Search tips
Search criteria

Results 1-25 (1189286)

Clipboard (0)

Related Articles

1.  Diminished Superoxide Generation Is Associated With Respiratory Chain Dysfunction and Changes in the Mitochondrial Proteome of Sensory Neurons From Diabetic Rats 
Diabetes  2010;60(1):288-297.
Impairments in mitochondrial function have been proposed to play a role in the etiology of diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in axons of sensory neurons in type 1 diabetes is due to abnormal activity of the respiratory chain and an altered mitochondrial proteome.
Proteomic analysis using stable isotope labeling with amino acids in cell culture (SILAC) determined expression of proteins in mitochondria from dorsal root ganglia (DRG) of control, 22-week-old streptozotocin (STZ)-diabetic rats, and diabetic rats treated with insulin. Rates of oxygen consumption and complex activities in mitochondria from DRG were measured. Fluorescence imaging of axons of cultured sensory neurons determined the effect of diabetes on mitochondrial polarization status, oxidative stress, and mitochondrial matrix-specific reactive oxygen species (ROS).
Proteins associated with mitochondrial dysfunction, oxidative phosphorylation, ubiquinone biosynthesis, and the citric acid cycle were downregulated in diabetic samples. For example, cytochrome c oxidase subunit IV (COX IV; a complex IV protein) and NADH dehydrogenase Fe-S protein 3 (NDUFS3; a complex I protein) were reduced by 29 and 36% (P < 0.05), respectively, in diabetes and confirmed previous Western blot studies. Respiration and mitochondrial complex activity was significantly decreased by 15 to 32% compared with control. The axons of diabetic neurons exhibited oxidative stress and depolarized mitochondria, an aberrant adaption to oligomycin-induced mitochondrial membrane hyperpolarization, but reduced levels of intramitochondrial superoxide compared with control.
Abnormal mitochondrial function correlated with a downregulation of mitochondrial proteins, with components of the respiratory chain targeted in lumbar DRG in diabetes. The reduced activity of the respiratory chain was associated with diminished superoxide generation within the mitochondrial matrix and did not contribute to oxidative stress in axons of diabetic neurons. Alternative pathways involving polyol pathway activity appear to contribute to raised ROS in axons of diabetic neurons under high glucose concentration.
PMCID: PMC3012184  PMID: 20876714
2.  Mitochondrial Dysfunction in Diabetes: From Molecular Mechanisms to Functional Significance and Therapeutic Opportunities 
Antioxidants & Redox Signaling  2010;12(4):537-577.
Given their essential function in aerobic metabolism, mitochondria are intuitively of interest in regard to the pathophysiology of diabetes. Qualitative, quantitative, and functional perturbations in mitochondria have been identified and affect the cause and complications of diabetes. Moreover, as a consequence of fuel oxidation, mitochondria generate considerable reactive oxygen species (ROS). Evidence is accumulating that these radicals per se are important in the pathophysiology of diabetes and its complications. In this review, we first present basic concepts underlying mitochondrial physiology. We then address mitochondrial function and ROS as related to diabetes. We consider different forms of diabetes and address both insulin secretion and insulin sensitivity. We also address the role of mitochondrial uncoupling and coenzyme Q. Finally, we address the potential for targeting mitochondria in the therapy of diabetes. Antioxid. Redox Signal. 12, 537–577.
Basic Physiology
Electron transport
Reactive oxygen species and mitochondria
Mitochondrial nitric oxide
Role of calcium and the mitochondrial permeability transition pore
Assessing Mitochondrial Function
Respiration and potential
ATP production and the proton leak
ROS production by isolated mitochondria
Site specificity of mitochondrial superoxide production
Mitochondrial ROS production in intact cells
Oxidative damage to mitochondria in intact cells
Mitochondrial Metabolism and Diabetes
General considerations
Mitochondrial diabetes
Type 1 and type 2 diabetes
Mitochondrial number and morphology
Mitochondrial biogenesis
Mitochondrial function in type 2 diabetes and insulin-resistant states
Is mitochondrial impairment a cause of insulin resistance?
Mitochondrial respiratory coupling and insulin release
Mitochondrial function in insulin-deficient diabetes
Diabetes and mitochondrial function in non–insulin-sensitive tissues
Mitochondria and cell-fuel selectivity
Diabetic cardiomyopathy and mitochondrial function
Mitochondrial ROS and Diabetes
ROS production and the cause of diabetes
Oxidative damage and pancreatic islet β cells
ROS and oxidative damage in insulin-sensitive target tissues
ROS and the complications of diabetes
Non–insulin-sensitive tissues (retina, renal, neural cells)
ROS and vascular cells
Mitochondrial Membrane Potential and Diabetes
Role of uncoupling proteins
Does membrane potential actually protect against superoxide production?
Coenzyme Q and Diabetes
Therapeutic Implications
Improving mitochondrial metabolism
Lifestyle modification
Pharmacologic intervention
Controlling ROS production and oxidative damage
Mitochondria-targeted antioxidants
Metabolic effects of mitochondria-targeted antioxidants
Mitochondria-targeted antioxidant peptides
Targeting superoxide
PMCID: PMC2824521  PMID: 19650713
3.  Loss of Intralipid®- but Not Sevoflurane-Mediated Cardioprotection in Early Type-2 Diabetic Hearts of Fructose-Fed Rats: Importance of ROS Signaling 
PLoS ONE  2014;9(8):e104971.
Insulin resistance and early type-2 diabetes are highly prevalent. However, it is unknown whether Intralipid® and sevoflurane protect the early diabetic heart against ischemia-reperfusion injury.
Early type-2 diabetic hearts from Sprague-Dawley rats fed for 6 weeks with fructose were exposed to 15 min of ischemia and 30 min of reperfusion. Intralipid® (1%) was administered at the onset of reperfusion. Peri-ischemic sevoflurane (2 vol.-%) served as alternative protection strategy. Recovery of left ventricular function was recorded and the activation of Akt and ERK 1/2 was monitored. Mitochondrial function was assessed by high-resolution respirometry and mitochondrial ROS production was measured by Amplex Red and aconitase activity assays. Acylcarnitine tissue content was measured and concentration-response curves of complex IV inhibition by palmitoylcarnitine were obtained.
Intralipid® did not exert protection in early diabetic hearts, while sevoflurane improved functional recovery. Sevoflurane protection was abolished by concomitant administration of the ROS scavenger N-2-mercaptopropionyl glycine. Sevoflurane, but not Intralipid® produced protective ROS during reperfusion, which activated Akt. Intralipid® failed to inhibit respiratory complex IV, while sevoflurane inhibited complex I. Early diabetic hearts exhibited reduced carnitine-palmitoyl-transferase-1 activity, but palmitoylcarnitine could not rescue protection and enhance postischemic functional recovery. Cardiac mitochondria from early diabetic rats exhibited an increased content of subunit IV-2 of respiratory complex IV and of uncoupling protein-3.
Early type-2 diabetic hearts lose complex IV-mediated protection by Intralipid® potentially due to a switch in complex IV subunit expression and increased mitochondrial uncoupling, but are amenable to complex I-mediated sevoflurane protection.
PMCID: PMC4134246  PMID: 25127027
4.  Impaired Mitochondrial Respiratory Functions and Oxidative Stress in Streptozotocin-Induced Diabetic Rats 
We have previously shown a tissue-specific increase in oxidative stress in the early stages of streptozotocin (STZ)-induced diabetic rats. In this study, we investigated oxidative stress-related long-term complications and mitochondrial dysfunctions in the different tissues of STZ-induced diabetic rats (>15 mM blood glucose for 8 weeks). These animals showed a persistent increase in reactive oxygen and nitrogen species (ROS and RNS, respectively) production. Oxidative protein carbonylation was also increased with the maximum effect observed in the pancreas of diabetic rats. The activities of mitochondrial respiratory enzymes ubiquinol: cytochrome c oxidoreductase (Complex III) and cytochrome c oxidase (Complex IV) were significantly decreased while that of NADH:ubiquinone oxidoreductase (Complex I) and succinate:ubiquinone oxidoreductase (Complex II) were moderately increased in diabetic rats, which was confirmed by the increased expression of the 70 kDa Complex II sub-unit. Mitochondrial matrix aconitase, a ROS sensitive enzyme, was markedly inhibited in the diabetic rat tissues. Increased expression of oxidative stress marker proteins Hsp-70 and HO-1 was also observed along with increased expression of nitric oxide synthase. These results suggest that mitochondrial respiratory complexes may play a critical role in ROS/RNS homeostasis and oxidative stress related changes in type 1 diabetes and may have implications in the etiology of diabetes and its complications.
