Search tips
Search criteria

Results 1-25 (828763)

Clipboard (0)

Related Articles

1.  The Saccharomyces cerevisiae Leu3 protein activates expression of GDH1, a key gene in nitrogen assimilation. 
Molecular and Cellular Biology  1995;15(1):52-57.
The Leu3 protein of Saccharomyces cerevisiae has been shown to be a transcriptional regulator of genes encoding enzymes of the branched-chain amino acid biosynthetic pathways. Leu3 binds to upstream activating sequences (UASLEU) found in the promoters of LEU1, LEU2, LEU4, ILV2, and ILV5. In vivo and in vitro studies have shown that activation by Leu3 requires the presence of alpha-isopropylmalate. In at least one case (LEU2), Leu3 actually represses basal-level transcription when alpha-isopropylmalate is absent. Following identification of a UASLEU-homologous sequence in the promoter of GDH1, the gene encoding NADP(+)-dependent glutamate dehydrogenase, we demonstrate that Leu3 specifically interacts with this UASLEU element. We then show that Leu3 is required for full activation of the GDH1 gene. First, the expression of a GDH1-lacZ fusion gene is three- to sixfold lower in a strain lacking the LEU3 gene than in an isogenic LEU3+ strain. Expression is restored to near-normal levels when the leu3 deletion cells are transformed with a LEU3-bearing plasmid. Second, a significant decrease in GDH1-lacZ expression is also seen when the UASLEU of the GDH1-lacZ construct is made nonfunctional by mutation. Third, the steady-state level of GDH1 mRNA decreases about threefold in leu3 null cells. The decrease in GDH1 expression in leu3 null cells is reflected in a diminished specific activity of NADP(+)-dependent glutamate dehydrogenase. We also demonstrate that the level of GDH1-lacZ expression correlates with the cells' ability to generate alpha-isopropylmalate and is lowest in cells unable to produce alpha-isopropylmalate. We conclude that GDH1, which plays an important role in the assimilation of ammonia in yeast cells, is, in part, activated by a Leu3-alpha-isopropylmalate complex. This conclusion suggests that Leu3 participates in transcriptional regulation beyond the branched-chain amino acid biosynthetic pathways.
PMCID: PMC231907  PMID: 7799961
2.  Isoleucine Biosynthesis in Leptospira interrogans Serotype lai Strain 56601 Proceeds via a Threonine-Independent Pathway† ‡  
Journal of Bacteriology  2004;186(16):5400-5409.
Three leuA-like protein-coding sequences were identified in Leptospira interrogans. One of these, the cimA gene, was shown to encode citramalate synthase (EC 4.1.3.-). The other two encoded α-isopropylmalate synthase (EC Expressed in Escherichia coli, the citramalate synthase was purified and characterized. Although its activity was relatively low, it was strictly specific for pyruvate as the keto acid substrate. Unlike the citramalate synthase of the thermophile Methanococcus jannaschii, the L. interrogans enzyme is temperature sensitive but exhibits a much lower Km (0.04 mM) for pyruvate. The reaction product was characterized as (R)-citramalate, and the proposed β-methyl-d-malate pathway was further confirmed by demonstrating that citraconate was the substrate for the following reaction. This alternative pathway for isoleucine biosynthesis from pyruvate was analyzed both in vitro by assays of leptospiral isopropylmalate isomerase (EC and β-isopropylmalate dehydrogenase (EC in E. coli extracts bearing the corresponding clones and in vivo by complementation of E. coli ilvA, leuC/D, and leuB mutants. Thus, the existence of a leucine-like pathway for isoleucine biosynthesis in L. interrogans under physiological conditions was unequivocally proven. Significant variations in either the enzymatic activities or mRNA levels of the cimA and leuA genes were detected in L. interrogans grown on minimal medium supplemented with different levels of the corresponding amino acids or in cells grown on serum-containing rich medium. The similarity of this metabolic pathway in leptospires and archaea is consistent with the evolutionarily primitive status of the eubacterial spirochetes.
PMCID: PMC490871  PMID: 15292141
3.  The Essentiality of Staphylococcal Gcp Is Independent of Its Repression of Branched-Chain Amino Acids Biosynthesis 
PLoS ONE  2012;7(10):e46836.
Our previous studies revealed that the staphylococcal protein Gcp is essential for bacterial growth; however, the essential function of Gcp remains undefined. In this study, we demonstrated that Gcp plays an important role in the modulation of the branched-chain amino acids biosynthesis pathway. Specifically, we identified that the depletion of Gcp dramatically elevated the production of key enzymes that are encoded in the ilv-leu operon and responsible for the biosynthesis of the branched-chain amino acids isoleucine, leucine, and valine (ILV) using proteomic approaches. Using qPCR and promoter-lux reporter fusions, we established that Gcp negatively modulates the transcription of the ilv-leu operon. Gel-shift assays revealed that Gcp lacks the capacity to bind the promoter region of ilv. Moreover, we found that the depletion of Gcp did not influence the transcription level of CodY, a known repressor of the ilv-leu operon, while induced the transcription of CcpA, a known positive regulator of the ilv-leu operon. In addition, the depletion of Gcp decreased the biosynthesis of N6-threonylcarbamoyladenosine (t6A). To elucidate whether the essentiality of Gcp is attributable to its negative modulation of ILV biosynthesis, we determined the impact of the ilv-leu operon on the requirement of Gcp for growth, and revealed that the deletion of the ilv-leu operon did not affect the essentiality of Gcp. Taken together, our results indicate that the essentiality of Gcp isn’t attributable to its negative regulation of ILV biosynthesis in S. aureus. These findings provide new insights into the biological function of the staphylococcal Gcp.
