ 0.05) in NaVO3-transformed clones relative to control clones. DEG from this experiment were compared with the DEG of 5 week NaVO3 exposure with or without recovery, all with adjusted p-values < 0.05, and 469 genes were altered in the same direction for transformed clones, 5 week NaVO3-treated cells, and the recovered cells. The data from this study imply that chronic exposure to NaVO3 causes changes that are consistent with cellular transformation including anchorage-independent growth, enhanced migration ability, and gene expression changes that were likely epigenetically inherited.
PMCID: PMC3982314  PMID: 23963610
5.  Influence of vanadium on serum lipid and lipoprotein profiles: a population-based study among vanadium exposed workers 
Some experimental animal studies reported that vanadium had beneficial effects on blood total cholesterol (TC) and triglyceride (TG). However, the relationship between vanadium exposure and lipid, lipoprotein profiles in human subjects remains uncertain. This study aimed to compare the serum lipid and lipoprotein profiles of occupational vanadium exposed and non-exposed workers, and to provide human evidence on serum lipid, lipoprotein profiles and atherogenic indexes changes in relation to vanadium exposure.
This cross-sectional study recruited 533 vanadium exposed workers and 241 non-exposed workers from a Steel and Iron Group in Sichuan, China. Demographic characteristics and occupational information were collected through questionnaires. Serum lipid and lipoprotein levels were measured for all participants. The ratios of total cholesterol to high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) to HDL-C and apoB to apoA-I were used as atherogenic indexes. A general linear model was applied to compare outcomes of the two groups while controlling possible confounders and multivariate logistic regression was performed to evaluate the relationship between low HDL-C level, abnormal atherogenic index and vanadium exposure.
Higher levels of HDL-C and apoA-I could be observed in the vanadium exposed group compared with the control group (P < 0.05). Furthermore, atherogenic indexes (TC/HDL-C, LDL-C/HDL-C, and apoB/apoA-I ratios) were found statistically lower in the vanadium exposed workers (P < 0.05). Changes in HDL-C, TC/HDL-C, and LDL-C/HDL-C were more pronounced in male workers than that in female workers. In male workers, after adjusting for potential confounding variables as age, habits of smoking and drinking, occupational vanadium exposure was still associated with lower HDL-C (OR 0.41; 95% CI, 0.27-0.62) and abnormal atherogenic index (OR 0.38; 95% CI, 0.20-0.70).
Occupational vanadium exposure appears to be associated with increased HDL-C and apoA-I levels and decreased atherogenic indexes. Among male workers, a significantly negative association existed between low HDL-C level, abnormal atherogenic index and occupational vanadium exposure. This suggests vanadium has beneficial effects on blood levels of HDL-C and apoA-I.
PMCID: PMC3945940  PMID: 24558984
Vanadium; Lipid; Lipoprotein; Atherogenic index; Occupational exposure
6.  Vanadium Induces Dopaminergic Neurotoxicity Via Protein Kinase C-Delta Dependent Oxidative Signaling Mechanisms: Relevance to Etiopathogenesis of Parkinson's Disease 
Toxicology and applied pharmacology  2009;240(2):273-285.
Environmental exposure to neurotoxic metals through various sources including exposure to welding fumes has been linked to an increased incidence of Parkinson's disease (PD). Welding fumes contain many different metals including vanadium typically present as particulates containing vanadium pentoxide (V2O5). However, possible neurotoxic effects of this metal oxide on dopaminergic neuronal cells are not well studied. In the present study, we characterized vanadium-induced oxidative stress-dependent cellular events in cell culture models of PD. V2O5 was neurotoxic to dopaminergic neuronal cells including primary nigral dopaminergic neurons and the EC50 was determined to be 37 μM in N27 dopaminergic neuronal cell model. The neurotoxic effect was accompanied by a time-dependent uptake of vanadium and upregulation of metal transporter proteins Tf and DMT1 in N27 cells. Additionally, vanadium resulted in a threefold increase in reactive oxygen species generation, followed by release of mitochondrial cytochrome c into cytoplasm and subsequent activation of caspase-9 (>fourfold) and caspase-3 (>ninefold). Interestingly, vanadium exposure induced proteolytic cleavage of native protein kinase Cdelta (PKCδ, 72-74 kDa) to yield a 41 kDa catalytically active fragment resulting in a persistent increase in PKCδ kinase activity. Co-treatment with pan-caspase inhibitor ZVAD-FMK significantly blocked vanadium-induced PKCδ proteolytic activation, indicating that caspases mediate PKCδ cleavage. Also, co-treatment with Z-VAD-FMK almost completely inhibited V2O5-induced DNA fragmentation. Furthermore, PKCδ knockdown using siRNA protected N27 cells from V2O5-induced apoptotic cell death. Collectively, these results demonstrate vanadium can exert neurotoxic effects in dopaminergic neuronal cells via caspase-3-dependent PKCδ cleavage, suggesting that metal exposure may promote nigral dopaminergic degeneration.
PMCID: PMC2753722  PMID: 19646462
metal mixtures; vanadium; manganese; neurotoxicity; oxidative stress; Parkinson's disease
7.  Zinc deficiency or excess within the physiological range increases genome instability and cytotoxicity, respectively, in human oral keratinocyte cells 
Genes & Nutrition  2011;7(2):139-154.