PMCID: PMC3116180  PMID: 21686174
diabetes; oxidative stress; ROS; NO; mitochondrial respiration
5.  Pioglitazone leads to an inactivation and disassembly of complex I of the mitochondrial respiratory chain 
BMC Biology  2013;11:88.
Thiazolidinediones are antidiabetic agents that increase insulin sensitivity but reduce glucose oxidation, state 3 respiration, and activity of complex I of the mitochondrial respiratory chain (MRC). The mechanisms of the latter effects are unclear. The aim of this study was to determine the mechanisms by which pioglitazone (PGZ), a member of the thiazolidinedione class of antidiabetic agents, decreases the activity of the MRC. In isolated mitochondria from mouse liver, we measured the effects of PGZ treatment on MRC complex activities, fully-assembled complex I and its subunits, gene expression of complex I and III subunits, and [3H]PGZ binding to mitochondrial complexes.
In vitro, PGZ decreased activity of complexes I and III of the MRC, but in vivo only complex I activity was decreased in mice treated for 12 weeks with 10 mg/kg/day of PGZ. In vitro treatment of isolated liver mitochondria with PGZ disassembled complex I, resulting in the formation of several subcomplexes. In mice treated with PGZ, fully assembled complex I was increased and two additional subcomplexes were found. Formation of supercomplexes CI+CIII2+CIVn and CI+CIII2 decreased in mouse liver mitochondria exposed to PGZ, while formation of these supercomplexes was increased in mice treated with PGZ. Two-dimensional analysis of complex I using blue native/sodium dodecyl sulfate polyacrylamide gel electrophoresis (BN/SDS-PAGE) showed that in vitro PGZ induced the formation of four subcomplexes of 600 (B), 400 (C), 350 (D), and 250 (E) kDa, respectively. Subcomplexes B and C had NADH:dehydrogenase activity, while subcomplexes C and D contained subunits of complex I membrane arm. Autoradiography and coimmunoprecipitation assays showed [3H]PGZ binding to subunits NDUFA9, NDUFB6, and NDUFA6. Treatment with PGZ increased mitochondrial gene transcription in mice liver and HepG2 cells. In these cells, PGZ decreased intracellular ATP content and enhanced gene expression of specific protein 1 and peroxisome-proliferator activated receptor (PPAR)γ coactivator 1α (PGC-1α).
PGZ binds complex I subunits, which induces disassembly of this complex, reduces its activity, depletes cellular ATP, and, in mice and HepG2 cells, upregulates nuclear DNA-encoded gene expression of complex I and III subunits.
PMCID: PMC3751493  PMID: 23915000
ATP; Mitochondrial respiratory chain; Pioglitazone; Proteomic; Thiazolidinediones
6.  Complex I Function and Supercomplex Formation Are Preserved in Liver Mitochondria Despite Progressive Complex III Deficiency 
PLoS ONE  2014;9(1):e86767.
Functional oxidative phosphorylation requires appropriately assembled mitochondrial respiratory complexes and their supercomplexes formed mainly of complexes I, III and IV. BCS1L is the chaperone needed to incorporate the catalytic subunit, Rieske iron-sulfur protein, into complex III at the final stage of its assembly. In cell culture studies, this subunit has been considered necessary for supercomplex formation and for maintaining the stability of complex I. Our aim was to assess the importance of fully assembled complex III for supercomplex formation in intact liver tissue. We used our transgenic mouse model with a homozygous c.232A>G mutation in Bcs1l leading to decreased expression of BCS1L and progressive decrease of Rieske iron-sulfur protein in complex III, resulting in hepatopathy. We studied supercomplex formation at different ages using blue native gel electrophoresis and complex activity using high-resolution respirometry. In isolated liver mitochondria of young and healthy homozygous mutant mice, we found similar supercomplexes as in wild type. In homozygotes aged 27–29 days with liver disorder, complex III was predominantly a pre-complex lacking Rieske iron-sulfur protein. However, the main supercomplex was clearly detected and contained complex III mainly in the pre-complex form. Oxygen consumption of complex IV was similar and that of complex I was twofold compared with controls. These complexes in free form were more abundant in homozygotes than in controls, and the mRNA of complex I subunits were upregulated. In conclusion, when complex III assembly is deficient, the pre-complex without Rieske iron-sulfur protein can participate with available fully assembled complex III in supercomplex formation, complex I function is preserved, and respiratory chain stability is maintained.
PMCID: PMC3899299  PMID: 24466228
7.  Manganese Porphyrin Reduces Renal Injury and Mitochondrial Damage during Ischemia/Reperfusion ± 
Free radical biology & medicine  2007;42(10):1571-1578.
Renal ischemia/reperfusion (I/R) injury often occurs as a result of vascular surgery, organ procurement, or transplantation. We previously showed that renal I/R results in ATP depletion, oxidant production, and manganese superoxide dismutase (MnSOD) inactivation. There have been several reports that overexpression of MnSOD protects tissues/organs from I/R related damage, thus a loss of MnSOD activity during I/R likely contributes to tissue injury. The present study examined the therapeutic benefit of a catalytic antioxidant Mn(III) meso-tetrakis(N-hexylpyridinium-2-yl)porphyrin, (MnTnHex-2-PyP5+) using the rat renal I/R model. This was the first study to examine the effects of MnTnHex-2-PyP5+ in an animal model of oxidative stress injury. Our results showed that porphyrin pretreatment of rats for 24 hr protected against ATP depletion, MnSOD inactivation, nitrotyrosine formation, and renal dysfunction. The dose (50 μg/kg) used in this study is lower than doses of various types of antioxidants commonly used in animal models of oxidative stress injuries. In addition, using novel proteomic techniques, we identified ATP synthase- beta subunit as a key protein induced by MnTnHex-2-PyP5+ treatment alone, and complex V (ATP synthase) as a target of injury during renal I/R. These results showed that MnTnHex-2-PyP5+ protected against renal I/R injury via induction of key mitochondrial proteins that may be capable of blunting oxidative injury.
PMCID: PMC1924492  PMID: 17448904
kidney; ischemia/reperfusion; metalloporphyrin; proteomics; MnSOD; mitochondria; oxidants; nitrotyrosine; blue native polyacrylamide gel electrophoresis BN-PAGE; two dimensional fluorescence differential in gel electrophoresis (2D-DIGE)
8.  Mitochondrial Regulation of Cell Cycle and Proliferation 
Antioxidants & Redox Signaling  2012;16(10):1150-1180.
Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly, defective organelles contribute to cell transformation and cancer, diabetes, and neurodegenerative diseases. Most cell and transcriptional effects of mitochondria depend on the modulation of respiratory rate and on the production of hydrogen peroxide released into the cytosol. The mitochondrial oxidative rate has to remain depressed for cell proliferation; even in the presence of O2, energy is preferentially obtained from increased glycolysis (Warburg effect). In response to stress signals, traffic of pro- and antiapoptotic mitochondrial proteins in the intermembrane space (B-cell lymphoma-extra large, Bcl-2-associated death promoter, Bcl-2 associated X-protein and cytochrome c) is modulated by the redox condition determined by mitochondrial O2 utilization and mitochondrial nitric oxide metabolism. In this article, we highlight the traffic of the different canonical signaling pathways to mitochondria and the contributions of organelles to redox regulation of kinases. Finally, we analyze the dynamics of the mitochondrial population in cell cycle and apoptosis. Antioxid. Redox Signal. 16, 1150–1180.
