Search tips
Search criteria

Results 1-25 (1208626)

Clipboard (0)

Related Articles

1.  Investigation of genome instability in patients with non-alcoholic steatohepatitis 
AIM: To evaluate the occurrence of micronucleus (MN), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) in the mitogen-stimulated lymphocytes of patients with non-alcoholic steatohepatitis (NASH).
METHODS: The study was performed in 25 (9 females, 16 males) patients newly diagnosed with NASH, and 25 healthy subjects of similar ages and genders were used as a control group. None of the controls was known to be receiving any drugs for medical or other reasons or using alcohol. Hepatosteatosis was further excluded by abdominal ultrasound imaging in the control group. The numbers of MN, NPBs and NBUDs scored in binucleated (BN) cells were obtained from the mitogen-stimulated lymphocytes of patients and control subjects. Statistical comparisons of the numbers of BN cells with MN, NPBs and NBUDs and ages between the patients with NASH and control subjects were performed.
RESULTS: The mean ages of the patients and the control group were 41.92 ± 13.33 and 41.80 ± 13.09 years (P > 0.05), respectively. The values of the mean body mass index (BMI), HOMA-IR, hemoglobin, creatinin, aspartate aminotransferase, alanine aminotransferase, triglyceride, high density lipoprotein, and low density lipoprotein were 31.19 ± 4.62 kg/m2 vs 25.07 ± 4.14 kg/m2, 6.71 ± 4.68 vs 1.40 ± 0.53, 14.73 ± 1.49 g/dL vs 14.64 ± 1.30 g/dL, 0.74 ± 0.15 mg/dL vs 0.80 ± 0.13 mg/dL, 56.08 ± 29.11 U/L vs 16.88 ± 3.33 U/L, 92.2 ± 41.43 U/L vs 15.88 ± 5.88 U/L, 219.21 ± 141.68 mg/dL vs 102.56 ± 57.98 mg/dL, 16.37 ± 9.65 mg/dL vs 48.72 ± 15.31 mg/dL, and 136.75 ± 30.14 mg/dL vs 114.63 ± 34.13 mg/dL in the patients and control groups, respectively. The total numbers and frequencies of BN cells with MN, NPBs and NBUDs, which were scored using the CBMN cytome assay on PHA-stimulated lymphocytes, were evaluated in the patients with NASH and control group. We found significantly higher numbers of MN, NPBs and NBUDs in the BN cells of patients with NASH than in those of the control subjects (21.60 ± 9.32 vs 6.88 ± 3.91; 29.28 ± 13.31 vs 7.84 ± 3.96; 15.60 ± 5.55 vs 4.20 ± 1.63, respectively, P < 0.0001).
CONCLUSION: The increased numbers of MN, NPBs and NBUDs observed in the lymphocytes obtained from patients with NASH may reflect genomic instability.
PMCID: PMC3752563  PMID: 23983432
Non-alcoholic steatohepatitis; Micronucleus; Nucleoplasmic bridges; Nuclear buds
2.  First Steps Towards an Understanding of a Mode ofCarcinogenic Action for Vanadium Pentoxide 
Journal of Toxicologic Pathology  2011;24(3):149-162.
Inhalation of vanadium pentoxide clearly increases the incidence of alveolar/bronchiolar neoplasms in male and female B6C3F1 mice at all concentrations tested (1, 2 or 4 mg/m3), whereas responses in F344/N rats was, at most, ambiguous. While vanadium pentoxide is mutagenic in vitro and possibly in vivo in mice, this does not explain the species or site specificity of the neoplastic response. A nose-only inhalation study was conducted in female B6C3F1 mice (0, 0.25, 1 and 4 mg/m3, 6 h/day for 16 days) to explore histopathological, biochemical (α-tocopherol, glutathione and F2-isoprostane) and genetic (comet assays and 9 specific DNA-oxo-adducts) changes in the lungs. No treatment related histopathology was observed at 0.25 mg/m3. At 1 and 4 mg/m3, exposure-dependent increases were observed in lung weight, alveolar histiocytosis, sub-acute alveolitis and/or granulocytic infiltration and a generally time-dependent increased cell proliferation rate of histiocytes. Glutathione was slightly increased, whereas there were no consistent changes in α-tocopherol or 8-isoprostane F2α. There was no evidence for DNA strand breakage in lung or BAL cells, but there was an increase in 8-oxodGuo DNA lesions that could have been due to vanadium pentoxide induction of the lesions or inhibition of repair of spontaneous lesions. Thus, earlier reports of histopathological changes in the lungs after inhalation of vanadium pentoxide were confirmed, but no evidence has yet emerged for a genotoxic mode of action. Evidence is weak for oxidative stress playing any role in lung carcinogenesis at the lowest effective concentrations of vanadium pentoxide.
PMCID: PMC3234591  PMID: 22272055
comet assay; DNA lesions; mouse inhalation; oxidative stress; vanadium pentoxide
3.  Increased frequency of micronuclei in the lymphocytes of patients chronically infected with hepatitis B or hepatitis C virus 
In this study, we analysed the frequency of micronuclei (MN), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) and evaluated mutagen-induced sensitivity in the lymphocytes of patients chronically infected with hepatitis B virus (HBV) or hepatitis C virus (HCV). In total, 49 patients with chronic viral hepatitis (28 HBV-infected and 21 HCV-infected patients) and 33 healthy, non-infected blood donor controls were investigated. The frequencies (‰) of MN, NPBs and NBUDs in the controls were 4.41 ± 2.15, 1.15 ± 0.97 and 2.98 ± 1.31, respectively. The frequencies of MN and NPBs were significantly increased (p < 0.0001) in the patient group (7.01 ± 3.23 and 2.76 ± 2.08, respectively) compared with the control group. When considered separately, the HBV-infected patients (7.18 ± 3.57) and HCV-infected patients (3.27 ± 2.40) each had greater numbers of MN than did the controls (p < 0.0001). The HCV-infected patients displayed high numbers of NPBs (2.09 ± 1.33) and NBUDs (4.38 ± 3.28), but only the HBV-infected patients exhibited a significant difference (NPBs = 3.27 ± 2.40, p < 0.0001 and NBUDs = 4.71 ± 2.79, p = 0.03) in comparison with the controls. Similar results were obtained for males, but not for females, when all patients or the HBV-infected group was compared with the controls. The lymphocytes of the infected patients did not exhibit sensitivity to mutagen in comparison with the lymphocytes of the controls (p = 0.06). These results showed that the lymphocytes of patients who were chronically infected with HBV or HCV presented greater chromosomal instability.
