Search tips
Search criteria

Results 1-25 (1325658)

Clipboard (0)

Related Articles

1.  Advances in genome-wide RNAi cellular screens: a case study using the Drosophila JAK/STAT pathway 
BMC Genomics  2012;13:506.
Genome-scale RNA-interference (RNAi) screens are becoming ever more common gene discovery tools. However, whilst every screen identifies interacting genes, less attention has been given to how factors such as library design and post-screening bioinformatics may be effecting the data generated.
Here we present a new genome-wide RNAi screen of the Drosophila JAK/STAT signalling pathway undertaken in the Sheffield RNAi Screening Facility (SRSF). This screen was carried out using a second-generation, computationally optimised dsRNA library and analysed using current methods and bioinformatic tools. To examine advances in RNAi screening technology, we compare this screen to a biologically very similar screen undertaken in 2005 with a first-generation library. Both screens used the same cell line, reporters and experimental design, with the SRSF screen identifying 42 putative regulators of JAK/STAT signalling, 22 of which verified in a secondary screen and 16 verified with an independent probe design. Following reanalysis of the original screen data, comparisons of the two gene lists allows us to make estimates of false discovery rates in the SRSF data and to conduct an assessment of off-target effects (OTEs) associated with both libraries. We discuss the differences and similarities between the resulting data sets and examine the relative improvements in gene discovery protocols.
Our work represents one of the first direct comparisons between first- and second-generation libraries and shows that modern library designs together with methodological advances have had a significant influence on genome-scale RNAi screens.
PMCID: PMC3526451  PMID: 23006893
Genome screening; RNAi; Off-target effect; JAK/STAT pathway; Functional genomics; dsRNA
2.  Genome wide screening of RNAi factors of Sf21 cells reveal several novel pathway associated proteins 
BMC Genomics  2014;15(1):775.
RNA interference (RNAi) leads to sequence specific knock-down of gene expression and has emerged as an important tool to analyse gene functions, pathway analysis and gene therapy. Although RNAi is a conserved cellular process involving common elements and factors, species-specific differences have been observed among different eukaryotes. Identification of components for RNAi pathway is pursued intensively and successful genome-wide screens have been performed for components of RNAi pathways in various organisms. Functional comparative genomics analysis offers evolutionary insight that forms basis of discoveries of novel RNAi-factors within related organisms. Keeping in view the academic and commercial utility of insect derived cell-line from Spodoptera frugiperda, we pursued the identification and functional analysis of components of RNAi-machinery of Sf21 cell-line using genome-wide application.
The genome and transcriptome of Sf21 was assembled and annotated. In silico application of comparative genome analysis among insects allowed us to identify several RNAi factors in Sf21 line. The candidate RNAi factors from assembled genome were validated by knockdown analysis of candidate factors using the siRNA screens on the Sf21-gfp reporter cell-line. Forty two (42) potential factors were identified using the cell based assay. These include core RNAi elements including Dicer-2, Argonaute-1, Drosha, Aubergine and auxiliary modules like chromatin factors, RNA helicases, RNA processing module, signalling allied proteins and others. Phylogenetic analyses and domain architecture revealed that Spodoptera frugiperda homologs retained identity with Lepidoptera (Bombyx mori) or Coleoptera (Tribolium castaneum) sustaining an evolutionary conserved scaffold in post-transcriptional gene silencing paradigm within insects.
The database of RNAi-factors generated by whole genome association survey offers comprehensive outlook about conservation as well as specific differences of the proteins of RNAi machinery. Understanding the interior involved in different phases of gene silencing also offers impending tool for RNAi-based applications.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-775) contains supplementary material, which is available to authorized users.
PMCID: PMC4247154  PMID: 25199785
RNA interference; siRNA screening; Sf21 cells; Genome-wide screening; Insect RNAi; Spodoptera frugiperda
3.  Clustering phenotype populations by genome-wide RNAi and multiparametric imaging 
How to predict gene function from phenotypic cues is a longstanding question in biology.Using quantitative multiparametric imaging, RNAi-mediated cell phenotypes were measured on a genome-wide scale.On the basis of phenotypic ‘neighbourhoods', we identified previously uncharacterized human genes as mediators of the DNA damage response pathway and the maintenance of genomic integrity.The phenotypic map is provided as an online resource at for discovering further functional relationships for a broad spectrum of biological module
Genetic screens for phenotypic similarity have made key contributions for associating genes with biological processes. Aggregating genes by similarity of their loss-of-function phenotype has provided insights into signalling pathways that have a conserved function from Drosophila to human (Nusslein-Volhard and Wieschaus, 1980; Bier, 2005). Complex visual phenotypes, such as defects in pattern formation during development, greatly facilitated the classification of genes into pathways, and phenotypic similarities in many cases predicted molecular relationships. With RNA interference (RNAi), highly parallel phenotyping of loss-of-function effects in cultured cells has become feasible in many organisms whose genome have been sequenced (Boutros and Ahringer, 2008). One of the current challenges is the computational categorization of visual phenotypes and the prediction of gene function and associated biological processes. With large parts of the genome still being in unchartered territory, deriving functional information from large-scale phenotype analysis promises to uncover novel gene–gene relationships and to generate functional maps to explore cellular processes.
In this study, we developed an automated approach using RNAi-mediated cell phenotypes, multiparametric imaging and computational modelling to obtain functional information on previously uncharacterized genes. To generate broad, computer-readable phenotypic signatures, we measured the effect of RNAi-mediated knockdowns on changes of cell morphology in human cells on a genome-wide scale. First, the several million cells were stained for nuclear and cytoskeletal markers and then imaged using automated microscopy. On the basis of fluorescent markers, we established an automated image analysis to classify individual cells (Figure 1A). After cell segmentation for determining nuclei and cell boundaries (Figure 1C), we computed 51 cell descriptors that quantified intensities, shape characteristics and texture (Figure 1F). Individual cells were categorized into 1 of 10 classes, which included cells showing protrusion/elongation, cells in metaphase, large cells, condensed cells, cells with lamellipodia and cellular debris (Figure 1D and E). Each siRNA knockdown was summarized by a phenotypic profile and differences between RNAi knockdowns were quantified by the similarity between phenotypic profiles. We termed the vector of scores a phenoprint (Figure 3C) and defined the phenotypic distance between a pair of perturbations as the distance between their corresponding phenoprints.
To visualize the distribution of all phenoprints, we plotted them in a genome-wide map as a two-dimensional representation of the phenotypic similarity relationships (Figure 3A). The complete data set and an interactive version of the phenotypic map are available at The map identified phenotypic ‘neighbourhoods', which are characterized by cells with lamellipodia (WNK3, ANXA4), cells with prominent actin fibres (ODF2, SOD3), abundance of large cells (CA14), many elongated cells (SH2B2, ELMO2), decrease in cell number (TPX2, COPB1, COPA), increase in number of cells in metaphase (BLR1, CIB2) and combinations of phenotypes such as presence of large cells with protrusions and bright nuclei (PTPRZ1, RRM1; Figure 3B).
To test whether phenotypic similarity might serve as a predictor of gene function, we focused our further analysis on two clusters that contained genes associated with the DNA damage response (DDR) and genomic integrity (Figure 3A and C). The first phenotypic cluster included proteins with kinetochore-associated functions such as NUF2 (Figure 3B) and SGOL1. It also contained the centrosomal protein CEP164 that has been described as an important mediator of the DNA damage-activated signalling cascade (Sivasubramaniam et al, 2008) and the largely uncharacterized genes DONSON and SON. A second phenotypically distinct cluster included previously described components of the DDR pathway such as RRM1 (Figure 3A–C), CLSPN, PRIM2 and SETD8. Furthermore, this cluster contained the poorly characterized genes CADM1 and CD3EAP.
Cells activate a signalling cascade in response to DNA damage induced by exogenous and endogenous factors. Central are the kinases ATM and ATR as they serve as sensors of DNA damage and activators of further downstream kinases (Harper and Elledge, 2007; Cimprich and Cortez, 2008). To investigate whether DONSON, SON, CADM1 and CD3EAP, which were found in phenotypic ‘neighbourhoods' to known DDR components, have a role in the DNA damage signalling pathway, we tested the effect of their depletion on the DDR on γ irradiation. As indicated by reduced CHEK1 phosphorylation, siRNA knock down of DONSON, SON, CD3EAP or CADM1 resulted in impaired DDR signalling on γ irradiation. Furthermore, knock down of DONSON or SON reduced phosphorylation of downstream effectors such as NBS1, CHEK1 and the histone variant H2AX on UVC irradiation. DONSON depletion also impaired recruitment of RPA2 onto chromatin and SON knockdown reduced RPA2 phosphorylation indicating that DONSON and SON presumably act downstream of the activation of ATM. In agreement to their phenotypic profile, these results suggest that DONSON, SON, CADM1 and CD3EAP are important mediators of the DDR. Further experiments demonstrated that they are also required for the maintenance of genomic integrity.