I. Introduction
II. Introduction to Mitochondrial Biology
A. The physiology of mitochondria and redox biology
B. NO and mitochondrial redox metabolism
C. H2O2 and antagonistic antioxidant enzymes
D. The intermembrane space and the redox status
III. Mitochondrial Metabolism and Cell Proliferation
A. The Warburg effect: The mitochondrial control of proliferation
B. Mitochondria and redox control in normal and tumor cells
C. Stem cells, mitochondrial ROS metabolism, and differentiation
D. ROS and mitochondrial malignancy: The example of p53
E. The glycolytic effects for mitochondrial oxidative rate
F. Mitochondrial signaling in hypoxia
G. Mechanistic target of rapamycin (serine/threonine kinase)/Akt pathways
H. Hexokinase
I. The regulation of glycolysis and proliferation by the ubiquitination system
IV. ROS: From Proliferation to Cell Death
V. Kinases, Mitochondria, and Cell Cycle
A. The MAPK cascade
B. Akt/protein kinase B
C. Protein kinase C
D. Protein kinase A
VI. Mitochondrial Biogenesis
A. Transcriptional control of mitochondrial biogenesis
B. Mitochondrial biogenesis, NO, and ROS
VII. Mitochondrial Dynamics
A. Mitochondrial fusion
B. Mitochondrial fusion machinery and apoptosis
C. Mitochondrial fission
D. Mitochondrial fission machinery and apoptosis
E. Mitochondrial dynamics, NO, and ROS
VIII. Mitochondrial Biogenesis, Mitochondrial Dynamics, and Cell Cycle
IX. Concluding Remarks
PMCID: PMC3315176  PMID: 21967640
9.  Blockade of electron transport before ischemia protects mitochondria and decreases myocardial injury during reperfusion in aged rat hearts 
Myocardial injury is increased in the aged heart following ischemia and reperfusion (I-R) in both humans and experimental models. Hearts from aged 24 mo. old Fischer 344 rats sustain greater cell death and decreased contractile recovery after I-R compared to 6 mo. adult controls. Cardiac mitochondria incur damage during I-R contributing to cell death. Aged rats have a defect in complex III of the mitochondrial electron transport chain (ETC) localized to the interfibrillar population of cardiac mitochondria (IFM), situated in the interior of the cardiomyocyte among the myofibrils. The defect involves the quinol oxidation site (Qo) and increases the production of reactive oxygen species (ROS) in the baseline state. Ischemia further decreases complex III activity via functional inactivation of the iron-sulfur subunit. We studied the contribution of ischemia-induced defects in complex III to the increased cardiac injury in the aged heart. The reversible blockade of the ETC proximal to complex III during ischemia using amobarbital protects mitochondria against ischemic damage, removing the ischemia component of mitochondrial dysfunction. Reperfusion of the aged heart in the absence of ischemic mitochondrial damage decreases net ROS production from mitochondria and reduces cell death. Thus, even despite the persistence of the age-related defects in electron transport, protection against ischemic damage to mitochondria can reduce injury in the aged heart. The direct therapeutic targeting of mitochondria protects against ischemic damage and decreases cardiac injury during reperfusion in the high risk elderly heart.
PMCID: PMC3423471  PMID: 22698829
ischemia; cytochrome c; myocardial infarction; aging; electron transport chain; reactive oxygen species
10.  Muscle Mitochondrial ATP Synthesis and Glucose Transport/Phosphorylation in Type 2 Diabetes 
PLoS Medicine  2007;4(5):e154.
Muscular insulin resistance is frequently characterized by blunted increases in glucose-6-phosphate (G-6-P) reflecting impaired glucose transport/phosphorylation. These abnormalities likely relate to excessive intramyocellular lipids and mitochondrial dysfunction. We hypothesized that alterations in insulin action and mitochondrial function should be present even in nonobese patients with well-controlled type 2 diabetes mellitus (T2DM).
Methods and Findings
We measured G-6-P, ATP synthetic flux (i.e., synthesis) and lipid contents of skeletal muscle with 31P/1H magnetic resonance spectroscopy in ten patients with T2DM and in two control groups: ten sex-, age-, and body mass-matched elderly people; and 11 younger healthy individuals. Although insulin sensitivity was lower in patients with T2DM, muscle lipid contents were comparable and hyperinsulinemia increased G-6-P by 50% (95% confidence interval [CI] 39%–99%) in all groups. Patients with diabetes had 27% lower fasting ATP synthetic flux compared to younger controls (p = 0.031). Insulin stimulation increased ATP synthetic flux only in controls (younger: 26%, 95% CI 13%–42%; older: 11%, 95% CI 2%–25%), but failed to increase even during hyperglycemic hyperinsulinemia in patients with T2DM. Fasting free fatty acids and waist-to-hip ratios explained 44% of basal ATP synthetic flux. Insulin sensitivity explained 30% of insulin-stimulated ATP synthetic flux.
Patients with well-controlled T2DM feature slightly lower flux through muscle ATP synthesis, which occurs independently of glucose transport /phosphorylation and lipid deposition but is determined by lipid availability and insulin sensitivity. Furthermore, the reduction in insulin-stimulated glucose disposal despite normal glucose transport/phosphorylation suggests further abnormalities mainly in glycogen synthesis in these patients.
Michael Roden and colleagues report that even patients with well-controlled insulin-resistant type 2 diabetes have altered mitochondrial function.
Editors' Summary
Diabetes mellitus is an increasingly common chronic disease characterized by high blood sugar (glucose) levels. In normal individuals, blood sugar levels are maintained by the hormone insulin. Insulin is released by the pancreas when blood glucose levels rise after eating (glucose is produced by the digestion of food) and “instructs” insulin-responsive muscle and fat cells to take up glucose from the bloodstream. The cells then use glucose as a fuel or convert it into glycogen, a storage form of glucose. In type 2 diabetes, the commonest type of diabetes, the muscle and fat cells become nonresponsive to insulin (a condition called insulin resistance) and consequently blood glucose levels rise. Over time, this hyperglycemia increases the risk of heart attacks, kidney failure, and other life-threatening complications.
Why Was This Study Done?
Insulin resistance is often an early sign of type 2 diabetes, sometimes predating its development by many years, so understanding its causes might provide clues about how to stop the global diabetes epidemic. One theory is that mitochondria—cellular structures that produce the energy (in the form of a molecule called ATP) needed to keep cells functioning—do not work properly in people with insulin resistance. Mitochondria change (metabolize) fatty acids into energy, and recent studies have revealed that fat accumulation caused by poorly regulated fatty acid metabolism blocks insulin signaling, thus causing insulin resistance. Other studies using magnetic resonance spectroscopy (MRS) to study mitochondrial function noninvasively in human muscle indicate that mitochondria are dysfunctional in people with insulin resistance by showing that ATP synthesis is impaired in such individuals. In this study, the researchers have examined both baseline and insulin-stimulated mitochondrial function in nonobese patients with well-controlled type 2 diabetes and in normal controls to discover more about the relationship between mitochondrial dysfunction and insulin resistance.
What Did the Researchers Do and Find?
The researchers determined the insulin sensitivity of people with type 2 diabetes and two sets of people (the “controls”) who did not have diabetes: one in which the volunteers were age-matched to the people with diabetes, and the other containing younger individuals (insulin resistance increases with age). To study insulin sensitivity in all three groups, the researchers used a “hyperinsulinemic–euglycemic clamp.” For this, after an overnight fast, the participants' insulin levels were kept high with a continuous insulin infusion while blood glucose levels were kept normal using a variable glucose infusion. In this situation, the glucose infusion rate equals glucose uptake by the body and therefore measures tissue sensitivity to insulin. Before and during the clamp, the researchers used MRS to measure glucose-6-phosphate (an indicator of how effectively glucose is taken into cells and phosphorylated), ATP synthesis, and the fat content of the participants' muscle cells. Insulin sensitivity was lower in the patients with diabetes than in the controls, but muscle lipid content was comparable and hyperinsulinemia increased glucose-6-phosphate levels similarly in all the groups. Patients with diabetes and the older controls had lower fasting ATP synthesis rates than the young controls and, whereas insulin stimulation increased ATP synthesis in all the controls, it had no effect in the patients with diabetes. In addition, fasting blood fatty acid levels were inversely related to basal ATP synthesis, whereas insulin sensitivity was directly related to insulin-stimulated ATP synthesis.
What Do These Findings Mean?
These findings indicate that the impairment of muscle mitochondrial ATP synthesis in fasting conditions and after insulin stimulation in people with diabetes is not due to impaired glucose transport/phosphorylation or fat deposition in the muscles. Instead, it seems to be determined by lipid availability and insulin sensitivity. These results add to the evidence suggesting that mitochondrial function is disrupted in type 2 diabetes and in insulin resistance, but also suggest that there may be abnormalities in glycogen synthesis. More work is needed to determine the exact nature of these abnormalities and to discover whether they can be modulated to prevent the development of insulin resistance and type 2 diabetes. For now, though, these findings re-emphasize the need for people with type 2 diabetes or insulin resistance to reduce their food intake to compensate for the reduced energy needs of their muscles and to exercise to increase the ATP-generating capacity of their muscles. Both lifestyle changes could improve their overall health and life expectancy.
Additional Information.
