PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1381710)

Clipboard (0)
None

Related Articles

1.  Current Perspectives: focused commentary: Key cells in asthma 
The pathogenesis of bronchial asthma, a complex trait associated with a number of environmental factors (e.g., allergens, infection, air pollution, exercise and obesity), involves multiple cell types and several distinct cellular and molecular pathways. These pathways include adaptive and innate immunity, and involve Th2 cells, mast cells, basophils, eosinophils, neutrophils, airway epithelial cells and subsets of a newly described cell type called natural killer T (NKT) cells. A role for subsets of NKT cells in asthma has been suggested by extensive studies in animal models of asthma, induced with allergen, viral infection, ozone exposure or bacterial components, suggesting that NKT cells function in concert with Th2 cells or independently of adaptive immunity in causing airway hyperreactivity. The clinical relevance of NKT cells in human asthma is supported by the observation that NKT cells are present in the lungs of some patients with asthma, particularly patients with severe poorly controlled asthma, although additional research is required to more precisely define the specific role of NKT cells in human asthma. These studies of NKT cells greatly expand our understanding of possible mechanisms that drive the development of asthma, particularly in the case of asthma associated with neutrophils, viral infection and air pollution.
doi:10.1016/j.jaci.2010.02.006
PMCID: PMC2913488  PMID: 20338622
asthma; airway hyperreactivity; natural killer T cells; Th2 cells; innate immunity
2.  Acinetobacter baumannii Infection Inhibits Airway Eosinophilia and Lung Pathology in a Mouse Model of Allergic Asthma 
PLoS ONE  2011;6(7):e22004.
Allergic asthma is a dysregulation of the immune system which leads to the development of Th2 responses to innocuous antigens (allergens). Some infections and microbial components can re-direct the immune response toward the Th1 response, or induce regulatory T cells to suppress the Th2 response, thereby inhibiting the development of allergic asthma. Since Acinetobacter baumannii infection can modulate lung cellular and cytokine responses, we studied the effect of A. baumannii in modulating airway eosinophilia in a mouse model of allergic asthma. Ovalbumin (OVA)-sensitized mice were treated with live A. baumannii or phosphate buffered saline (PBS), then intranasally challenged with OVA. Compared to PBS, A. baumannii treatment significantly reduced pulmonary Th2 cytokine and chemokine responses to OVA challenge. More importantly, the airway inflammation in A. baumannii-treated mice was strongly suppressed, as seen by the significant reduction of the proportion and the total number of eosinophils in the bronchoalveolar lavage fluid. In addition, A. baumannii-treated mice diminished lung mucus overproduction and pathology. However, A. baumannii treatment did not significantly alter systemic immune responses to OVA. Serum OVA-specific IgE, IgG1 and IgG2a levels were comparable between A. baumannii- and PBS-treated mice, and tracheobronchial lymph node cells from both treatment groups produced similar levels of Th1 and Th2 cytokines in response to in vitro OVA stimulation. Moreover, it appears that TLR-4 and IFN-γ were not directly involved in the A. baumannii-induced suppression of airway eosinophilia. Our results suggest that A. baumannii inhibits allergic airway inflammation by direct suppression of local pulmonary Th2 cytokine responses to the allergen.
doi:10.1371/journal.pone.0022004
PMCID: PMC3138758  PMID: 21789200
3.  Natural killer cell NKG2D and granzyme B are critical for allergic pulmonary inflammation⋆ 
Background
The diverse roles of innate immune cells in the pathogenesis of asthma remain to be fully defined. Natural killer (NK) cells are innate lymphocytes that can regulate adaptive immune responses. NK cells are activated in asthma; however, their role in allergic airway inflammation is not fully understood.
Objective
We investigated the importance of NK cells in house dust mite (HDM)-triggered allergic pulmonary inflammation. Specifically, we aimed to determine the role of the major NK-cell activating receptor NKG2D and NK-cell effector functions mediated by granzyme B.
Methods
Allergic airway inflammation was induced in the airways of mice by repeated intranasal HDM extract administration and responses in wild-type and NKG2D-deficient mice were compared. Adoptive transfer studies were used to identify the cells and mechanisms involved.
Results
Mice that lacked NKG2D were resistant to the induction of allergic inflammation and showed little pulmonary eosinophilia, few airway TH2 cells, and no rise in serum IgE after multiple HDM-allergen exposures. However, NKG2D was not required for pulmonary inflammation after a single inoculation of allergen. NKG2D-deficient mice showed no alteration in responses to respiratory virus infection. Transfer of wild-type NK cells (but not CD3+ cells) into NKG2D-deficient mice restored allergic inflammatory responses only if the NK cells expressed granzyme B.
Conclusions
These studies established a pivotal role for NK-cell NKG2D and granzyme B in the pathogenesis of HDM-induced allergic lung disease, and identified novel therapeutic targets for the prevention and treatment of asthma.
doi:10.1016/j.jaci.2013.09.048
PMCID: PMC3969579  PMID: 24290277
Innate immunity; lung; natural killer cell; house dust mite; allergic inflammation; asthma; APC, Allophycocyanin; BAL, Bronchoalveolar lavage; HDM, House dust mite; KO, Knock-out; NK, Natural killer; RSV, Respiratory syncytial virus; WT, Wild type
4.  Development and Function of Invariant Natural Killer T Cells Producing TH2- and TH17-Cytokines 
PLoS Biology  2012;10(2):e1001255.
Four distinct subsets of invariant natural killer T (NKT) cells are shown to differentiate in the thymus, then migrate to peripheral tissues where they retain their phenotypic and functional characteristics.
