Search tips
Search criteria

Results 1-25 (1229516)

Clipboard (0)

Related Articles

1.  Costimulation through B7-2 (CD86) Is Required for the Induction of a Lung Mucosal T Helper Cell 2 (TH2) Immune Response and Altered Airway Responsiveness 
The Journal of Experimental Medicine  1997;185(9):1671-1680.
The recruitment of eosinophils into the airways after allergen exposure is dependent on interleukin (IL) 5 secreted from antigen-specific CD4+ T cells of the T helper cell (Th) 2 subset. However, while it is established that costimulation through CD28 is required for TCR-mediated activation and IL-2 production, the importance of this mechanism for the induction of a Th2 immune response is less clear. In the present study, we administered the fusion protein CTLA-4 immunoglobulin (Ig) into the lungs before allergen provocation to determine whether CD28/CTLA-4 ligands are required for allergen-induced eosinophil accumulation and the production of Th2 cytokines. Administration of CTLA-4 Ig inhibited the recruitment of eosinophils into the lungs by 75% and suppressed IgE in the bronchoalveolar lavage fluid. CTLA-4 Ig also inhibited the production of IL-4, IL-5, and IL-10 by 70–80% and enhanced interferon-γ production from CD3–T cell receptor–activated lung Thy1.2+ cells. Allergen exposure upregulated expression of B7-2, but not B7-1, on B cells from the lung within 24 h. Moreover, airway administration of an anti-B7-2 monoclonal antibody (mAb) inhibited eosinophil infiltration, IgE production, and Th2 cytokine secretion comparable in magnitude to that observed with CTLA-4 Ig. Treatment with an anti-B7-1 mAb had a small, but significant effect on eosinophil accumulation, although was less effective in inhibiting Th2 cytokine production. The anti-B7-2, but not anti-B7-1, mAb also inhibited antigen-induced airway hyperresponsiveness in vivo. In all of the parameters assessed, the combination of both the anti-B7-1 and anti-B7-2 mAb was no more effective than anti-B7-2 mAb treatment alone. We propose that strategies aimed at inhibition of CD28 interactions with B7-2 molecules may represent a novel therapeutic target for the treatment of lung mucosal allergic inflammation.
PMCID: PMC2196297  PMID: 9151904
2.  Central role of immunoglobulin (Ig) E in the induction of lung eosinophil infiltration and T helper 2 cell cytokine production: inhibition by a non-anaphylactogenic anti-IgE antibody 
The Journal of Experimental Medicine  1996;183(4):1303-1310.
Elevated levels of immunoglobulin (Ig) E are associated with bronchial asthma, a disease characterized by eosinophilic inflammation of the airways. Activation of antigen-specific T helper (Th) 2 cells in the lung with the subsequent release of interleukin (IL) 4 and IL-5 is believed to play an important role in the pathogenesis of this disease. In this study, we have used a non-anaphylactogenic anti-mouse-IgE antibody to investigate the relationship between IgE, airway eosinophil infiltration, and the production of Th2 cytokines. Immunization of mice with house dust mite antigen increased serum levels of IgE and IgG. Antigen challenge of immunized but not control mice induced an infiltration of eosinophils in the bronchoalveolar lavage associated with the production of IL-4 and IL-5 from lung purified Thy1.2+ cells activated through the CD3-T cell receptor complex. Administration of the anti-IgE monoclonal antibody (mAb) 6h before antigen challenge neutralized serum IgE but not IgG and inhibited the recruitment of eosinophils into the lungs and the production of IL-4 and IL-5 but not interferon gamma. Studies performed using an anti-CD23 mAb, CD23 deficient and mast cell deficient mice suggest that anti-IgE mAb suppresses eosinophil infiltration and Th2 cytokine production by inhibiting IgE-CD23-facilitated antigen presentation to T cells. Our results demonstrate that IgE-dependent mechanisms are important in the induction of a Th2 immune response and the subsequent infiltration of eosinophils into the airways. Neutralization of IgE, for example, non- anaphylactogenic anti-IgE mAbs may provide a novel therapeutic approach to the treatment of allergic airway disease.
PMCID: PMC2192518  PMID: 8666888
3.  Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity [published erratum appears in J Exp Med 1997 May 5;185(9):1715] 
Reversible airway hyperreactivity underlies the pathophysiology of asthma, yet the precise mediators of the response remain unclear. Human studies have correlated aberrant activation of T helper (Th) 2-like effector systems in the airways with disease. A murine model of airway hyperreactivity in response to acetylcholine was established using mice immunized with ovalbumin and challenged with aerosolized antigen. No airway hyperractivity occurred in severe combined immunodeficient mice. Identically immunized BALB/c mice developed an influx of cells, with a predominance of eosinophils and CD4+ T cells, into the lungs and bronchoalveolar lavage fluid at the time that substantial changes in airway pressure and resistance were quantitated. Challenged animals developed marked increases in Th2 cytokine production, eosinophil influx, and serum immunoglobulin E levels. Neutralization of interleukin (IL) 4 using monoclonal antibodies administered during the period of systemic immunization abrogated airway hyperractivity but had little effect on the influx of eosinophils. Administration of anti-IL-4 only during the period of the aerosol challenge did not affect the subsequent response to acetylcholine. Finally, administration of anti- IL-5 antibodies at levels that suppressed eosinophils to < 1% of recruited cells had no effect on the subsequent airway responses. BALB/c mice had significantly greater airway responses than C57BL/6 mice, consistent with enhanced IL-4 responses to antigen in BALB/c mice. Taken together, these data implicate IL-4 generated during the period of lymphocyte priming with antigen in establishing the cascade of responses required to generate airway hyperractivity to inhaled antigen. No role for IL-5 or eosinophils could be demonstrated.
PMCID: PMC2192426  PMID: 8551213
4.  Treatment of Allergic Airway Inflammation and Hyperresponsiveness by Antisense-Induced Local Blockade of Gata-3 Expression 
The Journal of Experimental Medicine  2001;193(11):1247-1260.