Please access these Web sites via the online version of this summary at
The MedlinePlus encyclopedia has pages on diabetes
The US National Institute of Diabetes and Digestive and Kidney Diseases provides information for patients on diabetes and insulin resistance
The US Centers for Disease Control and Prevention has information on diabetes for patients and professionals
American Diabetes Association provides information for patients on diabetes and insulin resistance
Diabetes UK has information for patients and professionals on diabetes
PMCID: PMC1858707  PMID: 17472434
11.  Role of mitochondrial-derived oxidants in renal tubular cell cold storage injury 
Free radical biology & medicine  2010;49(8):1273-1282.
Cold storage (CS) is regarded as a necessary procedure during donation of a deceased donor kidney that helps to optimize organ viability. Increased oxidant generation during both CS as well as during the reperfusion (or rewarming/CS.RW) phase have been suggested to be a major contributor to renal injury; although the source and/or biochemical pathways involved with oxidant production remain unclear. The purpose of this study was to determine if renal tubular mitochondrial superoxide is capable of inducing oxidant production and mitochondrial damage in response to a CS.RW insult. To test the role of mitochondrial superoxide in CS.RW injury, we used rat renal proximal tubular (NRK) cells overexpressing manganese superoxide dismutase (MnSOD), the major mitochondrial antioxidant. Oxidant production, mitochondrial membrane potential, respiratory complex function, and cell death were all altered following exposure of NRK cells to CS.RW. MnSOD overexpression or inhibition of nitric oxide synthase (NOS) provided significant protection against oxidant generation, respiratory complex inactivation, and cell death. These findings implicate mitochondrial superoxide, nitric oxide, and their reaction product, peroxynitrite, as key signaling molecules involved in CS.RW injury of renal tubular cells, and suggest that therapeutic inhibition of these pathways may protect the donor kidney.
PMCID: PMC3688469  PMID: 20659553
Cold preservation; cold storage; superoxide; nitric oxide; peroxynitrite; mitochondria; respiratory complexes
12.  Interaction of TNF with Angiotensin II Contributes to Mitochondrial Oxidative Stress and Cardiac Damage in Rats 
PLoS ONE  2012;7(10):e46568.
Recent evidence suggests that tumor necrosis factor alpha (TNF) and angiotensin II (ANGII) induce oxidative stress contribute to cardiovascular disease progression. Here, we examined whether an interaction between TNF and ANGII contributes to altered cardiac mitochondrial biogenesis and ATP production to cause cardiac damage in rats. Rats received intraperitoneal injections of TNF (30 µg/kg), TNF + losartan (LOS, 1 mg/kg), or vehicle for 5 days. Left ventricular (LV) function was measured using echocardiography. Rats were sacrificed and LV tissues removed for gene expression, electron paramagnetic resonance and mitochondrial assays. TNF administration significantly increased expression of the NADPH oxidase subunit, gp91phox, and the angiotensin type 1 receptor (AT-1R) and decreased eNOS in the LV of rats. Rats that received TNF only had increased production rates of superoxide, peroxynitrite and total reactive oxygen species (ROS) in the cytosol and increased production rates of superoxide and hydrogen peroxide in mitochondria. Decreased activities of mitochondrial complexes I, II, and III and mitochondrial genes were observed in rats given TNF. In addition, TNF administration also resulted in a decrease in fractional shortening and an increase in Tei index, suggesting diastolic dysfunction. TNF administration with concomitant LOS treatment attenuated mitochondrial damage, restored cardiac function, and decreased expression of AT1-R and NADPH oxidase subunits. Mitochondrial biogenesis and function is severely impaired by TNF as evidenced by downregulation of mitochondrial genes and increased free radical production, and may contribute to cardiac damage. These defects are independent of the downregulation of mitochondrial gene expression, suggesting novel mechanisms for mitochondrial dysfunction in rats given TNF.
PMCID: PMC3467241  PMID: 23056347
13.  Postconditioning ameliorates mitochondrial DNA damage and deletion after renal ischemic injury 
Nephrology Dialysis Transplantation  2013;28(11):2754-2765.
Reactive oxygen species (ROS) play a major role in causing injury in ischemia-reperfusion (I/R). Mitochondrial DNA (mtDNA) is particularly vulnerable to oxidative damage. We propose that increased mitochondrial ROS production is likely to damage mtDNA, causing further injury to mitochondria, and postconditioning (POC) may ameliorate kidney I/R injury by mitigating mitochondrial damage.
Rats were divided into seven groups: (i) Sham-operated animals with an unconstricted renal artery; (ii) Sham + 5-hydroxydecanoate (5-HD); (iii) I/R; (iv) I/R + 5-HD; (v) POC; (vi) Sham POC and (vii) POC + 5-HD. Renal injury, oxidative DNA damage, mtDNA deletions, mitochondrial membrane potential (MMP) and expression of the ATP-sensitive K+ (KATP) channel subunit Kir6.2 were evaluated.
Following 1 h of reperfusion, animals in the I/R group exhibited increased ROS, oxidative mtDNA damage shown by 8-hydroxy-2-deoxyguanosine staining, multiple base pair deletions and decreased MMP. However, POC rats exhibited less ROS, oxidative mtDNA damage and deletions and improved MMP. After 2 days of reperfusion, serum creatinine was elevated in I/R rats and the number of TdT-mediated dUTP nick-end labeled-positive tubular cells was increased and was associated with activation of caspase-3. Therefore, POC prevented the deleterious effects of I/R injury. Furthermore, the expression of mitochondrial Kir6.2 was widely distributed in renal tubular epithelial cells in Sham and POC rats and was lower in I/R rats. All of the protective effects of POC were reversed by the K+ (KATP) channel blocker 5-HD.
POC may attenuate I/R injury by reducing mitochondrial oxidative stress and mtDNA damage and sustaining MMP.
PMCID: PMC3811057  PMID: 24021677
mitochondrial DNA; mitochondrial K+ (KATP) channel; postconditioning; reactive oxygen species; renal protection
14.  Loss of Prohibitin Membrane Scaffolds Impairs Mitochondrial Architecture and Leads to Tau Hyperphosphorylation and Neurodegeneration 
PLoS Genetics  2012;8(11):e1003021.
Fusion and fission of mitochondria maintain the functional integrity of mitochondria and protect against neurodegeneration, but how mitochondrial dysfunctions trigger neuronal loss remains ill-defined. Prohibitins form large ring complexes in the inner membrane that are composed of PHB1 and PHB2 subunits and are thought to function as membrane scaffolds. In Caenorhabditis elegans, prohibitin genes affect aging by moderating fat metabolism and energy production. Knockdown experiments in mammalian cells link the function of prohibitins to membrane fusion, as they were found to stabilize the dynamin-like GTPase OPA1 (optic atrophy 1), which mediates mitochondrial inner membrane fusion and cristae morphogenesis. Mutations in OPA1 are associated with dominant optic atrophy characterized by the progressive loss of retinal ganglion cells, highlighting the importance of OPA1 function in neurons. Here, we show that neuron-specific inactivation of Phb2 in the mouse forebrain causes extensive neurodegeneration associated with behavioral impairments and cognitive deficiencies. We observe early onset tau hyperphosphorylation and filament formation in the hippocampus, demonstrating a direct link between mitochondrial defects and tau pathology. Loss of PHB2 impairs the stability of OPA1, affects mitochondrial ultrastructure, and induces the perinuclear clustering of mitochondria in hippocampal neurons. A destabilization of the mitochondrial genome and respiratory deficiencies manifest in aged neurons only, while the appearance of mitochondrial morphology defects correlates with tau hyperphosphorylation in the absence of PHB2. These results establish an essential role of prohibitin complexes for neuronal survival in vivo and demonstrate that OPA1 stability, mitochondrial fusion, and the maintenance of the mitochondrial genome in neurons depend on these scaffolding proteins. Moreover, our findings establish prohibitin-deficient mice as a novel genetic model for tau pathologies caused by a dysfunction of mitochondria and raise the possibility that tau pathologies are associated with other neurodegenerative disorders caused by deficiencies in mitochondrial dynamics.