There is heterogeneity in invariant natural killer T (iNKT) cells based on the expression of CD4 and the IL-17 receptor B (IL-17RB), a receptor for IL-25 which is a key factor in TH2 immunity. However, the development pathway and precise function of these iNKT cell subtypes remain unknown. IL-17RB+ iNKT cells are present in the thymic CD44+/− NK1.1− population and develop normally even in the absence of IL-15, which is required for maturation and homeostasis of IL-17RB− iNKT cells producing IFN-γ. These results suggest that iNKT cells contain at least two subtypes, IL-17RB+ and IL-17RB− subsets. The IL-17RB+ iNKT subtypes can be further divided into two subtypes on the basis of CD4 expression both in the thymus and in the periphery. CD4+ IL-17RB+ iNKT cells produce TH2 (IL-13), TH9 (IL-9 and IL-10), and TH17 (IL-17A and IL-22) cytokines in response to IL-25 in an E4BP4-dependent fashion, whereas CD4− IL-17RB+ iNKT cells are a retinoic acid receptor-related orphan receptor (ROR)γt+ subset producing TH17 cytokines upon stimulation with IL-23 in an E4BP4-independent fashion. These IL-17RB+ iNKT cell subtypes are abundantly present in the lung in the steady state and mediate the pathogenesis in virus-induced airway hyperreactivity (AHR). In this study we demonstrated that the IL-17RB+ iNKT cell subsets develop distinct from classical iNKT cell developmental stages in the thymus and play important roles in the pathogenesis of airway diseases.
Author Summary
T cells are a diverse group of immune cells involved in cell-mediated acquired immunity. One subset of T cells is the innate-like invariant natural killer T (iNKT) cells that recognize glycolipid ligands on target cells instead of peptides. We know that functionally distinct subtypes of iNKT cells are involved in specific pathologies, yet their development, phenotypes, and functions are not well understood. Here, we determine the relationship between various mouse iNKT cell subsets, identify reliable molecular markers for these subsets, and show that these contribute to their functional differences. We identify four iNKT cell subsets that we show arise via different developmental pathways and exhibit different cytokine profiles. Importantly, we show that these subsets can be isolated from the thymus (the organ of all T cells), as well as from peripheral tissues such as spleen, liver, lung, and lymph nodes. Contrary to the general understanding that iNKT cells mature after their exit from the thymus and their migration into peripheral tissues, we conclude that distinct phenotypic and functional iNKT cell subsets can be distinguished in the thymus by virtue of the presence or absence of the cytokine receptor IL-17RB and another cell surface molecule called CD4, and these subsets then migrate to peripheral tissues where they retain their phenotypic and functional characteristics. Regarding functional significance, we show that those iNKT cell subsets that lead to airway hyper-responsiveness to respiratory viruses are different to those that lead to allergen-induced airway hyperreactivity, which will enable researchers to focus on specific subsets as potential targets for therapeutic intervention.
doi:10.1371/journal.pbio.1001255
PMCID: PMC3274505  PMID: 22346732
5.  PD-L1 and PD-L2 modulate airway inflammation and iNKT-cell-dependent airway hyperreactivity in opposing directions 
Mucosal immunology  2009;3(1):81-91.
Interactions of the inhibitory receptor programmed death-1 (PD-1) with its ligands, programmed death ligand (PD-L)1 and PD-L2, regulate T-cell activation and tolerance. In this study, we investigated the role of PD-L1 and PD-L2 in regulating invariant natural killer T (iNKT)-cell-mediated airway hyperreactivity (AHR) in a murine model of asthma. We found that the severity of AHR and airway inflammation is significantly greater in PD-L2−/− mice compared with wild-type mice after either ovalbumin (OVA) sensitization and challenge or administration of α-galactosylceramide (α-GalCer). iNKT cells from PD-L2−/− mice produced significantly more interleukin (IL)-4 than iNKT cells from control mice. Moreover, blockade of PD-L2 interactions of wild-type iNKT cells in vitro with monoclonal antibodies (mAbs) resulted in significantly enhanced levels of IL-4 production. In contrast, PD-L1−/− mice showed significantly reduced AHR and enhanced production of interferon-γ (IFN-γ) by iNKT cells. iNKT-deficient Jα18−/− mice reconstituted with iNKT cells from PD-L2−/− mice developed high levels of AHR, whereas mice reconstituted with iNKT cells from PD-L1−/− mice developed lower levels of AHR compared with control. As PD-L2 is not expressed on iNKT cells but rather is expressed on lung dendritic cells (DCs), in which its expression is upregulated by allergen challenge or IL-4, these findings suggest an important role of PD-L2 on lung DCs in modulating asthma pathogenesis. These studies also indicate that PD-L1 and PD-L2 have important but opposing roles in the regulation of AHR and iNKT-cell-mediated activation.
doi:10.1038/mi.2009.112
PMCID: PMC2845714  PMID: 19741598
6.  Aeroallergen-induced eosinophilic inflammation, lung damage, and airways hyperreactivity in mice can occur independently of IL-4 and allergen-specific immunoglobulins. 
Journal of Clinical Investigation  1997;99(6):1329-1339.
In this investigation we have used a mouse model containing certain phenotypic characteristics consistent with asthma and IL-4- and CD40-deficient mice to establish the role of this cytokine and allergen-specific immunoglobulins in the initiation of airways hyperreactivity and morphological changes to the airways in responses to aeroallergen challenge. Sensitization and aerosol challenge of mice with ovalbumin resulted in a severe airways inflammatory response which directly correlated with the induction of extensive airways damage and airways hyperreactivity to beta-methacholine. Inflammatory infiltrates were primarily characterized by the presence of CD4+ T cells and eosinophils. In IL-4-deficient mice, the recruitment of airways eosinophils was impaired, but not abolished in response to aeroallergen. Moreover, the characteristic airways damage and hyperreactivity normally resulting from allergen inhalation were not attenuated. Induction of these structural and functional changes to the airways occurred in the absence of ovalbumin-specific IgE and IgG1, but IgG2a and IgG3 were detected in the sera of IL-4-deficient mice. CD4+ T cells isolated from both wild-type and IL-4-deficient mice given ovalbumin produced significant levels of IL-5 after in vitro stimulation. Treatment of IL-4-deficient mice with anti-IL-5 mAb before aeroallergen challenge abolished blood and airways eosinophilia, lung damage, and airways hyperreactivity. These results indicate that IL-4 is not essential for the development of IL-5-producing CD4+ T cells or for the induction of eosinophilic inflammation and airways damage and hyperreactivity. In response to sensitization and aerosol challenge, CD40-deficient mice did not produce ovalbumin-specific IgE, IgG isotypes, or IgA, and airways inflammation and hyperreactivity were not attenuated. Our results suggest that allergic airways disease can occur via pathways which operate independently of IL-4 and allergen-specific immunoglobulins. Activation of these pathways is intimately associated with IL-5 and eosinophilic inflammation. Such pathways may play a substantive role in the etiology of asthma.