Recent studies in transgenic mice have revealed that expression of a dominant negative form of the transcription factor GATA-3 in T cells can prevent T helper cell type 2 (Th2)-mediated allergic airway inflammation in mice. However, it remains unclear whether GATA-3 plays a role in the effector phase of allergic airway inflammation and whether antagonizing the expression and/or function of GATA-3 can be used for the therapy of allergic airway inflammation and hyperresponsiveness. Here, we analyzed the effects of locally antagonizing GATA-3 function in a murine model of asthma. We could suppress GATA-3 expression in interleukin (IL)-4–producing T cells in vitro and in vivo by an antisense phosphorothioate oligonucleotide overlapping the translation start site of GATA-3, whereas nonsense control oligonucleotides were virtually inactive. In a murine model of asthma associated with allergic pulmonary inflammation and hyperresponsiveness in ovalbumin (OVA)-sensitized mice, local intranasal administration of fluorescein isothiocyanate–labeled GATA-3 antisense oligonucleotides led to DNA uptake in lung cells associated with a reduction of intracellular GATA-3 expression. Such intrapulmonary blockade of GATA-3 expression caused an abrogation of signs of lung inflammation including infiltration of eosinophils and Th2 cytokine production. Furthermore, treatment with antisense but not nonsense oligonucleotides induced a significant reduction of airway hyperresponsiveness in OVA-sensitized mice to levels comparable to saline-treated control mice, as assessed by both enhanced pause (PenH) responses and pulmonary resistance determined by body plethysmography. These data indicate a critical role for GATA-3 in the effector phase of a murine asthma model and suggest that local delivery of GATA-3 antisense oligonucleotides may be a novel approach for the treatment of airway hyperresponsiveness such as in asthma. This approach has the potential advantage of suppressing the expression of various proinflammatory Th2 cytokines simultaneously rather than suppressing the activity of a single cytokine.
PMCID: PMC2193377  PMID: 11390432
GATA-3; antisense DNA; asthma; T cells; Th2 cytokines
5.  Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae 
PLoS Pathogens  2014;10(3):e1003988.
Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity.
Author Summary
Eosinophil recruitment is a classic characteristic of both allergic and parasitic helminth diseases. Elucidation of the role of eosinophils in these diseases is of pivotal importance for understanding the mechanisms of protection and the development of pathology. In the last few years, the part played by eosinophils in helminth-defence has been dissected using in vivo models and their importance in protection has been shown to be highly specific to the host-parasite combination. This study dissects the role of eosinophils during infection with the human lymphatic filarial parasite, Brugia malayi, which causes the major neglected tropical disease, lymphatic filariasis. In particular, we study the role of the eosinophil as a double–edged sword in generating both protection and pathology. We definitively confirm the importance of eosinophils in protection against B. malayi microfilariae and show that protection is not mediated by release of the eosinophil granule proteins, major basic protein or eosinophil peroxidase alone. Overall, we reveal that during an infection with B. malayi microfilariae, eosinophils are critical for primary protective responses. However, eosinophils contribute to nematode-induced lung dysfunction, while additionally, eosinophil granules are important negative regulators of parasite-induced lung inflammatory and some adaptive immune responses.
PMCID: PMC3953434  PMID: 24626328
6.  Suppressor of Cytokine Signaling 1 (SOCS1) is a physiological regulator of the asthma response 
The molecular determinants of the severity and persistence of allergic asthma remain poorly understood. Suppressor Of Cytokine Signaling 1 (SOCS1) is a negative regulator of interleukin (IL)-4-dependent pathways in vitro and might therefore, control T helper type 2 (Th2) immunity associated traits, such as IgE levels, mucin production, IL-5 and IL-13 induction, and eosinophilic mucosal inflammation, which are implicated in allergic asthma.
To investigate the role of SOCS1 in regulating Th2-associated disease traits in a murine sub-chronic aeroallergen-driven asthma model.
Following sensitization and challenge with ovalbumin (OVA), bronchoalveolar lavage (BAL) and serum were collected from mice lacking the Socs1 gene on an interferon γ (IFN-γ) null background (Socs1−/−Ifnγ−/−). The composition of infiltrating cells in the lung, serum IgE and IgG1 levels and cytokine levels were analysed.
Serum IgE levels and infiltrating eosinophils were greatly increased in the lungs of OVA-treated Socs1−/−Ifnγ−/− mice compared to Ifnγ−/− and C57BL/6 controls. Expression of the Th2 cytokines, IL-4, IL-5 and IL-13 was increased in CD4+ cells and lung tissue from OVA-treated Socs1−/−Ifnγ−/− mice. IgE, IL-5 levels and infiltrating eosinophils were also elevated in saline-treated Socs1−/−Ifnγ−/− mice, suggesting that in the absence of SOCS1, mice are already biased towards a Th2 response. It is at present unclear whether the elevated cytokine levels are sufficient to result in the exacerbated Th2-response to OVA challenge or whether enhanced intracellular signalling also contributes. Surprisingly, of the various IL-4/IL-13 responsive genes tested, only Arginase I appeared to be modestly up-regulated in the lungs of OVA-treated Socs1−/−Ifnγ−/− mice, suggesting that regulation by SOCS1 occurs primarily in hematopoietic cells and not in the airway epithelium.
Together these results indicate that SOCS1 is an important regulator of the Th2 response.
PMCID: PMC3449009  PMID: 19309352
SOCS1; asthma; Th2 type cytokines; bronchoalveolar lavage; eosinophils
7.  A Regulatory Role for Interleukin 4 in Differential Inflammatory Responses in the Lung following Infection of Mice Primed with Th1- or Th2-Inducing Pertussis Vaccines 
Infection and Immunity  2000;68(3):1383-1390.
Protection against infectious pathogens at mucosal surfaces is dependent on local antibody responses, production of inflammatory mediators, and recruitment of immune effector cells to the site of infection. Since Th1 and Th2 cells produce cytokines with pro- and anti-inflammatory activities, immunization with vaccines that induce these T-cell subtypes may regulate the subsequent inflammatory response to infection. We have demonstrated that immunization of mice with pertussis whole-cell or acellular vaccines (Pw or Pa) selectively induces Th1 and Th2 cells, respectively. In this study we have used a murine respiratory-infection model to demonstrate that priming with a Th1- or Th2-inducing pertussis vaccine can influence the local inflammatory response and immune effector cells in the lung following aerosol challenge with Bordetella pertussis. Analysis of bronchoalveolar lavage (BAL) fluid taken during the course of B. pertussis infection of naïve mice or mice immunized with Pw revealed an early influx of neutrophils and local production of interleukin 1β (IL-1β) in the lungs. In contrast, neutrophil infiltration and IL-1β production were not observed following challenge of mice immunized with the Th2-inducing Pa. Conversely, during infection local production of IL-6 and IL-1ra was significantly greater in mice immunized with Pa than in those immunized with Pw. Studies of knockout mice revealed neutrophil and lymphocyte infiltration in the lungs following B. pertussis infection of IL-4-defective (IL-4−/−) mice but not in wild-type mice immunized with Pa. Furthermore, the levels of IL-1β, IL-6, and IL-1ra in Pa-immunized IL-4−/− mice were comparable to those in mice immunized with Pw. These results demonstrate distinct influences of Th1- and Th2-inducing vaccines on the protective inflammatory responses in the lungs following challenge with B. pertussis and implicate IL-4 as an important regulator of inflammatory-cell recruitment.