PMCID: PMC3464209  PMID: 23056478
4.  NdgR, a Common Transcriptional Activator for Methionine and Leucine Biosynthesis in Streptomyces coelicolor 
Journal of Bacteriology  2012;194(24):6837-6846.
We show here that NdgR, a known transcriptional activator of isopropylmalate dehydratase in actinomycetes, may have other targets in the cell. An in-frame deletion mutant of ndgR showed unexpectedly poor growth in defined minimal medium even in the presence of leucine. To our surprise, it was supplementation of cysteine and methionine that corrected the growth. Based on this, we propose that NdgR induces cysteine-methionine biosynthesis. Direct involvement of NdgR in the very last steps of methionine synthesis with methionine synthase (metH) and 5,10-methylenetetrahydrofolate reductase (metF) was examined. From a pulldown assay, it was seen that NdgR was enriched from crude cell lysates with a strong affinity to metH and metF upstream sequences. Direct physical interaction of NdgR with these targets was further examined with a gel mobility shift assay. ndgR, leuC, metH, and metF were inducible in M145 cells upon nutrient downshift from rich to minimal medium but were not induced in the ndgR knockout mutant. Taking these observations together, NdgR-dependent metH-metF expression would account for the abnormal growth phenotype of the ndgR mutant although there may be additional NdgR-dependent genes in the Cys-Met metabolic pathways. As the first transcriptional factor reported for regulating Cys-Met metabolism in Streptomyces, NdgR links two disparate amino acid families, branched-chain amino acids (BCAAs) and sulfur amino acids, at the transcriptional level. Considering that Cys-Met metabolism is connected to mycothiol and one-carbon metabolism, NdgR may have broad physiological impacts.
PMCID: PMC3510589  PMID: 23065973
5.  Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis. 
Enzymes and genes of the isopropylmalate pathway leading to leucine in Corynebacterium glutamicum were studied, and assays were performed to unravel their connection to lysine oversynthesis. The first enzyme of the pathway is inhibited by leucine (Ki = 0.4 mM), and all three enzyme activities of the isopropylmalate pathway are reduced upon addition of this amino acid to the growth medium. Three different DNA fragments were cloned, each resulting in an oversynthesis of one of the three enzymes. The leuA complementing fragment encoding the isopropylmalate synthase was sequenced. The leuA gene is 1,848 bp in size, encoding a polypeptide with an M(r) of 68,187. Upstream of leuA there is extensive hyphenated dyad symmetry and a putative leader peptide, which are features characteristic of attenuation control. In addition to leuA, the sequenced fragment contains an open reading frame with high coding probability whose disruption did not result in a detectable phenotype. Furthermore, the sequence revealed that this open reading frame separates leuA from lysC, which encodes the aspartate kinase initiating the synthesis of all amino acids of the aspartate family. The leuA gene was inactivated in three lysine-secreting strains by insertional mutagenesis. Fermentations were performed, and a roughly 50% higher lysine yield was obtained when appropriate leucine concentrations limiting for growth of the constructed strains were used.
PMCID: PMC201280  PMID: 8117072
6.  Separate regulation of transport and biosynthesis of leucine, isoleucine, and valine in bacteria. 
Journal of Bacteriology  1975;122(3):994-1000.
Since both transport activity and the leucine biosynthetic enzymes are repressed by growth on leucine, the regulation of leucine, isoleucine, and valine biosynthetic enzymes was examined in Escherichia coli K-12 strain EO312, a constitutively derepressed branched-chain amino acid transport mutant, to determine if the transport derepression affected the biosynthetic enzymes. Neither the iluB gene product, acetohydroxy acid synthetase (acetolactate synthetase, EC, NOR THE LEUB gene product, 3-isopropylmalate dehydrogenase (2-hydroxy-4-methyl-3-carboxyvalerate-nicotinamide adenine dinucleotide oxido-reductase, EC, were significantly affected in their level of derepression or repression compared to the parental strain. A number of strains with alterations in the regulation of the branched-chain amino acid biosynthetic enzymes were examined for the regulation of the shock-sensitive transport system for these amino acids (LIV-I). When transport activity was examined in strains with mutations leading to derepression of the iluB, iluADE, and leuABCD gene clusters, the regulation of the LIV-I transport system was found to be normal. The regulation of transport in an E. coli strain B/r with a deletion of the entire leucine biosynthetic operon was normal, indicating none of the gene products of this operon are required for regulation of transport. Salmonella typhimurium LT2 strain leu-500, a single-site mutation affecting both promotor-like and operator-like function of the leuABCD gene cluster, also had normal regulation of the LIV-I transport system. All of the strains contained leucine-specific transport activity, which was also repressed by growth in media containing leucine, isoleucine and valine. The concentrated shock fluids from these strains grown in minimal medium or with excess leucine, isoleucine, and valine were examined for proteins with leucine-binding activity, and the levels of these proteins were found to be regulated normally. It appears that the branched-chain amino acid transport systems and biosynthetic enzymes in E. coli strains K-12 and B/r and in S. typhimurium strain LT2 are not regulated together by a cis-dominate type of mechanism, although both systems may have components in common.
