Search tips
Search criteria

Results 1-25 (1238160)

Clipboard (0)

Related Articles

1.  Activation of Invariant NKT Cells Exacerbates Experimental Visceral Leishmaniasis 
PLoS Pathogens  2008;4(2):e1000028.
We report that natural killer T (NKT) cells play only a minor physiological role in protection from Leishmania donovani infection in C57BL/6 mice. Furthermore, attempts at therapeutic activation of invariant NKT (iNKT) cells with α-galactosylceramide (α-GalCer) during L. donovani infection exacerbated, rather than ameliorated, experimental visceral leishmaniasis. The inability of α-GalCer to promote anti-parasitic immunity did not result from inefficient antigen presentation caused by infection because α-GalCer–loaded bone marrow–derived dendritic cells were also unable to improve disease resolution. The immune-dampening affect of α-GalCer correlated with a bias towards increased IL-4 production by iNKT cells following α-GalCer stimulation in infected mice compared to naïve controls. However, studies in IL-4–deficient mice, and IL-4 neutralisation in cytokine-sufficient mice revealed that α-GalCer–induced IL-4 production during infection had only a minor role in impaired parasite control. Analysis of liver cell composition following α-GalCer stimulation during an established L. donovani infection revealed important differences, predominantly a decrease in IFNγ+ CD8+ T cells, compared with control-treated mice. Our data clearly illustrate the double-edged sword of NKT cell–based therapy, showing that in some circumstances, such as when sub-clinical or chronic infections exist, iNKT cell activation can have adverse outcomes.
Author Summary
Natural killer T (NKT) cells are a unique subset of T cells that can produce large quantities of inflammatory cytokines very rapidly upon stimulation. They are known to be strongly stimulated by a molecule called α-galactosylceramide (α-GalCer) that is derived from a marine sponge, and in this way α-GalCer is hoped to provide effective immunotherapy for a wide range of diseases. We attempted to stimulate NKT cells with α-GalCer in mice infected with Leishmania donovani, a protozoan parasite that causes a chronic disease known as visceral leishmaniasis in humans. L. donovani characteristically causes an acute resolving infection in the liver where NKT cells are abundant. Therefore, we hypothesised that by stimulating these cells with α-GalCer we would improve the rate of hepatic disease resolution. However, while α-GalCer administered prior to infection had no effect on hepatic parasite burden, α-GalCer administered during an established infection exacerbated hepatic disease, associated with a decrease in IFNγ-producing CD8+ T cells. These results are important as they demonstrate that therapies aimed at modulating NKT cell function are not always beneficial, and adverse consequences may occur in certain circumstances, such as in the presence of persistent and/or sub-clinical infections.
PMCID: PMC2265425  PMID: 18463695
2.  Activation of Invariant NKT Cells with Glycolipid Ligand α-Galactosylceramide Ameliorates Glucose-6-Phosphate Isomerase Peptide-Induced Arthritis 
PLoS ONE  2012;7(12):e51215.
Invariant natural killer T (iNKT) cells regulate collagen-induced arthritis (CIA) when activated by their potent glycolipid ligand, alpha-galactosylceramide (α-GalCer). Glucose-6-phosphate isomerase (GPI)-induced arthritis is a closer model of human rheumatoid arthritis based on its association with CD4+ T cells and cytokines such as TNF-α and IL-6 than CIA. Dominant T cell epitope peptide of GPI (GPI325-339) can induce arthritis similar to GPI-induced arthritis. In this study, we investigated the roles of activation of iNKT cells by α-GalCer in GPI peptide-induced arthritis.
Arthritis was induced in susceptible DBA1 mice with GPI peptide and its severity was assessed clinically. The arthritic mice were treated with either the vehicle (DMSO) or α-GalCer. iNKT cells were detected in draining lymph nodes (dLNs) by flow cytometry, while serum anti-GPI antibody levels were measured by enzyme-linked immunosorbent assay. To evaluate GPI peptide-specific cytokine production from CD4+ T cells, immunized mice were euthanized and dLN CD4+ cells were re-stimulated by GPI-peptide in the presence of antigen-presenting cells.
α-GalCer induced iNKT cell expansion in dLNs and significantly decreased the severity of GPI peptide-induced arthritis. In α-GalCer-treated mice, anti-GPI antibody production (total IgG, IgG1, IgG2b) and IL-17, IFN-γ, IL-2, and TNF-α produced by GPI peptide-specific T cells were significantly suppressed at day 10. Moreover, GPI-reactive T cells from mice immunized with GPI and α-GalCer did not generate any cytokines even when these cells were co-cultured with APC from mice immunized with GPI alone. In vitro depletion of iNKT cells did not alter the suppressive effect of α-GalCer on CD4+ T cells.
α-GalCer significantly suppressed GPI peptide-induced arthritis through the suppression of GPI-specific CD4+ T cells.
PMCID: PMC3520964  PMID: 23251456
3.  Superior Protection against Malaria and Melanoma Metastases by a C-glycoside Analogue of the Natural Killer T Cell Ligand α-Galactosylceramide 
The Journal of Experimental Medicine  2003;198(11):1631-1641.