Author Summary
Mitochondria are the major site of cellular ATP production and are essential for the survival of neurons. High ATP levels are required to sustain neuronal activities and axonal transport of macromolecules and organelles. The functional integrity of mitochondria depends on fusion and fission of their membranes, which maintain a dynamic mitochondrial network in cells. Interference with these processes causes neurodegenerative disorders that are characterized by axonal degeneration of distinct neurons. However, how an impaired fusion affects mitochondrial activities and neuronal survival remains poorly understood. Here, we have addressed this question by analyzing forebrain-specific knockout mice lacking prohibitins. Prohibitin complexes form membrane scaffolds in the inner membrane, which we now show are required for mitochondrial fusion, ultrastructure, and genome stability in neurons. Loss of prohibitins triggers extensive neurodegeneration associated with behavioral and cognitive deficiencies. Surprisingly, we observe hyperphosphorylation and filament formation of the microtubule-associated protein tau, reminiscent of a large group of neurodegenerative disorders termed tauopathies. Our findings, therefore, not only provide new insight into how defects in mitochondrial fusion affect neuronal survival, but also point to an intimate relationship of deficiencies in mitochondrial dynamics and tau pathologies.
PMCID: PMC3493444  PMID: 23144624
15.  Calorie Restriction Increases Muscle Mitochondrial Biogenesis in Healthy Humans 
PLoS Medicine  2007;4(3):e76.
Caloric restriction without malnutrition extends life span in a range of organisms including insects and mammals and lowers free radical production by the mitochondria. However, the mechanism responsible for this adaptation are poorly understood.
Methods and Findings
The current study was undertaken to examine muscle mitochondrial bioenergetics in response to caloric restriction alone or in combination with exercise in 36 young (36.8 ± 1.0 y), overweight (body mass index, 27.8 ± 0.7 kg/m2) individuals randomized into one of three groups for a 6-mo intervention: Control, 100% of energy requirements; CR, 25% caloric restriction; and CREX, caloric restriction with exercise (CREX), 12.5% CR + 12.5% increased energy expenditure (EE). In the controls, 24-h EE was unchanged, but in CR and CREX it was significantly reduced from baseline even after adjustment for the loss of metabolic mass (CR, −135 ± 42 kcal/d, p = 0.002 and CREX, −117 ± 52 kcal/d, p = 0.008). Participants in the CR and CREX groups had increased expression of genes encoding proteins involved in mitochondrial function such as PPARGC1A, TFAM, eNOS, SIRT1, and PARL (all, p < 0.05). In parallel, mitochondrial DNA content increased by 35% ± 5% in the CR group (p = 0.005) and 21% ± 4% in the CREX group (p < 0.004), with no change in the control group (2% ± 2%). However, the activity of key mitochondrial enzymes of the TCA (tricarboxylic acid) cycle (citrate synthase), beta-oxidation (beta-hydroxyacyl-CoA dehydrogenase), and electron transport chain (cytochrome C oxidase II) was unchanged. DNA damage was reduced from baseline in the CR (−0.56 ± 0.11 arbitrary units, p = 0.003) and CREX (−0.45 ± 0.12 arbitrary units, p = 0.011), but not in the controls. In primary cultures of human myotubes, a nitric oxide donor (mimicking eNOS signaling) induced mitochondrial biogenesis but failed to induce SIRT1 protein expression, suggesting that additional factors may regulate SIRT1 content during CR.
The observed increase in muscle mitochondrial DNA in association with a decrease in whole body oxygen consumption and DNA damage suggests that caloric restriction improves mitochondrial function in young non-obese adults.
Anthony Civitarese and colleagues observed an increase in mitochondrial DNA in muscle and a decrease in whole body oxygen consumption in healthy adults who underwent caloric restriction.
Editors' Summary
Life expectancy (the average life span) greatly increased during the 20th century in most countries, largely due to improved hygiene, nutrition, and health care. One possible approach to further increase human life span is “caloric restriction.” A calorie-restricted diet provides all the nutrients necessary for a healthy life but minimizes the energy (calories) supplied in the diet. This type of diet increases the life span of mice and delays the onset of age-related chronic diseases such as heart disease and stroke. There are also hints that people who eat a calorie-restricted diet might live longer than those who overeat. People living in Okinawa, Japan, have a lower energy intake than the rest of the Japanese population and an extremely long life span. In addition, calorie-restricted diets beneficially affect several biomarkers of aging, including decreased insulin sensitivity (a precursor to diabetes). But how might caloric restriction slow aging? A major factor in the age-related decline of bodily functions is the accumulation of “oxidative damage” in the body's proteins, fats, and DNA. Oxidants—in particular, chemicals called “free radicals”—are produced when food is converted to energy by cellular structures called mitochondria. One theory for how caloric restriction slows aging is that it lowers free-radical production by inducing the formation of efficient mitochondria.
Why Was This Study Done?
Despite hints that caloric restriction might have similar effects in people as in rodents, there have been few well-controlled studies on the effect of good quality calorie-reduced diets in healthy people. It is also unknown whether an energy deficit produced by increasing physical activity while eating the same amount of food has the same effects as caloric restriction. Finally, it is unclear how caloric restriction alters mitochondrial function. The Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE) organization is investigating the effect of caloric restriction interventions on physiology, body composition, and risk factors for age-related diseases. In this study, the researchers have tested the hypothesis that short-term caloric deficit (with or without exercise) increases the efficiency of mitochondria in human muscle.
What Did the Researchers Do and Find?
The researchers enrolled 36 healthy overweight but non-obese young people into their study. One-third of them received 100% of their energy requirements in their diet; the caloric restriction (CR) group had their calorie intake reduced by 25%; and the caloric restriction plus exercise (CREX) group had their calorie intake reduced by 12.5% and their energy expenditure increased by 12.5%. The researchers found that a 25% caloric deficit for six months, achieved by diet alone or by diet plus exercise, decreased 24-hour whole body energy expenditure (i.e., overall calories burned for body function), which suggests improved mitochondrial function. Their analysis of genes involved in mitochondria formation indicated that CR and CREX both increased the number of mitochondria in skeletal muscle. Both interventions also reduced the amount of DNA damage—a marker of oxidative stress—in the participants' muscles.
What Do These Findings Mean?
These results indicate that a short-term caloric deficit, whether achieved by diet or by diet plus exercise, induces the formation of “efficient mitochondria” in people just as in rodents. The induction of these efficient mitochondria in turn reduces oxidative damage in skeletal muscles. Consequently, this adaptive response to caloric restriction might have the potential to slow aging and increase longevity in humans as in other animals. However, this six-month study obviously provides no direct evidence for this, and, by analogy with studies in rodents, an increase in longevity might require lifelong caloric restriction. The results here suggest that even short-term caloric restriction can produce beneficial physiological changes, but more research is necessary before it becomes clear whether caloric restriction should be recommended to healthy individuals.
Additional Information.
Please access these Web sites via the online version of this summary at
The CALERIE (Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy) Web site contains information on the study and how to participate
American Federation for Aging Research includes information on aging with pages on the biology of aging and on caloric restriction
The Okinawa Centenarian Study is a population-based study on long-lived elderly people in Okinawa, Japan
US Government information on nutrition
MedlinePlus encyclopedia pages on diet and calories
The Calorie Restriction Society, a nonprofit organization that provides information on life span and caloric restriction
Wikipedia pages on calorie restriction and on mitochondria (note: Wikipedia is an online encyclopedia that anyone can edit)
PMCID: PMC1808482  PMID: 17341128
16.  Oxidation of Fatty Acids Is the Source of Increased Mitochondrial Reactive Oxygen Species Production in Kidney Cortical Tubules in Early Diabetes 
Diabetes  2012;61(8):2074-2083.
Mitochondrial reactive oxygen species (ROS) cause kidney damage in diabetes. We investigated the source and site of ROS production by kidney cortical tubule mitochondria in streptozotocin-induced type 1 diabetes in rats. In diabetic mitochondria, the increased amounts and activities of selective fatty acid oxidation enzymes is associated with increased oxidative phosphorylation and net ROS production with fatty acid substrates (by 40% and 30%, respectively), whereas pyruvate oxidation is decreased and pyruvate-supported ROS production is unchanged. Oxidation of substrates that donate electrons at specific sites in the electron transport chain (ETC) is unchanged. The increased maximal production of ROS with fatty acid oxidation is not affected by limiting the electron flow from complex I into complex III. The maximal capacity of the ubiquinol oxidation site in complex III in generating ROS does not differ between the control and diabetic mitochondria. In conclusion, the mitochondrial ETC is neither the target nor the site of ROS production in kidney tubule mitochondria in short-term diabetes. Mitochondrial fatty acid oxidation is the source of the increased net ROS production, and the site of electron leakage is located proximal to coenzyme Q at the electron transfer flavoprotein that shuttles electrons from acyl-CoA dehydrogenases to coenzyme Q.
PMCID: PMC3402323  PMID: 22586586
17.  Mitochondrial impairment in the five-sixth nephrectomy model of chronic renal failure: proteomic approach 
BMC Nephrology  2013;14:209.