In summary, we show that genes with similar phenotypic profiles tend to share similar functions. The power of our computational and experimental approach is demonstrated by the identification of novel signalling regulators whose phenotypic profiles were found in proximity to known biological modules. Therefore, we believe that such phenotypic maps can serve as a resource for functional discovery and characterization of unknown genes. Furthermore, such approaches are also applicable for other perturbation reagents, such as small molecules in drug discovery and development. One could also envision combined maps that contain both siRNAs and small molecules to predict target–small molecule relationships and potential side effects.
Genetic screens for phenotypic similarity have made key contributions to associating genes with biological processes. With RNA interference (RNAi), highly parallel phenotyping of loss-of-function effects in cells has become feasible. One of the current challenges however is the computational categorization of visual phenotypes and the prediction of biological function and processes. In this study, we describe a combined computational and experimental approach to discover novel gene functions and explore functional relationships. We performed a genome-wide RNAi screen in human cells and used quantitative descriptors derived from high-throughput imaging to generate multiparametric phenotypic profiles. We show that profiles predicted functions of genes by phenotypic similarity. Specifically, we examined several candidates including the largely uncharacterized gene DONSON, which shared phenotype similarity with known factors of DNA damage response (DDR) and genomic integrity. Experimental evidence supports that DONSON is a novel centrosomal protein required for DDR signalling and genomic integrity. Multiparametric phenotyping by automated imaging and computational annotation is a powerful method for functional discovery and mapping the landscape of phenotypic responses to cellular perturbations.
PMCID: PMC2913390  PMID: 20531400
DNA damage response signalling; massively parallel phenotyping; phenotype networks; RNAi screening
4.  RNA Interference in Schistosoma mansoni Schistosomula: Selectivity, Sensitivity and Operation for Larger-Scale Screening 
The possible emergence of resistance to the only available drug for schistosomiasis spurs drug discovery that has been recently incentivized by the availability of improved transcriptome and genome sequence information. Transient RNAi has emerged as a straightforward and important technique to interrogate that information through decreased or loss of gene function and identify potential drug targets. To date, RNAi studies in schistosome stages infecting humans have focused on single (or up to 3) genes of interest. Therefore, in the context of standardizing larger RNAi screens, data are limited on the extent of possible off-targeting effects, gene-to-gene variability in RNAi efficiency and the operational capabilities and limits of RNAi.
Methodology/Principal Findings
We investigated in vitro the sensitivity and selectivity of RNAi using double-stranded (ds)RNA (approximately 500 bp) designed to target 11 Schistosoma mansoni genes that are expressed in different tissues; the gut, tegument and otherwise. Among the genes investigated were 5 that had been previously predicted to be essential for parasite survival. We employed mechanically transformed schistosomula that are relevant to parasitism in humans, amenable to screen automation and easier to obtain in greater numbers than adult parasites. The operational parameters investigated included defined culture media for optimal parasite maintenance, transfection strategy, time- and dose- dependency of RNAi, and dosing limits. Of 7 defined culture media tested, Basch Medium 169 was optimal for parasite maintenance. RNAi was best achieved by co-incubating parasites and dsRNA (standardized to 30 µg/ml for 6 days); electroporation provided no added benefit. RNAi, including interference of more than one transcript, was selective to the gene target(s) within the pools of transcripts representative of each tissue. Concentrations of dsRNA above 90 µg/ml were directly toxic. RNAi efficiency was transcript-dependent (from 40 to >75% knockdown relative to controls) and this may have contributed to the lack of obvious phenotypes observed, even after prolonged incubations of 3 weeks. Within minutes of their mechanical preparation from cercariae, schistosomula accumulated fluorescent macromolecules in the gut indicating that the gut is an important route through which RNAi is expedited in the developing parasite.
Transient RNAi operates gene-selectively in S. mansoni newly transformed schistosomula yet the sensitivity of individual gene targets varies. These findings and the operational parameters defined will facilitate larger RNAi screens.
Author Summary
RNA interference (RNAi) is a technique to selectively suppress mRNA of individual genes and, consequently, their cognate proteins. RNAi using double-stranded (ds) RNA has been used to interrogate the function of mainly single genes in the flatworm, Schistosoma mansoni, one of a number of schistosome species causing schistosomiasis. In consideration of large-scale screens to identify candidate drug targets, we examined the selectivity and sensitivity (the degree of suppression) of RNAi for 11 genes produced in different tissues of the parasite: the gut, tegument (surface) and otherwise. We used the schistosomulum stage prepared from infective cercariae larvae which are accessible in large numbers and adaptable to automated screening platforms. We found that RNAi suppresses transcripts selectively, however, the sensitivity of suppression varies (40%–>75%). No obvious changes in the parasite occurred post-RNAi, including after targeting the mRNA of genes that had been computationally predicted to be essential for survival. Additionally, we defined operational parameters to facilitate large-scale RNAi, including choice of culture medium, transfection strategy to deliver dsRNA, dose- and time-dependency, and dosing limits. Finally, using fluorescent probes, we show that the developing gut allows rapid entrance of dsRNA into the parasite to initiate RNAi.
PMCID: PMC2957409  PMID: 20976050
5.  The miR-35-41 Family of MicroRNAs Regulates RNAi Sensitivity in Caenorhabditis elegans 
PLoS Genetics  2012;8(3):e1002536.
RNA interference (RNAi) utilizes small interfering RNAs (siRNAs) to direct silencing of specific genes through transcriptional and post-transcriptional mechanisms. The siRNA guides can originate from exogenous (exo–RNAi) or natural endogenous (endo–RNAi) sources of double-stranded RNA (dsRNA). In Caenorhabditis elegans, inactivation of genes that function in the endo–RNAi pathway can result in enhanced silencing of genes targeted by siRNAs from exogenous sources, indicating cross-regulation between the pathways. Here we show that members of another small RNA pathway, the mir-35-41 cluster of microRNAs (miRNAs) can regulate RNAi. In worms lacking miR-35-41, there is reduced expression of lin-35/Rb, the C. elegans homolog of the tumor suppressor Retinoblastoma gene, previously shown to regulate RNAi responsiveness. Genome-wide microarray analyses show that targets of endo–siRNAs are up-regulated in mir-35-41 mutants, a phenotype also displayed by lin-35/Rb mutants. Furthermore, overexpression of lin-35/Rb specifically rescues the RNAi hypersensitivity of mir-35-41 mutants. Although the mir-35-41 miRNAs appear to be exclusively expressed in germline and embryos, their effect on RNAi sensitivity is transmitted to multiple tissues and stages of development. Additionally, we demonstrate that maternal contribution of miR-35-41 or lin-35/Rb is sufficient to reduce RNAi effectiveness in progeny worms. Our results reveal that miRNAs can broadly regulate other small RNA pathways and, thus, have far reaching effects on gene expression beyond directly targeting specific mRNAs.
Author Summary
RNA interference (RNAi) has become a widely used approach for silencing genes of interest. This tool is possible because endogenous RNA silencing pathways exist broadly across organisms, including humans, worms, and plants. The general RNAi pathway utilizes small ∼21-nucleotide RNAs to target specific protein-coding genes through base-pairing interactions. Since RNAs from exogenous sources require some of the same factors as endogenous small RNAs to silence gene expression, there can be competition between the pathways. Thus, perturbations in the endogenous RNAi pathway can result in enhanced silencing efficiency by exogenous small RNAs. MicroRNAs (miRNAs) comprise another endogenous small RNA pathway, but their biogenesis and mechanism of gene silencing are distinct in many ways from RNAi pathways. Here we show that a family of miRNAs regulates the effectiveness of RNAi in Caenorhabditis elegans. Loss of mir-35-41 results in enhanced RNAi by exogenous RNAs and reduced silencing of endogenous RNAi targets. The embryonic miR-35-41 miRNAs regulate the sensitivity to RNAi through lin-35/Rb, a homolog of the human Retinoblastoma tumor suppressor gene previously shown to regulate RNAi effectiveness in C. elegans. Additionally, we show that this sensitivity can be passed on to the next generation of worms, demonstrating a far-reaching effect of the miR-35-41 miRNAs on gene regulation by other small RNA pathways.