α-Galactosylceramide (α-GalCer) is a glycolipid that stimulates natural killer T cells to produce both T helper (Th) 1 and Th2 cytokines. This property enables α-GalCer to ameliorate a wide variety of infectious, neoplastic, and autoimmune diseases; however, its effectiveness against any one disease is limited by the opposing activities of the induced Th1 and Th2 cytokines. Here, we report that a synthetic C-glycoside analogue of α-GalCer, α-C-galactosylceramide (α-C-GalCer), acts as natural killer T cell ligand in vivo, and stimulates an enhanced Th1-type response in mice. In two disease models requiring Th1-type responses for control, namely malaria and melanoma metastases, α-C-GalCer exhibited a 1,000-fold more potent antimalaria activity and a 100-fold more potent antimetastatic activity than α-GalCer. Moreover, α-C-GalCer consistently stimulated prolonged production of the Th1 cytokines interferon-γ and interleukin (IL)-12, and decreased production of the Th2 cytokine IL-4 compared with α-GalCer. Finally, α-C-GalCer's enhanced therapeutic activity required the presence of IL-12, which was needed to stimulate natural killer cells for optimal interferon-γ production, but did not affect IL-4. Overall, our results suggest that α-C-GalCer may one day be an excellent therapeutic option for diseases resolved by Th1-type responses.
PMCID: PMC2194137  PMID: 14657217
NKT cell; NK cell; α-C-galactosylceramide; IFN-γ; IL-12
4.  β-mannosylceramide activates type I natural killer T cells to induce tumor immunity without inducing long-term functional anergy 
Most studies characterizing antitumor properties of iNKT cells have used the agonist, α-galactosylceramide (α-GalCer). However, α-GalCer induces strong, long-lasting anergy of iNKT cells, which could be a major detriment for clinical therapy. A novel iNKT cell agonist, β-mannosylceramide (β-ManCer), induces strong antitumor immunity through a mechanism distinct from that of α-GalCer. The objective of this study was to determine whether β-ManCer induces anergy of iNKT cells.
Experimental design
Induction of anergy was determined by ex vivo analysis of splenocytes from mice pre-treated with iNKT cell agonists as well as in the CT26 lung metastasis in vivo tumor model.
β-ManCer activated iNKT cells without inducing long-term anergy. The transience of anergy induction correlated with a shortened duration of PD-1 upregulation on iNKT cells activated with β-ManCer, compared with α-GalCer. Moreover, while mice pretreated with α-GalCer were unable to respond to a second glycolipid stimulation to induce tumor protection for up to two months, mice pretreated with β-ManCer were protected from tumors by a second stimulation equivalently to vehicle-treated mice.
The lack of long-term functional anergy induced by β-ManCer, which allows for a second dose to still give therapeutic benefit, suggests the strong potential for this iNKT cell agonist to succeed in settings where α-GalCer has failed.
Translational Relevance
Activation of iNKT cells with α-galactosylceramide was very successful in preclinical mouse models of cancer; however, its success in clinical trials has been very limited. It has been very well-documented, that once iNKT cells are activated with α-galactosylceramide, they remain unresponsive to restimulation for months. This functional anergy could be a contributing factor to the failure of α-galactosylceramide clinically, as most therapeutics require multiple dosing to achieve maximum benefit. Here, we report that a different iNKT cell agonist, β-mannosylceramide, which is capable of inducing tumor immunity similarly to α-galactosylceramide but by a different mechanism, does not induce anergy. This suggests that β-mannosylceramide has the potential to work well clinically since it can be given in multiple doses without inducing anergy.
PMCID: PMC3819527  PMID: 23804426
NKT; CD1d; tumor immunology; immunotherapeutics; anergy
5.  Natural Killer T Cell Ligand α-Galactosylceramide Enhances Protective Immunity Induced by Malaria Vaccines 
The important role played by CD8+ T lymphocytes in the control of parasitic and viral infections, as well as tumor development, has raised the need for the development of adjuvants capable of enhancing cell-mediated immunity. It is well established that protective immunity against liver stages of malaria parasites is primarily mediated by CD8+ T cells in mice. Activation of natural killer T (NKT) cells by the glycolipid ligand, α-galactosylceramide (α-GalCer), causes bystander activation of NK, B, CD4+, and CD8+ T cells. Our study shows that coadministration of α-GalCer with suboptimal doses of irradiated sporozoites or recombinant viruses expressing a malaria antigen greatly enhances the level of protective anti-malaria immunity in mice. We also show that coadministration of α-GalCer with various different immunogens strongly enhances antigen-specific CD8+ T cell responses, and to a lesser degree, Th1-type responses. The adjuvant effects of α-GalCer require CD1d molecules, Vα14 NKT cells, and interferon γ. As α-GalCer stimulates both human and murine NKT cells, these findings should contribute to the design of more effective vaccines against malaria and other intracellular pathogens, as well as tumors.
PMCID: PMC2193764  PMID: 11877484
α-galactosylceramide; NKT cells; adjuvant; malaria vaccines; CD8+ T cells
6.  Tumor-infiltrating effector cells of α-galactosylceramide-induced antitumor immunity in metastatic liver tumor 
α-Galactosylceramide (α-GalCer) can be presented by CD1d molecules of antigen-presenting cells, and is known to induce a potent NKT cell-dependent cytotoxic response against tumor cells. However, the main effector cells in α-GalCer-induced antitumor immunity are still controversial.
In order to elucidate the cell phenotype that plays the most important role in α-GalCer-induced antitumor immunity, we purified and analyzed tumor-infiltrating leukocytes (TILs) from liver metastatic nodules of a colon cancer cell line (Colon26), comparing α-GalCer- and control vehicle-treated mice. Flow cytometry was performed to analyze cell phenotype in TILs and IFN-γ ELISA was performed to detect antigen-specific immune response.
Flow cytometry analysis showed a significantly higher infiltration of NK cells (DX5+, T cell receptor αβ (TCR)-) into tumors in α-GalCer-treated mice compared to vehicle-treated mice. The DX5+TCR+ cell population was not significantly different between these two groups, indicating that these cells were not the main effector cells. Interestingly, the CD8+ T cell population was increased in TILs of α-GalCer-treated mice, and the activation level of these cells based on CD69 expression was higher than that in vehicle-treated mice. Moreover, the number of tumor-infiltrating dendritic cells (DCs) was increased in α-GalCer-treated mice. IFN-γ ELISA showed stronger antigen-specific response in TILs from α-GalCer-treated mice compared to those from vehicle-treated mice, although the difference between these two groups was not significant.