PMCID: PMC246151  PMID: 1097409
7.  Regulation of Branched-Chain Amino Acid Biosynthesis in Salmonella typhimurium: Isolation of Regulatory Mutants 
Journal of Bacteriology  1969;97(3):1272-1282.
5′,5′,5′-Trifluoro-dl-leucine inhibited the activity of α-isopropylmalate synthetase (the initial enzyme unique to leucine biosynthesis) as well as the growth of Salmonella typhimurium. Mutants of S. typhimurium resistant to the analogue were isolated and characterized. In most cases, they overproduced and excreted leucine or leucine, valine, and isoleucine as a result of an alteration in the regulation of branched-chain amino acid biosynthesis. Biochemical and genetic tests allowed the mutants to be grouped into three classes: I, a moderately large group (13%) which had high, constitutive leucine biosynthetic enzyme levels and mutant sites linked to the leucine operon (operator constitutive); II, a single mutant in which the mutant site was linked to the leucine operon and in which α-isopropylmalate synthetase was not inhibited by leucine (feedback negative); III, a majority type which had constitutive levels of leucine, valine, and isoleucine biosynthetic enzymes and mutant sites unlinked to the leucine operon. Mutants of class I provide important evidence for the concept of an operon organization of genes involved in leucine biosynthesis. The properties of class III mutants indicate that there is some element involved in regulation which is common to the three pathways.
PMCID: PMC249844  PMID: 4887507
8.  Characterization of Leucine Auxotrophs of the White Rot Basidiomycete Phanerochaete chrysosporium 
Six leucine auxotrophic strains of the white rot basidiomycete Phanerochaete chrysosporium were characterized genetically and biochemically. Complementation studies involving the use of heterokaryons identified three leucine complementation groups. Since all of the leucine auxotrophs grew on minimal medium supplemented with α-ketoisocaproate as well as with leucine, the transaminase catalyzing the last step in the leucine pathway was apparently normal in all strains. Therefore, the wild-type, auxotrophic, and several heterokaryotic strains were assayed for the activities of the other enzymes specific to leucine biosynthesis. Leu2 and Leu4 strains (complementation group I) lacked only α-isopropylmalate synthase activity; Leu3 and Leu6 strains (group III) lacked isopropylmalate isomerase activity; and Leu1 and Leu5 strains (group II) lacked β-isopropylmalate dehydrogenase. Heterokaryons formed from leucine auxotrophs of different complementation groups had levels of activity for all three enzymes similar to those found in the wild-type strain.
PMCID: PMC239040  PMID: 16347073
9.  Iron Regulation through the Back Door: Iron-Dependent Metabolite Levels Contribute to Transcriptional Adaptation to Iron Deprivation in Saccharomyces cerevisiae ▿ †  
Eukaryotic Cell  2010;9(3):460-471.
Budding yeast (Saccharomyces cerevisiae) responds to iron deprivation both by Aft1-Aft2-dependent transcriptional activation of genes involved in cellular iron uptake and by Cth1-Cth2-specific degradation of certain mRNAs coding for iron-dependent biosynthetic components. Here, we provide evidence for a novel principle of iron-responsive gene expression. This regulatory mechanism is based on the modulation of transcription through the iron-dependent variation of levels of regulatory metabolites. As an example, the LEU1 gene of branched-chain amino acid biosynthesis is downregulated under iron-limiting conditions through depletion of the metabolic intermediate α-isopropylmalate, which functions as a key transcriptional coactivator of the Leu3 transcription factor. Synthesis of α-isopropylmalate involves the iron-sulfur protein Ilv3, which is inactivated under iron deficiency. As another example, decreased mRNA levels of the cytochrome c-encoding CYC1 gene under iron-limiting conditions involve heme-dependent transcriptional regulation via the Hap1 transcription factor. Synthesis of the iron-containing heme is directly correlated with iron availability. Thus, the iron-responsive expression of genes that are downregulated under iron-limiting conditions is conferred by two independent regulatory mechanisms: transcriptional regulation through iron-responsive metabolites and posttranscriptional mRNA degradation. Only the combination of the two processes provides a quantitative description of the response to iron deprivation in yeast.
PMCID: PMC2837980  PMID: 20008079
10.  The Small Subunit 1 of the Arabidopsis Isopropylmalate Isomerase Is Required for Normal Growth and Development and the Early Stages of Glucosinolate Formation 
PLoS ONE  2014;9(3):e91071.
In Arabidopsis thaliana the evolutionary and functional relationship between Leu biosynthesis and the Met chain elongation pathway, the first part of glucosinolate formation, is well documented. Nevertheless the exact functions of some pathway components are still unclear. Isopropylmalate isomerase (IPMI), an enzyme usually involved in Leu biosynthesis, is a heterodimer consisting of a large and a small subunit. While the large protein is encoded by a single gene (ISOPROPYLMALATE ISOMERASE LARGE SUBUNIT1), three genes encode small subunits (ISOPROPYLMALATE ISOMERASE SMALL SUBUNIT1 to 3). We have now analyzed small subunit 1 (ISOPROPYLMALATE ISOMERASE SMALL SUBUNIT1) employing artificial microRNA for a targeted knockdown of the encoding gene. Strong reduction of corresponding mRNA levels to less than 5% of wild-type levels resulted in a severe phenotype with stunted growth, narrow pale leaf blades with green vasculature and abnormal adaxial-abaxial patterning as well as anomalous flower morphology. Supplementation of the knockdown plants with leucine could only partially compensate for the morphological and developmental abnormalities. Detailed metabolite profiling of the knockdown plants revealed changes in the steady state levels of isopropylmalate and glucosinolates as well as their intermediates demonstrating a function of IPMI SSU1 in both leucine biosynthesis and the first cycle of Met chain elongation. Surprisingly the levels of free leucine slightly increased suggesting an imbalanced distribution of leucine within cells and/or within plant tissues.