PMCID: PMC4005534  PMID: 24626305
hepatitis B; hepatitis C; lymphocytes; micronucleus
4.  Genomic Instability in Human Lymphocytes from Male Users of Crack Cocaine 
Recent research suggests that crack cocaine use alters systemic biochemical markers, like oxidative damage and inflammation markers, but very few studies have assessed the potential effects of crack cocaine at the cellular level. We assessed genome instability by means of the comet assay and the cytokinesis-block micronucleus technique in crack cocaine users at the time of admission to a rehabilitation clinic and at two times after the beginning of withdrawal. Thirty one active users of crack cocaine and forty control subjects were evaluated. Comparison between controls and crack cocaine users at the first analysis showed significant differences in the rates of DNA damage (p = 0.037). The frequency of micronuclei (MN) (p < 0.001) and nuclear buds (NBUDs) (p < 0.001) was increased, but not the frequency of nucleoplasmic bridges (NPBs) (p = 0.089). DNA damage decreased only after the end of treatment (p < 0.001). Micronuclei frequency did not decrease after treatment, and nuclear buds increased substantially. The results of this study reveal the genotoxic and mutagenic effects of crack cocaine use in human lymphocytes and pave the way for further research on cellular responses and the possible consequences of DNA damage, such as induction of irreversible neurological disease and cancer.
PMCID: PMC4210963  PMID: 25264678
crack cocaine; drug withdrawal; DNA damage; comet assay; micronucleus
5.  Zinc deficiency or excess within the physiological range increases genome instability and cytotoxicity, respectively, in human oral keratinocyte cells 
Genes & Nutrition  2011;7(2):139-154.
Zinc (Zn) is an essential component of Zn-finger proteins and acts as a cofactor for enzymes required for cellular metabolism and in the maintenance of DNA integrity. The study investigated the genotoxic and cytotoxic effects of Zn deficiency or excess in a primary human oral keratinocyte cell line and determined the optimal concentration of two Zn compounds (Zn Sulphate (ZnSO4) and Zn Carnosine (ZnC)) to minimise DNA damage. Zn-deficient medium (0 μM) was produced using Chelex treatment, and the two Zn compounds ZnSO4 and ZnC were tested at concentrations of 0.0, 0.4, 4.0, 16.0, 32.0 and 100.0 μM. Cell viability was decreased in Zn-depleted cells (0 μM) as well as at 32 μM and 100 μM for both Zn compounds (P < 0.0001) as measured via the MTT assay. DNA strand breaks, as measured by the comet assay, were found to be increased in Zn-depleted cells compared with the other treatment groups (P < 0.05). The Cytokinesis Block Micronucleus Cytome assay showed a significant increase in the frequency of both apoptotic and necrotic cells under Zn-deficient conditions (P < 0.05). Furthermore, elevated frequencies of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBuds) were observed at 0 and 0.4 μM Zn, whereas these biomarkers were minimised for both Zn compounds at 4 and 16 μM Zn (P < 0.05), suggesting these concentrations are optimal to maintain genome stability. Expression of PARP, p53 and OGG1 measured by western blotting was increased in Zn-depleted cells indicating that DNA repair mechanisms are activated. These results suggest that maintaining Zn concentrations within the range of 4–16 μM is essential for DNA damage prevention in cultured human oral keratinocytes.
PMCID: PMC3316759  PMID: 21935692
Zinc; Cytotoxicity; DNA damage; Genomic stability; Human oral keratinocytes; Micronuclei
6.  Sodium metavanadate exhibits carcinogenic tendencies in vitro in immortalized human bronchial epithelial cells† 
Pentavalent vanadium compounds induce intracellular changes in vitro that are consistent with those of other carcinogenic substances. While there is no clear evidence that vanadium compounds cause cancer in humans, vanadium pentoxide causes lung cancer in rodents after long-term inhalation exposures and in turn IARC has categorized it as a group 2B possible human carcinogen. The goal of this study was to investigate the carcinogenicity of NaVO3 in the human immortalized bronchial epithelial cell line, Beas-2B. Cells were treated with 10 μM NaVO3 for 5 weeks, with or without recovery time, followed by gene expression microarray analysis. In a separate experiment, cells were exposed to 1–10 μM NaVO3 for 4 weeks and then grown in soft agar to test for anchorage-independent growth. A dose-dependent increase in the number of colonies was observed. In scratch tests, NaVO3-transformed clones could repair a wound faster than controls. In a gene expression microarray analysis of soft agar clones there were 2010 differentially expressed genes (DEG) (adjusted p-value ≤ 0.05) in NaVO3-transformed clones relative to control clones. DEG from this experiment were compared with the DEG of 5 week NaVO3 exposure with or without recovery, all with adjusted p-values < 0.05, and 469 genes were altered in the same direction for transformed clones, 5 week NaVO3-treated cells, and the recovered cells. The data from this study imply that chronic exposure to NaVO3 causes changes that are consistent with cellular transformation including anchorage-independent growth, enhanced migration ability, and gene expression changes that were likely epigenetically inherited.
PMCID: PMC3982314  PMID: 23963610
7.  Assessing the suitability of 8-OHdG and micronuclei as genotoxic biomarkers in chromate-exposed workers: a cross-sectional study 
BMJ Open  2014;4(10):e005979.