PMCID: PMC3297572  PMID: 22412382
6.  Systemic RNAi mediated gene silencing in the anhydrobiotic nematode Panagrolaimus superbus 
Gene silencing by RNA interference (RNAi) is a powerful tool for functional genomics. Although RNAi was first described in Caenorhabditis elegans, several nematode species are unable to mount an RNAi response when exposed to exogenous double stranded RNA (dsRNA). These include the satellite model organisms Pristionchus pacificus and Oscheius tipulae. Available data also suggest that the RNAi pathway targeting exogenous dsRNA may not be fully functional in some animal parasitic nematodes. The genus Panagrolaimus contains bacterial feeding nematodes which occupy a diversity of niches ranging from polar, temperate and semi-arid soils to terrestrial mosses. Thus many Panagrolaimus species are adapted to tolerate freezing and desiccation and are excellent systems to study the molecular basis of environmental stress tolerance. We investigated whether Panagrolaimus is susceptible to RNAi to determine whether this nematode could be used in large scale RNAi studies in functional genomics.
We studied two species: Panagrolaimus sp. PS1159 and Panagrolaimus superbus. Both nematode species displayed embryonic lethal RNAi phenotypes following ingestion of Escherichia coli expressing dsRNA for the C. elegans embryonic lethal genes Ce-lmn-1 and Ce-ran-4. Embryonic lethal RNAi phenotypes were also obtained in both species upon ingestion of dsRNA for the Panagrolaimus genes ef1b and rps-2. Single nematode RT-PCR showed that a significant reduction in mRNA transcript levels occurred for the target ef1b and rps-2 genes in RNAi treated Panagrolaimus sp. 1159 nematodes. Visible RNAi phenotypes were also observed when P. superbus was exposed to dsRNA for structural genes encoding contractile proteins. All RNAi phenotypes were highly penetrant, particularly in P. superbus.
This demonstration that Panagrolaimus is amenable to RNAi by feeding will allow the development of high throughput methods of RNAi screening for P. superbus. This greatly enhances the utility of this nematode as a model system for the study of the molecular biology of anhydrobiosis and cryobiosis and as a possible satellite model nematode for comparative and functional genomics. Our data also identify another nematode infraorder which is amenable to RNAi and provide additional information on the diversity of RNAi phenotypes in nematodes.
PMCID: PMC2453295  PMID: 18565215
7.  A network-based integrative approach to prioritize reliable hits from multiple genome-wide RNAi screens in Drosophila 
BMC Genomics  2009;10:220.
The recently developed RNA interference (RNAi) technology has created an unprecedented opportunity which allows the function of individual genes in whole organisms or cell lines to be interrogated at genome-wide scale. However, multiple issues, such as off-target effects or low efficacies in knocking down certain genes, have produced RNAi screening results that are often noisy and that potentially yield both high rates of false positives and false negatives. Therefore, integrating RNAi screening results with other information, such as protein-protein interaction (PPI), may help to address these issues.
By analyzing 24 genome-wide RNAi screens interrogating various biological processes in Drosophila, we found that RNAi positive hits were significantly more connected to each other when analyzed within a protein-protein interaction network, as opposed to random cases, for nearly all screens. Based on this finding, we developed a network-based approach to identify false positives (FPs) and false negatives (FNs) in these screening results. This approach relied on a scoring function, which we termed NePhe, to integrate information obtained from both PPI network and RNAi screening results. Using a novel rank-based test, we compared the performance of different NePhe scoring functions and found that diffusion kernel-based methods generally outperformed others, such as direct neighbor-based methods. Using two genome-wide RNAi screens as examples, we validated our approach extensively from multiple aspects. We prioritized hits in the original screens that were more likely to be reproduced by the validation screen and recovered potential FNs whose involvements in the biological process were suggested by previous knowledge and mutant phenotypes. Finally, we demonstrated that the NePhe scoring system helped to biologically interpret RNAi results at the module level.
By comprehensively analyzing multiple genome-wide RNAi screens, we conclude that network information can be effectively integrated with RNAi results to produce suggestive FPs and FNs, and to bring biological insight to the screening results.
PMCID: PMC2697172  PMID: 19435510
8.  RNAi Dynamics in Juvenile Fasciola spp. Liver Flukes Reveals the Persistence of Gene Silencing In Vitro 
Fasciola spp. liver fluke cause pernicious disease in humans and animals. Whilst current control is unsustainable due to anthelmintic resistance, gene silencing (RNA interference, RNAi) has the potential to contribute to functional validation of new therapeutic targets. The susceptibility of juvenile Fasciola hepatica to double stranded (ds)RNA-induced RNAi has been reported. To exploit this we probe RNAi dynamics, penetrance and persistence with the aim of building a robust platform for reverse genetics in liver fluke. We describe development of standardised RNAi protocols for a commercially-available liver fluke strain (the US Pacific North West Wild Strain), validated via robust transcriptional silencing of seven virulence genes, with in-depth experimental optimisation of three: cathepsin L (FheCatL) and B (FheCatB) cysteine proteases, and a σ-class glutathione transferase (FheσGST).
Methodology/Principal Findings
Robust transcriptional silencing of targets in both F. hepatica and Fasciola gigantica juveniles is achievable following exposure to long (200–320 nt) dsRNAs or 27 nt short interfering (si)RNAs. Although juveniles are highly RNAi-susceptible, they display slower transcript and protein knockdown dynamics than those reported previously. Knockdown was detectable following as little as 4h exposure to trigger (target-dependent) and in all cases silencing persisted for ≥25 days following long dsRNA exposure. Combinatorial silencing of three targets by mixing multiple long dsRNAs was similarly efficient. Despite profound transcriptional suppression, we found a significant time-lag before the occurrence of protein suppression; FheσGST and FheCatL protein suppression were only detectable after 9 and 21 days, respectively.
In spite of marked variation in knockdown dynamics, we find that a transient exposure to long dsRNA or siRNA triggers robust RNAi penetrance and persistence in liver fluke NEJs supporting the development of multiple-throughput phenotypic screens for control target validation. RNAi persistence in fluke encourages in vivo studies on gene function using worms exposed to RNAi-triggers prior to infection.
Author Summary
RNA interference (RNAi) is a method for selectively silencing (or reducing expression of) mRNA transcripts, an approach which can be used to interrogate the function of genes and proteins, and enables the validation of potential targets for anthelmintic drugs or vaccines, by investigating the impact of silencing a particular gene on parasite survival or behaviour. This study focuses on liver fluke parasites, which cause serious disease in both humans and animals. We have only a handful of drugs with which to treat these infections, to which flukes are developing resistance, and no anti-fluke vaccines have yet been developed. New options for treatment and control of liver fluke parasites are sorely needed, and RNAi is a powerful tool in the development of such treatments. This study developed a set of simple methods for triggering RNAi in juvenile liver fluke, which show that although robust transcriptional suppression can be readily achieved across all targets tested, protein suppression occurs only after a target-specific lag period (likely related to protein half-life), which may require >25 days under current in vitro maintenance conditions. These findings are important for researchers aiming to employ RNAi in investigations of liver fluke biology and target validation.
PMCID: PMC4177864  PMID: 25254508
9.  In Vivo RNAi-Based Screens: Studies in Model Organisms 
Genes  2013;4(4):646-665.
RNA interference (RNAi) is a technique widely used for gene silencing in organisms and cultured cells, and depends on sequence homology between double-stranded RNA (dsRNA) and target mRNA molecules. Numerous cell-based genome-wide screens have successfully identified novel genes involved in various biological processes, including signal transduction, cell viability/death, and cell morphology. However, cell-based screens cannot address cellular processes such as development, behavior, and immunity. Drosophila and Caenorhabditis elegans are two model organisms whose whole bodies and individual body parts have been subjected to RNAi-based genome-wide screening. Moreover, Drosophila RNAi allows the manipulation of gene function in a spatiotemporal manner when it is implemented using the Gal4/UAS system. Using this inducible RNAi technique, various large-scale screens have been performed in Drosophila, demonstrating that the method is straightforward and valuable. However, accumulated results reveal that the results of RNAi-based screens have relatively high levels of error, such as false positives and negatives. Here, we review in vivo RNAi screens in Drosophila and the methods that could be used to remove ambiguity from screening results.