PMCID: PMC3946710  PMID: 24608865
11.  Dynamics and Design Principles of a Basic Regulatory Architecture Controlling Metabolic Pathways 
PLoS Biology  2008;6(6):e146.
The dynamic features of a genetic network's response to environmental fluctuations represent essential functional specifications and thus may constrain the possible choices of network architecture and kinetic parameters. To explore the connection between dynamics and network design, we have analyzed a general regulatory architecture that is commonly found in many metabolic pathways. Such architecture is characterized by a dual control mechanism, with end product feedback inhibition and transcriptional regulation mediated by an intermediate metabolite. As a case study, we measured with high temporal resolution the induction profiles of the enzymes in the leucine biosynthetic pathway in response to leucine depletion, using an automated system for monitoring protein expression levels in single cells. All the genes in the pathway are known to be coregulated by the same transcription factors, but we observed drastically different dynamic responses for enzymes upstream and immediately downstream of the key control point—the intermediate metabolite α-isopropylmalate (αIPM), which couples metabolic activity to transcriptional regulation. Analysis based on genetic perturbations suggests that the observed dynamics are due to differential regulation by the leucine branch-specific transcription factor Leu3, and that the downstream enzymes are strictly controlled and highly expressed only when αIPM is available. These observations allow us to build a simplified mathematical model that accounts for the observed dynamics and can correctly predict the pathway's response to new perturbations. Our model also suggests that transient dynamics and steady state can be separately tuned and that the high induction levels of the downstream enzymes are necessary for fast leucine recovery. It is likely that principles emerging from this work can reveal how gene regulation has evolved to optimize performance in other metabolic pathways with similar architecture.
Author Summary
Single-cell organisms must constantly adjust their gene expression programs to survive in a changing environment. Interactions between different molecules form a regulatory network to mediate these changes. While the network connections are often known, figuring out how the network responds dynamically by looking at a static picture of its structure presents a significant challenge. Measuring the response at a finer time scales could reveal the link between the network's function and its structure. The architecture of the system we studied in this work—the leucine biosynthesis pathway in yeast—is shared by other metabolic pathways: a metabolic intermediate binds to a transcription factor to activate the pathway genes, creating an intricate feedback structure that links metabolism with gene expression. We measured protein abundance at high temporal resolution for genes in this pathway in response to leucine depletion and studied the effects of various genetic perturbations on gene expression dynamics. Our measurements and theoretical modeling show that only the genes immediately downstream from the intermediate are highly regulated by the metabolite, a feature that is essential to fast recovery from leucine depletion. Since the architecture we studied is common, we believe that our work may lead to general principles governing the dynamics of gene expression in other metabolic pathways.
A quantitative, high-temporal resolution study of gene induction in a metabolic pathway reveals an intricate connection between the regulatory architecture and the dynamic response of the system, pointing to possible principles underlying the design of these pathways.
PMCID: PMC2429954  PMID: 18563967
12.  Characterization of α-isopropylmalate synthases containing different copy numbers of tandem repeats in Mycobacterium tuberculosis 
BMC Microbiology  2009;9:122.
Alpha-isopropylmalate synthase (α-IPMS) is the key enzyme that catalyzes the first committed step in the leucine biosynthetic pathway. The gene encoding α-IPMS in Mycobacterium tuberculosis, leuA, is polymorphic due to the insertion of 57-bp repeat units referred to as Variable Number of Tandem Repeats (VNTR). The role of the VNTR found within the M. tuberculosis genome is unclear. To investigate the role of the VNTR in leuA, we compared two α-IPMS proteins with different numbers of amino acid repeats, one with two copies and the other with 14 copies. We have cloned leuA with 14 copies of the repeat units into the pET15b expression vector with a His6-tag at the N-terminus, as was previously done for the leuA gene with two copies of the repeat units.
The recombinant His6-α-IPMS proteins with two and 14 copies (α-IPMS-2CR and α-IPMS-14CR, respectively) of the repeat units were purified by immobilized metal ion affinity chromatography and gel filtration. Both enzymes were found to be dimers by gel filtration. Both enzymes work well at pH values of 7–8.5 and temperatures of 37–42°C. However, α-IPMS-14CR tolerates pH values and temperatures outside of this range better than α-IPMS-2CR does. α-IPMS-14CR has higher affinity than α-IPMS-2CR for the two substrates, α-ketoisovalerate and acetyl CoA. Furthermore, α-IPMS-2CR was feedback inhibited by the end product l-leucine, whereas α-IPMS-14CR was not.
The differences in the kinetic properties and the l-leucine feedback inhibition between the two M. tuberculosis α-IPMS proteins containing low and high numbers of VNTR indicate that a large VNTR insertion affects protein structure and function. Demonstration of l-leucine binding to α-IPMS-14CR would confirm whether or not α-IPMS-14CR responds to end-product feedback inhibition.