PMCID: PMC97292  PMID: 10678951
8.  Dectin-2 Regulates the Effector Phase of House Dust Mite-Elicited Pulmonary Inflammation Independently from its Role in Sensitization 
The myeloid C-type lectin receptor Dectin-2 directs the generation of Th2 and Th17 immune responses to the house dust mite Dermatophagoides farinae (Df) through the generation of cysteinyl leukotrienes (cys-LTs) and pro-inflammatory cytokines, respectively, but a role for Dectin-2 in effector phase responses has not been described. Here, we demonstrate that administration of the Dectin-2 mAb solely at the time of Df challenge abrogated eosinophilic and neutrophilic inflammation in the bronchoalveolar lavage (BAL) fluid and Th1, Th2, and Th17 inflammation in the lung of previously sensitized mice. Furthermore, Dectin-2 null mice (Clec4n−/−) sensitized with the adoptive transfer of Df-pulsed wild-type (WT) bone marrow-derived DCs (BMDCs) also had less Df-elicited pulmonary inflammation, supporting an effector function for Dectin-2. The protection from pulmonary inflammation seen with the Dectin-2 mAb or in Clec4n−/− mice was associated with little or no reduction in lung-draining lymph node cells or their cytokine production, and with no reduction in serum IgE. WT and Clec4n−/− mice recipients, sensitized with Df-pulsed WT BMDCs, had comparable levels of Df-elicited IL-6, IL-23, TNF-α, and cys-LTs in the lung. By contrast, Df-elicited CCL4 and CCL8 production from pulmonary CD11c+CD11b+Ly6C+ and CD11c+CD11b+Ly6C−CD64+ monocyte-derived DCs was reduced in Clec4n−/− recipients. Addition of CCL8 at the time of Df challenge abrogated the protection from eosinophilic, neutrophilic, and Th2 pulmonary inflammation seen in Clec4n−/− recipients. Taken together, these results reveal that Dectin-2 regulates monocyte-derived DC function in the pulmonary microenvironment at Df challenge to promote the local inflammatory response.
PMCID: PMC4024442  PMID: 24453247
Knockout mice; Dendritic Cells; Lipid mediators; Allergy; Inflammation
9.  Virus-specific CD8+ T Lymphocytes Downregulate T Helper Cell Type 2 Cytokine Secretion and Pulmonary Eosinophilia during Experimental Murine Respiratory Syncytial Virus Infection  
T lymphocytes play a pivotal role in the immune response during viral infections. In a murine model of experimental respiratory syncytial virus (RSV) infection, mice sensitized to either of the two major glycoproteins of RSV develop distinct patterns of cytokine secretion and lung inflammation upon subsequent RSV infection. Mice sensitized to RSV-G (attachment) glycoprotein exhibit a strong interleukin (IL)-4 and IL-5 response and develop pulmonary eosinophilia, whereas mice sensitized to RSV-F (fusion) glycoprotein develop a predominantly T helper cell (Th)1 response and pulmonary inflammation characterized by mononuclear cell infiltration. In this study, we examined the potential role of virus-specific CD8+ T cytolytic T cells on the differentiation and activation of functionally distinct CD4+ T cells specific to these viral glycoproteins. Mice primed with recombinant vaccinia virus expressing RSV-F glycoprotein mounted a strong RSV-specific, MHC class I–restricted cytolytic response, whereas priming with recombinant vaccinia virus expressing RSV-G glycoprotein failed to elicit any detectable cytolytic response. Priming for a RSV-specific CD8+ T cell response, either with a recombinant vaccinia virus expressing RSV-G glycoprotein in which a strong CD8+ T cell epitope from RSV-M2 (matrix) protein has been inserted or with a combination of vaccinia virus expressing the matrix protein and the RSV-G glycoprotein, suppressed the eosinophil recruitment into the lungs of these mice upon subsequent challenge with RSV. This reduction in pulmonary eosinophilia correlated with the suppression of Th2 type cytokine production. The importance of CD8+ T cells in this process was further supported by the results in CD8+ T cell deficient, β2 microglobulin KO mice. In these mice, priming to RSV-F glycoprotein (which in normal mice primed for a strong cytolytic response and a pulmonary infiltrate consisting primarily of mononuclear cells on RSV challenge) resulted in the development of marked pulmonary eosinophilia that was not seen in mice with an intact CD8+ T cell compartment. These results indicate that CD8+ T cells may play an important role in the regulation of the differentiation and activation of Th2 CD4+ T cells as well as the recruitment of eosinophils into the lungs during RSV infection.
PMCID: PMC2198992  PMID: 9236194
10.  Cigarette Smoking and Inflammation 
Journal of Dental Research  2012;91(2):142-149.
Cigarette smoke (CS) causes considerable morbidity and mortality by inducing cancer, chronic lung and vascular diseases, and oral disease. Despite the well-recognized risks associated with smoking, the habit remains unacceptably prevalent. Several toxins present in CS have immunomodulatory effects. CS also contains trace amounts of microbial cell components, including bacterial lipopolysaccharide. These and other CS constituents induce chronic inflammation at mucosal surfaces and modify host responses to exogenous antigens. The effects of CS on immunity are far-reaching and complex; both pro-inflammatory and suppressive effects may be induced. The net effect of CS on immunity depends on many variables, including the dose and type of tobacco, the route and chronicity of exposure, and the presence of other factors at the time of immune cell stimulation, such as Toll receptor ligands or other inflammatory mediators. CS impairs innate defenses against pathogens, modulates antigen presentation, and promotes autoimmunity. CS also impairs immunity in the oral cavity and promotes gingival and periodontal disease and oral cancer. The recognition of specific mechanisms by which CS affects host immunity is an important step toward elucidating mechanisms of tobacco-induced disease and may identify novel therapeutic approaches for the management of diseases that afflict smokers.