PMCID: PMC3927573  PMID: 24705267
Drosophila; genome-wide screen; RNAi library; false results; interaction network
10.  A Targeted Glycan-Related Gene Screen Reveals Heparan Sulfate Proteoglycan Sulfation Regulates WNT and BMP Trans-Synaptic Signaling 
PLoS Genetics  2012;8(11):e1003031.
A Drosophila transgenic RNAi screen targeting the glycan genome, including all N/O/GAG-glycan biosynthesis/modification enzymes and glycan-binding lectins, was conducted to discover novel glycan functions in synaptogenesis. As proof-of-product, we characterized functionally paired heparan sulfate (HS) 6-O-sulfotransferase (hs6st) and sulfatase (sulf1), which bidirectionally control HS proteoglycan (HSPG) sulfation. RNAi knockdown of hs6st and sulf1 causes opposite effects on functional synapse development, with decreased (hs6st) and increased (sulf1) neurotransmission strength confirmed in null mutants. HSPG co-receptors for WNT and BMP intercellular signaling, Dally-like Protein and Syndecan, are differentially misregulated in the synaptomatrix of these mutants. Consistently, hs6st and sulf1 nulls differentially elevate both WNT (Wingless; Wg) and BMP (Glass Bottom Boat; Gbb) ligand abundance in the synaptomatrix. Anterograde Wg signaling via Wg receptor dFrizzled2 C-terminus nuclear import and retrograde Gbb signaling via synaptic MAD phosphorylation and nuclear import are differentially activated in hs6st and sulf1 mutants. Consequently, transcriptional control of presynaptic glutamate release machinery and postsynaptic glutamate receptors is bidirectionally altered in hs6st and sulf1 mutants, explaining the bidirectional change in synaptic functional strength. Genetic correction of the altered WNT/BMP signaling restores normal synaptic development in both mutant conditions, proving that altered trans-synaptic signaling causes functional differentiation defects.
Author Summary
Glycans are sugar additions to proteins. Surrounding all eukaryotic cells, secreted and membrane glycans form a glycocalyx that regulates cell–cell signaling. However, the mechanisms controlling glycan-dependent intercellular communication are largely unknown. In the nervous system, glycans play important roles in the development and regulation of synapses mediating intercellular communication. The Drosophila neuromuscular junction serves as a genetically tractable synapse in which expression of glycan-related genes can be systematically knocked down to investigate effects on synaptic morphology and function. This study employs a transgenic RNAi screen to characterize the synaptic requirements of 130 glycan-related genes. From this screen, two functionally paired genes (hs6st and sulf1) that add or remove a sulfate at the 6-O position on heparan sulfate proteoglycans (HSPGs) were identified as being critically important for synaptic functional development. Removal of each gene produces an opposite effect on neurotransmission strength, weakening and strengthening communication, respectively. This mechanism controls the synaptic expression of two HSPGs, which act as co-receptors to control the abundance of anterograde WNT and retrograde BMP signals, which drive intracellular signal transduction pathways regulating gene transcription to control synaptic functional development. This screen serves as a platform for systematic investigation of glycan mechanisms regulating synaptic development.
PMCID: PMC3493450  PMID: 23144627
11.  Phenotypic Screen of Early-Developing Larvae of the Blood Fluke, Schistosoma mansoni, using RNA Interference 
RNA interference (RNAi) represents the only method currently available for manipulating gene-specific expression in Schistosoma spp., although application of this technology as a functional genomic profiling tool has yet to be explored. In the present study 32 genes, including antioxidants, transcription factors, cell signaling molecules and metabolic enzymes, were selected to determine if gene knockdown by RNAi was associated with morphologically definable phenotypic changes in early intramolluscan larval development. Transcript selection was based on their high expression in in vitro cultured S. mansoni primary sporocysts and/or their potential involvement in developmental processes. Miracidia were allowed to transform to sporocysts in the presence of synthesized double-stranded RNAs (dsRNAs) and cultivated for 7 days, during which time developing larvae were closely observed for phenotypic changes including failure/delay in transformation, loss of motility, altered growth and death. Of the phenotypes evaluated, only one was consistently detected; namely a reduction in sporocyst size based on length measurements. The size-reducing phenotype was observed in 11 of the 33 (33%) dsRNA treatment groups, and of these 11 phenotype-associated genes (superoxide dismutase, Smad1, RHO2, Smad2, Cav2A, ring box, GST26, calcineurin B, Smad4, lactate dehydrogenase and EF1α), only 6 demonstrated a significant and consistent knockdown of specific transcript expression. Unexpectedly one phenotype-linked gene, superoxide dismutase (SOD), was highly induced (∼1600-fold) upon dsRNA exposure. Variation in dsRNA-mediated silencing effects also was evident in the group of sporocysts that lacked any definable phenotype. Out of 22 nonphenotype-expressing dsRNA treatments (myosin, PKCB, HEXBP, calcium channel, Sma2, RHO1, PKC receptor, DHHC, PepcK, calreticulin, calpain, Smeg, 14.3.3, K5, SPO1, SmZF1, fibrillarin, GST28, GPx, TPx1, TPx2 and TPx2/TPx1), 12 were assessed for the transcript levels. Of those, 6 genes exhibited consistent reductions in steady-state transcript levels, while expression level for the rest remained unchanged. Results demonstrate that the efficacy of dsRNA-treatment in producing consistent phenotypic changes and/or altered gene expression levels in S. mansoni sporocysts is highly dependent on the selected gene (or the specific dsRNA sequence used) and the timing of evaluation after treatment. Although RNAi holds great promise as a functional genomics tool for larval schistosomes, our finding of potential off-target or nonspecific effects of some dsRNA treatments and variable efficiencies in specific gene knockdown indicate a critical need for gene-specific testing and optimization as an essential part of experimental design, execution and data interpretation.
Author Summary
RNA interference (RNAi) represents the only method currently available for manipulating gene-specific expression in human blood flukes, Schistosoma spp., although its application as a functional genomics tool in early intramolluscan larval stages has been limited to single gene analyses. Accelerating gene discovery efforts over the past 10 years have resulted in extensive, ever-increasing databases of genomic, transcriptomic and EST sequences. Unfortunately, our understanding of the function of the vast majority of these genes has not kept pace with their discovery, and this represents a significant barrier and the next real challenge for investigators of schistosomes, and other parasitic helminths. In the present study, we selected an array of 32 genes expressed in S. mansoni sporocysts to evaluate their susceptibility to double-stranded (ds)RNA treatment and to begin characterizing morphological phenotypes associated with a potential RNAi effect. Results demonstrate that gene knockdown and/or resulting phenotypes are highly transcript-dependent (specific dsRNA sequence used) and vary with time post-dsRNA exposure. Because of this potential variability in both transcript and phenotype expression in response to dsRNA treatment, our findings illustrate that, although a RNAi-type approach holds great promise as a functional reverse-genetics tool for larval schistosomes, its application requires caution in the design and execution of experiments and interpretation of results.
PMCID: PMC2719580  PMID: 19668375
12.  An RIG-I-Like RNA Helicase Mediates Antiviral RNAi Downstream of Viral siRNA Biogenesis in Caenorhabditis elegans 
PLoS Pathogens  2009;5(2):e1000286.
Dicer ribonucleases of plants and invertebrate animals including Caenorhabditis elegans recognize and process a viral RNA trigger into virus-derived small interfering RNAs (siRNAs) to guide specific viral immunity by Argonaute-dependent RNA interference (RNAi). C. elegans also encodes three Dicer-related helicase (drh) genes closely related to the RIG-I-like RNA helicase receptors which initiate broad-spectrum innate immunity against RNA viruses in mammals. Here we developed a transgenic C. elegans strain that expressed intense green fluorescence from a chromosomally integrated flock house virus replicon only after knockdown or knockout of a gene required for antiviral RNAi. Use of the reporter nematode strain in a feeding RNAi screen identified drh-1 as an essential component of the antiviral RNAi pathway. However, RNAi induced by either exogenous dsRNA or the viral replicon was enhanced in drh-2 mutant nematodes, whereas exogenous RNAi was essentially unaltered in drh-1 mutant nematodes, indicating that exogenous and antiviral RNAi pathways are genetically distinct. Genetic epistatic analysis shows that drh-1 acts downstream of virus sensing and viral siRNA biogenesis to mediate specific antiviral RNAi. Notably, we found that two members of the substantially expanded subfamily of Argonautes specific to C. elegans control parallel antiviral RNAi pathways. These findings demonstrate both conserved and unique strategies of C. elegans in antiviral defense.