PMCID: PMC2704214  PMID: 19505340
13.  Genetics of leucine biosynthesis in Bacillus megaterium QM B1551. 
Journal of Bacteriology  1984;157(2):454-459.
Genes involved in the biosynthesis of leucine have been mapped in Bacillus megaterium QM B1551, using transducing phage MP13. Mutations were designated leuA, leuB, or leuC on the basis of enzyme assays. Two mutant strains were deficient in the enzyme activities of leuA (alpha-isopropylmalate synthase) and leuC (beta-isopropylmalate dehydrogenase) and so may contain polar mutations. Fine-structure transduction mapping established the gene order leuC-leuB-leuA-ilv-hem-phe. The orientation of the leu genes to the ilv gene is the same as in Bacillus subtilis, but the relationship in respect to two other linked markers, hem and phe, differs.
PMCID: PMC215269  PMID: 6420390
14.  Regulation of tryptophan biosynthesis in Methanobacterium thermoautotrophicum Marburg. 
Journal of Bacteriology  1994;176(15):4590-4596.
A tryptophan-auxotrophic mutant of the archaeon Methanobacterium thermoautotrophicum Marburg was grown with growth-promoting and growth-limiting concentrations of tryptophan. The specific activities of anthranilate synthase (TrpEG) and tryptophan synthase (TrpB) increased 30- to 40-fold in tryptophan-starved cells. Levels of trpE-specific and trpD-specific mRNAs (transcripts of the first and the last genes, respectively, of the M. thermoautotrophicum Marburg trp gene cluster) increased about 10-fold upon starvation for tryptophan. Thus, the expression of the trp genes appears to be regulated primarily at the level of transcription. These data support transcription of trp genes as an operon and support a regulatory model involving a repressor. Anthranilate synthase was feedback inhibited by L-tryptophan, with a Ki of 3.0 microM. In a leucine-auxotrophic mutant starved for L-leucine, the level of alpha-isopropylmalate synthase (LeuA) was 10-fold higher than in cells grown with L-leucine. In addition to the finding of specific regulation of gene expression by the end products of their respective pathways, it was found that the levels of anthranilate synthase and alpha-isopropylmalate synthase were reduced upon growth in the presence of amino acids of other families, such as L-alanine, L-proline, or L-arginine. Conversely, starvation for tryptophan caused a slight elevation of alpha-isopropylmalate synthase and starvation for leucine caused a significant increase of anthranilate synthase and tryptophan synthase specific activities. The latter effect was also observed at the level of trp-specific mRNA and is reminiscent of general amino acid control.
PMCID: PMC196279  PMID: 8045889
15.  Enzymology and Evolution of the Pyruvate Pathway to 2-Oxobutyrate in Methanocaldococcus jannaschii▿  
Journal of Bacteriology  2007;189(12):4391-4400.
The archaeon Methanocaldococcus jannaschii uses three different 2-oxoacid elongation pathways, which extend the chain length of precursors in leucine, isoleucine, and coenzyme B biosyntheses. In each of these pathways an aconitase-type hydrolyase catalyzes an hydroxyacid isomerization reaction. The genome sequence of M. jannaschii encodes two homologs of each large and small subunit that forms the hydrolyase, but the genes are not cotranscribed. The genes are more similar to each other than to previously characterized isopropylmalate isomerase or homoaconitase enzyme genes. To identify the functions of these homologs, the four combinations of subunits were heterologously expressed in Escherichia coli, purified, and reconstituted to generate the iron-sulfur center of the holoenzyme. Only the combination of MJ0499 and MJ1277 proteins catalyzed isopropylmalate and citramalate isomerization reactions. This pair also catalyzed hydration half-reactions using citraconate and maleate. Another broad-specificity enzyme, isopropylmalate dehydrogenase (MJ0720), catalyzed the oxidative decarboxylation of β-isopropylmalate, β-methylmalate, and d-malate. Combined with these results, phylogenetic analysis suggests that the pyruvate pathway to 2-oxobutyrate (an alternative to threonine dehydratase in isoleucine biosynthesis) evolved several times in bacteria and archaea. The enzymes in the isopropylmalate pathway of leucine biosynthesis facilitated the evolution of 2-oxobutyrate biosynthesis through the introduction of a citramalate synthase, either by gene recruitment or gene duplication and functional divergence.
PMCID: PMC1913355  PMID: 17449626
16.  Arabidopsis thaliana encodes a bacterial-type heterodimeric isopropylmalate isomerase involved in both Leu biosynthesis and the Met chain elongation pathway of glucosinolate formation 
Plant Molecular Biology  2009;71(3):227-239.