PMCID: PMC507949  PMID: 9077543
7.  Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17 
Exposure to ozone, which is a major component of air pollution, induces a form of asthma that occurs in the absence of adaptive immunity. Although ozone-induced asthma is characterized by airway neutrophilia, and not eosinophilia, it is nevertheless associated with airway hyperreactivity (AHR), which is a cardinal feature of asthma. Because AHR induced by allergens requires the presence of natural killer T (NKT) cells, we asked whether ozone-induced AHR had similar requirements. We found that repeated exposure of wild-type (WT) mice to ozone induced severe AHR associated with an increase in airway NKT cells, neutrophils, and macrophages. Surprisingly, NKT cell–deficient (CD1d−/− and Jα18−/−) mice failed to develop ozone-induced AHR. Further, treatment of WT mice with an anti-CD1d mAb blocked NKT cell activation and prevented ozone-induced AHR. Moreover, ozone-induced, but not allergen-induced, AHR was associated with NKT cells producing interleukin (IL)-17, and failed to occur in IL-17−/− mice nor in WT mice treated with anti–IL-17 mAb. Thus, ozone exposure induces AHR that requires the presence of NKT cells and IL-17 production. Because NKT cells are required for the development of two very disparate forms of AHR (ozone- and allergen-induced), our results strongly suggest that NKT cells mediate a unifying pathogenic mechanism for several distinct forms of asthma, and represent a unique target for effective asthma therapy.
doi:10.1084/jem.20071507
PMCID: PMC2271004  PMID: 18250191
8.  Anti-Fas mAb-induced apoptosis and cytolysis of airway tissue eosinophils aggravates rather than resolves established inflammation 
Respiratory Research  2005;6(1):90.
Background
Fas receptor-mediated eosinophil apoptosis is currently forwarded as a mechanism resolving asthma-like inflammation. This view is based on observations in vitro and in airway lumen with unknown translatability to airway tissues in vivo. In fact, apoptotic eosinophils have not been detected in human diseased airway tissues whereas cytolytic eosinophils abound and constitute a major mode of degranulation of these cells. Also, Fas receptor stimulation may bypass the apoptotic pathway and directly evoke cytolysis of non-apoptotic cells. We thus hypothesized that effects of anti-Fas mAb in vivo may include both apoptosis and cytolysis of eosinophils and, hence, that established eosinophilic inflammation may not resolve by this treatment.
Methods
Weeklong daily allergen challenges of sensitized mice were followed by airway administration of anti-Fas mAb. BAL was performed and airway-pulmonary tissues were examined using light and electron microscopy. Lung tissue analysis for CC-chemokines, apoptosis, mucus production and plasma exudation (fibrinogen) were performed.
Results
Anti-Fas mAb evoked apoptosis of 28% and cytolysis of 4% of eosinophils present in allergen-challenged airway tissues. Furthermore, a majority of the apoptotic eosinophils remained unengulfed and eventually exhibited secondary necrosis. A striking histopathology far beyond the allergic inflammation developed and included degranulated eosinophils, neutrophilia, epithelial derangement, plasma exudation, mucus-plasma plugs, and inducement of 6 CC-chemokines. In animals without eosinophilia anti-Fas evoked no inflammatory response.
Conclusion
An efficient inducer of eosinophil apoptosis in airway tissues in vivo, anti-Fas mAb evoked unprecedented asthma-like inflammation in mouse allergic airways. This outcome may partly reflect the ability of anti-Fas to evoke direct cytolysis of non-apoptotic eosinophils in airway tissues. Additionally, since most apoptotic tissue eosinophils progressed into the pro-inflammatory cellular fate of secondary necrosis this may also explain the aggravated inflammation. Our data indicate that Fas receptor mediated eosinophil apoptosis in airway tissues in vivo may cause severe disease exacerbation due to direct cytolysis and secondary necrosis of eosinophils.
doi:10.1186/1465-9921-6-90
PMCID: PMC1187926  PMID: 16086832
asthma; allergy; eosinophils; apoptosis; chemokines
9.  Endotoxin Exposure during Sensitization to Blomia tropicalis Allergens Shifts TH2 Immunity Towards a TH17-Mediated Airway Neutrophilic Inflammation: Role of TLR4 and TLR2 
PLoS ONE  2013;8(6):e67115.
Experimental evidence and epidemiological studies indicate that exposure to endotoxin lipopolysaccharide (eLPS) or other TLR agonists prevent asthma. We have previously shown in the OVA-model of asthma that eLPS administration during alum-based allergen sensitization blocked the development of lung TH2 immune responses via MyD88 pathway and IL-12/IFN-γ axis. In the present work we determined the effect of eLPS exposure during sensitization to a natural airborne allergen extract derived from the house dust mite Blomia tropicalis (Bt). Mice were subcutaneously sensitized with Bt allergens co-adsorbed onto alum with or without eLPS and challenged twice intranasally with Bt. Cellular and molecular parameters of allergic lung inflammation were evaluated 24 h after the last Bt challenge. Exposure to eLPS but not to ultrapure LPS (upLPS) preparation during sensitization to Bt allergens decreased the influx of eosinophils and increased the influx of neutrophils to the airways. Inhibition of airway eosinophilia was not observed in IFN-γdeficient mice while airway neutrophilia was not observed in IL-17RA-deficient mice as well in mice lacking MyD88, CD14, TLR4 and, surprisingly, TLR2 molecules. Notably, exposure to a synthetic TLR2 agonist (PamCSK4) also induced airway neutrophilia that was dependent on TLR2 and TLR4 molecules. In the OVA model, exposure to eLPS or PamCSK4 suppressed OVA-induced airway inflammation. Our results suggest that B. tropicalis allergens engage TLR4 that potentiates TLR2 signaling. This dual TLR activation during sensitization results in airway neutrophilic inflammation associated with increased frequency of lung TH17 cells. Our work highlight the complex interplay between bacterial products, house dust mite allergens and TLR signaling in the induction of different phenotypes of airway inflammation.
doi:10.1371/journal.pone.0067115
PMCID: PMC3689683  PMID: 23805294
10.  Complement Component 3C3 and C3a Receptor Are Required in Chitin-Dependent Allergic Sensitization to Aspergillus fumigatus but Dispensable in Chitin-Induced Innate Allergic Inflammation 
mBio  2013;4(2):e00162-13.