In α-GalCer-induced antitumor immunity, NK cells seem to be some of the main effector cells and both CD8+ T cells and DCs, which are related to acquired immunity, might also play important roles in this antitumor immune response. These results suggest that α-GalCer has a multifunctional role in modulation of the immune response.
PMCID: PMC479697  PMID: 15251043
NK cell; cytotoxic T lymphocyte; dendritic cell; tumor-infiltrating leukocyte
7.  NKT Cells as an Ideal Anti-Tumor Immunotherapeutic 
Human natural killer T (NKT) cells are characterized by their expression of an invariant T cell antigen receptor α chain variable region encoded by a Vα24Jα18 rearrangement. These NKT cells recognize α-galactosylceramide (α-GalCer) in conjunction with the MHC class I-like CD1d molecule and bridge the innate and acquired immune systems to mediate efficient and augmented immune responses. A prime example of one such function is adjuvant activity: NKT cells augment anti-tumor responses because they can rapidly produce large amounts of IFN-γ, which acts on NK cells to eliminate MHC negative tumors and also on CD8 cytotoxic T cells to kill MHC positive tumors. Thus, upon administration of α-GalCer-pulsed DCs, both MHC negative and positive tumor cells can be effectively eliminated, resulting in complete tumor eradication without tumor recurrence. Clinical trials have been completed in a cohort of 17 patients with advanced non-small cell lung cancers and 10 cases of head and neck tumors. Sixty percent of advanced lung cancer patients with high IFN-γ production had significantly prolonged median survival times of 29.3 months with only the primary treatment. In the case of head and neck tumors, 10 patients who completed the trial all had stable disease or partial responses 5 weeks after the combination therapy of α-GalCer-DCs and activated NKT cells. We now focus on two potential powerful treatment options for the future. One is to establish artificial adjuvant vector cells containing tumor mRNA and α-GalCer/CD1d. This stimulates host NKT cells followed by DC maturation and NK cell activation but also induces tumor-specific long-term memory CD8 killer T cell responses, suppressing tumor metastasis even 1 year after the initial single injection. The other approach is to establish induced pluripotent stem (iPS) cells that can generate unlimited numbers of NKT cells with adjuvant activity. Such iPS-derived NKT cells produce IFN-γ in vitro and in vivo upon stimulation with α-GalCer/DCs, and mediated adjuvant effects, suppressing tumor growth in vivo.
PMCID: PMC3845015  PMID: 24348476
NKT cells; adjuvant effects; clinical trial; induced pluripotent stem cells; artificial adjuvant vector cells
8.  Natural Killer T Cells Activated by a Lipopeptidophosphoglycan from Entamoeba histolytica Are Critically Important To Control Amebic Liver Abscess 
PLoS Pathogens  2009;5(5):e1000434.
The innate immune response is supposed to play an essential role in the control of amebic liver abscess (ALA), a severe form of invasive amoebiasis due to infection with the protozoan parasite Entamoeba histolytica. In a mouse model for the disease, we previously demonstrated that Jα18-/- mice, lacking invariant natural killer T (iNKT) cells, suffer from more severe abscess development. Here we show that the specific activation of iNKT cells using α-galactosylceramide (α-GalCer) induces a significant reduction in the sizes of ALA lesions, whereas CD1d−/− mice develop more severe abscesses. We identified a lipopeptidophosphoglycan from E. histolytica membranes (EhLPPG) as a possible natural NKT cell ligand and show that the purified phosphoinositol (PI) moiety of this molecule induces protective IFN-γ but not IL-4 production in NKT cells. The main component of EhLPPG responsible for NKT cell activation is a diacylated PI, (1-O-[(28∶0)-lyso-glycero-3-phosphatidyl-]2-O-(C16:0)-Ins). IFN-γ production by NKT cells requires the presence of CD1d and simultaneously TLR receptor signalling through MyD88 and secretion of IL-12. Similar to α-GalCer application, EhLPPG treatment significantly reduces the severity of ALA in ameba-infected mice. Our results suggest that EhLPPG is an amebic molecule that is important for the limitation of ALA development and may explain why the majority of E. histolytica-infected individuals do not develop amebic liver abscess.
Author Summary
Amoebiasis is a widespread human parasitic disease caused by the intestinal protozoan Entamoeba histolytica. There are two major clinical manifestations of the disease, amebic colitis and amebic liver abscess. Interestingly, only a small proportion of E. histolytica-infected individuals develop invasive disease, whereas the majority harbors the parasite within the gut without clinical symptoms. So far, cells of the innate immune system have been described to constitute the main host defense mechanism for the control of amoebiasis, relying largely on the early production of interferon-γ (IFN-γ), a protein, which activates macrophages to kill microorganisms including parasites. However, the IFN-γ-producing cells as well as the amebic antigen involved in the activation have not been identified. Here we demonstrate that mice challenged with live E. histolytica, and which are deficient of a specific lymphocyte population known as natural killer T cells (NKT cells), have a reduced capacity to control ameba infection and develop much larger amebic liver abscesses compared to normal mice. In addition, we isolated a molecule from the surface membrane of E. histolytica, which constitutes a lipopeptidophosphoglycan, and which activates NKT cells for the production of protective IFN-γ. Thus, our study provides a mechanism for the innate control of ameba invasion that might explain why the majority of E. histolytica-infected individuals do not develop amebic disease.