Author Summary
The genome of Caenorhabditis elegans encodes three Dicer-related helicases (DRHs) highly homologous to the DExD/H box helicase domain found in two distinct families of virus sensors, Dicer ribonucleases and RIG-I-like helicases (RLRs). Dicer initiates the specific, RNAi-mediated viral immunity in plants, fungi and invertebrates by producing virus-derived small interfering RNAs (siRNAs). By contrast, mammalian RLRs trigger interferon production and broad-spectrum viral immunity, although one of the three RLRs may act as both a negative and positive regulator of viral immunity. In this study we developed a transgenic C. elegans strain for high-throughput genetic screens and identified 35 genes including drh-1 that are required for RNAi-mediated viral immunity. Genetic epistatic analyses demonstrate that drh-1 mediates RNAi immunity downstream of the production of viral siRNAs. Notably, we found that drh-2 functions as a negative regulator of the viral immunity. Thus, both nematode DRHs and mammalian RLRs participate in antiviral immune responses. Unlike mammalian RLRs, however, nematode DRH-1 employs an RNAi effector mechanism and is unlikely to be involved in direct virus sensing.
PMCID: PMC2629121  PMID: 19197349
13.  Second-Generation Sequencing Supply an Effective Way to Screen RNAi Targets in Large Scale for Potential Application in Pest Insect Control 
PLoS ONE  2011;6(4):e18644.
The key of RNAi approach success for potential insect pest control is mainly dependent on careful target selection and a convenient delivery system. We adopted second-generation sequencing technology to screen RNAi targets. Illumina's RNA-seq and digital gene expression tag profile (DGE-tag) technologies were used to screen optimal RNAi targets from Ostrinia furnalalis. Total 14690 stage specific genes were obtained which can be considered as potential targets, and 47 were confirmed by qRT-PCR. Ten larval stage specific expression genes were selected for RNAi test. When 50 ng/µl dsRNAs of the genes DS10 and DS28 were directly sprayed on the newly hatched larvae which placed on the filter paper, the larval mortalities were around 40∼50%, while the dsRNAs of ten genes were sprayed on the larvae along with artificial diet, the mortalities reached 73% to 100% at 5 d after treatment. The qRT-PCR analysis verified the correlation between larval mortality and the down-regulation of the target gene expression. Topically applied fluorescent dsRNA confirmed that dsRNA did penetrate the body wall and circulate in the body cavity. It seems likely that the combination of DGE-tag with RNA-seq is a rapid, high-throughput, cost less and an easy way to select the candidate target genes for RNAi. More importantly, it demonstrated that dsRNAs are able to penetrate the integument and cause larval developmental stunt and/or death in a lepidopteron insect. This finding largely broadens the target selection for RNAi from just gut-specific genes to the targets in whole insects and may lead to new strategies for designing RNAi-based technology against insect damage.
PMCID: PMC3073972  PMID: 21494551
14.  A novel method for tissue-specific RNAi rescue in Drosophila 
Nucleic Acids Research  2009;37(13):e93.
Targeted gene silencing by RNA interference allows the study of gene function in plants and animals. In cell culture and small animal models, genetic screens can be performed—even tissue-specifically in Drosophila—with genome-wide RNAi libraries. However, a major problem with the use of RNAi approaches is the unavoidable false-positive error caused by off-target effects. Until now, this is minimized by computational RNAi design, comparing RNAi to the mutant phenotype if known, and rescue with a presumed ortholog. The ultimate proof of specificity would be to restore expression of the same gene product in vivo. Here, we present a simple and efficient method to rescue the RNAi-mediated knockdown of two independent genes in Drosophila. By exploiting the degenerate genetic code, we generated Drosophila RNAi Escape Strategy Construct (RESC) rescue proteins containing frequent silent mismatches in the complete RNAi target sequence. RESC products were no longer efficiently silenced by RNAi in cell culture and in vivo. As a proof of principle, we rescue the RNAi-induced loss of function phenotype of the eye color gene white and tracheal defects caused by the knockdown of the heparan sulfate proteoglycan syndecan. Our data suggest that RESC is widely applicable to rescue and validate ubiquitous or tissue-specific RNAi and to perform protein structure–function analysis.
PMCID: PMC2715260  PMID: 19483100
15.  A computational study of off-target effects of RNA interference 
Nucleic Acids Research  2005;33(6):1834-1847.
RNA interference (RNAi) is an intracellular mechanism for post-transcriptional gene silencing that is frequently used to study gene function. RNAi is initiated by short interfering RNA (siRNA) of ∼21 nt in length, either generated from the double-stranded RNA (dsRNA) by using the enzyme Dicer or introduced experimentally. Following association with an RNAi silencing complex, siRNA targets mRNA transcripts that have sequence identity for destruction. A phenotype resulting from this knockdown of expression may inform about the function of the targeted gene. However, ‘off-target effects’ compromise the specificity of RNAi if sequence identity between siRNA and random mRNA transcripts causes RNAi to knockdown expression of non-targeted genes. The complete off-target effects must be investigated systematically on each gene in a genome by adjusting a group of parameters, which is too expensive to conduct experimentally and motivates a study in silico. This computational study examined the potential for off-target effects of RNAi, employing the genome and transcriptome sequence data of Homo sapiens, Caenorhabditis elegans and Schizosaccharomyces pombe. The chance for RNAi off-target effects proved considerable, ranging from 5 to 80% for each of the organisms, when using as parameter the exact identity between any possible siRNA sequences (arbitrary length ranging from 17 to 28 nt) derived from a dsRNA (range 100–400 nt) representing the coding sequences of target genes and all other siRNAs within the genome. Remarkably, high-sequence specificity and low probability for off-target reactivity were optimally balanced for siRNA of 21 nt, the length observed mostly in vivo. The chance for off-target RNAi increased (although not always significantly) with greater length of the initial dsRNA sequence, inclusion into the analysis of available untranslated region sequences and allowing for mismatches between siRNA and target sequences. siRNA sequences from within 100 nt of the 5′ termini of coding sequences had low chances for off-target reactivity. This may be owing to coding constraints for signal peptide-encoding regions of genes relative to regions that encode for mature proteins. Off-target distribution varied along the chromosomes of C.elegans, apparently owing to the use of more unique sequences in gene-dense regions. Finally, biological and thermodynamical descriptors of effective siRNA reduced the number of potential siRNAs compared with those identified by sequence identity alone, but off-target RNAi remained likely, with an off-target error rate of ∼10%. These results also suggest a direction for future in vivo studies that could both help in calibrating true off-target rates in living organisms and also in contributing evidence toward the debate of whether siRNA efficacy is correlated with, or independent of, the target molecule. In summary, off-target effects present a real but not prohibitive concern that should be considered for RNAi experiments.
PMCID: PMC1072799  PMID: 15800213
16.  GenomeRNAi: a database for cell-based RNAi phenotypes 
Nucleic Acids Research  2006;35(Database issue):D492-D497.
RNA interference (RNAi) has emerged as a powerful tool to generate loss-of-function phenotypes in a variety of organisms. Combined with the sequence information of almost completely annotated genomes, RNAi technologies have opened new avenues to conduct systematic genetic screens for every annotated gene in the genome. As increasing large datasets of RNAi-induced phenotypes become available, an important challenge remains the systematic integration and annotation of functional information. Genome-wide RNAi screens have been performed both in Caenorhabditis elegans and Drosophila for a variety of phenotypes and several RNAi libraries have become available to assess phenotypes for almost every gene in the genome. These screens were performed using different types of assays from visible phenotypes to focused transcriptional readouts and provide a rich data source for functional annotation across different species. The GenomeRNAi database provides access to published RNAi phenotypes obtained from cell-based screens and maps them to their genomic locus, including possible non-specific regions. The database also gives access to sequence information of RNAi probes used in various screens. It can be searched by phenotype, by gene, by RNAi probe or by sequence and is accessible at
PMCID: PMC1747177  PMID: 17135194
17.  RNAi screen of Salmonella invasion shows role of COPI in membrane targeting of cholesterol and Cdc42 
A genome wide RNAi screen identifies 72 host cell genes affecting S. Typhimurium entry, including actin regulators and COPI. This study implicates COPI-dependent cholesterol and sphingolipid localization as a common mechanism of infection by bacterial and viral pathogens.