Zinc (Zn) is an essential component of Zn-finger proteins and acts as a cofactor for enzymes required for cellular metabolism and in the maintenance of DNA integrity. The study investigated the genotoxic and cytotoxic effects of Zn deficiency or excess in a primary human oral keratinocyte cell line and determined the optimal concentration of two Zn compounds (Zn Sulphate (ZnSO4) and Zn Carnosine (ZnC)) to minimise DNA damage. Zn-deficient medium (0 μM) was produced using Chelex treatment, and the two Zn compounds ZnSO4 and ZnC were tested at concentrations of 0.0, 0.4, 4.0, 16.0, 32.0 and 100.0 μM. Cell viability was decreased in Zn-depleted cells (0 μM) as well as at 32 μM and 100 μM for both Zn compounds (P < 0.0001) as measured via the MTT assay. DNA strand breaks, as measured by the comet assay, were found to be increased in Zn-depleted cells compared with the other treatment groups (P < 0.05). The Cytokinesis Block Micronucleus Cytome assay showed a significant increase in the frequency of both apoptotic and necrotic cells under Zn-deficient conditions (P < 0.05). Furthermore, elevated frequencies of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBuds) were observed at 0 and 0.4 μM Zn, whereas these biomarkers were minimised for both Zn compounds at 4 and 16 μM Zn (P < 0.05), suggesting these concentrations are optimal to maintain genome stability. Expression of PARP, p53 and OGG1 measured by western blotting was increased in Zn-depleted cells indicating that DNA repair mechanisms are activated. These results suggest that maintaining Zn concentrations within the range of 4–16 μM is essential for DNA damage prevention in cultured human oral keratinocytes.
PMCID: PMC3316759  PMID: 21935692
Zinc; Cytotoxicity; DNA damage; Genomic stability; Human oral keratinocytes; Micronuclei
8.  Vanadium pentoxide inhalation 
This mini-review describes the toxic effects of vanadium pentoxide inhalation principally in the workplace and associated complications with breathing and respiration. Although there are some material safety data sheets available detailing the handling, hazards and toxicity of vanadium pentoxide, there are only two reviews listed in PubMed detailing its toxicity.
To collate information on the consequences of occupational inhalation exposure of vanadium pentoxide on physiological function and wellbeing.
Materials and Methods:
The criteria used in the current mini-review for selecting articles were adopted from proposed criteria in The International Classification of Functioning, Disability and Health. Articles were classified from an acute and chronic exposure and toxicity thrust.
The lungs are the principal route through which vanadium pentoxide enters the body. It can injure the lungs and bronchial airways possibly involving acute chemical pneumonotis, pulmonary edema and/or acute tracheobronchitis. It may adversely influence cardiac autonomic function. It stimulates the secretion of cytokines and chemokines by hepatocytes and disrupts mitochondria function. It disrupts the permeability of the epithelium and promotes access of inflammatory mediators to the underlying neuronal tissue causing injury and neuronal death. When renal brush border membrane vesicles are exposed to vanadium pentoxide, there is a time-dependent inhibition of citrate uptake and Na+ K+ ATPase in the membrane possibly contributing to nephrotoxicity. Exposure results in necrosis of spermatogonium, spermatocytes and Sertoli cells contributing to male infertility.
Vanadium pentoxide certainly has adverse effects on the health and the well-being and measures need to be taken to prevent hazardous exposure of the like.
PMCID: PMC3168171  PMID: 21957373
Breathing; dust; exposure; fumes; occupation; respiration; vanadium pentoxide
9.  Upper airway response in workers exposed to fuel oil ash: nasal lavage analysis. 
OBJECTIVES--Among other constituents, fuel oil ash contains vanadium pentoxide, a known respiratory irritant. Exposure to ambient vanadium pentoxide dust has been shown to produce irritation of the eyes, nose, and throat. The usefulness of nasal lavage in detecting an inflammatory response to exposure to fuel oil ash among 37 boilermakers and utility workers was investigated. METHODS--A baseline lavage was performed on the morning of the first day back to work after an average of 114 days away from work (range 36 hours to 1737 days). A lavage was performed after exposure on the morning three days after the baseline lavage. Exposure to respirable particulate matter of diameter < or = 10 microns (PM10) and respirable vanadium dust were estimated with daily work diaries and a personal sampling device for respirable particulates. These estimates were made for each subject on each workday during the three days between lavages. For each subject, the adjusted change in polymorphonuclear cells was calculated by dividing the change in polymorphonuclear cell counts by the average of the counts before and after exposure. The association between the adjusted polymorphonuclear cell counts and exposure was assessed with multiple linear regression, adjusted for age and current smoking. RESULTS--Personal sampling (one to 10 hour time weighted average) showed a range of PM10 concentrations of 50 to 4510 micrograms/m3, and respirable vanadium dust concentration of 0.10 to 139 micrograms/m3. In smokers the adjusted polymorphonuclear cell count was not significantly different from zero (-0.1%, P > 0.5), but in nonsmokers it was significantly greater than zero (+50%, P < 0.05). In both non-smokers and smokers, there was considerable variability in adjusted polymorphonuclear cell counts and a dose-response relation between these adjusted cell counts and either PM10 or respirable vanadium dust exposure could not be found. CONCLUSION--A significant increase in polymorphonuclear cells in non-smokers but not smokers was found. This suggests that in non-smokers, exposure to fuel oil ash is associated with upper airway inflammation manifested as increased polymorphonuclear cell counts. The lack of an increase in polymorphonuclear cells in smokers may reflect either a diminished inflammatory response or may indicate that smoking masks the effect of exposure to fuel oil ash.
PMCID: PMC1128229  PMID: 7795759
10.  Prevalence and persistence of chromosomal damage and susceptible genotypes of metabolic and DNA repair genes in Chinese vinyl chloride-exposed workers 
Carcinogenesis  2010;31(4):648-653.