Abbreviations: AP-1, activator protein-1; CD, cluster of differentiation; COPD, chronic obstructive pulmonary disease; HLA, human leukocyte antigen; IFNγ, interferon gamma; IL, interleukin; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor kappa-B; RAGE, receptors for advanced glycation end-products; ROS, reactive oxidative species; RORγτ, retinoic acid receptor-related orphan receptor transcription factor; STAT, signal transducer and activator of transcription; T-bet, T-box transcription factor; Th, T-helper; TLR, Toll-like receptors; TNFα, Tumor necrosis factor alpha; and TSLP, thymic stromal lymphopoeitin.
PMCID: PMC3261116  PMID: 21876032
tobacco; immunity; inflammation; autoimmunity; cigarette smoke; nicotine
11.  An Essential Role for Interleukin 10 in the Function of Regulatory T Cells That Inhibit Intestinal Inflammation 
The Journal of Experimental Medicine  1999;190(7):995-1004.
A T helper cell type 1–mediated colitis develops in severe combined immunodeficient mice after transfer of CD45RBhigh CD4+ T cells and can be prevented by cotransfer of the CD45RBlow subset. The immune-suppressive activities of the CD45RBlow T cell population can be reversed in vivo by administration of an anti-transforming growth factor β antibody. Here we show that interleukin (IL)-10 is an essential mediator of the regulatory functions of the CD45RBlow population. This population isolated from IL-10–deficient (IL-10−/−) mice was unable to protect from colitis and when transferred alone to immune-deficient recipients induced colitis. Treatment with an anti–murine IL-10 receptor monoclonal antibody abrogated inhibition of colitis mediated by wild-type (WT) CD45RBlow CD4+ cells, suggesting that IL-10 was necessary for the effector function of the regulatory T cell population. Inhibition of colitis by WT regulatory T cells was not dependent on IL-10 production by progeny of the CD45RBhigh CD4+ cells, as CD45RBlow CD4+ cells from WT mice were able to inhibit colitis induced by IL-10−/− CD45RBhigh CD4+ cells. These findings provide the first clear evidence that IL-10 plays a nonredundant role in the functioning of regulatory T cells that control inflammatory responses towards intestinal antigens.
PMCID: PMC2195650  PMID: 10510089
interleukin 10; inflammatory bowel disease; CD4+ T lymphocyte; regulatory T lymphocyte
12.  Granulocyte Macrophage Colony-Stimulating Factor-Activated Eosinophils Promote Interleukin-23 Driven Chronic Colitis 
Immunity  2015;43(1):187-199.
The role of intestinal eosinophils in immune homeostasis is enigmatic and the molecular signals that drive them from protective to tissue damaging are unknown. Most commonly associated with Th2 cell-mediated diseases, we describe a role for eosinophils as crucial effectors of the interleukin-23 (IL-23)-granulocyte macrophage colony-stimulating factor (GM-CSF) axis in colitis. Chronic intestinal inflammation was characterized by increased bone marrow eosinopoiesis and accumulation of activated intestinal eosinophils. IL-5 blockade or eosinophil depletion ameliorated colitis, implicating eosinophils in disease pathogenesis. GM-CSF was a potent activator of eosinophil effector functions and intestinal accumulation, and GM-CSF blockade inhibited chronic colitis. By contrast neutrophil accumulation was GM-CSF independent and dispensable for colitis. In addition to TNF secretion, release of eosinophil peroxidase promoted colitis identifying direct tissue-toxic mechanisms. Thus, eosinophils are key perpetrators of chronic inflammation and tissue damage in IL-23-mediated immune diseases and it suggests the GM-CSF-eosinophil axis as an attractive therapeutic target.
Graphical Abstract
•GM-CSF synergizes with IL-5 to exacerbate eosinopoiesis during chronic colitis•GM-CSF-activated eosinophils promote IL-23 driven colitis•Depletion of eosinophils, but not of neutrophils, dampens colitis•GM-CSF increases eosinophil production of inflammatory cytokines TNF and IL-13
Although eosinophils are most commonly associated with Th2-cell-mediated diseases, Powrie and colleagues describe a crucial role for eosinophils in IL-23-mediated chronic colitis. GM-CSF was a potent activator of eosinopoiesis and concomitant accumulation of activated and tissue-toxic eosinophils in the inflamed intestine, as well as their secretion of inflammatory cytokines.
PMCID: PMC4518500  PMID: 26200014
13.  Allergic pulmonary inflammation in mice is dependent on eosinophil-induced recruitment of effector T cells 
The current paradigm surrounding allergen-mediated T helper type 2 (Th2) immune responses in the lung suggests an almost hegemonic role for T cells. Our studies propose an alternative hypothesis implicating eosinophils in the regulation of pulmonary T cell responses. In particular, ovalbumin (OVA)-sensitized/challenged mice devoid of eosinophils (the transgenic line PHIL) have reduced airway levels of Th2 cytokines relative to the OVA-treated wild type that correlated with a reduced ability to recruit effector T cells to the lung. Adoptive transfer of Th2-polarized OVA-specific transgenic T cells (OT-II) alone into OVA-challenged PHIL recipient mice failed to restore Th2 cytokines, airway histopathologies, and, most importantly, the recruitment of pulmonary effector T cells. In contrast, the combined transfer of OT-II cells and eosinophils into PHIL mice resulted in the accumulation of effector T cells and a concomitant increase in both airway Th2 immune responses and histopathologies. Moreover, we show that eosinophils elicit the expression of the Th2 chemokines thymus- and activation-regulated chemokine/CCL17 and macrophage-derived chemokine/CCL22 in the lung after allergen challenge, and blockade of these chemokines inhibited the recruitment of effector T cells. In summary, the data suggest that pulmonary eosinophils are required for the localized recruitment of effector T cells.
PMCID: PMC2275390  PMID: 18316417
14.  Antigen-sensitized CD4+CD62Llow memory/effector T helper 2 cells can induce airway hyperresponsiveness in an antigen free setting 
Respiratory Research  2005;6(1):46.
Airway hyperresponsiveness (AHR) is one of the most prominent features of asthma, however, precise mechanisms for its induction have not been fully elucidated. We previously reported that systemic antigen sensitization alone directly induces AHR before development of eosinophilic airway inflammation in a mouse model of allergic airway inflammation, which suggests a critical role of antigen-specific systemic immune response itself in the induction of AHR. In the present study, we examined this possibility by cell transfer experiment, and then analyzed which cell source was essential for this process.