The last steps of the Leu biosynthetic pathway and the Met chain elongation cycle for glucosinolate formation share identical reaction types suggesting a close evolutionary relationship of these pathways. Both pathways involve the condensation of acetyl-CoA and a 2-oxo acid, isomerization of the resulting 2-malate derivative to form a 3-malate derivative, the oxidation-decarboxylation of the 3-malate derivative to give an elongated 2-oxo acid, and transamination to generate the corresponding amino acid. We have now analyzed the genes encoding the isomerization reaction, the second step of this sequence, in Arabidopsis thaliana. One gene encodes the large subunit and three encode small subunits of this enzyme, referred to as isopropylmalate isomerase (IPMI) with respect to the Leu pathway. Metabolic profiling of large subunit mutants revealed accumulation of intermediates of both Leu biosynthesis and Met chain elongation, and an altered composition of aliphatic glucosinolates demonstrating the function of this gene in both pathways. In contrast, the small subunits appear to be specialized to either Leu biosynthesis or Met chain elongation. Green fluorescent protein tagging experiments confirms the import of one of the IPMI small subunits into the chloroplast, the localization of the Met chain elongation pathway in these organelles. These results suggest the presence of different heterodimeric IPMIs in Arabidopsis chloroplasts with distinct substrate specificities for Leu or glucosinolate metabolism determined by the nature of the different small subunit.
Electronic supplementary material
The online version of this article (doi:10.1007/s11103-009-9519-5) contains supplementary material, which is available to authorized users.
PMCID: PMC2729411  PMID: 19597944
Leucine metabolism; Glucosinolate biosynthesis; Methionine chain elongation pathway; Isopropylmalate isomerase
17.  Evolution of a New Gene Substituting for the leuD Gene of Salmonella typhimurium: Origin and Nature of supQ and newD Mutations 
Journal of Bacteriology  1974;120(3):1176-1185.
The second specific enzyme in the biosynthesis of leucine, α-isopropylmalate isomerase, is coded for by two genes, leuC and leuD. Leucine auxotrophs carrying mutations in the leuD gene (including deletions of the entire leuD gene) revert to leucine prototrophy by secondary mutations at the locus supQ, which is located in the proline region of the chromosome. The mechanism of the supQ function is explained by the following model. The supQ gene and an additional gene, newD, code for two different subunits of a multimeric enzyme, whose normal function is yet to be determined. The newD gene protein is able, without genetic alterations, to form an active complex with the leuC protein, thus replacing the nonfunctional or missing leuD protein and restoring leucine prototrophy. The newD protein has, however, a higher affinity for the supQ protein than for the leuC protein; therefore, mutations in the supQ gene are needed to make sufficient amounts of the newD protein available. The following gene order has been established: gpt-proB-proA-ataA-supQ-newD. Different supQ mutations have been identified, i.e., insertion in the supQ gene, point mutations, and deletions of various extent. Some deletions remove the P22 phage attachment site ataA. Other supQ deletions are simultaneously Pro−, because they extend into the proA or proA and proB genes; some extend even further, i.e., into the gpt gene (guanine phosphoribosyl transferase). Mutations in the newD gene caused renewed leucine auxotrophy in leuD supQ mutant strains. One newD mutation causes a temperature-sensitive Leu+ phenotype. Alternate models for the supQ-newD interactions are discussed.
PMCID: PMC245897  PMID: 4612005
18.  Two Origins for the Gene Encoding α-Isopropylmalate Synthase in Fungi 
PLoS ONE  2010;5(7):e11605.
The biosynthesis of leucine is a biochemical pathway common to prokaryotes, plants and fungi, but absent from humans and animals. The pathway is a proposed target for antimicrobial therapy.
Methodology/Principal Findings
Here we identified the leuA gene encoding α-isopropylmalate synthase in the zygomycete fungus Phycomyces blakesleeanus using a genetic mapping approach with crosses between wild type and leucine auxotrophic strains. To confirm the function of the gene, Phycomyces leuA was used to complement the auxotrophic phenotype exhibited by mutation of the leu3+ gene of the ascomycete fungus Schizosaccharomyces pombe. Phylogenetic analysis revealed that the leuA gene in Phycomyces, other zygomycetes, and the chytrids is more closely related to homologs in plants and photosynthetic bacteria than ascomycetes or basidiomycetes, and suggests that the Dikarya have acquired the gene more recently.
The identification of leuA in Phycomyces adds to the growing body of evidence that some primary metabolic pathways or parts of them have arisen multiple times during the evolution of fungi, probably through horizontal gene transfer events.
PMCID: PMC2904702  PMID: 20657649
19.  The genetic architecture of branched-chain amino acid accumulation in tomato fruits 
Journal of Experimental Botany  2011;62(11):3895-3906.
Previous studies of the genetic architecture of fruit metabolic composition have allowed us to identify four strongly conserved co-ordinate quantitative trait loci (QTL) for the branched-chain amino acids (BCAAs). This study has been extended here to encompass the other 23 enzymes described to be involved in the pathways of BCAA synthesis and degradation. On coarse mapping the chromosomal location of these enzymes, it was possible to define the map position of 24 genes. Of these genes eight co-localized, or mapped close to BCAA QTL including those encoding ketol-acid reductoisomerase (KARI), dihydroxy-acid dehydratase (DHAD), and isopropylmalate dehydratase (IPMD). Quantitative evaluation of the expression levels of these genes revealed that the S. pennellii allele of IPMD demonstrated changes in the expression level of this gene, whereas those of KARI and DHAD were invariant across the genotypes. Whilst the antisense inhibition of IPMD resulted in increased BCAA, the antisense inhibition of neither KARI nor DHAD produced a clear effect in fruit BCAA contents. The results are discussed both with respect to the roles of these specific enzymes within plant amino acid metabolism and within the context of current understanding of the regulation of plant branched-chain amino acid metabolism.