Vinyl chloride (VC) was classified as a group 1 carcinogen by IARC in 1987. Although the relationship between VC exposure and liver cancer has been established, the mechanism of VC-related carcinogenesis remains largely unknown. Previous epidemiological studies have shown that VC exposure is associated with increased genotoxicity in humans. To explore chromosomal damage and its progression, and their association to genetic susceptibility, we investigated 402 workers exposed to VC, a 77 VC-exposed cohort and 141 unexposed subjects. We measured the frequencies of cytokinesis-block micronucleus (CBMN) to reflect chromosomal damage and conducted genotyping for six xenobiotic metabolisms and five DNA repair genes' polymorphism. Data indicate that 95% of the control workers had CBMN frequencies ≤3‰, whereas VC-exposed workers had the 3.73-fold increase compared with the controls. Among the cohort workers who were followed from 2004 to 2007, the mean CBMN frequency was higher in 2007 than in 2004 with ratio of 2.08. Multiple Poisson regression analysis showed that mean CBMN frequencies were significantly elevated for the intermediate and high exposure groups than the low. Exposed workers with CYP2E1 or XRCC1 variance showed a higher CBMN frequency than their wild-type homozygous counterparts, so did workers with GSTP1 or ALDH2 genotype. This study provides evidence that cumulative exposure dose of VC and common genetic variants in genes relevant to detoxification of carcinogens are the major factors that modulate CBMN induction in VC-exposed workers.
PMCID: PMC3499047  PMID: 20100738
11.  Genomic analysis of human lung fibroblasts exposed to vanadium pentoxide to identify candidate genes for occupational bronchitis 
Respiratory Research  2007;8(1):34.
Exposure to vanadium pentoxide (V2O5) is a cause of occupational bronchitis. We evaluated gene expression profiles in cultured human lung fibroblasts exposed to V2O5 in vitro in order to identify candidate genes that could play a role in inflammation, fibrosis, and repair during the pathogenesis of V2O5-induced bronchitis.
Normal human lung fibroblasts were exposed to V2O5 in a time course experiment. Gene expression was measured at various time points over a 24 hr period using the Affymetrix Human Genome U133A 2.0 Array. Selected genes that were significantly changed in the microarray experiment were validated by RT-PCR.
V2O5 altered more than 1,400 genes, of which ~300 were induced while >1,100 genes were suppressed. Gene ontology categories (GO) categories unique to induced genes included inflammatory response and immune response, while GO catogories unique to suppressed genes included ubiquitin cycle and cell cycle. A dozen genes were validated by RT-PCR, including growth factors (HBEGF, VEGF, CTGF), chemokines (IL8, CXCL9, CXCL10), oxidative stress response genes (SOD2, PIPOX, OXR1), and DNA-binding proteins (GAS1, STAT1).
Our study identified a variety of genes that could play pivotal roles in inflammation, fibrosis and repair during V2O5-induced bronchitis. The induction of genes that mediate inflammation and immune responses, as well as suppression of genes involved in growth arrest appear to be important to the lung fibrotic reaction to V2O5.
PMCID: PMC1865536  PMID: 17459161
12.  In vitro repair of complex unligatable oxidatively induced DNA double-strand breaks by human cell extracts 
Nucleic Acids Research  2001;29(16):e78.
We describe a new assay for in vitro repair of oxidatively induced DNA double-strand breaks (DSBs) by HeLa cell nuclear extracts. The assay employs linear plasmid DNA containing DNA DSBs produced by the radiomimetic drug bleomycin. The bleomycin-induced DSB possesses a complex structure similar to that produced by oxidative processes and ionizing radiation. Bleomycin DSBs are composed of blunt ends or ends containing a single 5′-base overhang. Regardless of the 5′-end structure, all bleomycin-induced DSBs possess 3′-ends blocked by phosphoglycolate. Cellular extraction and initial end joining conditions for our assay were optimized with restriction enzyme-cleaved DNA to maximize ligation activity. Parameters affecting ligation such as temperature, time, ionic strength, ATP utilization and extract protein concentration were examined. Similar reactions were performed with the bleomycin-linearized substrate. In all cases, end-joined molecules ranging from dimers to higher molecular weight forms were produced and observed directly in agarose gels stained with Vistra Green and imaged with a FluorImager 595. This detection method is at least 50-fold more sensitive than ethidium bromide and permits detection of ≤0.25 ng double-stranded DNA per band in post-electrophoretically stained agarose gels. Consequently, our end-joining reaction requires ≤100 ng substrate DNA and ≥50% conversion of substrate to product is achieved with simple substrates such as restriction enzyme-cleaved DNA. Using our assay we have observed a 6-fold lower repair rate and a lag in reaction initiation for bleomycin-induced DSBs as compared to blunt-ended DNA. Also, end joining reaction conditions are DSB end group dependent. In particular, bleomycin-induced DSB repair is considerably more sensitive to inhibition by increased ionic strength than repair of blunt-ended DNA.
PMCID: PMC55862  PMID: 11504886
13.  Long-Term Exposure to Silica Dust and Risk of Total and Cause-Specific Mortality in Chinese Workers: A Cohort Study 
PLoS Medicine  2012;9(4):e1001206.
A retro-prospective cohort study by Weihong Chen and colleagues provides new estimates for the risk of total and cause-specific mortality due to long-term silica dust exposure among Chinese workers.
Human exposure to silica dust is very common in both working and living environments. However, the potential long-term health effects have not been well established across different exposure situations.