PMCID: PMC2674934  PMID: 19436711
9.  Failure of α-Galactosylceramide to Prevent Diabetes in Virus-Inducible Models of Type 1 Diabetes in the Rat 
In vivo (Athens, Greece)  2009;23(2):195-201.
α-Galactosylceramide (α-GalCer) is an invariant natural killer T (iNKT) cell ligand that prevents type 1 diabetes in NOD mice. However, α-GalCer can activate or suppress immune responses, raising concern about its potential use in human diabetes.
Materials and Methods
To evaluate this therapeutic issue further, BBDR and LEW.1WR1 rats were treated with Kilham rat virus (KRV) plus polyinosinic-polycytidylic acid, with or without α-GalCer, and followed for onset of diabetes.
α-GalCer did not prevent diabetes in inducible rat models. To investigate this discrepancy, we analyzed iNKT cell function. Splenocytes stimulated with α-GalCer produced similar levels of IFNγ in all rat strains, but less than mouse splenocytes. Rat splenocytes stimulated with α-GalCer preferentially produced IL-12, whereas mouse splenocytes preferentially produced IL-4.
α-GalCer elicits species-specific cytokine responses in iNKT cells. In humans with T1D, differences in iNKT cell responses to stimulation with α-GalCer due to age, genetic variability and other factors may influence its therapeutic potential.
PMCID: PMC2718559  PMID: 19414403
BB rat; type 1 diabetes; α-Galactosylceramide; iNKT cells; NOD mouse
10.  α-Galactosylceramide Promotes Killing of Listeria monocytogenes within the Macrophage Phagosome through Invariant NKT-Cell Activation▿  
Infection and Immunity  2010;78(6):2667-2676.
α-Galactosylceramide (α-GalCer) has been exploited for the treatment of microbial infections. Although amelioration of infection by α-GalCer involves invariant natural killer T (iNKT)-cell activation, it remains to be determined whether macrophages (Mφ) participate in the control of microbial pathogens. In the present study, we examined the participation of Mφ in immune intervention in infection by α-GalCer using a murine model of listeriosis. Phagocytic and bactericidal activities of peritoneal Mφ from C57BL/6 mice, but not iNKT cell-deficient mice, were enhanced after intraperitoneal injection of α-GalCer despite the absence of iNKT cells in the peritoneal cavity. High levels of gamma interferon (IFN-γ) and nitric oxide (NO) were detected in the peritoneal cavities of mice treated with α-GalCer and in culture supernatants of peritoneal Mφ from mice treated with α-GalCer, respectively. Although enhanced bactericidal activity of peritoneal Mφ by α-GalCer was abrogated by endogenous IFN-γ neutralization, this was only marginally affected by NO inhibition. Similar results were obtained by using a listeriolysin O-deficient strain of Listeria monocytogenes. Moreover, respiratory burst in Mφ was increased after α-GalCer treatment. Our results suggest that amelioration of listeriosis by α-GalCer is, in part, caused by enhanced killing of L. monocytogenes within phagosomes of Mφ activated by IFN-γ from iNKT cells residing in an organ(s) other than the peritoneal cavity.
PMCID: PMC2876567  PMID: 20351146
11.  Inhibition of T Helper Cell Type 2 Cell Differentiation and Immunoglobulin E Response by Ligand-Activated Vα14 Natural Killer T Cells 
Murine Vα14 natural killer T (NKT) cells are thought to play a crucial role in various immune responses, including infectious, allergic, and autoimmune diseases. Because Vα14 NKT cells produce large amounts of both interleukin (IL)-4 and interferon (IFN)-γ upon in vivo stimulation with a specific ligand, α-galactosylceramide (α-GalCer), or after treatment with anti-CD3 antibody, a regulatory role on helper T (Th) cell differentiation has been proposed for these cells. However, the identity of the cytokine produced by Vα14 NKT cells that play a dominant role on the Th cell differentiation still remains controversial. Here, we demonstrate by using Vα14 NKT-deficient mice that Vα14 NKT cells are dispensable for the induction of antigen-specific immunoglobulin (Ig)E responses induced by ovalbumin immunization or Nippostrongylus brasiliensis infection. However, upon in vivo activation with α-GalCer, Vα14 NKT cells are found to suppress antigen-specific IgE production. The suppression appeared to be IgE specific, and was not detected in either Vα14 NKT– or IFN-γ–deficient mice. Consistent with these results, we also found that ligand-activated Vα14 NKT cells inhibited Th2 cell differentiation in an in vitro induction culture system. Thus, it is likely that activated Vα14 NKT cells exert a potent inhibitory effect on Th2 cell differentiation and subsequent IgE production by producing a large amount of IFN-γ. In marked contrast, our studies have revealed that IL-4 produced by Vα14 NKT cells has only a minor effect on Th2 cell differentiation.
PMCID: PMC2195639  PMID: 10499917
interferon γ; interleukin 4; Nippostrongylus brasiliensis; ovalbumin; suppression
12.  Glycolipid antigen induces long-term natural killer T cell anergy in mice 
Journal of Clinical Investigation  2005;115(9):2572-2583.
Natural killer T (NKT) cells recognize glycolipid antigens presented by the MHC class I–related glycoprotein CD1d. The in vivo dynamics of the NKT cell population in response to glycolipid activation remain poorly understood. Here, we show that a single administration of the synthetic glycolipid α-galactosylceramide (α-GalCer) induces long-term NKT cell unresponsiveness in mice. NKT cells failed to proliferate and produce IFN-γ upon α-GalCer restimulation but retained the capacity to produce IL-4. Consequently, we found that activation of anergic NKT cells with α-GalCer exacerbated, rather than prevented, B16 metastasis formation, but that these cells retained their capacity to protect mice against experimental autoimmune encephalomyelitis. NKT cell anergy was induced in a thymus-independent manner and maintained in an NKT cell–autonomous manner. The anergic state could be broken by IL-2 and by stimuli that bypass proximal TCR signaling events. Collectively, the kinetics of initial NKT cell activation, expansion, and induction of anergy in response to α-GalCer administration resemble the responses of conventional T cells to strong stimuli such as superantigens. Our findings have important implications for the development of NKT cell–based vaccines and immunotherapies.