BALB/c mice were immunized with ovalbumin (OVA) twice. Spleen cells were obtained from the mice and were transferred in naive mice. Four days later, AHR was assessed. We carried out bronchoalveolar lavage (BAL) to analyze inflammation and cytokine production in the lung. Fluorescence and immunohistochemical studies were performed to identify T cells recruiting and proliferating in the lung or in the gut of the recipient. To determine the essential phenotype, spleen cells were column purified by antibody-coated microbeads with negative or positive selection, and transferred. Then, AHR was assessed.
Transfer of spleen cells obtained from OVA-sensitized mice induced a moderate, but significant, AHR without airway antigen challenge in naive mice without airway eosinophilia. Immunization with T helper (Th) 1 elicited antigen (OVA with complete Freund's adjuvant) did not induce the AHR. Transferred cells distributed among organs, and the cells proliferated in an antigen free setting for at least three days in the lung. This transfer-induced AHR persisted for one week. Interleukin-4 and 5 in the BAL fluid increased in the transferred mice. Immunoglobulin E was not involved in this transfer-induced AHR. Transfer of in vitro polarized CD4+ Th2 cells, but not Th1 cells, induced AHR. We finally clarified that CD4+CD62Llow memory/effector T cells recruited in the lung and proliferated, thus induced AHR.
These results suggest that antigen-sensitized memory/effector Th2 cells themselves play an important role for induction of basal AHR in an antigen free, eosinophil-independent setting. Therefore, regulation of CD4+ T cell-mediated immune response itself could be a critical therapeutic target for allergic asthma.
PMCID: PMC1180472  PMID: 15921525
Indian Journal of Dermatology  2010;55(2):157-160.
In both skin and synovial tissues of psoriatic arthritis (PsA) patients, there are prominent lymphocytic infiltrates localized to the dermal papillae in the skin and the sublining layer stroma in the joint. T-cells, with a predominance of CD4+ lymphocytes, are the most significant lymphocytes in the tissues; in contrast, this ratio is reversed in the epidermis, synovial fluid compartment, and at the enthesis, where CD8+ T-cells are more common. This differential tropism of CD8+ T-cell suggests that the CD8+ T-cells may be driving the immune response in the joint and skin. This is supported by an association with MHC class I. The cytokine network in the psoriatic skin and synovium is dominated by monocyte and T-cell-derived cytokines: IL-1β, IL-2, IL-10, IFN-γ, and TNF-α. In PsA synovium, higher levels of IFN-γ, IL-2, and IL-10 have been detected than in psoriatic skin. An analysis of T-cell receptor beta-chain variable (TCRβV) gene repertoires revealed common expansions in both skin and synovial inflammatory sites, suggesting an important role for cognate T-cell responses in the pathogenesis of PsA and that the inciting antigen may be identical or homologous between the afflicted skin and synovium. Traditionally, T-cells have been classified as T helper 1 (Th1) or Th2 cells by production of defining cytokines, IFN-γ and IL-4, respectively. Recently, a new type of T-cell, Th17, has been linked to autoimmune inflammation. T-helper 17 (Th17) cells are a unique effector CD4+ T-cell subset characterized by the production of interleukin (IL)-17. Murine diseases that were previously considered to be pure Th1-mediated responses have been shown to contain mixed populations of Th1 and Th17 cells. Also, in humans, a critical immunoregulatory role of Th-17 cells in infectious and autoimmune diseases has been identified. It has been postulated that IL-17 may be important in psoriasis. Our initial observations demonstrate that IL-17 and its receptor system are important for PsA also. In in vivo and in vitro studies we have demonstrated that IL-17/IL-17R are enriched in skin, synovial tissue, and synovial fluid of psoriatic arthritis patients and Th17 cells are functionally significant in the pathogenesis of psoriasis and psoriatic arthritis. Here we will share our experience of the SCID mouse model of psoriasis in respect to its use in investigating psoriatic diseases and development of immune-based drugs for psoriasis, psoriatic arthritis, and other autoimmune diseases.
PMCID: PMC2887521  PMID: 20606886
Novel therapy; psoriasis; psoriatic arthritis; SCID mouse; Th17 cell
16.  Group 2 Innate Lymphoid Cell Production of IL-5 Is Regulated by NKT Cells during Influenza Virus Infection 
PLoS Pathogens  2013;9(9):e1003615.
Respiratory virus infections, such as influenza, typically induce a robust type I (pro-inflammatory cytokine) immune response, however, the production of type 2 cytokines has been observed. Type 2 cytokine production during respiratory virus infection is linked to asthma exacerbation; however, type 2 cytokines may also be tissue protective. Interleukin (IL)-5 is a prototypical type 2 cytokine that is essential for eosinophil maturation and egress out of the bone marrow. However, little is known about the cellular source and underlying cellular and molecular basis for the regulation of IL-5 production during respiratory virus infection. Using a mouse model of influenza virus infection, we found a robust transient release of IL-5 into infected airways along with a significant and progressive accumulation of eosinophils into the lungs, particularly during the recovery phase of infection, i.e. following virus clearance. The cellular source of the IL-5 was group 2 innate lymphoid cells (ILC2) infiltrating the infected lungs. Interestingly, the progressive accumulation of eosinophils following virus clearance is reflected in the rapid expansion of c-kit+ IL-5 producing ILC2. We further demonstrate that the enhanced capacity for IL-5 production by ILC2 during recovery is concomitant with the enhanced expression of the IL-33 receptor subunit, ST2, by ILC2. Lastly, we show that NKT cells, as well as alveolar macrophages (AM), are endogenous sources of IL-33 that enhance IL-5 production from ILC2. Collectively, these results reveal that c-kit+ ILC2 interaction with IL-33 producing NKT and AM leads to abundant production of IL-5 by ILC2 and accounts for the accumulation of eosinophils observed during the recovery phase of influenza infection.
Author Summary
IL-5 is a cytokine that is typically associated with parasitic infections and allergic reactions. The primary role of IL-5 is thought to be for the development and maturation of an innate immune cell type, the eosinophil, which is also a culprit in allergic diseases such as asthma. During respiratory virus infection, such as influenza infection, IL-5 and eosinophils are not thought to play a major role in host defense. Here we show that IL-5 is produced in response to influenza infection and results in the progressive accumulation of eosinophils in the lung. We show that a newly discovered cell type, the group 2 innate lymphoid cell (ILC2), is responsible for IL-5 production during influenza infection and that the capacity of ILC2 to make IL-5 is greatly increased following virus clearance, i.e. during the recovery phase. The production of IL-5 by ILC2 is in part regulated by NKT cells and IL-33 produced by this cell type during the recovery phase of influenza infection.