We aimed to investigate suitable conditions of 8-hydroxy-2′-deoxyguanosine (8-OHdG) and micronucleus (MN) as genotoxic biomarkers at different levels of occupational chromate exposure.
A cross-sectional study was used.
84 workers who were exposed to chromate for at least 1 year were chosen as the chromate exposed group, while 30 non-exposed individuals were used as controls.
Main outcome measures
Environmental and biological exposure to chromate was respectively assessed by measuring the concentration of chromate in the air (CrA) and blood (CrB) by inductively coupled plasma mass spectrometer (ICP-MS) in all participants. MN indicators, including micronucleus cell count (MNCC), micro-nucleus count (MNC), nuclear bridge (NPB) and nuclear bud (NBUD) were calculated by the cytokinesis-block micronucleus test (CBMN), while the urinary 8-OHdG was measured by the ELISA method and normalised by the concentration of Cre.
Compared with the control group, the levels of CrA, CrB, MNCC, MNC and 8-OHdG in the chromate-exposed group were all significantly higher (p<0.05). There were positive correlations between log(8-OHdG) and LnMNCC or LnMNC (r=0.377 and 0.362). The levels of LnMNCC, LnMNC and log (8-OHdG) all have parabola correlations with the concentration of CrB. However, there was a significantly positive correlation between log (8-OHdG) and CrB when the CrB level was below 10.50 µg/L (r=0.355), while a positive correlation was also found between LnMNCC or LnMNC and CrB when the CrB level was lower than 9.10 µg/L (r=0.365 and 0.269, respectively).
MN and 8-OHdG can be used as genotoxic biomarkers in the chromate-exposed group, but it is only when CrB levels are lower than 9.10 and 10.50 µg/L, respectively, that they can accurately reflect the degree of genetic damage.
PMCID: PMC4194798  PMID: 25300459
8.  Vanadium Exposure Induces Olfactory Dysfunction in an Animal Model of Metal Neurotoxicity 
Neurotoxicology  2013;43:73-81.
Epidemiological evidence indicates chronic environmental exposure to transition metals may play a role in chronic neurodegenerative conditions such as Parkinson’s disease (PD). Chronic inhalation exposure to welding fumes containing metal mixtures may be associated with development of PD. A significant amount of vanadium is present in welding fumes, as vanadium pentoxide (V2O5), and incorporation of vanadium in the production of high strength steel has become more common. Despite the increased vanadium use in recent years, the neurotoxicological effects of this metal are not well characterized. Recently, we demonstrated that V2O5 induces dopaminergic neurotoxicity via protein kinase C delta (PKCδ)-dependent oxidative signaling mechanisms in dopaminergic neuronal cells. Since anosmia (inability to perceive odors) and non-motor deficits are considered to be early symptoms of neurological diseases, in the present study, we examined the effect of V2O5 on the olfactory bulb in animal models. To mimic the inhalation exposure, we intranasally administered C57 black mice a low-dose of 182 µg of V2O5 three times a week for one month, and behavioral, neurochemical and biochemical studies were performed. Our results revealed a significant decrease in olfactory bulb weights, tyrosine hydroxylase (TH) levels, levels of dopamine (DA) and its metabolite, 3, 4-dihydroxyphenylacetic acid (DOPAC) and increases in astroglia of the glomerular layer of the olfactory bulb in the treatment groups relative to vehicle controls. Neurochemical changes were accompanied by impaired olfaction and locomotion. These findings suggest that nasal exposure to V2O5 adversely affects olfactory bulbs, resulting in neurobehavioral and neurochemical impairments. These results expand our understanding of vanadium neurotoxicity in environmentally-linked neurological conditions.
PMCID: PMC4062607  PMID: 24362016
vanadium; metals; olfactory system; neurotoxicity; non-motor symptoms; risk assessment; Parkinson’s disease
9.  Influence of vanadium on serum lipid and lipoprotein profiles: a population-based study among vanadium exposed workers 
Some experimental animal studies reported that vanadium had beneficial effects on blood total cholesterol (TC) and triglyceride (TG). However, the relationship between vanadium exposure and lipid, lipoprotein profiles in human subjects remains uncertain. This study aimed to compare the serum lipid and lipoprotein profiles of occupational vanadium exposed and non-exposed workers, and to provide human evidence on serum lipid, lipoprotein profiles and atherogenic indexes changes in relation to vanadium exposure.
This cross-sectional study recruited 533 vanadium exposed workers and 241 non-exposed workers from a Steel and Iron Group in Sichuan, China. Demographic characteristics and occupational information were collected through questionnaires. Serum lipid and lipoprotein levels were measured for all participants. The ratios of total cholesterol to high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) to HDL-C and apoB to apoA-I were used as atherogenic indexes. A general linear model was applied to compare outcomes of the two groups while controlling possible confounders and multivariate logistic regression was performed to evaluate the relationship between low HDL-C level, abnormal atherogenic index and vanadium exposure.
Higher levels of HDL-C and apoA-I could be observed in the vanadium exposed group compared with the control group (P < 0.05). Furthermore, atherogenic indexes (TC/HDL-C, LDL-C/HDL-C, and apoB/apoA-I ratios) were found statistically lower in the vanadium exposed workers (P < 0.05). Changes in HDL-C, TC/HDL-C, and LDL-C/HDL-C were more pronounced in male workers than that in female workers. In male workers, after adjusting for potential confounding variables as age, habits of smoking and drinking, occupational vanadium exposure was still associated with lower HDL-C (OR 0.41; 95% CI, 0.27-0.62) and abnormal atherogenic index (OR 0.38; 95% CI, 0.20-0.70).
Occupational vanadium exposure appears to be associated with increased HDL-C and apoA-I levels and decreased atherogenic indexes. Among male workers, a significantly negative association existed between low HDL-C level, abnormal atherogenic index and occupational vanadium exposure. This suggests vanadium has beneficial effects on blood levels of HDL-C and apoA-I.