PMCID: PMC3134350  PMID: 21436187
Branched-chain amino acid; introgression line; metabolic regulation; quantitative trait analysis; reverse genetics; tomato fruit metabolism
20.  Construction and Characterization of Salmonella typhimurium Strains That Accumulate and Excrete α- and β- Isopropylmalate 
Journal of Bacteriology  1980;142(2):513-520.
Two Salmonella typhimurium strains, which could be used as sources for the leucine biosynthetic intermediates α- and β-isopropylmalate were constructed by a series of P22-mediated transductions. One strain, JK527 [flr-19 leuA2010 Δ(leuD-ara)798 fol-162], accumulated and excreted α-isopropylmalate, whereas the second strain, JK553 (flr-19 leuA2010 leuB698), accumulated and excreted α- and β-isopropylmalate. The yield of α-isopropylmalate isolated from the culture medium of JK527 was more than five times the amount obtained from a comparable volume of medium in which Neurospora crassa strain FLR92-1-216 (normally used as the source for α- and β-isopropylmalate) was grown. Not only was the yield greater, but S. typhimurium strains are much easier to handle and grow to saturation much faster than N. crassa strains. The combination of the two regulatory mutations flr-19, which results in constitutive expression of the leucine operon, and leuA2010, which renders the first leucine-specific biosynthetic enzyme insensitive to feedback inhibition by leucine, generated limitations in the production of valine and pantothenic acid. The efficient, irreversible, and unregulated conversion of α-ketoisovaleric acid into α-isopropylmalate (α-isopropylmalate synthetase Km for α-ketoisovaleric acid, 6 × 10−5 M) severely restricted the amount of α-ketoisovaleric acid available for conversion into valine and pantothenic acid (ketopantoate hydroxymethyltransferase Km for α-ketoisovaleric acid, 1.1 × 10−3 M; transaminase B Km for α-ketoisovaleric acid, 2 × 10−3 M).
PMCID: PMC294015  PMID: 6991477
21.  Norvaline is accumulated after a down-shift of oxygen in Escherichia coli W3110 
Norvaline is an unusual non-proteinogenic branched-chain amino acid which has been of interest especially during the early enzymological studies on regulatory mutants of the branched-chain amino acid pathway in Serratia marcescens. Only recently norvaline and other modified amino acids of the branched-chain amino acid synthesis pathway got attention again when they were found to be incorporated in minor amounts in heterologous proteins with a high leucine or methionine content. Earlier experiments have convincingly shown that norvaline and norleucine are formed from pyruvate being an alternative substrate of α-isopropylmalate synthase, however so far norvaline accumulation was not shown to occur in non-recombinant strains of E. coli.
Here we show that oxygen limitation causes norvaline accumulation in E. coli K-12 W3110 during grow in glucose-based mineral salt medium. Norvaline accumulates immediately after a shift to oxygen limitation at high glucose concentration. On the contrary free norvaline is not accumulated in E. coli W3110 in aerobic cultures. The analysis of medium components, supported by transcriptomic studies proposes a purely metabolic overflow mechanism from pyruvate into the branched chain amino acid synthesis pathway, which is further supported by the significant accumulation of pyruvate after the oxygen downshift. The results indicate overflow metabolism from pyruvate as necessary and sufficient, but deregulation of the branched chain amino acid pathway may be an additional modulating parameter.
Norvaline synthesis has been so far mainly related to an imbalance of the synthesis of the branched chain amino acids under conditions were pyruvate level is high. Here we show that simply a downshift of oxygen is sufficient to cause norvaline accumulation at a high glucose concentration as a consequence of the accumulation of pyruvate and its direct chain elongation over α-ketobutyrate and α-ketovalerate.
Although the flux to norvaline is low, millimolar concentrations are accumulated in the cultivation broth, which is far above the level which has been discussed for being relevant for misincorporation of norvaline into recombinant proteins. Therefore we believe that our finding is relevant for recombinant protein production but also may even have implications for the physiology of E. coli under oxygen limitation in general.
PMCID: PMC2579280  PMID: 18940002
22.  Transcriptional and Translational Regulation of α-Acetolactate Decarboxylase of Lactococcus lactis subsp. lactis 
Journal of Bacteriology  2000;182(19):5399-5408.
The α-acetolactate decarboxylase (ALDC) gene, aldB, is the penultimate gene of the leu-ilv-ald operon, which encodes the three branched-chain amino acid (BCAA) biosynthesis genes in Lactococcus lactis. Its product plays a dual role in the cell: (i) it catalyzes the second step of the acetoin pathway, and (ii) it controls the pool of α-acetolactate during leucine and valine synthesis. It can be transcribed from the two promoters present upstream of the leu and ilv genes (P1 and P2) or independently under the control of its own promoter (P3). In this paper we show that the production of ALDC is limited by two mechanisms. First, the strength of P3 decreases greatly during starvation for BCAAs and under other conditions that generally provoke the stringent response. Second, although aldB is actively transcribed from P1 and P2 during BCAA starvation, ALDC is not significantly produced from these transcripts. The aldB ribosome binding site (RBS) appears to be entrapped in a stem-loop, which is itself part of a more complex RNA folding structure. The function of the structure was studied by mutagenesis, using translational fusions with luciferase genes to assess its activity. The presence of the single stem-loop entrapping the aldB RBS was responsible for a 100-fold decrease in the level of aldB translation. The presence of a supplementary secondary structure upstream of the stem-loop led to an additional fivefold decrease of aldB translation. Finally, the translation of the ilvA gene terminating in the latter structure decreased the level of translation of aldB fivefold more, leading to the complete extinction of the reporter gene activity. Since three leucines and one valine are present among the last six amino acids of the ilvA product, we propose that pausing of the ribosomes during translation could modulate the folding of the messenger, as a function of BCAA availability. The purpose of the structure-dependent regulation could be to ensure the minimal production of ALDC required for the control of the acetolactate pool during BCAA synthesis but to avoid its overproduction, which would dissipate acetolactate. Large amounts of ALDC, necessary for operation of the acetoin pathway, could be produced under favorable conditions from the P3 transcripts, which do not contain the secondary structures.