PMCID: PMC3777868  PMID: 24068930
17.  T cell-intrinsic role of IL-6 signaling in primary and memory responses 
eLife  2014;3:e01949.
Innate immune recognition is critical for the induction of adaptive immune responses; however the underlying mechanisms remain incompletely understood. In this study, we demonstrate that T cell-specific deletion of the IL-6 receptor α chain (IL-6Rα) results in impaired Th1 and Th17 T cell responses in vivo, and a defect in Tfh function. Depletion of Tregs in these mice rescued the Th1 but not the Th17 response. Our data suggest that IL-6 signaling in effector T cells is required to overcome Treg-mediated suppression in vivo. We show that IL-6 cooperates with IL-1β to block the suppressive effect of Tregs on CD4+ T cells, at least in part by controlling their responsiveness to IL-2. In addition, although IL-6Rα-deficient T cells mount normal primary Th1 responses in the absence of Tregs, they fail to mature into functional memory cells, demonstrating a key role for IL-6 in CD4+ T cell memory formation.
eLife digest
The human body's ability to defend itself against pathogens relies on two distinct but connected systems: the innate and the adaptive immune systems. Innate immune cells survey their environment and use receptors located on their surface to distinguish between molecules that are harmless and molecules that stem from pathogens. When the cells of the innate immune system detect a pathogen, they secrete signaling molecules to alert adaptive immune cells to the invaders. Both sets of immune cells then mount a coordinated attack that usually kills the pathogen.
The adaptive immune system also produces memory cells that retain information about the pathogen: this allows the organism to mount a fast and efficient immune response the next time the same type of pathogen strikes. However, it is not completely understood how the innate immune system communicates with the adaptive immune system to allow these processes to take place.
One of the signaling molecules involved in the communication between different types of immune cells is a protein called Interleukin 6 (IL-6). This protein must be produced in order to trigger the immune response: however, many immune cells are able to recognize and respond to IL-6, so it has been difficult to study its impact on specific cell types.
Nish et al. have now investigated the effects of IL-6 on T cells, one of the main types of adaptive immune cell, by creating mice with T cells that are not able to recognize IL-6. The detection of pathogens by innate immune cells normally has several effects: the population of T cells increases; the T cells produce daughter cells—T helper cells—that support innate immune cells in killing pathogens; and memory cells are formed. Nish et al. find that these responses are impaired in the mutant mice.
To understand why, Nish et al. turn to T regulatory cells; these are adaptive immune cells that control the strength of the immune response. These experiments show that when T cells are ‘blind’ to IL-6, they are more sensitive to the action of T regulatory cells, and this disturbs the delicate balance between the stimulation and inhibition of the immune system. Nish et al. go on to show that IL-6 works together with another signaling molecule, Interleukin 1, to regulate how the T cells respond. The work helps to explain how the adaptive immune system mounts an immune response against pathogens but not against the host's own tissues.
PMCID: PMC4046568  PMID: 24842874
cytokines; T cells; regulatory T cells; memory; mouse
18.  Effects of interleukin 12 on immune responses and host protection in mice infected with intestinal nematode parasites  
The Journal of Experimental Medicine  1994;179(5):1563-1572.
The cytokine interleukin (IL) 12 stimulates T cell and natural killer cell production of interferon (IFN) gamma and inhibits T cell production of IL-4. We investigated the effects of IL-12 on cytokine gene expression, immunoglobulin (Ig)E, mucosal mast cell, and eosinophil responses, and the course of infection in mice inoculated with the nematode parasite Nippostrongylus brasiliensis, as well as the IFN-gamma dependence of these effects. IL-12 stimulated IFN-gamma and IL-10 gene expression during primary and secondary N. brasiliensis infections and inhibited IL-3, IL-4, IL-5, and IL-9 gene expression during primary infections but had little inhibitory effect during secondary infections. IL-12 inhibited IgE, mucosal mast cell, and blood and tissue eosinophil responses during primary infections, but only eosinophil responses during secondary infections. IL-12 enhanced adult worm survival and egg production during primary, but not secondary infections. IL-12 needed to be administered by day 4 of a primary infection to inhibit IgE and mucosal mast cell responses, and by day 6 to strongly inhibit eosinophil responses and to enhance worm survival and fecundity. Anti-IFN-gamma mAb inhibited the effects of IL-12 on IgE secretion, intestinal mucosal mastocytosis, and parasite survival and fecundity, but did not affect IL-12 inhibition of eosinophilia. These observations indicate that IL-12, if administered during the initiation of eosinophilia. These observations indicate that IL-12, if administered during the initiation of an immune response, can change the response from one that is characterized by the production of T helper (Th)2-associated cytokines to one characterized by the production of Th-1 associated cytokines. However, IL-12 treatment has less of an effect once the production of Th2-associated cytokines has become established. In addition, our results provide evidence that Th2- associated responses protect against, and/or Th1-associated responses exacerbate, nematode infections.
PMCID: PMC2191493  PMID: 7909327
19.  Eosinophil Development, Regulation of Eosinophil-Specific Genes, and Role of Eosinophils in the Pathogenesis of Asthma 
Eosinophils arise from hematopoietic CD34+ stem cells in the bone marrow. They acquire IL-5Rα on their surface at a very early stage during eosinophilopoiesis, and differentiate under the strong influence of interleukin (IL)-5. They then exit to the bloodstream, and enter the lung upon exposure to airway inflammatory signals, including eotaxins. In inflamed tissues, eosinophils act as key mediators of terminal effector functions and innate immunity and in linking to adaptive immune responses. Transcription factors GATA-1, CCAAT/enhancer-binding protein, and PU.1 play instructive roles in eosinophil specification from multipotent stem cells through a network of cooperative and antagonistic interactions. Not surprisingly, the interplay of these transcription factors is instrumental in forming the regulatory circuit of expression of eosinophil-specific genes, encoding eosinophil major basic protein and neurotoxin, CC chemokine receptor 3 eotaxin receptor, and IL-5 receptor alpha. Interestingly, a common feature is that the critical cis-acting elements for these transcription factors are clustered in exon 1 and intron 1 of these genes rather than their promoters. Elucidation of the mechanism of eosinophil development and activation may lead to selective elimination of eosinophils in animals and human subjects. Furthermore, availability of a range of genetically modified mice lacking or overproducing eosinophil-specific genes will facilitate evaluation of the roles of eosinophils in the pathogenesis of asthma. This review summarizes eosinophil biology, focusing on development and regulation of eosinophil-specific genes, with a heavy emphasis on the causative link between eosinophils and pathological development of asthma using genetically modified mice as models of asthma.