PMCID: PMC3945940  PMID: 24558984
Vanadium; Lipid; Lipoprotein; Atherogenic index; Occupational exposure
10.  Vanadium Induces Dopaminergic Neurotoxicity Via Protein Kinase C-Delta Dependent Oxidative Signaling Mechanisms: Relevance to Etiopathogenesis of Parkinson's Disease 
Toxicology and applied pharmacology  2009;240(2):273-285.
Environmental exposure to neurotoxic metals through various sources including exposure to welding fumes has been linked to an increased incidence of Parkinson's disease (PD). Welding fumes contain many different metals including vanadium typically present as particulates containing vanadium pentoxide (V2O5). However, possible neurotoxic effects of this metal oxide on dopaminergic neuronal cells are not well studied. In the present study, we characterized vanadium-induced oxidative stress-dependent cellular events in cell culture models of PD. V2O5 was neurotoxic to dopaminergic neuronal cells including primary nigral dopaminergic neurons and the EC50 was determined to be 37 μM in N27 dopaminergic neuronal cell model. The neurotoxic effect was accompanied by a time-dependent uptake of vanadium and upregulation of metal transporter proteins Tf and DMT1 in N27 cells. Additionally, vanadium resulted in a threefold increase in reactive oxygen species generation, followed by release of mitochondrial cytochrome c into cytoplasm and subsequent activation of caspase-9 (>fourfold) and caspase-3 (>ninefold). Interestingly, vanadium exposure induced proteolytic cleavage of native protein kinase Cdelta (PKCδ, 72-74 kDa) to yield a 41 kDa catalytically active fragment resulting in a persistent increase in PKCδ kinase activity. Co-treatment with pan-caspase inhibitor ZVAD-FMK significantly blocked vanadium-induced PKCδ proteolytic activation, indicating that caspases mediate PKCδ cleavage. Also, co-treatment with Z-VAD-FMK almost completely inhibited V2O5-induced DNA fragmentation. Furthermore, PKCδ knockdown using siRNA protected N27 cells from V2O5-induced apoptotic cell death. Collectively, these results demonstrate vanadium can exert neurotoxic effects in dopaminergic neuronal cells via caspase-3-dependent PKCδ cleavage, suggesting that metal exposure may promote nigral dopaminergic degeneration.
PMCID: PMC2753722  PMID: 19646462
metal mixtures; vanadium; manganese; neurotoxicity; oxidative stress; Parkinson's disease
11.  The application of the cytokinesis-block micronucleus assay on peripheral blood lymphocytes for the assessment of genome damage in long-term residents of areas with high radon concentration 
Journal of Radiation Research  2013;55(1):61-66.
Estimating the effects of small doses of ionising radiation on DNA is one of the most important problems in modern biology. Different cytogenetic methods exist to analyse DNA damage; the cytokinesis-block micronucleus assay (CBMN) for human peripheral blood lymphocytes is a simple, cheap and informative cytogenetic method that can be used to detect genotoxic-related markers. With respect to previous studies on radiation-induced genotoxicity, children are a poorly studied group, as evidenced by the few publications in this area. In this study, we assessed radon genotoxic effects by counting micronuclei (MN), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) in the lymphocytes of children who are long-term residents from areas with high radon concentrations. In the exposed group, radon was found to cause significant cytogenetic alterations. We propose that this method can be employed for biomonitoring to screen for a variety of measures.
PMCID: PMC3885124  PMID: 23908554
micronucleus assay; micronuclei; genotoxicity; cytochalasin B; ionising radiation; radon; children
12.  Diet-related telomere shortening and chromosome stability 
Mutagenesis  2011;27(1):49-57.
Recent evidences have highlighted an influence of micronutrients in the maintenance of telomere length (TL). In order to explore whether diet-related telomere shortening had any physiological relevance and was accompanied by significant damage in the genome, in the present study, TL was assessed by terminal restriction fragment (TRF) analysis in peripheral blood lymphocytes of 56 healthy subjects for which detailed information on dietary habits was available and data were compared \with the incidence of nucleoplasmic bridges (NPBs), a marker of chromosomal instability related to telomere dysfunction visualised with the cytokinesis-blocked micronucleus assay. To increase the capability to detect even slight impairment of telomere function, the incidence of NPBs was also evaluated on cells exposed in vitro to ionising radiation. Care was taken to control for potential confounding factors that might influence TL, viz. age, hTERT genotype and smoking status. Data showed that higher consumption of vegetables was related with significantly higher mean TL (P = 0.013); in particular, the analysis of the association between micronutrients and mean TL highlighted a significant role of antioxidant intake, especially beta-carotene, on telomere maintenance (P = 0.004). However, the diet-related telomere shortening did not result in associated increased spontaneous or radiation-induced NPBs. The distribution of TRFs was also analysed and a slight prevalence of radiation-induced NPBs (P = 0.03) was observed in subjects with higher amount of very short TRFs (<2 kb). The relative incidence of very short TRFs was positively associate with ageing (P = 0.008) but unrelated to vegetables consumption and daily intake of micronutrients, suggesting that the degree of telomere erosion related with low dietary intake of antioxidants observed in this study was not so extensive to lead to chromosome instability.
PMCID: PMC3241941  PMID: 21857007
13.  Vanadium pentoxide inhalation 
This mini-review describes the toxic effects of vanadium pentoxide inhalation principally in the workplace and associated complications with breathing and respiration. Although there are some material safety data sheets available detailing the handling, hazards and toxicity of vanadium pentoxide, there are only two reviews listed in PubMed detailing its toxicity.
To collate information on the consequences of occupational inhalation exposure of vanadium pentoxide on physiological function and wellbeing.
Materials and Methods:
The criteria used in the current mini-review for selecting articles were adopted from proposed criteria in The International Classification of Functioning, Disability and Health. Articles were classified from an acute and chronic exposure and toxicity thrust.