Methods and Findings
We studied 74,040 workers who worked at 29 metal mines and pottery factories in China for 1 y or more between January 1, 1960, and December 31, 1974, with follow-up until December 31, 2003 (median follow-up of 33 y). We estimated the cumulative silica dust exposure (CDE) for each worker by linking work history to a job–exposure matrix. We calculated standardized mortality ratios for underlying causes of death based on Chinese national mortality rates. Hazard ratios (HRs) for selected causes of death associated with CDE were estimated using the Cox proportional hazards model. The population attributable risks were estimated based on the prevalence of workers with silica dust exposure and HRs. The number of deaths attributable to silica dust exposure among Chinese workers was then calculated using the population attributable risk and the national mortality rate. We observed 19,516 deaths during 2,306,428 person-years of follow-up. Mortality from all causes was higher among workers exposed to silica dust than among non-exposed workers (993 versus 551 per 100,000 person-years). We observed significant positive exposure–response relationships between CDE (measured in milligrams/cubic meter–years, i.e., the sum of silica dust concentrations multiplied by the years of silica exposure) and mortality from all causes (HR 1.026, 95% confidence interval 1.023–1.029), respiratory diseases (1.069, 1.064–1.074), respiratory tuberculosis (1.065, 1.059–1.071), and cardiovascular disease (1.031, 1.025–1.036). Significantly elevated standardized mortality ratios were observed for all causes (1.06, 95% confidence interval 1.01–1.11), ischemic heart disease (1.65, 1.35–1.99), and pneumoconiosis (11.01, 7.67–14.95) among workers exposed to respirable silica concentrations equal to or lower than 0.1 mg/m3. After adjustment for potential confounders, including smoking, silica dust exposure accounted for 15.2% of all deaths in this study. We estimated that 4.2% of deaths (231,104 cases) among Chinese workers were attributable to silica dust exposure. The limitations of this study included a lack of data on dietary patterns and leisure time physical activity, possible underestimation of silica dust exposure for individuals who worked at the mines/factories before 1950, and a small number of deaths (4.3%) where the cause of death was based on oral reports from relatives.
Long-term silica dust exposure was associated with substantially increased mortality among Chinese workers. The increased risk was observed not only for deaths due to respiratory diseases and lung cancer, but also for deaths due to cardiovascular disease.
Please see later in the article for the Editors' Summary
Editors' Summary
Walk along most sandy beaches and you will be walking on millions of grains of crystalline silica, one of the commonest minerals on earth and a major ingredient in glass and in ceramic glazes. Silica is also used in the manufacture of building materials, in foundry castings, and for sandblasting, and respirable (breathable) crystalline silica particles are produced during quarrying and mining. Unfortunately, silica dust is not innocuous. Several serious diseases are associated with exposure to this dust, including silicosis (a chronic lung disease characterized by scarring and destruction of lung tissue), lung cancer, and pulmonary tuberculosis (a serious lung infection). Moreover, exposure to silica dust increases the risk of death (mortality). Worryingly, recent reports indicate that in the US and Europe, about 1.7 and 3.0 million people, respectively, are occupationally exposed to silica dust, figures that are dwarfed by the more than 23 million workers who are exposed in China. Occupational silica exposure, therefore, represents an important global public health concern.
Why Was This Study Done?
Although the lung-related adverse health effects of exposure to silica dust have been extensively studied, silica-related health effects may not be limited to these diseases. For example, could silica dust particles increase the risk of cardiovascular disease (diseases that affect the heart and circulation)? Other environmental particulates, such as the products of internal combustion engines, are associated with an increased risk of cardiovascular disease, but no one knows if the same is true for silica dust particles. Moreover, although it is clear that high levels of exposure to silica dust are dangerous, little is known about the adverse health effects of lower exposure levels. In this cohort study, the researchers examined the effect of long-term exposure to silica dust on the risk of all cause and cause-specific mortality in a large group (cohort) of Chinese workers.
What Did the Researchers Do and Find?
The researchers estimated the cumulative silica dust exposure for 74,040 workers at 29 metal mines and pottery factories from 1960 to 2003 from individual work histories and more than four million measurements of workplace dust concentrations, and collected health and mortality data for all the workers. Death from all causes was higher among workers exposed to silica dust than among non-exposed workers (993 versus 551 deaths per 100,000 person-years), and there was a positive exposure–response relationship between silica dust exposure and death from all causes, respiratory diseases, respiratory tuberculosis, and cardiovascular disease. For example, the hazard ratio for all cause death was 1.026 for every increase in cumulative silica dust exposure of 1 mg/m3-year; a hazard ratio is the incidence of an event in an exposed group divided by its incidence in an unexposed group. Notably, there was significantly increased mortality from all causes, ischemic heart disease, and silicosis among workers exposed to respirable silica concentrations at or below 0.1 mg/m3, the workplace exposure limit for silica dust set by the US Occupational Safety and Health Administration. For example, the standardized mortality ratio (SMR) for silicosis among people exposed to low levels of silica dust was 11.01; an SMR is the ratio of observed deaths in a cohort to expected deaths calculated from recorded deaths in the general population. Finally, the researchers used their data to estimate that, in 2008, 4.2% of deaths among industrial workers in China (231,104 deaths) were attributable to silica dust exposure.
What Do These Findings Mean?
These findings indicate that long-term silica dust exposure is associated with substantially increased mortality among Chinese workers. They confirm that there is an exposure–response relationship between silica dust exposure and a heightened risk of death from respiratory diseases and lung cancer. That is, the risk of death from these diseases increases as exposure to silica dust increases. In addition, they show a significant relationship between silica dust exposure and death from cardiovascular diseases. Importantly, these findings suggest that even levels of silica dust that are considered safe increase the risk of death. The accuracy of these findings may be affected by the accuracy of the silica dust exposure estimates and/or by confounding (other factors shared by the people exposed to silica such as diet may have affected their risk of death). Nevertheless, these findings highlight the need to tighten regulations on workplace dust control in China and elsewhere.