Kidney injuries provoke considerable adjustment of renal physiology, metabolism, and architecture to nephron loss. Despite remarkable regenerative capacity of the renal tissue, these adaptations often lead to tubular atrophy, interstial and glomerular scaring, and development of chronic kidney disease. The therapeutic strategies for prevention of the transition from acute kidney damage to a chronic condition are limited. The purpose of this study was to elucidate large-scale alterations of the renal cortex proteome in partially nephrecromized rats at an early stage of chronic kidney disease.
Sprague–Dawley 5/6 nephrectomized rats and sham-operated controls were sacrificed at day 28 post-surgery. To identify proteins with notable alteration of expression we applied a 2D-proteomics approach followed by mass-spectrometry. Altered expression of identified and related proteins was validated by Western blotting and immunohistochemistry.
Proteins with increased levels of expression after partial nephrectomy were albumin and vimentin. Proteins with decreased expression were metabolic or mitochondrial. Western blotting analysis showed that the renal cortex of nephrectomized rats expressed decreased amount (by ~50%) of proteins from the inner mitochondrial compartment - the beta-oxidation enzyme MCAD, the structural protein GRP-75, and the oxidative phosphorylation protein COXIV. Mitochondrial DNA copy number was decreased by 30% in the cortex of PNx rats. In contrast, the levels of an outer mitochondrial membrane protein, VDAC1, remained unchanged in remnant kidneys. Mitochondrial biogenesis was not altered after renal mass ablation as was indicated by unchanged levels of PPARγ and PGC1α proteins. Autophagy related protein Beclin 1 was up-regulated in remnant kidneys, however the level of LC3-II protein was unchanged. BNIP3 protein, which can initiate both mitochondrial autophagy and cell death, was up-regulated considerably in kidneys of nephrecomized rats.
The results of the study demonstrated that notable alterations in the renal cortex of 5/6 nephrectomized rats were associated with mitochondrial damage, however mitochondrial biogenesis and autophagy for replacement of damaged mitochondria were not stimulated. Accumulation of dysfunctional mitochondria after 5/6 nephrectomy may cause multiple adjustments in biosynthetic pathways, energy production, ROS signaling, and activation of pro-cell death regulatory pathways thus contributing to the development of chronic kidney disease.
PMCID: PMC3851543  PMID: 24090408
5/6 nephrectomy; Mitochondria; Autophagy; BNIP3; Chronic kidney failure
18.  Mitochondrial abnormalities in temporal lobe of autistic brain 
Neurobiology of disease  2013;54:349-361.
Autism spectrum disorder (ASD) consists of a group of complex developmental disabilities characterized by impaired social interactions, deficits in communication and repetitive behavior. Multiple lines of evidence implicate mitochondrial dysfunction in ASD. In postmortem BA21 temporal cortex, a region that exhibits synaptic pathology in ASD, we found that compared to controls, ASD patients exhibited altered protein levels of mitochondria respiratory chain protein complexes, decreased Complex I and IV activities, decreased mitochondrial antioxidant enzyme SOD2, and greater oxidative DNA damage. Mitochondrial membrane mass was higher in ASD brain, as indicated by higher protein levels of mitochondrial membrane proteins Tom20, Tim23 and porin. No differences were observed in either mitochondrial DNA or levels of the mitochondrial gene transcription factor TFAM or cofactor PGC1α, indicating that a mechanism other than alterations in mitochondrial genome or mitochondrial biogenesis underlies these mitochondrial abnormalities. We further identified higher levels of the mitochondrial fission proteins (Fis1 and Drp1) and decreased levels of the fusion proteins (Mfn1, Mfn2 and Opa1) in ASD patients, indicating altered mitochondrial dynamics in ASD brain. Many of these changes were evident in cortical pyramidal neurons, and were observed in ASD children but were less pronounced or absent in adult patients. Together, these findings provide evidence that mitochondrial function and intracellular redox status are compromised in pyramidal neurons in ASD brain and that mitochondrial dysfunction occurs during early childhood when ASD symptoms appear.
PMCID: PMC3959772  PMID: 23333625
Autism; Mitochondria; Temporal cortex; Development
19.  Akt activation improves oxidative phosphorylation in renal proximal tubular cells following nephrotoxicant injury 
Previously, we showed that protein kinase B (Akt) activation increases intracellular ATP levels and decreases necrosis in renal proximal tubular cells (RPTC) injured by the nephrotoxicant S-(1, 2-dichlorovinyl)-L-cysteine (DCVC) (Shaik ZP, Fifer EK, Nowak G. Am J Physiol Renal Physiol 292: F292–F303, 2007). This study examined the role of Akt in improving mitochondrial function in DCVC-injured RPTC. Our data show a novel observation that phosphorylated (active) Akt is localized in mitochondria of noninjured RPTC, both in mitoplasts and the mitochondrial outer membrane. Mitochondrial levels of active Akt decreased in nephrotoxicant-injured RPTC, and this decrease was associated with mitochondrial dysfunction. DCVC decreased basal, uncoupled, and state 3 respirations; ATP production; activities of complexes I, II, and III; the mitochondrial membrane potential (ΔΨm); and F0F1-ATPase activity. Expressing constitutively active Akt in DCVC-injured RPTC increased the levels of phosphorylated Akt in mitochondria, reduced the decreases in basal and uncoupled respirations, increased complex I-coupled state 3 respiration and ATP production, enhanced activities of complex I, complex III, and F0F1-ATPase, and improved ΔΨm. In contrast, inhibiting Akt activation by expressing dominant negative (inactive) Akt or using 20 μM LY294002 exacerbated decreases in electron transport rate, state 3 respiration, ATP production, ΔΨm, and activities of complex I, complex III, and F0F1-ATPase. In conclusion, our data show that Akt activation promotes mitochondrial respiration and ATP production in toxicant-injured RPTC by 1) improving integrity of the respiratory chain and maintaining activities of complex I and complex III, 2) reducing decreases in ΔΨm, and 3) restoring F0F1-ATPase activity.
PMCID: PMC2556301  PMID: 18077599
mitochondria; respiratory complexes; ATP; S-(1,2-dichlorovinyl)-L-cysteine; mitochondrial membrane potential
Circulation  2009;119(9):1272-1283.
Diabetes-associated cardiac dysfunction is associated with mitochondrial dysfunction and oxidative stress, which may contribute to LV dysfunction. The contribution of altered myocardial insulin action, independently of associated changes in systemic metabolism is incompletely understood. The present study tested the hypothesis that perinatal loss of insulin signaling in the heart impairs mitochondrial function.
Methods and Results
In 8-week-old mice with cardiomyocyte deletion of insulin receptors (CIRKO), inotropic reserves were reduced and mitochondria manifested respiratory defects for pyruvate that was associated with proportionate reductions in catalytic subunits of pyruvate dehydrogenase. Progressive age-dependent defects in oxygen consumption and ATP synthesis with the substrates glutamate and the fatty acid derivative palmitoyl carnitine (PC) were observed. Mitochondria were also uncoupled when exposed to PC due in part to increased ROS production and oxidative stress. Although proteomic and genomic approaches revealed a reduction in subsets of genes and proteins related to oxidative phosphorylation, no reduction in maximal activities of mitochondrial electron transport chain complexes were found. However, a disproportionate reduction in TCA cycle and FA oxidation proteins in mitochondria, suggest that defects in FA and pyruvate metabolism and TCA flux may explain the mitochondrial dysfunction observed.
Impaired myocardial insulin signaling promotes oxidative stress and mitochondrial uncoupling, which together with reduced TCA and FA oxidative capacity impairs mitochondrial energetics. This study identifies specific contributions of impaired insulin action to mitochondrial dysfunction in the heart.
PMCID: PMC2739097  PMID: 19237663
Metabolism; Mitochondria; Oxidative Stress; Insulin
21.  Foxo1 integrates insulin signaling with mitochondrial function in the liver 
Nature medicine  2009;15(11):1307-1311.