ABSTRACT
Levels of the anaphylatoxin C3a are increased in patients with asthma compared with those in nonasthmatics and increase further still during asthma exacerbations. However, the role of C3a during sensitization to allergen is poorly understood. Sensitization to fungal allergens, such as Aspergillus fumigatus, is a strong risk factor for the development of asthma. Exposure to chitin, a structural polysaccharide of the fungal cell wall, induces innate allergic inflammation and may promote sensitization to fungal allergens. Here, we found that coincubation of chitin with serum or intratracheal administration of chitin in mice resulted in the generation of C3a. We established a model of chitin-dependent sensitization to soluble Aspergillus antigens to test the contribution of complement to these events. C3−/− and C3aR−/− mice were protected from chitin-dependent sensitization to Aspergillus and had reduced lung eosinophilia and type 2 cytokines and serum IgE. In contrast, complement-deficient mice were not protected against chitin-induced innate allergic inflammation. In sensitized mice, plasmacytoid dendritic cells from complement-deficient animals acquired a tolerogenic profile associated with enhanced regulatory T cell responses and suppressed Th2 and Th17 responses specific for Aspergillus. Thus, chitin induces the generation of C3a in the lung, and chitin-dependent allergic sensitization to Aspergillus requires C3aR signaling, which suppresses regulatory dendritic cells and T cells and induces allergy-promoting T cells.
IMPORTANCE
Asthma is one of the fastest growing chronic illnesses worldwide. Chitin, a ubiquitous polymer in our environment and a key component in the cell wall of fungal spores and the exoskeletons of insects, parasites, and crustaceans, triggers innate allergic inflammation. However, there is little understanding of how chitin is initially recognized by mammals and how early recognition of chitin affects sensitization to environmental allergens and development of allergic asthma. The complement system is evolutionarily one of the oldest facets of the early or innate warning systems in mammals. We studied whether and how complement components influence the recognition of chitin and shape the downstream sensitization toward fungal allergens. We show here that complement recognition of chitin plays a critical role in shaping the behavior of dendritic cells, which in turn regulate the function of T cells that mediate allergic responses to fungi.
doi:10.1128/mBio.00162-13
PMCID: PMC3622928  PMID: 23549917
11.  IgG transmitted from allergic mothers decreases allergic sensitization in breastfed offspring 
Background
The mechanism(s) responsible for the reduced risk of allergic disease in breastfed infants are not fully understood. Using an established murine model of asthma, we demonstrated previously that resistance to allergic airway disease transmitted from allergic mothers to breastfed offspring requires maternal B cell-derived factors.
Objective
The aim of this study was to investigate the role of offspring neonatal Fc receptor for IgG uptake by intestinal epithelial cells (FcRn) in this breast milk transferred protection from allergy.
Methods
Allergic airway disease was induced during pregnancy in C57BL/6 female mice. These allergic mothers foster nursed naive FcRn+/- or FcRn-/- progeny born to FcRn+/- females that were mated to C57BL/6J-FcRn-/- male mice. In offspring deficient in FcRn, we expected reduced levels of systemic allergen-specific IgG1, a consequence of decreased absorption of maternal IgG from the lumen of the neonatal gastrointestinal tract. Using this model, we were able to investigate how breast milk IgG affected offspring responses to allergic sensitization.
Results
Levels of maternal antibodies absorbed from the breast milk of allergic foster mothers were determined in weanling FcRn-sufficient or -deficient mice. Maternal transmission of allergen-specific IgG1 to breastfed FcRn-/- offspring was at levels 103-104 lower than observed in FcRn+/- or FcRn+/+ mice. Five weeks after weaning, when offspring were 8 wk old, mice were sensitized and challenged to evaluate their susceptibility to develop allergic airway disease. Protection, indicated by reduced parameters of disease (allergen-specific IgE in serum, eosinophilic inflammation in the airways and lung) were evident in FcRn-sufficient mice nursed as neonates by allergic mothers. In contrast, FcRn-deficient mice breastfed by the same mothers acquired limited, if any, protection from development of allergen-specific IgE and associated pathology.
Conclusions
FcRn expression was a major factor in determining how breastfed offspring of allergic mothers acquired levels of systemic allergen-specific IgG1 sufficient to inhibit allergic sensitization in this model.
doi:10.1186/1476-7961-8-9
PMCID: PMC2914046  PMID: 20626874
12.  IL-6 is required for airway mucus production induced by inhaled fungal allergens1 
Allergic asthma is caused by inhaled allergens and it is characterized by airway eosinophilia as well as mucus hypersecretion which can lead to airflow obstruction. Despite the association of increased IL-6 levels with human atopic asthma, the contribution of IL-6 to the development of allergic airway inflammation triggered by inhaled allergens remains unclear. In this study, we examined the role of IL-6 in a mouse model of allergic airway inflammation induced by direct airway exposure to extracts of Aspergillus fumigatus, a common allergen in humans. We show here that inhaled A. fumigatus extracts rapidly triggers the production of IL-6 in the airways. IL-6 appears to be dispensable for the recruitment of eosinophils to the lung during the development of allergic airway inflammation. However, IL-6 is essential for mucus hypersecretion by airway epithelial cells triggered in response to inhaled A. fumigatus antigens. Impaired mucus production caused by IL-6 deficiency correlates with a severe reduction in the levels of IL-13, a major inducer of mucin glycoproteins. Thus, IL-6 is a key regulator of specific hallmark features of allergic airway inflammation, and it could be a potential target for pulmonary diseases that are associated with goblet cell metaplasia and mucus hypersecretion.
doi:10.4049/jimmunol.0802923
PMCID: PMC2929571  PMID: 19592651
Lung; Allergy; Fungal; Rodent; Cytokines
13.  Modulation of Airway Inflammation by Immunostimulatory CpG Oligodeoxynucleotides in a Murine Model of Allergic Aspergillosis  
Infection and Immunity  2004;72(10):6087-6094.