Additional Information
Please access these websites via the online version of this summary at
The American Lung Association provides information on silicosis
The US Centers for Disease Control and Prevention provides information on silica in the workplace, including links to relevant US National Institute for Occupational Health and Safety publications, and information on silicosis and other pneumoconioses
The US Occupational Safety and Health Administration also has detailed information on occupational exposure to crystalline silica
What does silicosis mean to you is a video provided by the US Mine Safety and Health Administration that includes personal experiences of silicosis; Dont let silica dust you is a video produced by the Association of Occupational and Environmental Clinics that identifies ways to reduce silica dust exposure in the workplace
The MedlinePlus encyclopedia has a page on silicosis (in English and Spanish)
The International Labour Organization provides information on health surveillance for those exposed to respirable crystalline silica
The World Health Organization has published a report about the health effects of crystalline silica and quartz
PMCID: PMC3328438  PMID: 22529751
14.  Diet-related telomere shortening and chromosome stability 
Mutagenesis  2011;27(1):49-57.
Recent evidences have highlighted an influence of micronutrients in the maintenance of telomere length (TL). In order to explore whether diet-related telomere shortening had any physiological relevance and was accompanied by significant damage in the genome, in the present study, TL was assessed by terminal restriction fragment (TRF) analysis in peripheral blood lymphocytes of 56 healthy subjects for which detailed information on dietary habits was available and data were compared \with the incidence of nucleoplasmic bridges (NPBs), a marker of chromosomal instability related to telomere dysfunction visualised with the cytokinesis-blocked micronucleus assay. To increase the capability to detect even slight impairment of telomere function, the incidence of NPBs was also evaluated on cells exposed in vitro to ionising radiation. Care was taken to control for potential confounding factors that might influence TL, viz. age, hTERT genotype and smoking status. Data showed that higher consumption of vegetables was related with significantly higher mean TL (P = 0.013); in particular, the analysis of the association between micronutrients and mean TL highlighted a significant role of antioxidant intake, especially beta-carotene, on telomere maintenance (P = 0.004). However, the diet-related telomere shortening did not result in associated increased spontaneous or radiation-induced NPBs. The distribution of TRFs was also analysed and a slight prevalence of radiation-induced NPBs (P = 0.03) was observed in subjects with higher amount of very short TRFs (<2 kb). The relative incidence of very short TRFs was positively associate with ageing (P = 0.008) but unrelated to vegetables consumption and daily intake of micronutrients, suggesting that the degree of telomere erosion related with low dietary intake of antioxidants observed in this study was not so extensive to lead to chromosome instability.
PMCID: PMC3241941  PMID: 21857007
15.  The application of the cytokinesis-block micronucleus assay on peripheral blood lymphocytes for the assessment of genome damage in long-term residents of areas with high radon concentration 
Journal of Radiation Research  2013;55(1):61-66.
Estimating the effects of small doses of ionising radiation on DNA is one of the most important problems in modern biology. Different cytogenetic methods exist to analyse DNA damage; the cytokinesis-block micronucleus assay (CBMN) for human peripheral blood lymphocytes is a simple, cheap and informative cytogenetic method that can be used to detect genotoxic-related markers. With respect to previous studies on radiation-induced genotoxicity, children are a poorly studied group, as evidenced by the few publications in this area. In this study, we assessed radon genotoxic effects by counting micronuclei (MN), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) in the lymphocytes of children who are long-term residents from areas with high radon concentrations. In the exposed group, radon was found to cause significant cytogenetic alterations. We propose that this method can be employed for biomonitoring to screen for a variety of measures.
PMCID: PMC3885124  PMID: 23908554
micronucleus assay; micronuclei; genotoxicity; cytochalasin B; ionising radiation; radon; children
16.  Inhibitory effect of vanadium on rat liver carcinogenesis initiated with diethylnitrosamine and promoted by phenobarbital. 
British Journal of Cancer  1995;71(6):1214-1220.
The chemoprotective effect of vanadium, a dietary micronutrient, against chemically induced hepatocarcinogenesis in rats was investigated. Initiation was performed by a single intraperitoneal injection of diethylnitrosamine (DENA; 200 mg kg-1) followed by promotion with phenobarbital (0.05%) in the diet. Supplementary vanadium (0.5 p.p.m.) in the drinking water was provided ad libitum throughout the experiment, before the initiation or during the promotion period. At the end of the study (20 weeks), vanadium supplementation throughout the experiment reduced the incidence (P < 0.01), total number and multiplicity (P < 0.001) and altered the size distribution of visible persistent nodules (PNs) as compared with DENA control animals. Mean nodular volume (P < 0.05) and nodular volume as a percentage of liver volume (P < 0.01) were also attenuated following long-term vanadium treatment. It also caused a large decrease in the number (P < 0.001) and surface area (P < 0.01) of gamma-glutamyltranspeptidase (GGT)-positive hepatocyte foci and in the labelling index (P < 0.001) of focal cells, coupled with increased (P < 0.01) remodelling. The activity of GGT, measured quantitatively, was found to be significantly less in the PNs (P < 0.001) and non-nodular surrounding parenchyma (P < 0.01) of vanadium-supplemented rats. The anticarcinogenic effect of vanadium was also reflected in the histopathological analysis of liver sections that showed a well-maintained hepatocellular architecture as compared with DENA control. Similar results were observed when vanadium was given only before the initiation. However, supplementation of vanadium during the promotion period did not result in significant alterations of these parameters. Our results, thus, strongly suggest that vanadium may have a unique anti-tumour potential which is primarily exerted on the initiation phase and only secondarily on the promotion stage.
PMCID: PMC2033852  PMID: 7779714
17.  Polychlorinated dibenzo-p-dioxin and dibenzofuran concentrations in the serum samples of workers at continuously burning municipal waste incinerators in Japan 
OBJECTIVES—To find whether concentrations of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in serum increased in workers at municipal incinerators that burn continuously.
METHODS—30 Workers employed at three municipal waste incineration plants (incinerator workers) and 30 control workers were studied. The incinerator workers had worn dust masks or airline masks during the periodic repair work inside the incinerators. Previous job, dietary habit, smoking habit, distance from residence to the incineration plant, and body weight and height were obtained from a questionnaire survey. Concentrations of PCDDs/PCDFs were measured in the serum of the workers and the dust deposited in the plants. The influence of various factors on serum concentrations of PCDDs/PCDFs was examined by multiple regression analysis.