PMCID: PMC1193878  PMID: 16138194
13.  PD-L1 and PD-L2 modulate airway inflammation and iNKT-cell-dependent airway hyperreactivity in opposing directions 
Mucosal immunology  2009;3(1):81-91.
Interactions of the inhibitory receptor programmed death-1 (PD-1) with its ligands, programmed death ligand (PD-L)1 and PD-L2, regulate T-cell activation and tolerance. In this study, we investigated the role of PD-L1 and PD-L2 in regulating invariant natural killer T (iNKT)-cell-mediated airway hyperreactivity (AHR) in a murine model of asthma. We found that the severity of AHR and airway inflammation is significantly greater in PD-L2−/− mice compared with wild-type mice after either ovalbumin (OVA) sensitization and challenge or administration of α-galactosylceramide (α-GalCer). iNKT cells from PD-L2−/− mice produced significantly more interleukin (IL)-4 than iNKT cells from control mice. Moreover, blockade of PD-L2 interactions of wild-type iNKT cells in vitro with monoclonal antibodies (mAbs) resulted in significantly enhanced levels of IL-4 production. In contrast, PD-L1−/− mice showed significantly reduced AHR and enhanced production of interferon-γ (IFN-γ) by iNKT cells. iNKT-deficient Jα18−/− mice reconstituted with iNKT cells from PD-L2−/− mice developed high levels of AHR, whereas mice reconstituted with iNKT cells from PD-L1−/− mice developed lower levels of AHR compared with control. As PD-L2 is not expressed on iNKT cells but rather is expressed on lung dendritic cells (DCs), in which its expression is upregulated by allergen challenge or IL-4, these findings suggest an important role of PD-L2 on lung DCs in modulating asthma pathogenesis. These studies also indicate that PD-L1 and PD-L2 have important but opposing roles in the regulation of AHR and iNKT-cell-mediated activation.
PMCID: PMC2845714  PMID: 19741598
14.  Enhanced Gamma Interferon Production through Activation of Vα14+ Natural Killer T Cells by α-Galactosylceramide in Interleukin-18-Deficient Mice with Systemic Cryptococcosis 
Infection and Immunity  2001;69(11):6643-6650.
We showed recently that activation of Vα14+ natural killer T cells (NKT cells) by α-galactosylceramide (α-GalCer) resulted in increased gamma interferon (IFN-γ) production and host resistance to intravenous infection with Cryptococcus neoformans. In other studies, interleukin-18 (IL-18) activated NKT cells in collaboration with IL-12, suggesting the possible contribution of this cytokine to α-GalCer-induced IFN-γ synthesis. Here we examined the role of IL-18 in α-GalCer-induced Th1 response by using IL-18KO mice with this infection. In these mice, levels of IFN-γ in serum and its synthesis in vitro by spleen cells stimulated with live organisms were not reduced, but rather enhanced, compared to those in wild-type (WT) mice, while such production was completely absent in IL-12KO mice. The enhanced production of IFN-γ correlated with increased IL-12 synthesis but not with reduced production of IL-4, which was rather increased. IFN-γ synthesis in IL-18KO mice was abolished by neutralizing anti-IL-12 antibody and significantly inhibited by neutralization of endogenous IL-4 with a specific monoclonal antibody. In addition, administration of recombinant IL-4 significantly enhanced the production of IFN-γ in WT mice. Finally, the enhanced production of IFN-γ in IL-18KO mice correlated with increased host defense against cryptococcal infection, as indicated by enhancement in α-GalCer-related clearance of microorganisms. Our results indicated that in IL-18KO mice, IFN-γ synthesis was enhanced through overproduction of IL-12 and IL-4 after intravenous infection with C. neoformans and a ligand-specific activation of Vα14+ NKT cells.
PMCID: PMC100038  PMID: 11598033
15.  Structural and functional characterization of a novel non-glycosidic iNKT agonist with immunomodulatory propertiesi 
Activation of type I natural killer T (iNKT) cells by CD1d-presented agonists is a potent immunotherapeutic tool. α-galactosylceramide (α-GalCer) is the prototypic agonist but its excessive potency with simultaneous production of both pro- and anti-inflammatory cytokines hampers its potential therapeutic use. In search for novel agonists, we have analyzed the structure and function of HS44, a synthetic aminocyclitolic ceramide analog designed to avoid unrestrained iNKT cell activation. HS44 is a weaker agonist compared to α-GalCer in vitro, while in vivo it induces robust IFN-γ production, and highly reduced but still functional Th2 response. The characteristic cytokine storm produced upon α-GalCer activation was not induced. Consequently, HS44 induced a very efficient iNKT cell dependent antitumoral response in B16 animal model. In addition, intranasal administration showed the capacity to induce lung inflammation and airway hyperreactivity, a cardinal asthma feature. Thus, HS44 is able to elicit both functional Th1 or Th2 responses. Structural studies show that HS44 binds to CD1d with the same conformation as α-GalCer. The TCR binds to HS44 similarly to α-GalCer but forms less contacts, thus explaining its weaker TCR affinity and, consequently, its weaker recognition by iNKT cells. The ability of this compound to activate an efficient, but not massive, tailored functional immune response makes it an attractive reagent for immune manipulation.