Allergic aspergillosis is a Th2 T-lymphocyte-mediated pulmonary complication in patients with atopic asthma and cystic fibrosis. Therefore, any therapeutic strategy that selectively inhibits Th2 T-cell activation may be useful in downregulating allergic lung inflammation in asthma. In the present study, we developed a CpG oligodeoxynucleotide (ODN)-based immune intervention of allergic inflammation in a mouse model of allergic aspergillosis. Four different groups of mice were used in a short-term immunization protocol. Three experimental groups of animals (groups 1 to 3) were sensitized with Aspergillus fumigatus antigens. Animals in group 1 were immunized with A. fumigatus antigen alone, while those in group 2 were treated with CpG-ODN 1 day before the first antigen immunization, and the animals in group 3 received the first CpG-ODN administration between the antigen treatments. The animals in group 4 served as controls and were given phosphate-buffered saline. Allergen-specific serum immunoglobulins and total immunoglobulin E in different groups of animals were measured by enzyme-linked immunosorbent assay, while airway remodeling and cytokine production were studied by immunohistochemistry. The results demonstrated that CpG-ODN administration either before (group 2) or between (group 3) antigen treatments resulted in reduced total immunoglobulin E levels and peripheral blood eosinophil numbers compared to A. fumigatus allergen-sensitized group 1 animals. Similarly, treatment with CpG-ODN also downregulated inflammatory cell infiltration, goblet cell hyperplasia, and basement membrane thickening compared to A. fumigatus-sensitized mice. The distinct reduction in peripheral blood eosinophilia and airway remodeling in CpG-ODN-treated mice emphasized its usefulness as an immunomodulating agent for allergic fungal diseases.
doi:10.1128/IAI.72.10.6087-6094.2004
PMCID: PMC517601  PMID: 15385513
14.  Lung-Homing of Endothelial Progenitor Cells and Airway Vascularization Is Only Partially Dependant on Eosinophils in a House Dust Mite-Exposed Mouse Model of Allergic Asthma 
PLoS ONE  2014;9(10):e109991.
Background
Asthmatic responses involve a systemic component where activation of the bone marrow leads to mobilization and lung-homing of progenitor cells. This traffic may be driven by stromal cell derived factor-1 (SDF-1), a potent progenitor chemoattractant. We have previously shown that airway angiogenesis, an early remodeling event, can be inhibited by preventing the migration of endothelial progenitor cells (EPC) to the lungs. Given intranasally, AMD3100, a CXCR4 antagonist that inhibits SDF-1 mediated effects, attenuated allergen-induced lung-homing of EPC, vascularization of pulmonary tissue, airway eosinophilia and development of airway hyperresponsiveness. Since SDF-1 is also an eosinophil chemoattractant, we investigated, using a transgenic eosinophil deficient mouse strain (PHIL) whether EPC lung accumulation and lung vascularization in allergic airway responses is dependent on eosinophilic inflammation.
Methods
Wild-type (WT) BALB/c and eosinophil deficient (PHIL) mice were sensitized to house dust mite (HDM) using a chronic exposure protocol and treated with AMD3100 to modulate SDF-1 stimulated progenitor traffic. Following HDM challenge, lung-extracted EPCs were enumerated along with airway inflammation, microvessel density (MVD) and airway methacholine responsiveness (AHR).
Results
Following Ag sensitization, both WT and PHIL mice exhibited HDM-induced increase in airway inflammation, EPC lung-accumulation, lung angiogenesis and AHR. Treatment with AMD3100 significantly attenuated outcome measures in both groups of mice. Significantly lower levels of EPC and a trend for lower vascularization were detected in PHIL versus WT mice.
Conclusions
This study shows that while allergen-induced lung-homing of endothelial progenitor cells, increased tissue vascularization and development lung dysfunction can occur in the absence of eosinophils, the presence of these cells worsens the pathology of the allergic response.
doi:10.1371/journal.pone.0109991
PMCID: PMC4184886  PMID: 25279605
15.  IL-33 and Thymic Stromal Lymphopoietin Mediate Immune Pathology in Response to Chronic Airborne Allergen Exposure 
Humans are frequently exposed to various airborne allergens in the atmospheric environment. These allergens may trigger a complex network of immune responses in the airways, resulting in asthma and other chronic airway diseases. Here, we investigated the immunological mechanisms involved in the pathological changes induced by chronic exposure to multiple airborne allergens. Naïve mice were exposed intranasally to a combination of common airborne allergens, including the house dust mite, Alternaria, and Aspergillus, for up to 8 weeks. These allergens acted synergistically and induced robust eosinophilic airway inflammation, specific IgE antibody production, type 2 cytokine response and airway hyperreactivity (AHR) in 4 weeks, followed by airway remodeling in 8 weeks. Increased lung infiltration of T cells, B cells, and type 2 innate lymphoid cells (ILC2s) was observed. CD4+ T cells and ILC2s contributed to the sources of IL-5 and IL-13, suggesting involvement of both innate and adaptive immunity in this model. The lung levels of IL-33 increased quickly within several hours after allergen exposure and continued to rise throughout the chronic phase of inflammation. Mice deficient in IL-33 receptor (Il1rl1−/−) and TSLP receptor (Tslpr−/−) showed significant reduction in airway inflammation, IgE antibody levels and AHR. In contrast, mice deficient in IL-25 receptor or IL-1 receptor showed minimal differences as compared to wild-type animals. Thus, chronic exposure to natural airborne allergens triggers a network of innate and adaptive type 2 immune responses and airway pathology, and IL-33 and TSLP likely play key roles in this process.