PMCID: PMC110982  PMID: 10986242
23.  Alternative pathways for biosynthesis of leucine and other amino acids in Bacteroides ruminicola and Bacteroides fragilis. 
Bacteroides ruminicola is one of several species of anaerobes that are able to reductively carboxylate isovalerate (or isovaleryl-coenzyme A) to synthesize alpha-ketoisocaproate and thus leucine. When isovalerate was not supplied to growing B. ruminicola cultures, carbon from [U-14C]glucose was used for the synthesis of leucine and other cellular amino acids. When unlabeled isovalerate was available, however, utilization of [U-14C]glucose or [2-14C]acetate for leucine synthesis was markedly and specifically reduced. Enzyme assays indicated that the key enzyme of the common isopropylmalate (IPM) pathway for leucine biosynthesis, IPM synthase, was present in B. ruminicola cell extracts. The specific activity of IPM synthase was reduced when leucine was added to the growth medium but was increased by the addition of isoleucine plus valine, whereas the addition of isovalerate had little or no effect. The activity of B. ruminicola IPM synthase was strongly inhibited by leucine, the end product of the pathway. It seems unlikely that the moderate inhibition of the enzyme by isovalerate adequately explains the regulation of carbon flow by isovalerate in growing cultures. Bacteroides fragilis apparently also uses either the isovalerate carboxylation or the IPM pathway for leucine biosynthesis. Furthermore, both of these organisms synthesize isoleucine and phenylalanine, using carbon from 2-methylbutyrate and phenylacetate, respectively, in preference to synthesis of these amino acids de novo from glucose. Thus, it appears that these organisms have the ability to regulate alternative pathways for the biosynthesis of certain amino acids and that pathways involving reductive carboxylations are likely to be favored in their natural habitats.
PMCID: PMC241695  PMID: 6440485
24.  Specific regulatory interconnection between the leucine and histidine pathways of Neurospora crassa. 
Journal of Bacteriology  1984;158(1):121-127.
Leucine auxotrophs of Neurospora fall into two discrete categories with respect to sensitivity to the herbicide, 3-amino-1,2,4-triazole. The pattern of resistance corresponds exactly to the ability to produce the leucine pathway control elements, alpha-isopropylmalate and the leu-3 product. An analysis of the regulatory response of the production of enzymes of histidine biosynthesis to alpha-isopropylmalate implicates the control elements of the leucine pathway as important components of the mechanism governing the production of the target enzyme of aminotriazole inhibition, imidazoleglycerol-phosphate dehydratase (EC The evidence suggests that the regulatory interconnection between the two pathways is direct and is independent of other general integrating regulatory mechanisms which appear to be operative in both pathways. A general method for isolating leu-1 and leu-2, as well as other regulatory mutants, is described, which takes advantage of the specificity of the resistance to the inhibitor. Use of analogous systems is prescribed for the analysis of other regulatory interconnections which, like this one, might not be anticipated directly from structural or biosynthetic considerations.
PMCID: PMC215388  PMID: 6325383
25.  Feedback-Resistant Acetohydroxy Acid Synthase Increases Valine Production in Corynebacterium glutamicum 
Acetohydroxy acid synthase (AHAS), which catalyzes the key reactions in the biosynthesis pathways of branched-chain amino acids (valine, isoleucine, and leucine), is regulated by the end products of these pathways. The whole Corynebacterium glutamicum ilvBNC operon, coding for acetohydroxy acid synthase (ilvBN) and aceto hydroxy acid isomeroreductase (ilvC), was cloned in the newly constructed Escherichia coli-C. glutamicum shuttle vector pECKA (5.4 kb, Kmr). By using site-directed mutagenesis, one to three amino acid alterations (mutations M8, M11, and M13) were introduced into the small (regulatory) AHAS subunit encoded by ilvN. The activity of AHAS and its inhibition by valine, isoleucine, and leucine were measured in strains carrying the ilvBNC operon with mutations on the plasmid or the ilvNM13 mutation within the chromosome. The enzyme containing the M13 mutation was feedback resistant to all three amino acids. Different combinations of branched-chain amino acids did not inhibit wild-type AHAS to a greater extent than was measured in the presence of 5 mM valine alone (about 57%). We infer from these results that there is a single binding (allosteric) site for all three amino acids in the enzyme molecule. The strains carrying the ilvNM13 mutation in the chromosome produced more valine than their wild-type counterparts. The plasmid-free C. glutamicum ΔilvA ΔpanB ilvNM13 strain formed 90 mM valine within 48 h of cultivation in minimal medium. The same strain harboring the plasmid pECKAilvBNC produced as much as 130 mM valine under the same conditions.
PMCID: PMC544200  PMID: 15640189

Results 1-25 (828763)