The lungs are the principal route through which vanadium pentoxide enters the body. It can injure the lungs and bronchial airways possibly involving acute chemical pneumonotis, pulmonary edema and/or acute tracheobronchitis. It may adversely influence cardiac autonomic function. It stimulates the secretion of cytokines and chemokines by hepatocytes and disrupts mitochondria function. It disrupts the permeability of the epithelium and promotes access of inflammatory mediators to the underlying neuronal tissue causing injury and neuronal death. When renal brush border membrane vesicles are exposed to vanadium pentoxide, there is a time-dependent inhibition of citrate uptake and Na+ K+ ATPase in the membrane possibly contributing to nephrotoxicity. Exposure results in necrosis of spermatogonium, spermatocytes and Sertoli cells contributing to male infertility.
Vanadium pentoxide certainly has adverse effects on the health and the well-being and measures need to be taken to prevent hazardous exposure of the like.
PMCID: PMC3168171  PMID: 21957373
Breathing; dust; exposure; fumes; occupation; respiration; vanadium pentoxide
14.  In vitro repair of complex unligatable oxidatively induced DNA double-strand breaks by human cell extracts 
Nucleic Acids Research  2001;29(16):e78.
We describe a new assay for in vitro repair of oxidatively induced DNA double-strand breaks (DSBs) by HeLa cell nuclear extracts. The assay employs linear plasmid DNA containing DNA DSBs produced by the radiomimetic drug bleomycin. The bleomycin-induced DSB possesses a complex structure similar to that produced by oxidative processes and ionizing radiation. Bleomycin DSBs are composed of blunt ends or ends containing a single 5′-base overhang. Regardless of the 5′-end structure, all bleomycin-induced DSBs possess 3′-ends blocked by phosphoglycolate. Cellular extraction and initial end joining conditions for our assay were optimized with restriction enzyme-cleaved DNA to maximize ligation activity. Parameters affecting ligation such as temperature, time, ionic strength, ATP utilization and extract protein concentration were examined. Similar reactions were performed with the bleomycin-linearized substrate. In all cases, end-joined molecules ranging from dimers to higher molecular weight forms were produced and observed directly in agarose gels stained with Vistra Green and imaged with a FluorImager 595. This detection method is at least 50-fold more sensitive than ethidium bromide and permits detection of ≤0.25 ng double-stranded DNA per band in post-electrophoretically stained agarose gels. Consequently, our end-joining reaction requires ≤100 ng substrate DNA and ≥50% conversion of substrate to product is achieved with simple substrates such as restriction enzyme-cleaved DNA. Using our assay we have observed a 6-fold lower repair rate and a lag in reaction initiation for bleomycin-induced DSBs as compared to blunt-ended DNA. Also, end joining reaction conditions are DSB end group dependent. In particular, bleomycin-induced DSB repair is considerably more sensitive to inhibition by increased ionic strength than repair of blunt-ended DNA.
PMCID: PMC55862  PMID: 11504886
15.  Prevalence and persistence of chromosomal damage and susceptible genotypes of metabolic and DNA repair genes in Chinese vinyl chloride-exposed workers 
Carcinogenesis  2010;31(4):648-653.
Vinyl chloride (VC) was classified as a group 1 carcinogen by IARC in 1987. Although the relationship between VC exposure and liver cancer has been established, the mechanism of VC-related carcinogenesis remains largely unknown. Previous epidemiological studies have shown that VC exposure is associated with increased genotoxicity in humans. To explore chromosomal damage and its progression, and their association to genetic susceptibility, we investigated 402 workers exposed to VC, a 77 VC-exposed cohort and 141 unexposed subjects. We measured the frequencies of cytokinesis-block micronucleus (CBMN) to reflect chromosomal damage and conducted genotyping for six xenobiotic metabolisms and five DNA repair genes' polymorphism. Data indicate that 95% of the control workers had CBMN frequencies ≤3‰, whereas VC-exposed workers had the 3.73-fold increase compared with the controls. Among the cohort workers who were followed from 2004 to 2007, the mean CBMN frequency was higher in 2007 than in 2004 with ratio of 2.08. Multiple Poisson regression analysis showed that mean CBMN frequencies were significantly elevated for the intermediate and high exposure groups than the low. Exposed workers with CYP2E1 or XRCC1 variance showed a higher CBMN frequency than their wild-type homozygous counterparts, so did workers with GSTP1 or ALDH2 genotype. This study provides evidence that cumulative exposure dose of VC and common genetic variants in genes relevant to detoxification of carcinogens are the major factors that modulate CBMN induction in VC-exposed workers.
PMCID: PMC3499047  PMID: 20100738
16.  Inhibitory effect of vanadium on rat liver carcinogenesis initiated with diethylnitrosamine and promoted by phenobarbital. 
British Journal of Cancer  1995;71(6):1214-1220.
The chemoprotective effect of vanadium, a dietary micronutrient, against chemically induced hepatocarcinogenesis in rats was investigated. Initiation was performed by a single intraperitoneal injection of diethylnitrosamine (DENA; 200 mg kg-1) followed by promotion with phenobarbital (0.05%) in the diet. Supplementary vanadium (0.5 p.p.m.) in the drinking water was provided ad libitum throughout the experiment, before the initiation or during the promotion period. At the end of the study (20 weeks), vanadium supplementation throughout the experiment reduced the incidence (P < 0.01), total number and multiplicity (P < 0.001) and altered the size distribution of visible persistent nodules (PNs) as compared with DENA control animals. Mean nodular volume (P < 0.05) and nodular volume as a percentage of liver volume (P < 0.01) were also attenuated following long-term vanadium treatment. It also caused a large decrease in the number (P < 0.001) and surface area (P < 0.01) of gamma-glutamyltranspeptidase (GGT)-positive hepatocyte foci and in the labelling index (P < 0.001) of focal cells, coupled with increased (P < 0.01) remodelling. The activity of GGT, measured quantitatively, was found to be significantly less in the PNs (P < 0.001) and non-nodular surrounding parenchyma (P < 0.01) of vanadium-supplemented rats. The anticarcinogenic effect of vanadium was also reflected in the histopathological analysis of liver sections that showed a well-maintained hepatocellular architecture as compared with DENA control. Similar results were observed when vanadium was given only before the initiation. However, supplementation of vanadium during the promotion period did not result in significant alterations of these parameters. Our results, thus, strongly suggest that vanadium may have a unique anti-tumour potential which is primarily exerted on the initiation phase and only secondarily on the promotion stage.