doi:10.4049/jimmunol.1302984
PMCID: PMC4119518  PMID: 25015831
16.  IL-33 and Thymic Stromal Lymphopoietin Mediate Immune Pathology in Response to Chronic Airborne Allergen Exposure 
Humans are frequently exposed to various airborne allergens in the atmospheric environment. These allergens may trigger a complex network of immune responses in the airways, resulting in asthma and other chronic airway diseases. Here, we investigated the immunological mechanisms involved in the pathological changes induced by chronic exposure to multiple airborne allergens. Naïve mice were exposed intranasally to a combination of common airborne allergens, including the house dust mite, Alternaria, and Aspergillus, for up to 8 weeks. These allergens acted synergistically and induced robust eosinophilic airway inflammation, specific IgE antibody production, type 2 cytokine response and airway hyperreactivity (AHR) in 4 weeks, followed by airway remodeling in 8 weeks. Increased lung infiltration of T cells, B cells, and type 2 innate lymphoid cells (ILC2s) was observed. CD4+ T cells and ILC2s contributed to the sources of IL-5 and IL-13, suggesting involvement of both innate and adaptive immunity in this model. The lung levels of IL-33 increased quickly within several hours after allergen exposure and continued to rise throughout the chronic phase of inflammation. Mice deficient in IL-33 receptor (Il1rl1−/−) and TSLP receptor (Tslpr−/−) showed significant reduction in airway inflammation, IgE antibody levels and AHR. In contrast, mice deficient in IL-25 receptor or IL-1 receptor showed minimal differences as compared to wild-type animals. Thus, chronic exposure to natural airborne allergens triggers a network of innate and adaptive type 2 immune responses and airway pathology, and IL-33 and TSLP likely play key roles in this process.
doi:10.4049/jimmunol.1302984
PMCID: PMC4119518  PMID: 25015831
17.  Innate lymphoid cells responding to IL-33 mediate airway-hyperreactivity independent of adaptive immunity 
Background
Asthma has been considered an immunological disease mediated by Th2 cells and adaptive immunity. However, clinical and experimental observations suggest that additional pathways may regulate asthma, particularly in non-allergic forms of asthma, such as asthma associated with air pollution, stress, obesity and infection.
Objectives
Our goal was to understand Th2 cell-independent conditions which might lead to airway hyperreactivity (AHR), a cardinal feature of asthma.
Methods
We examined a mouse model of experimental asthma, in which AHR was induced with glycolipid antigens, which activate natural killer T (NKT) cells.
Results
In this model, AHR developed rapidly when mice were treated with NKT cell-activating glycolipid antigens, even in the absence of conventional CD4+ T cells. The activated NKT cells directly induced alveolar macrophages to produce IL-33, which in turn activated NKT cells as well as natural helper cells, a newly described non-T, non-B, innate lymphoid cell type, to increase production of IL-13. Surprisingly, this glycolipid-induced AHR pathway required not only IL-13, but also IL-33 and its receptor, ST2, since it was blocked by an anti-ST2 mAb, and was greatly reduced in ST2−/− mice. When adoptively transferred into IL-13−/− mice, both wildtype natural helper cells and NKT cells were sufficient for the development of glycolipid induced AHR.
Conclusion
Since plant pollens, house dust and some bacteria contain glycolipids that can directly activate NKT cells, these studies suggest that AHR and asthma can fully develop, or be greatly enhanced, through innate immune mechanisms, involving IL-33, natural helper cells and NKT cells.
doi:10.1016/j.jaci.2011.10.036
PMCID: PMC3246069  PMID: 22119406
Innate; NKT; Natural Helper cells; TH2; IL-33; IL-13; glycolipid; asthma
18.  Effects of steroid treatment on lung CC chemokines, apoptosis and transepithelial cell clearance during development and resolution of allergic airway inflammation 
Summary
Background
Steroid treatment of allergic eosinophilic airway diseases is considered to attenuate cell recruitment by inhibiting several chemokines and to cause eosinophil clearance through inducement of apoptosis of these cells. However, roles of these mechanisms in the actions of steroids in vivo have not been fully established. Also, as regards clearance of tissue eosinophils other mechanisms than apoptosis may operate in vivo.
Objective
This study explores anti-inflammatory effects of steroids instituted during either development or resolution of airway allergic inflammation.
Methods
Immunized mice were subjected to week-long daily allergen challenges (ovalbumin). Steroid treatment was instituted either amidst the challenges or exclusively post-allergen challenge. CC chemokines, goblet cell hyperplasia, occurrence of eosinophil apoptosis, and airway tissue as well as lumen eosinophilia were examined at different time-points.
Results
Daily steroids instituted amid the allergen challenges non-selectively attenuated a range of chemokines, permitted egression of tissue eosinophils into airway lumen to increase, and reduced development of lung tissue eosinophilia. Steroid treatment instituted post-challenge selectively inhibited the CC-chemokine regulation upon activation, normal T cell expressed and secrted (RANTES), permitted continued egression of eosinophils into airway lumen, and resolved the tissue eosinophilia. Eosinophil apoptosis rarely occurred at development and resolution of the allergic eosinophilic inflammation whether the animals were steroid treated or not. However, anti-Fas monoclonal antibodies given to mice with established eosinophilia post-challenge produced apoptosis of the tissue eosinophils indicating that apoptotic eosinophils, if they occur, are well detectible in vivo.
Conclusion
Airway tissue eosinophils are likely eliminated through egression into airway lumen with little involvement of apoptosis and phagocytosis. Our data further suggest that therapeutic steroids may resolve airway inflammation by permitting clearance of tissue eosinophils through egression and inhibiting RANTES-dependent cell recruitment to lung tissues.
doi:10.1111/j.1365-2222.2006.02396.x
PMCID: PMC3389735  PMID: 16393273
apoptosis; asthma; chemokines; glucocorticoids
19.  Early-life viral infection and allergen exposure interact to induce an asthmatic phenotype in mice 
Respiratory Research  2010;11(1):14.
Background
Early-life respiratory viral infections, notably with respiratory syncytial virus (RSV), increase the risk of subsequent development of childhood asthma. The purpose of this study was to assess whether early-life infection with a species-specific model of RSV and subsequent allergen exposure predisposed to the development of features of asthma.