RESULTS—Dust analysis showed the greatest amount of octachlorodibenzo-p-dioxin (OCDD), followed by 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD), 1,2,3,4,6,7,8-heptachlorodibenzofuran (HpCDF), and octachlorodibenzofuran (OCDF). The toxicity equivalents (TEQs) of PCDDs and PCDFs in the deposited dust were 4.8, 1.0, and 6.4 ng TEQs/g, respectively, for plants A, B, and C. The mean serum TEQs of PCDDs and PCDFs in the incinerator workers and control workers were 19.2 and 22.9 pg TEQs/g lipid, respectively, for area A, 28.8 and 24.5 pg TEQs/g lipid for area B, and 23.4 and 23.6 pg TEQs/g lipid for area C. No significant differences were found between the incinerator workers and the controls for TEQs of PCDDs and PCDFs separately, and TEQs of PCDDs and PCDFs together. However, the serum 1,2,3,4,6,7,8-HpCDF concentration was significantly higher in the incinerator workers than in the controls for all the three areas. When the exposure index to 1,2,3,4,6,7,8-HpCDF is defined as the product of the concentration of 1,2,3,4,6,7,8-HpCDF in the deposited dust and duration of employment, the concentration of 1,2,3,4,6,7,8-HpCDF in serum increased as the exposure index increased. Multivariate analysis suggested that the serum concentration of HpCDF increased with duration of employment at the incineration plants and OCDF increased with employment of ⩾21 years. The other significant variables (p<0.01 or p<0.001) were area for hexachlorodibenzo-p-dioxin (HxCDD) and tetrachlorodibenzofuran (TCDF), Brinkman index for HpCDD, and body mass index (BMI) for tetrachlorodibenzo-p-dioxin (TCDD), HpCDD, and TEQs of PCDDs.
CONCLUSION—The serum TEQs of PCDDs and PCDFs was not significantly higher among the incinerator workers, but the serum concentration of 1,2,3,4,6,7,8-HpCDF was. This suggests that the incinerator workers had inhaled dust containing PCDDs and PCDFs while working in plants equipped with incinerators that burn continuously.

Keywords: serum dioxins; municipal waste incinerators; continuous burning; heptachlorodibenzofuran
PMCID: PMC1739917  PMID: 10810104
18.  Integrated exposure assessment of sewage workers to genotoxicants: an urinary biomarker approach and oxidative stress evaluation 
Environmental Health  2011;10:23.
Sewage workers are exposed to multiple chemicals among which many are suspected genotoxicants. Therefore, they might incur DNA damage and oxidative stress. We aimed to explore integrated urinary biomarkers, assessing the overall urine genotoxicity by in vitro comet and micronucleus assays and measuring urinary 8-oxo-2'-deoxyguanosine.
During three consecutive working days, polycyclic aromatic hydrocarbons and volatile organic compounds were sampled in workplace air of 34 sewage and 30 office workers, as indicators of airborne exposure. The last day, subjects collected their 24 hours urine. Genotoxicity of urinary extracts was assessed by comet and micronucleus assays on a HepG2 cell line. Using competitive enzymatic immunoassay we evaluated the 24 hours urinary 8-oxo-2'-deoxyguanosine excretion. Benzo(a)pyrene toxicity equivalent factors and inhalation unit risk for Benzo(a)pyrene and benzene were used to give an estimate of cancer risk levels.
Workplace air concentrations of polycyclic aromatic hydrocarbons (e.g. 23.7 [range 2.4-104.6] ng.m-3 for fluoranthene) and volatile organic compounds (e.g. 19.1 ± 2.9 [standard error] μ.m-3 for benzene) were elevated in sewage compared to office workplaces (P < 0.01) and corresponded to an increased lifetime cancer risk. The urinary extracts of sewage workers showed higher genotoxicity (P < 0.001) than office workers.
The integrated and non-specific urinary biomarkers of exposure showed that sewage workers experience exposure to mixtures of genotoxicants in the workplace.
PMCID: PMC3071309  PMID: 21435260
19.  Chronic occupational exposure to hexavalent chromium causes DNA damage in electroplating workers 
BMC Public Health  2011;11:224.
Occupational exposure to chromium compounds may result in adverse health effects. This study aims to investigate whether low-level hexavalent chromium (Cr(VI)) exposure can cause DNA damage in electroplating workers.
157 electroplating workers and 93 control subjects with no history of occupational exposure to chromium were recruited in Hangzhou, China. Chromium levels in erythrocytes were determined by graphite furnace atomic absorption spectrophotometer. DNA damage in peripheral lymphocytes was evaluated with the alkaline comet assay by three parameters: Olive tail moment, tail length and percent of DNA in the comet tail (tail DNA%). Urinary 8-OHdG levels were measured by ELISA.
Chromium concentration in erythrocytes was about two times higher in electroplating workers (median: 4.41 μg/L) than that in control subjects (1.54 μg/L, P < 0.001). The medians (range) of Olive tail moment, tail length and tail DNA% in exposed workers were 1.13 (0.14-6.77), 11.17 (3.46-52.19) and 3.69 (0.65-16.20), and were significantly higher than those in control subjects (0.14 (0.01-0.39), 3.26 (3.00-4.00) and 0.69 (0.04-2.74), P < 0.001). Urinary 8-OHdG concentration was 13.65 (3.08-66.30) μg/g creatinine in exposed workers and 8.31 (2.94-30.83) μg/g creatinine in control subjects (P < 0.001). The differences of urinary 8-OHdG levels, Olive tail moment, tail length and tail DNA% between these two groups remained significant (P < 0.001) even after stratification by potential confounding factors such as age, gender, and smoking status. Chromium exposure was found to be positively associated with chromium levels in erythrocytes, urinary 8-OHdG levels, Olive tail moment, tail length and tail DNA%. Positive dose-response associations were also found between chromium levels in erythrocytes and Olive tail moment, tail length and tail DNA%.