PMCID: PMC2033852  PMID: 7779714
17.  Risk of high blood pressure in salt workers working near salt milling plants: A cross-sectional and interventional study 
Environmental Health  2005;4:13.
Workers working close to salt milling plants may inhale salt particles floating in the air, leading to a rise in plasma sodium, which, in turn, may increase the blood pressure and the risk of hypertension.
To test the above hypothesis, occupational health check-up camps were organized near salt manufacturing units and all workers were invited for a free health examination. The workers who worked with dry salt in the vicinity of salt milling plants were defined as "non-brine workers," while those working in brine pans located far away from milling plants were defined as "brine workers." Blood pressure (BP) was measured during each clinical examination. In all, 474 non-brine workers and 284 brine workers were studied.
Mean systolic blood pressure of non-brine workers (122.1 ± 13.3 mm Hg) was significantly higher than that of brine workers (118.8 ± 12.8 mm Hg, p < 0.01). Mean diastolic blood pressure of non-brine workers (71.5 ± 10.4 mm Hg) was significantly higher than that of brine workers (69.7 ± 9.4 mm Hg, p = 0.02). The prevalence of hypertension was significantly higher in non-brine workers (12.2%) than in brine workers (7.0%, p = 0.02). Nineteen salt workers were monitored while they used face masks and spectacles, for six days. Systolic, as well as diastolic, blood pressure of these workers began declining on the third day and continued to decline on the fourth day, but remained stationary up to the sixth day. The concentration of salt particles in the breathing zone of these workers was 376 mg/m3 air.
Inhalation of salt particles in non-brine workers may be an occupational cause of increased blood pressure.
PMCID: PMC1190202  PMID: 16042798
18.  Genomic analysis of human lung fibroblasts exposed to vanadium pentoxide to identify candidate genes for occupational bronchitis 
Respiratory Research  2007;8(1):34.
Exposure to vanadium pentoxide (V2O5) is a cause of occupational bronchitis. We evaluated gene expression profiles in cultured human lung fibroblasts exposed to V2O5 in vitro in order to identify candidate genes that could play a role in inflammation, fibrosis, and repair during the pathogenesis of V2O5-induced bronchitis.
Normal human lung fibroblasts were exposed to V2O5 in a time course experiment. Gene expression was measured at various time points over a 24 hr period using the Affymetrix Human Genome U133A 2.0 Array. Selected genes that were significantly changed in the microarray experiment were validated by RT-PCR.
V2O5 altered more than 1,400 genes, of which ~300 were induced while >1,100 genes were suppressed. Gene ontology categories (GO) categories unique to induced genes included inflammatory response and immune response, while GO catogories unique to suppressed genes included ubiquitin cycle and cell cycle. A dozen genes were validated by RT-PCR, including growth factors (HBEGF, VEGF, CTGF), chemokines (IL8, CXCL9, CXCL10), oxidative stress response genes (SOD2, PIPOX, OXR1), and DNA-binding proteins (GAS1, STAT1).
Our study identified a variety of genes that could play pivotal roles in inflammation, fibrosis and repair during V2O5-induced bronchitis. The induction of genes that mediate inflammation and immune responses, as well as suppression of genes involved in growth arrest appear to be important to the lung fibrotic reaction to V2O5.
PMCID: PMC1865536  PMID: 17459161
19.  Upper airway response in workers exposed to fuel oil ash: nasal lavage analysis. 
OBJECTIVES--Among other constituents, fuel oil ash contains vanadium pentoxide, a known respiratory irritant. Exposure to ambient vanadium pentoxide dust has been shown to produce irritation of the eyes, nose, and throat. The usefulness of nasal lavage in detecting an inflammatory response to exposure to fuel oil ash among 37 boilermakers and utility workers was investigated. METHODS--A baseline lavage was performed on the morning of the first day back to work after an average of 114 days away from work (range 36 hours to 1737 days). A lavage was performed after exposure on the morning three days after the baseline lavage. Exposure to respirable particulate matter of diameter < or = 10 microns (PM10) and respirable vanadium dust were estimated with daily work diaries and a personal sampling device for respirable particulates. These estimates were made for each subject on each workday during the three days between lavages. For each subject, the adjusted change in polymorphonuclear cells was calculated by dividing the change in polymorphonuclear cell counts by the average of the counts before and after exposure. The association between the adjusted polymorphonuclear cell counts and exposure was assessed with multiple linear regression, adjusted for age and current smoking. RESULTS--Personal sampling (one to 10 hour time weighted average) showed a range of PM10 concentrations of 50 to 4510 micrograms/m3, and respirable vanadium dust concentration of 0.10 to 139 micrograms/m3. In smokers the adjusted polymorphonuclear cell count was not significantly different from zero (-0.1%, P > 0.5), but in nonsmokers it was significantly greater than zero (+50%, P < 0.05). In both non-smokers and smokers, there was considerable variability in adjusted polymorphonuclear cell counts and a dose-response relation between these adjusted cell counts and either PM10 or respirable vanadium dust exposure could not be found. CONCLUSION--A significant increase in polymorphonuclear cells in non-smokers but not smokers was found. This suggests that in non-smokers, exposure to fuel oil ash is associated with upper airway inflammation manifested as increased polymorphonuclear cell counts. The lack of an increase in polymorphonuclear cells in smokers may reflect either a diminished inflammatory response or may indicate that smoking masks the effect of exposure to fuel oil ash.
PMCID: PMC1128229  PMID: 7795759
20.  Effects of Metal Compounds With Distinct Physicochemical Properties on Iron Homeostasis and Anti-Bacterial Activity in the Lungs: Cr and V 
Inhalation toxicology  2010;22(2):169-178.