Genome-scale RNAi screen identifies 72 host genes affecting S. Typhimurium host cell invasion.Step-specific follow-up assays assign the phenotypes to specific steps of the invasion process.COPI effects on host cell binding, ruffling and invasion were traced to a key role of COPI in membrane targeting of cholesterol, sphingolipids, Rac1 and Cdc42.This new role of COPI explains why COPI is required for host cell infection by numerous bacterial and viral pathogens.
Pathogens are not only a menace to public health, but they also provide excellent tools for probing host cell function. Thus, studying infection mechanisms has fueled progress in cell biology (Ridley et al, 1992; Welch et al, 1997). In the presented study, we have performed an RNAi screen to identify host cell genes required for Salmonella host cell invasion. This screen identified proteins known to contribute to Salmonella-induced actin rearrangements (e.g., Cdc42 and the Arp2/3 complex; reviewed in Schlumberger and Hardt, 2006) and vesicular traffic (e.g., Rab7) as well as unexpected hits, such as the COPI complex. COPI is a known organizer of Golgi-to-ER vesicle transport (Bethune et al, 2006; Beck et al, 2009). Here, we show that COPI is also involved in plasma membrane targeting of cholesterol, sphingolipids and the Rho GTPases Cdc42 and Rac1, essential host cell factors required for Salmonella invasion. This explains why COPI depletion inhibits infection by S. Typhimurium and illustrates how combining bacterial pathogenesis and systems approaches can promote cell biology.
Salmonella Typhimurium is a common food-borne pathogen and worldwide a major public health problem causing severe diarrhea. The pathogen uses the host's gut mucosa as a portal of entry and gut tissue invasion is a key event leading to the disease. This explains the intense interest from medicine and basic biology in the mechanism of Salmonella host cell invasion.
Tissue culture infection models have delineated a sequence of events leading host cell invasion (Figure 1; Schlumberger and Hardt, 2006): (i) pathogen binding to the host cell surface; (ii) activation of a syringe-like apparatus (‘Type III secretion system 1', T1) of the bacterium and injection of a bacterial toxin cocktail into the host cell. These toxins include SopE, a key virulence factor triggering invasion (Hardt et al, 1998), which was analyzed in our study; (iii) toxin-triggered membrane ruffling. To a significant extent, this is facilitated by SopE-triggered activation of Cdc42 and Rac1 and subsequent actin polymerization at the site of infection; (iv) engulfment of the pathogen within a vesicular compartment (SCV) and (v) maturation of the SCV, a process driven by a second Type III secretion system (T2), which is expressed by the pathogen upon bacterial entry (Figure 1). This sequence of events mediates Salmonella invasion into the gut epithelium and illustrates that this pathogen can be used for probing mechanisms of host cell actin control, membrane biogenesis, vesicle formation and vesicular trafficking.
SopE is a key virulence factor of invasion and triggers the activation of Cdc42 and Rac1 and subsequent actin polymerization at the site of infection. We have employed a SopE-expressing S. Typhimurium strain and RNAi screening technology to identify host cell factors affecting invasion. First, we developed an automated fluorescence microscopy assay to quantify S. Typhimurium entry in a high-throughput format (Figure 1C). This assay was based on a GFP reporter expressed by the pathogen after invasion and maturation of the SCV. Using this assay, we screened a ‘druggable genome' siRNA library (6978 genes, 3 oligos each, 1 oligo per well) and identified 72 invasion hits. These included established regulators of the actin cytoskeleton (Cdc42, Arp2/3, Nap1; Schlumberger and Hardt, 2006), some of which have not been implicated so far in Salmonella entry (Pfn1, Cap1), as well as proteins not previously thought to influence infection (Atp1a1, Rbx1, COPI complex). Potentially, these hits could affect any step of the invasion process (Figure 1A).
In the second stage of the study, we have assigned each ‘invasion hit' to particular steps of the invasion process. For this purpose, we developed step-specific assays for Salmonella binding, injection, ruffling and membrane engulfment and re-screened the genes found as hits in the first screen (four siRNAs per gene). As expected, a significant number of ‘hits' affected binding to the host cell, others affected binding and ruffling (e.g., Pfn1, Itgβ5, Cap1), a few were specific for the ruffling step (e.g., Cdc42) and some affected SCV maturation, namely Rab7a, the trafficking protein Vps39 and the vacuolar proton pump Atp6ap2. Thus, our experimental strategy allowed mechanistic interpretation and linked novel hits to particular phenotypes, thus providing a basis for further studies (Figure 1).
COPI depletion impaired effector injection and ruffling. This was surprising, as the COPI complex was known to regulate retrogade Golgi-to-ER transport, but was not expected to affect pathogen interactions at the plasma membrane. Therefore, we have investigated the underlying mechanism. We have observed that COPI depletion entailed dramatic changes in the plasma membrane composition (Figure 6). Cholesterol and sphingolipids, which form domains (‘lipid rafts') in the plasma membrane, were depleted from the cell surface and redirected into a large vesicular compartment. The same was true for the Rho GTPases Rac1 and Cdc42. This strong decrease in the amount of cholesterol-enriched microdomains and Rho GTPases in the plasma membrane explained the observed defects in S. Typhimurium host cell invasion and assigned a novel role for COPI in controlling mammalian plasma membrane composition. It should be noted that other viral and bacterial pathogens do show a similar dependency on host cellular COPI and plasma membrane lipids. This includes notorious pathogens such as Staphylococcus aureus (Ramet et al, 2002; Potrich et al, 2009), Listeria monocytogenes (Seveau et al, 2004; Agaisse et al, 2005; Cheng et al, 2005; Gekara et al, 2005), Mycobacterium tuberculosis (Munoz et al, 2009), Chlamydia trachomatis (Elwell et al, 2008), influenza virus (Hao et al, 2008; Konig et al, 2010), hepatitis C virus (Tai et al, 2009; Popescu and Dubuisson, 2010) and the vesicular stomatitis virus (presented study) and suggests that COPI-mediated control of host cell plasma membrane composition might be of broad importance for pathogenesis. Future work will have to address whether this might offer starting points for developing anti-infective therapeutics with a very broad spectrum of activity.
The pathogen Salmonella Typhimurium is a common cause of diarrhea and invades the gut tissue by injecting a cocktail of virulence factors into epithelial cells, triggering actin rearrangements, membrane ruffling and pathogen entry. One of these factors is SopE, a G-nucleotide exchange factor for the host cellular Rho GTPases Rac1 and Cdc42. How SopE mediates cellular invasion is incompletely understood. Using genome-scale RNAi screening we identified 72 known and novel host cell proteins affecting SopE-mediated entry. Follow-up assays assigned these ‘hits' to particular steps of the invasion process; i.e., binding, effector injection, membrane ruffling, membrane closure and maturation of the Salmonella-containing vacuole. Depletion of the COPI complex revealed a unique effect on virulence factor injection and membrane ruffling. Both effects are attributable to mislocalization of cholesterol, sphingolipids, Rac1 and Cdc42 away from the plasma membrane into a large intracellular compartment. Equivalent results were obtained with the vesicular stomatitis virus. Therefore, COPI-facilitated maintenance of lipids may represent a novel, unifying mechanism essential for a wide range of pathogens, offering opportunities for designing new drugs.
PMCID: PMC3094068  PMID: 21407211
coatomer; HeLa; Salmonella; siRNA; systems biology
18.  Functional Specialization of the Small Interfering RNA Pathway in Response to Virus Infection 
PLoS Pathogens  2013;9(8):e1003579.