PMCID: PMC3288653  PMID: 22301545
CD1d; glycolipids; iNKT cells; Tumor immunity; T Cell Receptors
16.  Amide Analogues of CD1d Agonists Modulate iNKT-Cell-Mediated Cytokine Production 
ACS Chemical Biology  2012;7(5):847-855.
Invariant natural killer T (iNKT) cells are restricted by the non-polymorphic MHC class I-like protein, CD1d, and activated following presentation of lipid antigens bound to CD1d molecules. The prototypical iNKT cell agonist is α-galactosyl ceramide (α-GalCer). CD1d-mediated activation of iNKT cells by this molecule results in the rapid secretion of a range of pro-inflammatory (Th1) and regulatory (Th2) cytokines. Polarization of the cytokine response can be achieved by modifying the structure of the glycolipid, which opens up the possibility of using CD1d agonists as therapeutic agents for a range of diseases. Analysis of crystal structures of the T-cell receptor−α-GalCer–CD1d complex led us to postulate that amide isosteres of known CD1d agonists should modulate the cytokine response profile upon iNKT-cell activation. To this end, we describe the synthesis and biological activity of amide analogues of α-GalCer and its non-glycosidic analogue threitol ceramide (ThrCer). All of the analogues were found to stimulate murine and human iNKT cells by CD1d-mediated presentation to varying degrees; however, the thioamide and carbamate analogues of ThrCer were of particular interest in that they elicited a strongly polarized cytokine response (more interferon-gamma (IFN-γ), no interleukin-4 (IL-4)) in mice. While the ThrCer-carbamate analogue was shown to transactivate natural killer (NK) cells, a mechanism that has been used to account for the preferential production of IFN-γ by other CD1d agonists, this pathway does not account for the polarized cytokine response observed for the thioamide analogue.
PMCID: PMC3409616  PMID: 22324848
17.  Natural Killer T Cell Activation Inhibits Hepatitis B Virus Replication in Vivo 
We have previously reported that hepatitis B virus (HBV)–specific CD8+ cytotoxic T lymphocytes and CD4+ helper T lymphocytes can inhibit HBV replication in the liver of HBV transgenic mice by secreting interferon (IFN)-γ when they recognize viral antigen. To determine whether an activated innate immune system can also inhibit HBV replication, in this study we activated natural killer T (NKT) cells in the liver of HBV transgenic mice by a single injection of α-galactosylceramide (α-GalCer), a glycolipid antigen presented to Vα14+NK1.1+ T cells by the nonclassical major histocompatibility complex class I–like molecule CD1d. Within 24 h of α-GalCer injection, IFN-γ and IFN-α/β were detected in the liver of HBV transgenic mice and HBV replication was abolished. Both of these events were temporally associated with the rapid disappearance of NKT cells from the liver, presumably reflecting activation-induced cell death, and by the recruitment of activated NK cells into the organ. In addition, prior antibody-mediated depletion of CD4+ and CD8+ T cells from the mice did not diminish the ability of α-GalCer to trigger the disappearance of HBV from the liver, indicating that conventional T cells were not downstream mediators of this effect. Finally, the antiviral effect of α-GalCer was inhibited in mice that are genetically deficient for either IFN-γ or the IFN-α/β receptor, indicating that most of the antiviral activity of α-GalCer is mediated by these cytokines. Based on these results, we conclude that α-GalCer inhibits HBV replication by directly activating NKT cells and by secondarily activating NK cells to secrete antiviral cytokines in the liver. In view of these findings, we suggest that, if activated, the innate immune response, like the adaptive immune response, has the potential to control viral replication during natural HBV infection. In addition, the data suggest that therapeutic activation of NKT cells may represent a new strategy for the treatment of chronic HBV infection.
PMCID: PMC2193313  PMID: 11015434
natural killer T cells; transgenic/knockout; hepatitis B virus; immunity; liver
18.  Toll-like Receptor agonists and alpha-galactosylceramide synergistically enhance the production of interferon-gamma in murine splenocytes 
Scientific Reports  2013;3:2559.
Vα14 natural killer T (iNKT) cells activated by alpha-galactosylceramide (GalCer) secrete a large amount of cytokines. Toll-like receptors (TLRs) play a critical role in the innate immune responses via the recognition of pathological antigen. Previously we demonstrated that the iNKT cells activated by GalCer augmented LPS-induced NO production in peritoneal cells. In this study, we examined the effect of GalCer and TLR agonists by IFN-γ production from splenocytes. Splenocytes pretreated with GalCer induced TLR3, 4, 7/8, and 9 agonists in vitro, resulting in the enhancement of IFN-γ mRNA expression. In particular, IFN-γ stimulated by GalCer and LPS was increased in NK cells and CD8 T cells, and inhibited by a neutralizing anti-IL-12 antibody. Pretreatment with GalCer enhanced the phosphorylation of IκB-α induced by LPS stimulation. The present study showed that co-stimulation of GalCer and TLR agonists powerfully induced the production of IFN-γ from splenocytes.
PMCID: PMC3759050  PMID: 23994875
19.  Identification of an IL-17–producing NK1.1neg iNKT cell population involved in airway neutrophilia 
The Journal of Experimental Medicine  2007;204(5):995-1001.