The findings in this study indicated that there was detectable chromium exposure in electroplating workers. Low-level occupational chromium exposure induced DNA damage.
PMCID: PMC3094242  PMID: 21481275
20.  Epidemiological survey of workers exposed to cobalt oxides, cobalt salts, and cobalt metal. 
Several organs (lung, skin, thyroid, heart, bone marrow) are potential targets of cobalt (Co). Whereas there is no doubt that inhalation of Co alone may cause bronchial asthma, its role in the occurrence of hard metal disease is still controversial because most cases were reported in workers exposed not only to Co but also to other substances such as tungsten carbide, titanium carbide, iron, silica and diamond. To assess whether exposure to pure Co dust (metal, oxides, or salts) may lead to adverse health effects a cross sectional study was carried out among 82 workers in a Co refinery. The results were compared with those in a sex and age matched control group. The Co group had been exposed for 8.0 years on average (range 0.3-39.4). The geometric mean time weighted average exposure assessed with personal samplers (n = 82) was about 125 micrograms/m3 and 25% of the values were higher than 500 micrograms/m3. The concentrations of Co in blood and in urine after the shift were significantly correlated with those in air. Concentration of Co in urine increased during the workweek. A slight interference with thyroid metabolism (decreased T3, T4, and increased TSH), a slight reduction of some erythropoietic variables (red blood cells, haemoglobin, packed cell volume) and increased white cell count were found in the exposed workers. The exposed workers complained more often of dyspnoea and wheezing and had significantly more skin lesions (eczema, erythema) than control workers. Within the exposed group a dose-effect relation was found between the reduction of the forced expiratory volume in one second/vital capacity and the intensity of current exposure to Co assessed by the measurement of Co in air or in urine. The prevalence of dyspnoea was related to the dustiness of the workplace as reflected by statistically significant logistic regression between this symptom and the current levels of Co in air and in urine. No difference between lung volumes, ventilatory performances, carbon monoxide diffusing capacity, and serum myocardial creatine kinase and procollagen III peptide was found between the Co and control groups and no lung abnormalities were detected on the chest radiographs in both groups. The results suggest that exposure to high airborne concentrations of Co alone is not sufficient to cause pulmonary fibrosis. This finding is compatible with experimental studies indicating that interaction of other airborne pollutants with Co particles play a part in the pathogenesis of parenchymal lung lesions.
PMCID: PMC1061317  PMID: 8398878
21.  Risk of high blood pressure in salt workers working near salt milling plants: A cross-sectional and interventional study 
Environmental Health  2005;4:13.
Workers working close to salt milling plants may inhale salt particles floating in the air, leading to a rise in plasma sodium, which, in turn, may increase the blood pressure and the risk of hypertension.
To test the above hypothesis, occupational health check-up camps were organized near salt manufacturing units and all workers were invited for a free health examination. The workers who worked with dry salt in the vicinity of salt milling plants were defined as "non-brine workers," while those working in brine pans located far away from milling plants were defined as "brine workers." Blood pressure (BP) was measured during each clinical examination. In all, 474 non-brine workers and 284 brine workers were studied.
Mean systolic blood pressure of non-brine workers (122.1 ± 13.3 mm Hg) was significantly higher than that of brine workers (118.8 ± 12.8 mm Hg, p < 0.01). Mean diastolic blood pressure of non-brine workers (71.5 ± 10.4 mm Hg) was significantly higher than that of brine workers (69.7 ± 9.4 mm Hg, p = 0.02). The prevalence of hypertension was significantly higher in non-brine workers (12.2%) than in brine workers (7.0%, p = 0.02). Nineteen salt workers were monitored while they used face masks and spectacles, for six days. Systolic, as well as diastolic, blood pressure of these workers began declining on the third day and continued to decline on the fourth day, but remained stationary up to the sixth day. The concentration of salt particles in the breathing zone of these workers was 376 mg/m3 air.
Inhalation of salt particles in non-brine workers may be an occupational cause of increased blood pressure.
PMCID: PMC1190202  PMID: 16042798
22.  Urinary 8-hydroxy-2'-deoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to fine particulates. 
Environmental Health Perspectives  2004;112(6):666-671.
Residual oil fly ash (ROFA) is a chemically complex mixture of compounds, including metals that are potentially carcinogenic because of their ability to cause oxidative injury. In this study, we investigated the association between exposure to particulate matter with an aerodynamic mass median diameter
PMCID: PMC1241959  PMID: 15121508
Nanotechnology is a rapidly advancing industry with many new products already available to the public. Therefore, it is essential to gain an understanding of the possible health risks associated with exposure to nanomaterials and to identify biomarkers of exposure. In this study, we investigated the fibrogenic potential of SWCNT synthesized by chemical vapor deposition using cobalt (Co) and molybdenum (Mo) as catalysts. Following a single oropharyngeal aspiration of SWCNT in rats, we evaluated lung histopathology, cell proliferation, and growth factor mRNAs at 1 and 21 days post-exposure. Comparisons were made to vehicle alone (saline containing a biocompatible nonionic surfactant), inert carbon black (CB) nanoparticles, or vanadium pentoxide (V2O5) as a known inducer of fibrosis.