In situ reactions of metal ions or their compounds are important mechanisms by which particles alter lung immune responses. We hypothesized that major determinants of the immunomodulatory effect of any metal include its redox behavior/properties, oxidation state, and/or solubility, and that the toxicities arising from differences in physicochemical parameters are manifest, in part, via differential shifts in lung iron (Fe) homeostasis. To test the hypotheses, immunomodulatory potentials for both penta-valent vanadium (VV; as soluble metavanadate or insoluble vanadium pentoxide) and hexavalent chromium (CrVI; as soluble sodium chromate or insoluble calcium chromate) were quantified in rats after inhalation (5 hr/d for 5 d) of each at 100 μg metal/m3. Differences in effects on local bacterial resistance between the two VV, and between each CrVI, agents suggested that solubility might be a determinant of in situ immunotoxicity. For the soluble forms, VV had a greater impact on resistance than CrVI, indicating that redox behavior/properties was likely also a determinant. The soluble VV agent was the strongest immunomodulant. Regarding Fe homeostasis, both VV agents had dramatic effects on airway Fe levels. Both also impacted local immune/airway epithelial cell Fe levels in there were significant increases in production of select cytokines/chemokines). Our findings contribute to a better understanding of the role that metal compound properties play in respiratory disease pathogenesis and provide a rationale for differing pulmonary immunotoxicities of commonly-encountered ambient metal pollutants.
PMCID: PMC4018818  PMID: 19757987
vanadium; chromium; iron; transferrin; ferritin; Listeria; pulmonary; immunomodulation
21.  Anti-diabetic effects of a series of vanadium dipicolinate complexes in rats with streptozotocin-induced diabetes 
Coordination chemistry reviews  2011;255(19-20):2258-2269.
The effects of oral treatment of rats with streptozotocin-induced diabetes with a range of vanadium dipicolinate complexes (Vdipic) and derivatives are reviewed. Structure-reactivity relationships are explored aiming to correlate properties such as stability, to their insulin-enhancing effects. Three types of modifications are investigated; first, substitutions on the aromatic ring, second, coordination of a hydroxylamido group to the vanadium, and third, changes in the oxidation state of the vanadium ion. These studies allowed us to address the importance of coordination chemistry, and redox chemistry, as modes of action. Dipicolinate was originally chosen as a ligand because the dipicolinatooxovanadium(V) complex (V5dipic), is a potent inhibitor of phosphatases. The effect of vanadium oxidation state (3, 4 or 5), on the insulin-enhancing properties was studied in both the Vdipic and VdipicCl series. Effects on blood glucose, body weight, serum lipids, alkaline phosphatase and aspartate transaminase were selectively monitored. Statistically distinct differences in activity were found, however, the trends observed were not the same in the Vdipic and VdipicCl series. Interperitoneal administration of the Vdipic series was used to compare the effect of administration mode. Correlations were observed for blood vanadium and plasma glucose levels after V5dipic treatment, but not after treatment with corresponding V4dipic and V3dipic complexes. Modifications of the aromatic ring structure with chloride, amine or hydroxyl groups had limited effects. Global gene expression was measured using Affymetrix oligonucleotide chips. All diabetic animals treated with hydroxyl substituted V5dipic (V5dipicOH) and some diabetic rats treated with vanadyl sulfate had normalized hyperlipidemia yet uncontrolled hyperglycemia and showed abnormal gene expression patterns. In contrast to the normal gene expression profiles previously reported for some diabetic rats treated with vanadyl sulfate, where both hyperlipidemia and hyperglycemia were normalized. Modification of the metal, changing the coordination chemistry to form a hydroxylamine ternary complex, had the most influence on the anti-diabetic action. Vanadium absorption into serum was determined by atomic absorption spectroscopy for selected vanadium complexes. Only diabetic rats treated with the ternary V5dipicOH hydroxylamine complex showed statistically significant increases in accumulation of vanadium into serum compared to diabetic rats treated with vanadyl sulfate. The chemistry and physical properties of the Vdipic complexes correlated with their anti-diabetic properties. Here, we propose that compound stability and ability to interact with cellular redox reactions are key components for the insulin-enhancing activity of vanadium compounds. Specifically, we found that the most overall effective anti-diabetic Vdipic compounds were obtained when the compound administered had an increased coordination number in the vanadium complex.
PMCID: PMC3461829  PMID: 23049138
Vanadium; dipicolinic acid; dipicolinate; dipicolinatooxovanadium(V); diabetes; streptozotocin; redox; coordination number; cellular oxidation of vanadium; gene expression; signal transduction
22.  Enhanced preventive programme at a beryllium oxide ceramics facility reduces beryllium sensitisation among new workers 
A 1998 survey at a beryllium oxide ceramics manufacturing facility found that 10% of workers hired in the previous 6 years had beryllium sensitisation as determined by the beryllium lymphocyte proliferation test (BeLPT). In response, the facility implemented an enhanced preventive programme to reduce sensitisation, including increased respiratory and dermal protection and particle migration control.
To assess the programme's effectiveness in preventing sensitisation.
In 2000, the facility began testing newly hired workers for beryllium sensitisation with the BeLPT at time of hire and during employment. The sensitisation rate and prevalence for workers hired from 2000 to 2004 were compared with that for workers hired from 1993 to 1998, who were tested in the 1998 survey. Facility environmental conditions for both time periods were evaluated.
Newly hired workers in both cohorts worked for a mean of 16 months. Of the 97 workers hired from 2000 to 2004 with at least one employment BeLPT result, four had abnormal results at time of hire and one became sensitised during employment. Of the 69 workers hired from 1993 to 1998 and tested in 1998, six were found to be sensitised. The sensitisation rate for the 2000–4 workers was 0.7–2.7/1000 person‐months of employment, and that for the 1993–8 workers was 5.6/1000 person‐months, at least 2.1 (95% confidence interval (CI) 0.6 to 8.4) and up to 8.2 (95% CI 1.2 to 188.8) times higher than that for the 2000–4 workers. The sensitisation prevalence for the 2000–4 workers was 1% and that for the 1993–8 workers was 8.7%, 8.4 (95% CI 1.04 to 68.49) times higher than that for the 2000–4 workers. Airborne beryllium levels for production workers for the two time periods were similar.