Invariant natural killer T (iNKT) cells are an important source of both T helper type 1 (Th1) and Th2 cytokines, through which they can exert beneficial, as well as deleterious, effects in a variety of inflammatory diseases. This functional heterogeneity raises the question of how far phenotypically distinct subpopulations are responsible for such contrasting activities. In this study, we identify a particular set of iNKT cells that lack the NK1.1 marker (NK1.1neg) and secrete high amounts of interleukin (IL)-17 and low levels of interferon (IFN)-γ and IL-4. NK1.1neg iNKT cells produce IL-17 upon synthetic (α-galactosylceramide [α-GalCer] or PBS-57), as well as natural (lipopolysaccharides or glycolipids derived from Sphingomonas wittichii and Borrelia burgdorferi), ligand stimulation. NK1.1neg iNKT cells are more frequent in the lung, which is consistent with a role in the natural immunity to inhaled antigens. Indeed, airway neutrophilia induced by α-GalCer or lipopolysaccharide instillation was significantly reduced in iNKT-cell–deficient Jα18−/− mice, which produced significantly less IL-17 in their bronchoalveolar lavage fluid than wild-type controls. Furthermore, airway neutrophilia was abolished by a single treatment with neutralizing monoclonal antibody against IL-17 before α-GalCer administration. Collectively, our findings reveal that NK1.1neg iNKT lymphocytes represent a new population of IL-17–producing cells that can contribute to neutrophil recruitment through preferential IL-17 secretion.
PMCID: PMC2118594  PMID: 17470641
20.  β-mannosylceramide activates type I natural killer T cells to induce tumor immunity without inducing long-term functional anergy 
Most studies characterizing antitumor properties of iNKT cells have used the agonist, α-galactosylceramide (α-GalCer). However, α-GalCer induces strong, long-lasting anergy of iNKT cells, which could be a major detriment for clinical therapy. A novel iNKT cell agonist, β-mannosylceramide (β-ManCer), induces strong antitumor immunity through a mechanism distinct from that of α-GalCer. The objective of this study was to determine whether β-ManCer induces anergy of iNKT cells.
Experimental design
Induction of anergy was determined by ex vivo analysis of splenocytes from mice pre-treated with iNKT cell agonists as well as in the CT26 lung metastasis in vivo tumor model.
β-ManCer activated iNKT cells without inducing long-term anergy. The transience of anergy induction correlated with a shortened duration of PD-1 upregulation on iNKT cells activated with β-ManCer, compared with α-GalCer. Moreover, while mice pretreated with α-GalCer were unable to respond to a second glycolipid stimulation to induce tumor protection for up to two months, mice pretreated with β-ManCer were protected from tumors by a second stimulation equivalently to vehicle-treated mice.
The lack of long-term functional anergy induced by β-ManCer, which allows for a second dose to still give therapeutic benefit, suggests the strong potential for this iNKT cell agonist to succeed in settings where α-GalCer has failed.
PMCID: PMC3819527  PMID: 23804426
NKT; CD1d; tumor immunology; immunotherapeutics; anergy
21.  Generation of Antitumor Invariant NKT Cell Lines in Multiple Myeloma and Promotion of Their Functions via Lenalidomide: A Strategy for Immunotherapy 
CD1d-restricted invariant NKT (iNKT) cells are important immunoregulatory cells in antitumor immune responses. However, the quantitative and qualitative defects of iNKT cells in advanced multiple myeloma (MM) hampered their antitumor effects. Therefore, the development of functional iNKT cells may provide a novel strategy for the immunotherapy in MM treatment.
Experimental Design
We activated and expanded iNKT cells from MM patients with α-galactosylceramide(α-GalCer)-pulsed-dendritic cells (DCs), characterized their antitumor effects by the cytokine production profile and cytotoxicity against MM cells, and explored the effects of immunomodulatory drug lenalidomide on these iNKT cells. We also investigated the expression of CD1d by primary MM cells and its function to activate iNKT cells.
We established highly purified functional iNKT cell lines from newly diagnosed and advanced MM patients. These CD1d-restricted iNKT cell lines produced high level of antitumor Th1 cytokine in response to α-GalCer-pulsed-primary MM cells, CD1d-transfected MM1S cell line or DCs. Moreover, MM iNKT cell lines displayed strong cytotoxicity against α-GalCer-pulsed-primary MM cells. Importantly, lenalidomide further augmented the Th1-polarization by iNKT cell lines via the increased Th1 cytokine production and the reduced Th2 cytokine production. We also demonstrated that CD1d was expressed in primary MM cells at mRNA and protein levels from the majority of MM patients, but not in normal plasma cells and MM cell lines, and CD1d+ primary MM cells presented antigens to activate iNKT cell lines.
Taken together, our results provide the pre-clinical evidence for the iNKT cells-mediated immunotherapy and a rationale for their use in combination with lenalidomide in MM treatment.
PMCID: PMC2967459  PMID: 18980990
iNKT cells; multiple myeloma; lenalidomide; immunotherapy
22.  TLR4, 5, and 9 Agonists Inhibit Murine Airway Invariant Natural Killer T Cells in an IL-12-Dependent Manner 
Invariant natural killer T (iNKT) cells may play an important role in the pathogenesis of asthma in mice and humans. Thus, an agent that modulates the function of iNKT cells may have therapeutic potential to control asthma. We hypothesized that lipopolysaccharide (LPS)-, flagellin-, or CpG-induced changes in the cytokine milieu may modify and even inhibit the function of airway iNKT cells in asthma.
Because increased α-galactosylceramide (GalCer)-induced airway hyperreactivity (AHR) reflects the presence of airway iNKT cells, α-GalCer-induced AHR, as well as inflammatory cells and cytokines in bronchoalveolar lavage (BAL) fluid, were determined 24 hours after in vivo treatment with LPS, flagellin, or CpG in naïve BALB/c mice. Intracellular IL-4 and IFN-γ were measured in spleen iNKT cells after in vitro treatment with LPS, flagellin, or CpG. A role for IL-12 following the treatments was determined.