SWCNT or CB caused no overt inflammatory response at 1 or 21 days post-exposure as determined by histopathology and evaluation of cells (>95% macrophages) in bronchoalveolar lavage (BAL) fluid. However, SWCNT induced the formation of small, focal interstitial fibrotic lesions within the alveolar region of the lung at 21 days. A small fraction of alveolar macrophages harvested by BAL from the lungs of SWCNT-exposed rats at 21 days were bridged by unique intercellular carbon structures that extended into the cytoplasm of each macrophage. These "carbon bridge" structures between macrophages were also observed in situ in the lungs of SWCNT-exposed rats. No carbon bridges were observed in CB-exposed rats. SWCNT caused cell proliferation only at sites of fibrotic lesion formation as measured by bromodeoxyuridine uptake into alveolar cells. SWCNT increased platelet-derived growth factor (PDGF)-A, PDGF-B, and PDGF-C mRNA levels significantly at 1 day as measured by Taqman quantitative real-time RT-PCR. At 21 days, SWCNT did not increase any mRNAs evaluated, while V2O5 significantly increased mRNAs encoding PDGF-A, -B, and -C chains, PDGF-Rα, osteopontin (OPN), connective tissue growth factor (CTGF), and transforming growth factor (TGF)-β1.
Our findings indicate that SWCNT do not cause lung inflammation and yet induce the formation of small, focal interstital fibrotic lesioins in the alveolar region of the lungs of rats. Of greatest interest was the discovery of unique intercellular carbon structures composed of SWCNT that bridged lung macrophages. These "carbon bridges" offer a novel and easily identifiable biomarker of exposure.
PMCID: PMC1693565  PMID: 17134509
Toxicology and applied pharmacology  2008;233(2):247-253.
The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Splenotoxicity of aniline is associated with iron overload and generation of reactive oxygen species (ROS) which can cause oxidative damage to DNA, proteins and lipids (oxidative stress). 8-Hydroxy-2’-deoxyguanosine (8-OHdG) is one of the most abundant oxidative DNA lesions resulting from ROS, and 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase/lyase enzyme, plays a key role in the removal of 8-OHdG adducts. This study focused on examining DNA damage (8-OHdG) and repair (OGG1) in the spleen in an experimental condition preceding a tumorigenic response. To achieve that, male Sprague-Dawley rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. Aniline treatment led to a significant increase in splenic oxidative DNA damage, manifested as a 2.8-fold increase in 8-OHdG levels. DNA repair activity, measured as OGG1 base excision repair (BER) activity, increased by ~1.3 fold in the nuclear protein extracts (NE) and ~1.2 fold in the mitochondrial protein extracts (ME) of spleens from aniline-treated rats as compared to the controls. Real-time PCR analysis for OGG1 mRNA expression in the spleen revealed a 2-fold increase in expression in aniline-treated rats than the controls. Likewise, OGG1 protein expression in the NEs of spleens from aniline-treated rats was ~1.5 fold higher, whereas in the MEs it was ~1.3 fold higher than the controls. Aniline treatment also led to stronger immunostaining for both 8-OHdG and OGG1 in the spleens, confined to the red pulp areas. It is thus evident from our studies that aniline-induced oxidative stress is associated with increased oxidative DNA damage. The BER pathway was also activated, but not enough to prevent the accumulation of oxidative DNA damage (8-OHdG). Accumulation of mutagenic oxidative DNA lesions in the spleen following exposure to aniline could play a critical role in the tumorigenic process.
PMCID: PMC2614128  PMID: 18793663
Aniline; Spleen; Reactive oxygen species; DNA damage; 8-OHdG; OGG1; Base excision repair; Immunochemical localization
Literature abounds linking one’s job to certain unpalatable health outcomes. Since exposures to hazardous conditions in industrial environments often results in sundry health effects among workers, we embarked on this study to investigate the hepatic health effects of occupational activities in the petroleum refining and distribution industry.
Biochemical markers of liver functions were assayed in plasma, using Reflotron dry chemistry spectrophotometric system. The study was conducted on randomly selected workers of Port Harcourt Refining Company (PHRC) and Pipelines and Petroleum Product Marketing Company (PPMC) both in Alesa-Eleme near Port Harcourt, Nigeria, as well as non-oil work civil servants serving as control subjects.
Result and conclusion
Results showed that, bilirubin ranged 0.3-1.6 mg/dl with a mean of 0.66±0.20mg/dl among the oil workers as against 0.5-1.00mg/dl with a mean of 0.58±0.13mg/dl in non-oil workers, Alkaline phosphatase ranged 50.00-296.00u/l (mean: 126.21±39.49u/l) in oil workers as against 40.20-111u/l (mean: 66.83±18.54u/l) for non-oil workers, Aspartic transaminases (AST) ranged 5.80-140.20u/l (mean: 21.81±11.49u/l) in oil workers against 18.00-44.00u/l (mean: 26.89±6.99u/l) for non-oil workers, while Alanine transaminases (ALT) ranged 4.90-86.00u/l (mean: 22.14±11.28u/l) in oil workers as against 10.00-86.60u/l (mean: 22.30±10.22u/l) for the non-oil workers. A close study of the results revealed that although the mean values for all the studied parameters were still within the parametric reference ranges, however, relative to the referents, there were significant increases (P<0.05) in plasma bilirubin (though anicteric) and alkaline phosphatase that was not matched with a corresponding increase in the plasma transaminases, suggesting a possibility that toxic anicteric hepatoxicity is part of the potential health effects of sundry exposures in the Nigeria petroleum oil refining and distribution industry. Gender differentiation data showed that though the mean values for the parameters were higher in males than females, the increases were not significant in most cases (P>0.05), whereas data for age and exposure period classifications revealed that irrespective of the age of the worker, the effects are likely to start after the first five years, manifesting fully after the first decade of occupational exposures. Thus, an update of industrial/occupational health measures is necessary for a safer and healthier work environment.
PMCID: PMC3901343  PMID: 24457023
Anicteric hepatoxicity; Occupational exposures; Petroleum refining and distribution industry; Nigeria

Results 1-25 (1096274)