Methods
We employed a unique combination of animal models in which BALB/c mice were neonatally infected with pneumonia virus of mice (PVM, which replicates severe RSV disease in human infants) and following recovery, were intranasally sensitised with ovalbumin. Animals received low-level challenge with aerosolised antigen for 4 weeks to elicit changes of chronic asthma, followed by a single moderate-level challenge to induce an exacerbation of inflammation. We then assessed airway inflammation, epithelial changes characteristic of remodelling, airway hyperresponsiveness (AHR) and host immunological responses.
Results
Allergic airway inflammation, including recruitment of eosinophils, was prominent only in animals that had recovered from neonatal infection with PVM and then been sensitised and chronically challenged with antigen. Furthermore, only these mice exhibited an augmented Th2-biased immune response, including elevated serum levels of anti-ovalbumin IgE and IgG1 as well as increased relative expression of Th2-associated cytokines IL-4, IL-5 and IL-13. By comparison, development of AHR and mucous cell change were associated with recovery from PVM infection, regardless of subsequent allergen challenge. Increased expression of IL-25, which could contribute to induction of a Th2 response, was demonstrable in the lung following PVM infection. Signalling via the IL-4 receptor α chain was crucial to the development of allergic inflammation, mucous cell change and AHR, because all of these were absent in receptor-deficient mice. In contrast, changes of remodelling were evident in mice that received chronic allergen challenge, regardless of neonatal PVM infection, and were not dependent on signalling via the IL-4 receptor.
Conclusion
In this mouse model, interaction between early-life viral infection and allergen sensitisation/challenge is essential for development of the characteristic features of childhood asthma, including allergic inflammation and a Th2-biased immune response.
doi:10.1186/1465-9921-11-14
PMCID: PMC2842242  PMID: 20122285
20.  A Humanized Monoclonal Antibody Specific for Invariant Natural Killer T (iNKT) Cells for In Vivo Depletion 
PLoS ONE  2013;8(9):e76692.
Invariant Natural Killer T (iNKT) cells are a subset of T cells recognizing glycolipid antigens presented by CD1d. Human iNKT cells express a conserved T cell receptor (TCR)-α chain (Vα24-Jα18) paired with a specific beta chain, Vβ11. The cells are both innate-like, with rapid cytokine release, and adaptive-like, including thymic positive selection. Over activation of iNKT cells can mediate tissue injury and inflammation in multiple organ systems and play a role in mediating the pathology associated with clinically important inflammatory diseases. At the same time, iNKT cell activation can play a role in protecting against infectious disease and cancer or modulate certain autoimmune diseases through its impact on both the innate and adaptive immune system. This suggests that approaches to cause iNKT cell reduction and/or depletion could treat inflammatory diseases while approaches to promote activation may have therapeutic potential in certain infections, cancer or autoimmune disease. This report summarizes the characterization of a humanized monoclonal depleting antibody (NKTT120) in the cynomolgus macaque. NKTT120 is being developed to treat iNKT mediated inflammation that is associated with chronic inflammatory conditions like sickle cell disease and asthma. NKTT120 binds to human iTCRs and to FCγRI and FCγRIII and has been shown to kill target cells in an ADCC assay at low concentrations consistent with the FCγR binding. iNKT cells were depleted within 24 hours in cynomolgus macaques, but T cell, B cell, and NK cell frequencies were unchanged. iNKT cell recovery was dose and time dependent. T cell dependent antigen responses were not impaired by NKTT120 mediated iNKT depletion as measured by response to KLH challenge. NKTT120 administration did not induce an inflammatory cytokine release at doses up to 10 mg/kg. These data support the use of NKTT120 as an intervention in inflammatory diseases where iNKT reduction or depletion could be beneficial.
doi:10.1371/journal.pone.0076692
PMCID: PMC3785425  PMID: 24086759
21.  A novel subset of mouse NKT cells bearing the IL-17 receptor B responds to IL-25 and contributes to airway hyperreactivity 
The Journal of Experimental Medicine  2008;205(12):2727-2733.
Airway hypersensitive reaction (AHR) is an animal model for asthma, which is caused or enhanced by environmental factors such as allergen exposure. However, the precise mechanisms that drive AHR remain unclear. We identified a novel subset of natural killer T (NKT) cells that expresses the interleukin 17 receptor B (IL-17RB) for IL-25 (also known as IL-17E) and is essential for the induction of AHR. IL-17RB is preferentially expressed on a fraction of CD4+ NKT cells but not on other splenic leukocyte populations tested. IL-17RB+ CD4+ NKT cells produce predominantly IL-13 and Th2 chemokines upon stimulation with IL-25 in vitro. IL-17RB+ NKT cells were detected in the lung, and depletion of IL-17RB+ NKT cells by IL-17RB–specific monoclonal antibodies or NKT cell–deficient Jα18−/− mice failed to develop IL-25–dependent AHR. Cell transfer of IL-17RB+ but not IL-17RB− NKT cells into Jα18−/− mice also successfully reconstituted AHR induction. These results strongly suggest that IL-17RB+ CD4+ NKT cells play a crucial role in the pathogenesis of asthma.
doi:10.1084/jem.20080698
PMCID: PMC2585837  PMID: 19015310
22.  Allergic Sensitization through the Airway Primes Th17-dependent Neutrophilia and Airway Hyperresponsiveness 
Rationale: In humans, immune responses to inhaled aeroallergens develop in the lung and draining lymph nodes. Many animal models of asthma bypass this route and instead use intraperitoneal injections of allergen using aluminum hydroxide as an adjuvant.
Objectives: We investigated whether allergic sensitization through the airway elicits immune responses qualitatively different than those arising in the peritoneum.
Methods: Mice were sensitized to allergen through the airway using low-dose LPS as an adjuvant, or through the peritoneum using aluminum hydroxide as an adjuvant. After a single allergen challenge, ELISA and flow cytometry were used to measure cytokines and leukocyte subsets. Invasive measurements of airway resistance were used to measure allergen-induced airway hyperreactivity (AHR).