In Drosophila, post-transcriptional gene silencing occurs when exogenous or endogenous double stranded RNA (dsRNA) is processed into small interfering RNAs (siRNAs) by Dicer-2 (Dcr-2) in association with a dsRNA-binding protein (dsRBP) cofactor called Loquacious (Loqs-PD). siRNAs are then loaded onto Argonaute-2 (Ago2) by the action of Dcr-2 with another dsRBP cofactor called R2D2. Loaded Ago2 executes the destruction of target RNAs that have sequence complementarity to siRNAs. Although Dcr-2, R2D2, and Ago2 are essential for innate antiviral defense, the mechanism of virus-derived siRNA (vsiRNA) biogenesis and viral target inhibition remains unclear. Here, we characterize the response mechanism mediated by siRNAs against two different RNA viruses that infect Drosophila. In both cases, we show that vsiRNAs are generated by Dcr-2 processing of dsRNA formed during viral genome replication and, to a lesser extent, viral transcription. These vsiRNAs seem to preferentially target viral polyadenylated RNA to inhibit viral replication. Loqs-PD is completely dispensable for silencing of the viruses, in contrast to its role in silencing endogenous targets. Biogenesis of vsiRNAs is independent of both Loqs-PD and R2D2. R2D2, however, is required for sorting and loading of vsiRNAs onto Ago2 and inhibition of viral RNA expression. Direct injection of viral RNA into Drosophila results in replication that is also independent of Loqs-PD. This suggests that triggering of the antiviral pathway is not related to viral mode of entry but recognition of intrinsic features of virus RNA. Our results indicate the existence of a vsiRNA pathway that is separate from the endogenous siRNA pathway and is specifically triggered by virus RNA. We speculate that this unique framework might be necessary for a prompt and efficient antiviral response.
Author Summary
The RNA interference (RNAi) pathway utilizes small non-coding RNAs to silence gene expression. In insects, RNAi regulates endogenous genes and functions as an RNA-based immune system against viral infection. Here we have uncovered details of how RNAi is triggered by RNA viruses. Double-stranded RNA (dsRNA) generated as a replication intermediate or from transcription of the RNA virus can be used as substrate for the biogenesis of virus-derived small interfering RNAs (vsiRNAs). Unlike other dsRNAs, virus RNA processing involves Dicer but not its canonical partner protein Loqs-PD. Thus, vsiRNA biogenesis is mechanistically different from biogenesis of endogenous siRNAs or siRNAs derived from other exogenous RNA sources. Our results suggest a specialization of the pathway dedicated to silencing of RNA viruses versus other types of RNAi silencing. The understanding of RNAi mechanisms during viral infection could have implications for the control of insect-borne viruses and the use of siRNAs to treat viral infections in humans.
PMCID: PMC3757037  PMID: 24009507
19.  A functional genomic analysis of cell morphology using RNA interference 
Journal of Biology  2003;2(4):27.
The diversity of metazoan cell shapes is influenced by the dynamic cytoskeletal network. With the advent of RNA-interference (RNAi) technology, it is now possible to screen systematically for genes controlling specific cell-biological processes, including those required to generate distinct morphologies.
We adapted existing RNAi technology in Drosophila cell culture for use in high-throughput screens to enable a comprehensive genetic dissection of cell morphogenesis. To identify genes responsible for the characteristic shape of two morphologically distinct cell lines, we performed RNAi screens in each line with a set of double-stranded RNAs (dsRNAs) targeting 994 predicted cell shape regulators. Using automated fluorescence microscopy to visualize actin filaments, microtubules and DNA, we detected morphological phenotypes for 160 genes, one-third of which have not been previously characterized in vivo. Genes with similar phenotypes corresponded to known components of pathways controlling cytoskeletal organization and cell shape, leading us to propose similar functions for previously uncharacterized genes. Furthermore, we were able to uncover genes acting within a specific pathway using a co-RNAi screen to identify dsRNA suppressors of a cell shape change induced by Pten dsRNA.
Using RNAi, we identified genes that influence cytoskeletal organization and morphology in two distinct cell types. Some genes exhibited similar RNAi phenotypes in both cell types, while others appeared to have cell-type-specific functions, in part reflecting the different mechanisms used to generate a round or a flat cell morphology.
PMCID: PMC333409  PMID: 14527345
20.  A Computational model for compressed sensing RNAi cellular screening 
BMC Bioinformatics  2012;13:337.
RNA interference (RNAi) becomes an increasingly important and effective genetic tool to study the function of target genes by suppressing specific genes of interest. This system approach helps identify signaling pathways and cellular phase types by tracking intensity and/or morphological changes of cells. The traditional RNAi screening scheme, in which one siRNA is designed to knockdown one specific mRNA target, needs a large library of siRNAs and turns out to be time-consuming and expensive.
In this paper, we propose a conceptual model, called compressed sensing RNAi (csRNAi), which employs a unique combination of group of small interfering RNAs (siRNAs) to knockdown a much larger size of genes. This strategy is based on the fact that one gene can be partially bound with several small interfering RNAs (siRNAs) and conversely, one siRNA can bind to a few genes with distinct binding affinity. This model constructs a multi-to-multi correspondence between siRNAs and their targets, with siRNAs much fewer than mRNA targets, compared with the conventional scheme. Mathematically this problem involves an underdetermined system of equations (linear or nonlinear), which is ill-posed in general. However, the recently developed compressed sensing (CS) theory can solve this problem. We present a mathematical model to describe the csRNAi system based on both CS theory and biological concerns. To build this model, we first search nucleotide motifs in a target gene set. Then we propose a machine learning based method to find the effective siRNAs with novel features, such as image features and speech features to describe an siRNA sequence. Numerical simulations show that we can reduce the siRNA library to one third of that in the conventional scheme. In addition, the features to describe siRNAs outperform the existing ones substantially.
This csRNAi system is very promising in saving both time and cost for large-scale RNAi screening experiments which may benefit the biological research with respect to cellular processes and pathways.
PMCID: PMC3544734  PMID: 23270311
21.  False negative rates in Drosophila cell-based RNAi screens: a case study 
BMC Genomics  2011;12:50.
High-throughput screening using RNAi is a powerful gene discovery method but is often complicated by false positive and false negative results. Whereas false positive results associated with RNAi reagents has been a matter of extensive study, the issue of false negatives has received less attention.
We performed a meta-analysis of several genome-wide, cell-based Drosophila RNAi screens, together with a more focused RNAi screen, and conclude that the rate of false negative results is at least 8%. Further, we demonstrate how knowledge of the cell transcriptome can be used to resolve ambiguous results and how the number of false negative results can be reduced by using multiple, independently-tested RNAi reagents per gene.
RNAi reagents that target the same gene do not always yield consistent results due to false positives and weak or ineffective reagents. False positive results can be partially minimized by filtering with transcriptome data. RNAi libraries with multiple reagents per gene also reduce false positive and false negative outcomes when inconsistent results are disambiguated carefully.
PMCID: PMC3036618  PMID: 21251254
22.  Online GESS: prediction of miRNA-like off-target effects in large-scale RNAi screen data by seed region analysis 
BMC Bioinformatics  2014;15:192.
RNA interference (RNAi) is an effective and important tool used to study gene function. For large-scale screens, RNAi is used to systematically down-regulate genes of interest and analyze their roles in a biological process. However, RNAi is associated with off-target effects (OTEs), including microRNA (miRNA)-like OTEs. The contribution of reagent-specific OTEs to RNAi screen data sets can be significant. In addition, the post-screen validation process is time and labor intensive. Thus, the availability of robust approaches to identify candidate off-targeted transcripts would be beneficial.
Significant efforts have been made to eliminate false positive results attributable to sequence-specific OTEs associated with RNAi. These approaches have included improved algorithms for RNAi reagent design, incorporation of chemical modifications into siRNAs, and the use of various bioinformatics strategies to identify possible OTEs in screen results. Genome-wide Enrichment of Seed Sequence matches (GESS) was developed to identify potential off-targeted transcripts in large-scale screen data by seed-region analysis. Here, we introduce a user-friendly web application that provides researchers a relatively quick and easy way to perform GESS analysis on data from human or mouse cell-based screens using short interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs), as well as for Drosophila screens using shRNAs. Online GESS relies on up-to-date transcript sequence annotations for human and mouse genes extracted from NCBI Reference Sequence (RefSeq) and Drosophila genes from FlyBase. The tool also accommodates analysis with user-provided reference sequence files.
Online GESS provides a straightforward user interface for genome-wide seed region analysis for human, mouse and Drosophila RNAi screen data. With the tool, users can either use a built-in database or provide a database of transcripts for analysis. This makes it possible to analyze RNAi data from any organism for which the user can provide transcript sequences.
PMCID: PMC4073188  PMID: 24934636
RNAi; Off-target effects; Data analysis; Seed region; miRNA; siRNA; shRNA; High-throughput screening
23.  Genome-Wide RNAi of C. elegans Using the Hypersensitive rrf-3 Strain Reveals Novel Gene Functions 
PLoS Biology  2003;1(1):e12.