PMCID: PMC3283796  PMID: 22379601
Asthma; CCR3; eosinophils; eotaxin; GATA-1; IL-5
20.  Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice 
The Journal of Experimental Medicine  1995;182(5):1527-1536.
Allergic asthma is characterized by airway hyperresponsiveness and pulmonary eosinophilia, and may be mediated by T helper (Th) lymphocytes expressing a Th2 cytokine pattern. Interleukin (IL) 12 suppresses the expression of Th2 cytokines and their associated responses, including eosinophilia, serum immunoglobulin E, and mucosal mastocytosis. We have previously shown in a murine model that antigen- induced increases in airway hyperresponsiveness and pulmonary eosinophilia are CD4+ T cell dependent. We used this model to determine the ability of IL-12 to prevent antigen-induced increases in airway hyperresponsiveness, bronchoalveolar lavage (BAL) eosinophils, and lung Th2 cytokine expression. Sensitized A/J mice developed airway hyperresponsiveness and increased numbers of BAL eosinophils and other inflammatory cells after single or repeated intratracheal challenges with sheep red blood cell antigen. Pulmonary mRNA and protein levels of the Th2 cytokines IL-4 and IL-5 were increased after antigen challenge. Administration of IL-12 (1 microgram/d x 5 d) at the time of a single antigen challenge abolished the airway hyperresponsiveness and pulmonary eosinophilia and promoted an increase in interferon (IFN) gamma and decreases in IL-4 and IL-5 expression. The effects of IL-12 were partially dependent on IFN-gamma, because concurrent treatment with IL-12 and anti-IFN-gamma monoclonal antibody partially reversed the inhibition of airway hyperresponsiveness and eosinophilia by IL-12. Treatment of mice with IL-12 at the time of a second antigen challenge also prevented airway hyperresponsiveness and significantly reduced numbers of BAL inflammatory cells, reflecting the ability of IL-12 to inhibit responses associated with ongoing antigen-induced pulmonary inflammation. These data show that antigen-induced airway hyperresponsiveness and inflammation can be blocked by IL-12, which suppresses Th2 cytokine expression. Local administration of IL-12 may provide a novel immunotherapy for the treatment of pulmonary allergic disorders such as atopic asthma.
PMCID: PMC2192202  PMID: 7595222
21.  A novel human anti-VCAM-1 monoclonal antibody ameliorates airway inflammation and remodelling 
Asthma is a chronic inflammatory disease induced by Type 2 helper T cells and eosinophils. Vascular cell adhesion molecule-1 (VCAM-1) has been implicated in recruiting eosinophils and lymphocytes to pathological sites in asthma as a regulatory receptor. Accordingly, monoclonal antibody (mAb) against VCAM-1 may attenuate allergic inflammation and pathophysiological features of asthma. We attempted to evaluate whether a recently developed human anti-VCAM-1 mAb can inhibit the pathophysiological features of asthma in a murine asthma model induced by ovalbumin (OVA). Leucocyte adhesion inhibition assay was performed to evaluate the in vitro blocking activity of human anti-VCAM-1 mAb. OVA-sensitized BALB/c mice were treated with human anti-VCAM-1 mAb or isotype control Ab before intranasal OVA challenge. We evaluated airway hyperresponsiveness (AHR) and bronchoalveolar lavage fluid analysis, measured inflammatory cytokines and examined histopathological features. The human anti-VCAM-1 mAb bound to human and mouse VCAM-1 molecules and inhibited adhesion of human leucocytes in vitro. AHR and inflammatory cell counts in bronchoalveolar lavage fluid were reduced in mice treated with human anti-VCAM-1 mAb as compared with a control Ab. The levels of interleukin (IL)-5 and IL-13, as well as transforming growth factor-β, in lung tissue were decreased in treated mice. Human anti-VCAM-1 mAb reduced goblet cell hyperplasia and peribronchial fibrosis. In vivo VCAM-1 expression decreased in the treated group. In conclusion, human anti-VCAM-1 mAb attenuated allergic inflammation and the pathophysiological features of asthma in OVA-induced murine asthma model. The results suggested that human anti-VCAM-1 mAb could potentially be used as an additional anti-asthma therapeutic medicine.
PMCID: PMC4159019  PMID: 23855490
VCAM-1; monoclonal antibody; allergic inflammation; asthma; cell adhesion molecule; anti-inflammatory effect
22.  Estrogen aggravates inflammation in Pseudomonas aeruginosa pneumonia in cystic fibrosis mice 
Respiratory Research  2010;11(1):166.
Among patients with cystic fibrosis (CF), females have worse pulmonary function and survival than males, primarily due to chronic lung inflammation and infection with Pseudomonas aeruginosa (P. aeruginosa). A role for gender hormones in the causation of the CF "gender gap" has been proposed. The female gender hormone 17β-estradiol (E2) plays a complex immunomodulatory role in humans and in animal models of disease, suppressing inflammation in some situations while enhancing it in others. Helper T-cells were long thought to belong exclusively to either T helper type 1 (Th1) or type 2 (Th2) lineages. However, a distinct lineage named Th17 is now recognized that is induced by interleukin (IL)-23 to produce IL-17 and other pro-inflammatory Th17 effector molecules. Recent evidence suggests a central role for the IL-23/IL-17 pathway in the pathogenesis of CF lung inflammation. We used a mouse model to test the hypothesis that E2 aggravates the CF lung inflammation that occurs in response to airway infection with P. aeruginosa by a Th17-mediated mechanism.
Exogenous E2 caused adult male CF mice with pneumonia due to a mucoid CF clinical isolate, the P. aeruginosa strain PA508 (PA508), to develop more severe manifestations of inflammation in both lung tissue and in bronchial alveolar lavage (BAL) fluid, with increased total white blood cell counts and differential and absolute cell counts of polymorphonuclear leukocytes (neutrophils). Inflammatory infiltrates and mucin production were increased on histology. Increased lung tissue mRNA levels for IL-23 and IL-17 were accompanied by elevated protein levels of Th17-associated pro-inflammatory mediators in BAL fluid. The burden of PA508 bacteria was increased in lung tissue homogenate and in BAL fluid, and there was a virtual elimination in lung tissue of mRNA for lactoferrin, an antimicrobial peptide active against P. aeruginosa in vitro.