Intranasal administration of LPS, flagellin, or CpG reduced development of α-GalCer-induced AHR, eosinophilic airway inflammation, and Th1 and Th2 cytokine responses in BAL fluid, while producing IL-12 in BAL fluid. Intraperitoneal administration of IL-12 mAb blocked the suppressive effect of LPS, flagellin, or CpG. In vitro treatment with LPS, flagellin, or CpG reduced production of IL-4 and IFN-γ from α-GalCer-stimulated spleen iNKT cells; these effects were ameliorated by addition of anti-IL-12 mAb.
TLR4, 5, and 9 agonists may suppress the function of airway and spleen iNKT cells via IL-12-dependent mechanisms. Anergy of iNKT cells by IL-12 might play a role in suppression by these TLR agonists.
PMCID: PMC3423604  PMID: 22950036
CpG; flagellin; lipopolysaccharide; natural killer T cells
23.  Activated invariant NKT cells control central nervous system autoimmunity in a mechanism that involves myeloid-derived suppressor cells 
Invariant NKT (iNKT) cells are a subset of T lymphocytes that recognize glycolipid antigens presented by the MHC class I-related protein CD1d. Activation of iNKT cells with glycolipid antigens such as the marine sponge-derived reagent α-galactosylceramide (α-GalCer) results in the rapid production of a variety of cytokines and activation of many other immune cell types. These immunomodulatory properties of iNKT cells have been exploited for the development of immunotherapies against a variety of autoimmune and inflammatory diseases but mechanisms by which activated iNKT cells confer disease protection have remained incompletely understood. Here, we demonstrate that glycolipid-activated iNKT cells cooperate with myeloid-derived suppressor cells (MDSCs) in protecting mice against the development of experimental autoimmune encephalomyelitis (EAE) in mice, an animal model for multiple sclerosis (MS). We showed that α-GalCer induced the expansion and immunosuppressive activities of MDSCs in the spleen of mice induced for development of EAE. Disease protection in these animals also correlated with recruitment of MDSCs to the central nervous system. Depletion of MDSCs abrogated the protective effects of α-GalCer against EAE and, conversely, adoptive transfer of MDSCs from α-GalCer-treated mice ameliorated passive EAE induced in recipient animals. The cytokines GM-CSF, IL-4 and IFN-γ, produced by activated iNKT cells, and inducible nitric oxide synthase, arginase-1 and IL-10 produced by MDSCs, contributed to these effects. Taken together, our findings have revealed cooperative immunosuppressive interactions between iNKT cells and MDSCs that might be exploited for the development of improved immunotherapies for MS and other autoimmune and inflammatory diseases.
PMCID: PMC3577977  PMID: 23345328
24.  α-Galactosylceramide as a Therapeutic Agent for Pulmonary Mycobacterium tuberculosis Infection 
Rationale: Invariant natural killer T (iNKT) cells are a unique subset of T cells that recognize lipid antigens presented by CD1d molecules. Recent studies have shown that iNKT cells can protect mice against Mycobacterium tuberculosis (Mtb) infection. We sought to determine whether pharmacological activation of iNKT cells by α-galactosylceramide (α-GalCer) could be used to treat tuberculosis (TB).
Objectives: We hypothesized that α-GalCer, either alone or in combination with isoniazid, could be used to treat pulmonary TB.
Methods: The ability of α-GalCer–activated iNKT cells to suppress Mtb replication was evaluated using an in vitro coculture system. To test its potency in vivo, mice infected with virulent Mtb were treated with α-GalCer alone or in combination with isoniazid.
Measurements and Main Results: Quantitative colony-forming unit counts were compared for both experimental systems. Our results show that α-GalCer plus isoniazid controls bacterial growth better than α-GalCer or INH alone, and single or multiple α-GalCer administrations prolong the survival of the mice infected via the aerosol route.
Conclusions: Our results demonstrate that α-GalCer administration can improve the outcome of Mtb infection, even when transmitted by the aerosol route. However, a combination of isoniazid and α-GalCer treatment has a synergistic effect on infection control. We conclude that more efficient treatment of TB will be achieved through a combination of classic chemotherapy and modulation of the host immune response.
PMCID: PMC2949408  PMID: 20508216
CD1d; antibiotics; natural killer T cells; tuberculosis; lipids
25.  Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand (Trail) Contributes to Interferon γ–Dependent Natural Killer Cell Protection from Tumor Metastasis 
Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) is expressed by in vitro activated natural killer (NK) cells, but the relevance of this observation to the biological function of NK cells has been unclear. Herein, we have demonstrated the in vivo induction of mouse TRAIL expression on various tissue NK cells and correlated NK cell activation with TRAIL-mediated antimetastatic function in vivo. Expression of TRAIL was only constitutive on a subset of liver NK cells, and innate NK cell control of Renca carcinoma hepatic metastases in the liver was partially TRAIL dependent. Administration of therapeutic doses of interleukin (IL)-12, a powerful inducer of interferon (IFN)-γ production by NK cells and NKT cells, upregulated TRAIL expression on liver, spleen, and lung NK cells, and IL-12 suppressed metastases in both liver and lung in a TRAIL-dependent fashion. By contrast, α-galactosylceramide (α-GalCer), a powerful inducer of NKT cell IFN-γ and IL-4 secretion, suppressed both liver and lung metastases but only stimulated NK cell TRAIL-mediated function in the liver. TRAIL expression was not detected on NK cells from IFN-γ–deficient mice and TRAIL-mediated antimetastatic effects of IL-12 and α-GalCer were strictly IFN-γ dependent. These results indicated that TRAIL induction on NK cells plays a critical role in IFN-γ–mediated antimetastatic effects of IL-12 and α-GalCer.
PMCID: PMC2193421  PMID: 11257133
rodent; tumor immunity; in vivo animal models; immunotherapy; interleukin 12

Results 1-25 (1238160)