RNA-mediated interference (RNAi) is a method to inhibit gene function by introduction of double-stranded RNA (dsRNA). Recently, an RNAi library was constructed that consists of bacterial clones expressing dsRNA, corresponding to nearly 90% of the 19,427 predicted genes of C. elegans. Feeding of this RNAi library to the standard wild-type laboratory strain Bristol N2 detected phenotypes for approximately 10% of the corresponding genes. To increase the number of genes for which a loss-of-function phenotype can be detected, we undertook a genome-wide RNAi screen using the rrf-3 mutant strain, which we found to be hypersensitive to RNAi. Feeding of the RNAi library to rrf-3 mutants resulted in additional loss-of-function phenotypes for 393 genes, increasing the number of genes with a phenotype by 23%. These additional phenotypes are distributed over different phenotypic classes. We also studied interexperimental variability in RNAi results and found persistent levels of false negatives. In addition, we used the RNAi phenotypes obtained with the genome-wide screens to systematically clone seven existing genetic mutants with visible phenotypes. The genome-wide RNAi screen using rrf-3 significantly increased the functional data on the C. elegans genome. The resulting dataset will be valuable in conjunction with other functional genomics approaches, as well as in other model organisms.
The screen suggested functions for 393 genes for which no RNAi-mediated phenotype was known. The comparison with similar screens in worms has general implications for RNAi experiments
PMCID: PMC212692  PMID: 14551910
24.  mRNA turnover rate limits siRNA and microRNA efficacy 
Based on a simple model of the mRNA life cycle, we predict that mRNAs with high turnover rates in the cell are more difficult to perturb with RNAi.We test this hypothesis using a luciferase reporter system and obtain additional evidence from a variety of large-scale data sets, including microRNA overexpression experiments and RT–qPCR-based efficacy measurements for thousands of siRNAs.Our results suggest that mRNA half-lives will influence how mRNAs are differentially perturbed whenever small RNA levels change in the cell, not only after transfection but also during differentiation, pathogenesis and normal cell physiology.
What determines how strongly an mRNA responds to a microRNA or an siRNA? We know that properties of the sequence match between the small RNA and the mRNA are crucial. However, large-scale validations of siRNA efficacies have shown that certain transcripts remain recalcitrant to perturbation even after repeated redesign of the siRNA (Krueger et al, 2007). Weak response to RNAi may thus be an inherent property of the mRNA, but the underlying factors have proven difficult to uncover.
siRNAs induce degradation by sequence-specific cleavage of their target mRNAs (Elbashir et al, 2001). MicroRNAs, too, induce mRNA degradation, and ∼80% of their effect on protein levels can be explained by changes in transcript abundance (Hendrickson et al, 2009; Guo et al, 2010). Given that multiple factors act simultaneously to degrade individual mRNAs, we here consider whether variable responses to micro/siRNA regulation may, in part, be explained simply by the basic dynamics of mRNA turnover. If a transcript is already under strong destabilizing regulation, it is theoretically possible that the relative change in abundance after the addition of a novel degrading factor would be less pronounced compared with a stable transcript (Figure 1). mRNA turnover is achieved by a multitude of factors, and the influence of such factors on targetability can be explored. However, their combined action, including yet unknown factors, is summarized into a single property: the mRNA decay rate.
First, we explored the theoretical relationship between the pre-existing turnover rate of an mRNA, and its expected susceptibility to perturbation by a small RNA. We assumed a basic model of the mRNA life cycle, in which the rate of transcription is constant and the rate of degradation is described by first-order kinetics. Under this model, the relative change in steady-state expression level will become smaller as the pre-existing decay rate grows larger, independent of the transcription rate. This relationship persists also if we assume various degrees of synergy and antagonism between the pre-existing factors and the external factor, with increasing synergism leading to transcripts being more equally targetable, regardless of their pre-existing decay rate.
We next generated a series of four luciferase reporter constructs with destabilizing AU-rich elements (AREs) of various strengths incorporated into their 3′ UTRs. To evaluate how the different constructs would respond to perturbation, we performed co-transfections with an siRNA targeted at the coding region of the luciferase gene. This reduced the signal of the non-destabilized construct to 26% compared with a control siRNA. In contrast, the most destabilized construct showed 42% remaining reporter activity, and we could observe a dose–response relationship across the series.
The reporter experiment encouraged an investigation of this effect on real-world mRNAs. We analyzed a set of 2622 siRNAs, for which individual efficacies were determined using RT–qPCR 48 h post-transfection in HeLa cells ( Of these, 1778 could be associated with an experimentally determined decay rate (Figure 4A). Although the overall correlation between the two variables was modest (Spearman's rank correlation rs=0.22, P<1e−20), we found that siRNAs directed at high-turnover (t1/2<200 min) and medium-turnover (2001000 min) transcripts (P<8e−11 and 4e−9, respectively, two-tailed KS-test, Figure 4B). While 41.6% (498/1196) of the siRNAs directed at low-turnover transcripts reached 10% remaining expression or better, only 16.7% (31/186) of the siRNAs that targeted high-turnover mRNAs reached this high degree of silencing (Figure 4B). Reduced targetability (25.2%, 100/396) was also seen for transcripts with medium-turnover rate.
Our results based on siRNA data suggested that turnover rates could also influence microRNA targeting. By assembling genome-wide mRNA expression data from 20 published microRNA transfections in HeLa cells, we found that predicted target mRNAs with short and medium half-life were significantly less repressed after transfection than their long-lived counterparts (P<8e−5 and P<0.03, respectively, two-tailed KS-test). Specifically, 10.2% (293/2874) of long-lived targets versus 4.4% (41/942) of short-lived targets were strongly (z-score <−3) repressed. siRNAs are known to cause off-target effects that are mediated, in part, by microRNA-like seed complementarity (Jackson et al, 2006). We analyzed changes in transcript levels after transfection of seven different siRNAs, each with a unique seed region (Jackson et al, 2006). Putative ‘off-targets' were identified by mapping of non-conserved seed matches in 3′ UTRs. We found that low-turnover mRNAs (t1/2 >1000 min) were more affected by seed-mediated off-target silencing than high-turnover mRNAs (t1/2 <200 min), with twice as many long-lived seed-containing transcripts (3.8 versus 1.9%) being strongly (z-score <−3) repressed.
In summary, mRNA turnover rates have an important influence on the changes exerted by small RNAs on mRNA levels. It can be assumed that mRNA half-lives will influence how mRNAs are differentially perturbed whenever small RNA levels change in the cell, not only after transfection but also during differentiation, pathogenesis and normal cell physiology.
The microRNA pathway participates in basic cellular processes and its discovery has enabled the development of si/shRNAs as powerful investigational tools and potential therapeutics. Based on a simple kinetic model of the mRNA life cycle, we hypothesized that mRNAs with high turnover rates may be more resistant to RNAi-mediated silencing. The results of a simple reporter experiment strongly supported this hypothesis. We followed this with a genome-wide scale analysis of a rich corpus of experiments, including RT–qPCR validation data for thousands of siRNAs, siRNA/microRNA overexpression data and mRNA stability data. We find that short-lived transcripts are less affected by microRNA overexpression, suggesting that microRNA target prediction would be improved if mRNA turnover rates were considered. Similarly, short-lived transcripts are more difficult to silence using siRNAs, and our results may explain why certain transcripts are inherently recalcitrant to perturbation by small RNAs.
PMCID: PMC3010119  PMID: 21081925
microRNA; mRNA decay; RNAi; siRNA
25.  RNAi Screening: New Approaches, Understandings and Organisms 
RNA interference (RNAi) leads to sequence-specific knockdown of gene function. The approach can be used in large-scale screens to interrogate function in various model organisms and an increasing number of other species. Genome-scale RNAi screens are routinely performed in cultured or primary cells or in vivo in organisms such as C. elegans. High-throughput RNAi screening is benefitting from the development of sophisticated new instrumentation and software tools for collecting and analyzing data, including high-content image data. The results of large-scale RNAi screens have already proved useful, leading to new understandings of gene function relevant to topics such as infection, cancer, obesity and aging. Nevertheless, important caveats apply and should be taken into consideration when developing or interpreting RNAi screens. Some level of false discovery is inherent to high-throughput approaches and specific to RNAi screens, false discovery due to off-target effects (OTEs) of RNAi reagents remains a problem. The need to improve our ability to use RNAi to elucidate gene function at large scale and in additional systems continues to be addressed through improved RNAi library design, development of innovative computational and analysis tools and other approaches.
PMCID: PMC3249004  PMID: 21953743
RNAi; high-throughput screens; high-content imaging; cell-based assays

Results 1-25 (1325658)