Type 2 diabetes is a complex disease that is marked by the dysfunction of glucose and lipid metabolism. Hepatic insulin resistance is especially pathogenic in type 2 diabetes, as it dysregulates fasting and postprandial glucose tolerance and promotes systemic dyslipidemia and nonalcoholic fatty liver disease1,2. Mitochondrial dysfunction is closely associated with insulin resistance and might contribute to the progression of diabetes3,4. Here we used previously generated mice5 with hepatic insulin resistance owing to the deletion of the genes encoding insulin receptor substrate-1 (Irs-1) and Irs-2 (referred to here as double-knockout (DKO) mice) to establish the molecular link between dysregulated insulin action and mitochondrial function. The expression of several forkhead box O1 (Foxo1) target genes increased in the DKO liver, including heme oxygenase-1 (Hmox1), which disrupts complex III and IV of the respiratory chain and lowers the NAD+/NADH ratio and ATP production. Although peroxisome proliferator–activated receptor-γ coactivator-1α (Ppargc-1α) was also upregulated in DKO liver, it was acetylated and failed to promote compensatory mitochondrial biogenesis or function. Deletion of hepatic Foxo1 in DKO liver normalized the expression of Hmox1 and the NAD+/NADH ratio, reduced Ppargc-1α acetylation and restored mitochondrial oxidative metabolism and biogenesis. Thus, Foxo1 integrates insulin signaling with mitochondrial function, and inhibition of Foxo1 can improve hepatic metabolism during insulin resistance and the metabolic syndrome.
PMCID: PMC3994712  PMID: 19838201
22.  Cardiolipin as an oxidative target in cardiac mitochondria in the aged rat 
Biochimica et biophysica acta  2008;1777(7-8):1020-1027.
The aged heart sustains greater injury during ischemia (ISC) and reperfusion (REP) compared to the adult heart. In the Fischer 344 (F344) rat, aging decreases oxidative phosphorylation and complex III activity increasing the production of reactive oxygen species in interfibrillar mitochondria (IFM) located among the myofibrils. In the isolated, perfused 24 month old elderly F344 rat heart 25 min. of stop-flow ISC causes additional damage to complex III, further decreasing the rate of OXPHOS. We did not observe further progressive mitochondrial damage during REP. We next asked if ISC or REP increased oxidative damage within mitochondria of the aged heart. Cardiolipin (CL) is a phospholipid unique to mitochondria consisting predominantly of four linoleic acid residues (C18:2). Following ISC and REP in the aged heart, there is a new CL species containing three oxygen atoms added to one linoleic residue. ISC alone was sufficient to generate this new oxidized molecular species of CL. Based upon oxidative damage to CL, complex III activity, and oxidative phosphorylation, mitochondrial damage thus occurs in the aged heart mainly during ISC, rather than during REP. Mitochondrial damage during ischemia sets the stage for mitochondrial-driven cardiomyocyte injury during reperfusion in the aged heart.
PMCID: PMC2527751  PMID: 18515061
ischemia; reperfusion; heart; ubiquinone:cytochrome c reductase (complex III); cardiolipin; mitochondria; aging
23.  Glucose metabolism determines resistance of cancer cells to bioenergetic crisis after cytochrome-c release 
How can cancer cells survive the consequences of cyt-c release? Huber et al provide a quantitative analysis of the protective role of enhanced glucose utilization in cancer cells and investigate the impact of cell-to-cell heterogeneity in mitochondrial bioenergetics.
How can cancer cells survive the consequences of cyt-c release? Huber et al provide a quantitative analysis of the protective role of enhanced glucose utilization in cancer cells and investigate the impact of cell-to-cell heterogeneity in mitochondrial bioenergetics.
We combine ordinary differential equations based computational modelling, single-cell microscopy and in biochemistry assays to provide the first integrated system study to portray the bioenergetic crisis in cell populations subsequent to cytochrome-c (cyt-c) release; a hallmark during chemotherapeutically induced cell death.We experimentally identified a cell-to-cell heterogeneity in the dynamics of the ATP synthase subsequent to cyt-c release, which the model explained by variations in (i) accessible cytochrome-c after release and (ii) the cell's glycolytic capacity.Our model predicted, and single-cell imaging confirmed, that high (increasing) glucose in media was able to sustain (repolarise) ΔΨm in HeLa cervical cancer and MCF-7 breast cancer cells, suggesting that they might recover from bioenergetic crisis upon elevation of glucose. However, no significant repolarisation was found in non-transformed human epithelial CRL-1807 cells. Therefore, this mechanism may provide cancer cells with a competitive advantage to evade cell death induced by anticancer drugs or other stress conditions when compared with non-transformed cells.
How can cells cope with a bioenergetic crisis? In particular, how can cancer cells survive the bioenergetic consequences of cyt-c release that are often induced by chemotherapeutic agents, and that lead to depolarisation of the mitochondrial membrane potential ΔΨm, result in loss of ionic homeostasis and induce cell death? Is there an inherent population heterogeneity that can lead to a non-synchronous response to above cell death stimuli, thereby aggravating treatment and contributing to clinical relapse? Do cancer cells have a competitive advantage to non-transformed cells in averting such a bioenergetic crisis after cyt-c release. We have investigated these questions in our study, which we regard as the first rigorous system study of single-cell bioenergetics subsequent to cyt-c release and one that bridges single-cell microscopy, in vitro analysis with ordinary differential equations (ODE) based modelling of bioenergetics pathways in the mitochondria and the cytosol.
Several laboratories have so far investigated cyt-c release experimentally (Slee et al, 1999; Atlante et al, 2000; Goldstein et al, 2000; Luetjens et al, 2001; Plas et al, 2001; Waterhouse et al, 2001; Ricci et al, 2003; Colell et al, 2007; Dussmann et al, 2003a, 2003b) and isolated mitochondria (Chinopoulos and Adam-Vizi, 2009; Kushnareva et al, 2002; Kushnareva et al, 2001). However, the cause and mechanistic of several key findings remain elusive and need a system level understanding of post-cyt-c release bioenergetic and its potential cross-talk to apoptosis signalling.
Ricci et al (2003) have identified that the cell death-inducing protease caspase-3, which get activated upon cyt-c release, can further impair mitochondrial function by cleaving and deactivating respiratory complexes I and II. We addressed the question of how such a mechanism could potentiate a bioenergetic crisis. To do so, we first assembled our ODE-based model by integrating approaches from metabolic modelling (Beard, 2005; Beard and Qian, 2007; Dash and Beard, 2008) and calibrated the model to literature data that describe bioenergetic state variables (mitochondrial membrane potential ΔΨm, mitochondrial transmembrane membrane ΔpH, respiration ratio between respiring and resting state mitochondria). By remodelling cyt-c release as observed experimentally and integrating it into our model as input, the single-cell model was able to correctly describe the kinetics of ΔΨm depolarisation and allowed its quantification. Moreover, it suggested that an additional complex I/II cleavage may further impair respiration and depolarise ΔΨm by approximately further 10%.
It was further reported that ATP synthase reversal, a change of direction in the ATP-producing enzyme that leads to pumping of protons from the mitochondrial matrix into the intramembrane space, can stabilise ΔΨm. By a remnant ΔΨm polarisation, cycling of Na+, Ca2+, K+, Cl− ions and protons across the mitochondrial and the plasma membranes is preserved, and ionic homeostasis can be maintained (Nicholls and Budd, 2000; Dussmann et al, 2003a; Chinopoulos and Adam-Vizi, 2009; Garedew et al, 2010). Our model confirmed that ATP synthase activity was reversed 10 min after onset of cyt-c release, predicted that ATP synthase reversal consumed ATP and that glycolysis was required and sufficient to provide the necessary ATP to sustain this reversal. Reverting back to our single-cell HeLa system, we confirmed the presence of ATP synthase reversal. However, reversal was only present in 20% of cells, 65% of cells showed no detectable reaction and even 15% maintained ATP synthase in forward direction.
To explain this cell-to-cell heterogeneity, we modelled that a cyt-c fraction remains accessible by respiratory complexes and for respiration subsequent to release, which we denoted as ‘respiration-accessible cyt-c'. Our model suggested that small variations in such levels can sufficiently explain the experimentally detected population heterogeneity in the direction and amount of ATP synthase proton flux (Figure 6AB). Variations in respiration-accessible cyt-c may arise from incomplete mitochondrial release. Such incomplete release has been associated with failure of cristae remodelling in the absence of the BH3-only family member BID or the intramitochondrial protein OPA1 (Frezza et al, 2006; Scorrano et al, 2002).
As the model identified glycolysis as necessary for sustaining ATP synthase reversal, we next investigated cells cultured in a medium that contained Na-pyruvate instead of glucose and which consequently were not able to perform glycolysis. We found that such cell populations had a significantly higher fraction of cells that maintained ATP synthase in forward mode consistent with our model predictions. The common influence of respiration-accessible cyt-c and the cell's ability to perform glycolysis is summarised in Figure 7A.