Our data show that E2 increases the severity of PA508 pneumonia in adult CF male mice, and suggest two potential mechanisms: enhancement of Th17-regulated inflammation and suppression of innate antibacterial defences. Although this animal model does not recapitulate all aspects of human CF lung disease, our present findings argue for further investigation of the effects of E2 on inflammation and infection with P. aeruginosa in the CF lung.
PMCID: PMC3006363  PMID: 21118573
23.  Clarithromycin and dexamethasone show similar anti-inflammatory effects on distinct phenotypic chronic rhinosinusitis: an explant model study 
BMC Immunology  2015;16:37.
Phenotype of chronic rhinosinusitis (CRS) may be an important determining factor of the efficacy of anti-inflammatory treatments. Although both glucocorticoids and macrolide antibiotics have been recommended for the treatment of CRS, whether they have different anti-inflammatory functions for distinct phenotypic CRS has not been completely understood. The aim of this study is to compare the anti-inflammatory effects of clarithromycin and dexamethasone on sinonasal mucosal explants from different phenotypic CRS ex vivo.
Ethmoid mucosal tissues from CRSsNP patients (n = 15), and polyp tissues from eosinophilic (n = 13) and non-eosinophilic (n = 12) CRSwNP patients were cultured in an ex vivo explant model with or without dexamethasone or clarithromycin treatment for 24 h. After culture, the production and/or expression of anti-inflammatory molecules, epithelial-derived cytokines, pro-inflammatory cytokines, T helper (Th)1, Th2 and Th17 cytokines, chemokines, dendritic cell relevant markers, pattern recognition receptors (PRRs), and tissue remodeling factors were detected in tissue explants or culture supernatants by RT-PCR or ELISA, respectively.
We found that both clarithromycin and dexamethasone up-regulated the production of anti-inflammatory mediators (Clara cell 10-kDa protein and interleukin (IL)-10), whereas down-regulated the production of Th2 response and eosinophilia promoting molecules (thymic stromal lymphopoietin, IL-25, IL-33, CD80, CD86, OX40 ligand, programmed cell death ligand 1, CCL17, CCL22, CCL11, CCL5, IL-5, IL-13, and eosinophilic cationic protein) and Th1 response and neutrophilia promoting molecules (CXCL8, CXCL5, CXCL10, CXCL9, interferon-γ, and IL-12), from sinonasal mucosa from distinct phenotypic CRS. In contrast, they had no effect on IL-17A production. The expression of PRRs (Toll-like receptors and melanoma differentiation-associated gene 5) was induced, and the production of tissue remodeling factors (transforming growth factor-β1, epidermal growth factor, basic fibroblast growth factor, platelet derived growth factor, vascular endothelial growth factor, and matrix metalloproteinase 9) was suppressed, in different phenotypic CRS by dexamethasone and clarithromycin in comparable extent.
Out of our expectation, our explant model study discovered herein that glucocorticoids and macrolides likely exerted similar regulatory actions on CRS and most of their effects did not vary by the phenotypes of CRS.
PMCID: PMC4456709  PMID: 26047816
Chronic rhinosinusitis; Nasal polyps; Clarithromycin; Dexamethasone; Eosinophil; Inflammation; Tissue remodeling; Innate immunity
24.  Beta 2-microglobulin-dependent NK1.1+ T cells are not essential for T helper cell 2 immune responses 
The Journal of Experimental Medicine  1996;184(4):1295-1304.
A number of investigations have established the critical role of interleukin 4 (IL-4) in mediating the development of T helper (Th)2 effector cells in vitro and in vivo. Despite intensive study, the origin of the IL-4 required for Th2 priming and differentiation remains unclear. Natural killer (NK)1.1+ alpha/beta T cell receptor+ T(NT) cells, a unique lineage of cells capable of producing large amounts of IL-4 after activation in vivo, are important candidates for directing Th2 priming. These cells are selected by the nonpolymorphic major histocompatibility complex (MHC) class I molecule, CD1, and are deficient in beta 2-microglobulin (beta 2m)-null mice. We used beta 2m- deficient mice on both BALB/c and C57BL/6 backgrounds to examine their capacity to mount Th2 immune responses after challenge with a number of well-characterized antigens administered by a variety of routes. As assessed by immunization with protein antigen, infection with Leishmania major, embolization with eggs of Schistosoma mansoni, intestinal infection with Nippostrongylus brasiliensis, or induction of airway hyperreactivity to aerosolized antigen, beta 2m-deficient mice developed functional type 2 immune responses that were not substantially different than those in wild-type mice. Production of IL- 4 and the generation of immunoglobulin E (IgE) and eosinophil responses were preserved as assessed by a variety of assays. Collectively, these results present a comprehensive analysis of type 2 immune responses in beta 2m-deficient mice, and indicate that beta 2m-dependent NT cells are not required for Th2 development in vivo.
PMCID: PMC2192844  PMID: 8879201
25.  IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC–activated Th2 memory cells 
The Journal of Experimental Medicine  2007;204(8):1837-1847.
Interleukin (IL) 25 (IL-17E), a distinct member of the IL-17 cytokine family, plays important roles in evoking T helper type 2 (Th2) cell–mediated inflammation that features the infiltrations of eosinophils and Th2 memory cells. However, the cellular sources, target cells, and underlying mechanisms remain elusive in humans. We demonstrate that human Th2 memory cells expressing distinctive levels of IL-25 receptor (R) are one of the responding cell types. IL-25 promotes cell expansion and Th2 cytokine production when Th2 central memory cells are stimulated with thymic stromal lymphopoietin (TSLP)–activated dendritic cells (DCs), homeostatic cytokines, or T cell receptor for antigen triggering. The enhanced functions of Th2 memory cells induced by IL-25 are associated with sustained expression of GATA-3, c-MAF, and JunB in an IL-4–independent manner. Although keratinocytes, mast cells, eosinophils, and basophils express IL-25 transcripts, activated eosinophils and basophils from normal and atopic subjects were found to secrete bioactive IL-25 protein, which augments the functions of Th2 memory cells. Elevated expression of IL-25 and IL-25R transcripts was observed in asthmatic lung tissues and atopic dermatitis skin lesions, linking their possible roles with exacerbated allergic disorders. Our results provide a plausible explanation that IL-25 produced by innate effector eosinophils and basophils may augment the allergic inflammation by enhancing the maintenance and functions of adaptive Th2 memory cells.
PMCID: PMC2118667  PMID: 17635955

Results 1-25 (1229516)