Measurements and Main Results: Sensitization through the peritoneum primed strong Th2 responses and eosinophilia, but not AHR, after a single allergen challenge. By contrast, allergic sensitization through the airway primed only modest Th2 responses, but strong Th17 responses. Th17 cells homed to the lung and released IL-17 into the airway on subsequent encounter with inhaled allergen. As a result, these mice developed IL-17–dependent airway neutrophilia and AHR. This AHR was neutrophil-dependent because it was abrogated in CXCR2-deficient mice and also in wild-type mice receiving a neutrophil-depleting antibody. Individually, neither IL-17 nor ongoing Th2 responses were sufficient to confer AHR, but together they acted synergistically to promote neutrophil recruitment, eosinophil recruitment and AHR.
Conclusions: Allergic sensitization through the airway primes modest Th2 responses but strong Th17 responses that promote airway neutrophilia and acute AHR. These findings support a causal role for neutrophils in severe asthma.
doi:10.1164/rccm.200904-0573OC
PMCID: PMC2778149  PMID: 19661246
asthma; lung; immunity
23.  Requirements for allergen-induced airway hyperreactivity in T and B cell-deficient mice. 
Molecular Medicine  1998;4(5):344-355.
BACKGROUND: The pathogenesis of asthma is believed to reflect antigen-induced airway inflammation leading to the recruitment of eosinophils and activation of mast cells through cell-associated IgE. Controversies persist however, regarding the relative importance of different pathogenic cells and effector molecules. MATERIALS AND METHODS: A variety of gene-targeted mice were examined for the induction of cholinergic airway hyperresponsiveness (AH), allergic airway inflammation, mucus production, and serum IgE reactivity following intratracheal challenge with a potent allergen. AH was determined using whole-body plethysmography following acetylcholine challenge. Where possible, results were confirmed using neutralizing antibodies and cell-specific reconstitution of immune deficient mice. RESULTS: T and B cell-deficient, recombinase-activating-gene-deficient mice (RAG -/-) failed to develop significant allergic inflammation and AH following allergen challenge. Reconstitution of RAG -/- mice with CD4+ T cells alone was sufficient to restore allergen-induced AH, allergic inflammation, and goblet cell hyperplasia, but not IgE reactivity. Sensitized B cell-deficient mice also developed airway hyperreactivity and lung inflammation comparable to that of wild-type animals, confirming that antibodies were dispensable. Treatment with neutralizing anti-IL-4 antibody or sensitization of IL-4-deficient mice resulted in loss of airway hyperreactivity, whereas treatment with anti-IL-5 antibody or sensitization of IL-5-deficient mice had no effect. CONCLUSIONS: In mice, CD4+ T cells are alone sufficient to mediate many of the pathognomonic changes that occur in human asthma by a mechanism dependent upon IL-4, but independent of IL-5, IgE, or both. Clarification of the role played by CD4+ T cells is likely to stimulate important therapeutic advances in treatment of asthma.
Images
PMCID: PMC2230383  PMID: 9642684
24.  iNKT Cells Require CCR4 to Localize to the Airways and to Induce Airway Hyperreactivity1 
iNKT cells are required for the induction of airway hyperreactivity (AHR), a cardinal feature of asthma, but how iNKT cells traffic to the lungs to induce AHR has not been previously studied. Using several models of asthma, we demonstrated that iNKT cells required the chemokine receptor CCR4 for pulmonary localization and for the induction of AHR. In both allergen-induced and glycolipid-induced models of AHR, wild-type but not CCR4−/− mice developed AHR. Furthermore, adoptive transfer of wild-type but not CCR4−/− iNKT cells reconstituted AHR in iNKT cell-deficient mice. Moreover, we specifically tracked CCR4−/− vs wild-type iNKT cells in CCR4−/−:wild-type mixed BM chimeric mice in the resting state, and when AHR was induced by protein allergen or glycolipid. Using this unique model, we showed that both iNKT cells and conventional T cells required CCR4 for competitive localization into the bronchoalveolar lavage/airways compartment. These results establish for the first time that the pulmonary localization of iNKT cells critical for the induction of AHR requires CCR4 expression by iNKT cells.
PMCID: PMC2564604  PMID: 17878364
25.  Prevention of Diabetes in NOD Mice by Repeated Exposures to a Contact Allergen Inducing a Sub-Clinical Dermatitis 
PLoS ONE  2010;5(5):e10591.
Background
Type 1 diabetes is an autoimmune disease, while allergic contact dermatitis although immune mediated, is considered an exposure driven disease that develops due to epicutanous contact with reactive low-molecular chemicals. The objective of the present study was to experimentally study the effect of contact allergens on the development of diabetes in NOD mice. As the link between contact allergy and diabetes is yet unexplained we also examined the effect of provocation with allergens on Natural Killer T (NKT) cells, since involvement of NKT cells could suggest an innate connection between the two diseases.
Method
NOD mice 4 weeks of age were exposed, on the ears, to two allergens, p-phenylenediamine and 2,4-dinitrochlorobenzene respectively, to investigate the diabetes development. The mice were followed for a maximum of 32 weeks, and they were either repeatedly exposed to the allergens or only sensitized a week after arrival. The stimulation of NKT cells by the two allergens were additionally studied in C57BL/6 mice. The mice were sensitized and two weeks later provocated with the allergens. The mice were subsequently euthanized at different time points after the provocation.
Results
It was found that repeated application of p-phenylenediamine reduced the incidence of diabetes compared to application with water (47% vs. 93%, P = 0.004). Moreover it was shown that in C57BL/6 mice both allergens resulted in a slight increment in the quantity of NKT cells in the liver. Application of the allergens at the same time resulted in an increased number of NKT cells in the draining auricular lymph node, and the increase appeared to be somewhat allergen specific as the accumulation was stronger for p-phenylenediamine.
Conclusion
The study showed that repeated topical application on the ears with a contact allergen could prevent the development of diabetes in NOD mice. The contact allergens gave a non-visible, sub-clinical dermatitis on the application site.
The preventive effect on diabetes may be due to stimulation of peripheral NKT cells, as shown for provocation with p-phenylenediamine in the C57BL/6 mouse. This epicutanous procedure may lead to new strategies in prevention of type 1 diabetes in humans.
doi:10.1371/journal.pone.0010591
PMCID: PMC2868032  PMID: 20485668

Results 1-25 (1381710)