A comprehensive preventive programme reduced beryllium sensitisation in new workers during the first years of employment, despite airborne beryllium levels for production workers that were similar to pre‐programme levels.
PMCID: PMC2078442  PMID: 17043076
23.  Large-scale evaluation of candidate genes identifies associations between DNA repair and genomic maintenance and development of benzene hematotoxicity 
Carcinogenesis  2008;30(1):50-58.
Benzene is an established human hematotoxicant and leukemogen but its mechanism of action is unclear. To investigate the role of single-nucleotide polymorphisms (SNPs) on benzene-induced hematotoxicity, we analyzed 1395 SNPs in 411 genes using an Illumina GoldenGate assay in 250 benzene-exposed workers and 140 unexposed controls. Highly significant findings clustered in five genes (BLM, TP53, RAD51, WDR79 and WRN) that play a critical role in DNA repair and genomic maintenance, and these regions were then further investigated with tagSNPs. One or more SNPs in each gene were associated with highly significant 10–20% reductions (P values ranged from 0.0011 to 0.0002) in the white blood cell (WBC) count among benzene-exposed workers but not controls, with evidence for gene–environment interactions for SNPs in BLM, WRN and RAD51. Further, among workers exposed to benzene, the genotype-associated risk of having a WBC count <4000 cells/μl increased when using individuals with progressively higher WBC counts as the comparison group, with some odds ratios >8-fold. In vitro functional studies revealed that deletion of SGS1 in yeast, equivalent to lacking BLM and WRN function in humans, caused reduced cellular growth in the presence of the toxic benzene metabolite hydroquinone, and knockdown of WRN using specific short hairpin RNA increased susceptibility of human TK6 cells to hydroquinone toxicity. Our findings suggest that SNPs involved in DNA repair and genomic maintenance, with particular clustering in the homologous DNA recombination pathway, play an important role in benzene-induced hematotoxicity.
PMCID: PMC2639030  PMID: 18978339
24.  Integrated exposure assessment of sewage workers to genotoxicants: an urinary biomarker approach and oxidative stress evaluation 
Environmental Health  2011;10:23.
Sewage workers are exposed to multiple chemicals among which many are suspected genotoxicants. Therefore, they might incur DNA damage and oxidative stress. We aimed to explore integrated urinary biomarkers, assessing the overall urine genotoxicity by in vitro comet and micronucleus assays and measuring urinary 8-oxo-2'-deoxyguanosine.
During three consecutive working days, polycyclic aromatic hydrocarbons and volatile organic compounds were sampled in workplace air of 34 sewage and 30 office workers, as indicators of airborne exposure. The last day, subjects collected their 24 hours urine. Genotoxicity of urinary extracts was assessed by comet and micronucleus assays on a HepG2 cell line. Using competitive enzymatic immunoassay we evaluated the 24 hours urinary 8-oxo-2'-deoxyguanosine excretion. Benzo(a)pyrene toxicity equivalent factors and inhalation unit risk for Benzo(a)pyrene and benzene were used to give an estimate of cancer risk levels.
Workplace air concentrations of polycyclic aromatic hydrocarbons (e.g. 23.7 [range 2.4-104.6] ng.m-3 for fluoranthene) and volatile organic compounds (e.g. 19.1 ± 2.9 [standard error] μ.m-3 for benzene) were elevated in sewage compared to office workplaces (P < 0.01) and corresponded to an increased lifetime cancer risk. The urinary extracts of sewage workers showed higher genotoxicity (P < 0.001) than office workers.
The integrated and non-specific urinary biomarkers of exposure showed that sewage workers experience exposure to mixtures of genotoxicants in the workplace.
PMCID: PMC3071309  PMID: 21435260
25.  Oxidative DNA damage precedes DNA fragmentation after experimental stroke in rat brain 
Experimental stroke using a focal cerebral ischemia and reperfusion (FCIR) model was induced in male Long-Evans rats by a bilateral occlusion of both common carotid arteries and the right middle cerebral artery for 30–90 min, followed by various periods of reperfusion. Oxidative DNA lesions in the ipsilateral cortex were demonstrated using Escherichia coli formamidopyrimidine DNA N-glycosylase (Fpg protein)-sensitive sites (FPGSS), as labeled in situ using digoxigenin-dUTP and detected using antibodies against digoxigenin. Because Fpg protein removes 8-hydroxy-2′-deoxyguanine (oh8dG) and other lesions in DNA, FPGSS measure oxidative DNA damage. The number of FPGSS-positive cells in the cortex from the sham-operated control group was 3 ± 3 (mean ± SD per mm2). In animals that received 90 min occlusion and 15 min of reperfusion (FCIR 90/15), FPGSS-positive cells were significantly increased by 200-fold. Oxidative DNA damage was confirmed by using monoclonal antibodies against 8-hydroxy-guanosine (oh8G) and oh8dG. A pretreatment of RNase A (100 μg/ml) to the tissue reduced, but did not abolish, the oh8dG signal. The number of animals with positive FPGSS or oh8dG was significantly (P<0.01) higher in the FCIR group than in the sham-operated control group. We detected few FPGSS of oh8dG-positive cells in the animals treated with FCIR of 90/60. No terminal UTP nicked-end labeling (TUNEL)-positive cells, as a detection of cell death, were detected at this early reperfusion time. Our data suggest that early oxidative DNA lesions elicited by experimental stroke could be repaired. Therefore, the oxidative DNA lesions observed in the nuclear and mitochondrial DNA of the brain are different from the DNA fragmentation detected using TUNEL.
PMCID: PMC2709847  PMID: 10783150
hydroxyl radicals; oxidative DNA damage; neurotoxicity; reactive oxygen species; stroke

Results 1-25 (1208626)