Because glycolysis was able to influence ATP synthase proton pumping, which can affect ΔΨm levels, we investigating the effect of higher glucose in single cells. Our model predicted that an increase in glucose utilisation that generates higher cytosolic ATP levels is able to stabilise and repolarise ΔΨm and after release. This mechanism is independent from ATP synthase direction. For cells that have ATP synthase in reverse mode, elevated ATP leads to increased proton efflux from the matrix, cell populations that maintain ATP synthase in forward mode achieve a similar result through a reduction of proton influx at increased ATP. In both cases, the proton gradient along the inner membrane, and therefore ΔΨm, is increased as a consequence of ATP elevation. The mechanism is depicted in Figure 7B.
We confirmed our model predictions that high glucose was able to stabilise (cells maintained in high-glucose media) and/or to repolarise (cells where glucose was added subsequent to release) ΔΨm (Figure 6). While a similar recovery was also present in MCF7 breast cancer cell lines, no significant effect of elevated glucose was found in non-transformed CRL-1807 cells. In conjunction with an impairment of caspase-dependent cell death observed in many human cancers, cancer cells may use this mechanism, and this mechanism may provide cancer cells with a competitive advantage to evade cell death induced by anticancer drugs or other stress conditions when compared with non-transformed cells.
Many anticancer drugs activate caspases via the mitochondrial apoptosis pathway. Activation of this pathway triggers a concomitant bioenergetic crisis caused by the release of cytochrome-c (cyt-c). Cancer cells are able to evade these processes by altering metabolic and caspase activation pathways. In this study, we provide the first integrated system study of mitochondrial bioenergetics and apoptosis signalling and examine the role of mitochondrial cyt-c release in these events. In accordance with single-cell experiments, our model showed that loss of cyt-c decreased mitochondrial respiration by 95% and depolarised mitochondrial membrane potential ΔΨm from −142 to −88 mV, with active caspase-3 potentiating this decrease. ATP synthase was reversed under such conditions, consuming ATP and stabilising ΔΨm. However, the direction and level of ATP synthase activity showed significant heterogeneity in individual cancer cells, which the model explained by variations in (i) accessible cyt-c after release and (ii) the cell's glycolytic capacity. Our results provide a quantitative and mechanistic explanation for the protective role of enhanced glucose utilisation for cancer cells to avert the otherwise lethal bioenergetic crisis associated with apoptosis initiation.
PMCID: PMC3094064  PMID: 21364572
apoptosis; bioenergetics; cancer; ODE; single-cell imaging
24.  Mitochondrial Respiratory Chain Dysfunction in Dorsal Root Ganglia of Streptozotocin-Induced Diabetic Rats and Its Correction by Insulin Treatment 
Diabetes  2010;59(4):1082-1091.
Impairments in mitochondrial physiology may play a role in diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in sensory neurons is due to abnormal mitochondrial respiratory function.
Rates of oxygen consumption were measured in mitochondria from dorsal root ganglia (DRG) of 12- to- 22-week streptozotocin (STZ)-induced diabetic rats, diabetic rats treated with insulin, and age-matched controls. Activities and expression of components of mitochondrial complexes and reactive oxygen species (ROS) were analyzed.
Rates of coupled respiration with pyruvate + malate (P + M) and with ascorbate + TMPD (Asc + TMPD) in DRG were unchanged after 12 weeks of diabetes. By 22 weeks of diabetes, respiration with P + M was significantly decreased by 31–44% and with Asc + TMPD by 29–39% compared with control. Attenuated mitochondrial respiratory activity of STZ-diabetic rats was significantly improved by insulin that did not correct other indices of diabetes. Activities of mitochondrial complexes I and IV and the Krebs cycle enzyme, citrate synthase, were decreased in mitochondria from DRG of 22-week STZ-diabetic rats compared with control. ROS levels in perikarya of DRG neurons were not altered by diabetes, but ROS generation from mitochondria treated with antimycin A was diminished compared with control. Reduced mitochondrial respiratory function was associated with downregulation of expression of mitochondrial proteins.
Mitochondrial dysfunction in sensory neurons from type 1 diabetic rats is associated with impaired rates of respiratory activity and occurs without a significant rise in perikaryal ROS.
PMCID: PMC2844817  PMID: 20103706
25.  Mitochondrial Reactive Oxygen Species Production in Excitable Cells: Modulators of Mitochondrial and Cell Function 
Antioxidants & Redox Signaling  2009;11(6):1373-1414.
The mitochondrion is a major source of reactive oxygen species (ROS). Superoxide (O2•−) is generated under specific bioenergetic conditions at several sites within the electron-transport system; most is converted to H2O2 inside and outside the mitochondrial matrix by superoxide dismutases. H2O2 is a major chemical messenger that, in low amounts and with its products, physiologically modulates cell function. The redox state and ROS scavengers largely control the emission (generation scavenging) of O2•−. Cell ischemia, hypoxia, or toxins can result in excess O2•− production when the redox state is altered and the ROS scavenger systems are overwhelmed. Too much H2O2 can combine with Fe2+ complexes to form reactive ferryl species (e.g., Fe(IV) = O•). In the presence of nitric oxide (NO•), O2•− forms the reactant peroxynitrite (ONOO−), and ONOOH-induced nitrosylation of proteins, DNA, and lipids can modify their structure and function. An initial increase in ROS can cause an even greater increase in ROS and allow excess mitochondrial Ca2+ entry, both of which are factors that induce cell apoptosis and necrosis. Approaches to reduce excess O2•− emission include selectively boosting the antioxidant capacity, uncoupling of oxidative phosphorylation to reduce generation of O2•− by inducing proton leak, and reversibly inhibiting electron transport. Mitochondrial cation channels and exchangers function to maintain matrix homeostasis and likely play a role in modulating mitochondrial function, in part by regulating O2•− generation. Cell-signaling pathways induced physiologically by ROS include effects on thiol groups and disulfide linkages to modify posttranslationally protein structure to activate/inactivate specific kinase/phosphatase pathways. Hypoxia-inducible factors that stimulate a cascade of gene transcription may be mediated physiologically by ROS. Our knowledge of the role played by ROS and their scavenging systems in modulation of cell function and cell death has grown exponentially over the past few years, but we are still limited in how to apply this knowledge to develop its full therapeutic potential. Antioxid. Redox Signal. 11, 1373–1414.
Focus of review
Ambiguities about ROS
Overview of Mitochondrial Structure and Function
Mitochondrial Sources and Mechanism of ROS Generation
Requirement for charged membrane, electron flux, and O2
Reactive and nonreactive O2 species and reactants
Assessing ROS generation
Sites and conditions for mitochondrial ROS generation
Complex I (NADH ubiquinone oxidoreductase)
Complex III (co-enzyme Q, bc1 complex, ubiquinone/cytochrome c reductase)
Pathologic Induction of Mitochondrial ROS Release
ROS-induced ROS release
ROS-induced Ca2+ loading
ROS generation during tissue ischemia and hypoxia
Very low po2 and lack of mitochondrial ROS generation
Antioxidant Defenses Against Pathologic ROS Formation
SODs, catalase, cytochrome c, GSH, and TRXSH2, and other linked redox couples
Regulation of genes encoding mitochondrial antioxidant systems
ROS generation versus ROS scavenging
MPT pore opening and cytochrome c
Targets of Excess ROS Emission
DNA, proteins, and phospholipids
Role of cardiolipin
Approaches to Reduce Excess ROS
Capacity of mitochondrial and cell reductants
Exogenous SODs and catalase
Proton leak to modulate superoxide generation
Uncoupling proteins
HNE-induced proton leak
ROS-induced proton leak
Physiologic Modulation of Mitochondrial ROS Emission
H2O2 and ONOO− as chemical effectors
ROS modulation by cations
K+: A modulator of ROS generation?
Biphasic effect of KCa channels on ROS generation
KATP channel opening and ROS
Direct Ca2+-induced ROS unlikely
Rate of oxidative phosphorylation and ROS generation
Role of ROS in Triggering or Effecting Cardioprotection
Pathways and mechanisms
Inhibiting complex I and cardioprotection
Regulation of Cellular Processes by Mitochondria-Derived ROS
Cell signaling by oxidative modifications and redox systems
Examples of signaling by ROS
Importance of cysteine thiols in ROS-induced signaling
ROS oxidation reactions
O2 sensors
Hypoxia-inducible factors
ROS as O2 sensors
Peroxide-induced TCA shunts
Difficulties in understanding the role of ROS
Future directions
PMCID: PMC2842133  PMID: 19187004

Results 1-25 (1189286)