Search tips
Search criteria

Results 1-25 (1049632)

Clipboard (0)

Related Articles

1.  The Hsc/Hsp70 Co-Chaperone Network Controls Antigen Aggregation and Presentation during Maturation of Professional Antigen Presenting Cells 
PLoS ONE  2011;6(1):e16398.
The maturation of mouse macrophages and dendritic cells involves the transient deposition of ubiquitylated proteins in the form of dendritic cell aggresome-like induced structures (DALIS). Transient DALIS formation was used here as a paradigm to study how mammalian cells influence the formation and disassembly of protein aggregates through alterations of their proteostasis machinery. Co-chaperones that modulate the interplay of Hsc70 and Hsp70 with the ubiquitin-proteasome system (UPS) and the autophagosome-lysosome pathway emerged as key regulators of this process. The chaperone-associated ubiquitin ligase CHIP and the ubiquitin-domain protein BAG-1 are essential for DALIS formation in mouse macrophages and bone-marrow derived dendritic cells (BMDCs). CHIP also cooperates with BAG-3 and the autophagic ubiquitin adaptor p62 in the clearance of DALIS through chaperone-assisted selective autophagy (CASA). On the other hand, the co-chaperone HspBP1 inhibits the activity of CHIP and thereby attenuates antigen sequestration. Through a modulation of DALIS formation CHIP, BAG-1 and HspBP1 alter MHC class I mediated antigen presentation in mouse BMDCs. Our data show that the Hsc/Hsp70 co-chaperone network controls transient protein aggregation during maturation of professional antigen presenting cells and in this way regulates the immune response. Similar mechanisms may modulate the formation of aggresomes and aggresome-like induced structures (ALIS) in other mammalian cell types.
PMCID: PMC3024426  PMID: 21283720
2.  The role of spartin and its novel ubiquitin binding region in DALIS occurrence 
Molecular Biology of the Cell  2014;25(8):1355-1365.
Spartin contributes to the formation of dendritic aggresome-like induced structures (DALIS) through a unique ubiquitin-binding region (UBR). Using NMR and in vitro binding, the authors characterize spartin's UBR and show that DALIS formation depends on key residues within its UBR.
Troyer syndrome is an autosomal recessive hereditary spastic paraplegia (HSP) caused by frameshift mutations in the SPG20 gene that results in a lack of expression of the truncated protein. Spartin is a multifunctional protein, yet only two conserved domains—a microtubule-interacting and trafficking domain and a plant-related senescence domain involved in cytokinesis and mitochondrial physiology, respectively—have been defined. We have shown that overexpressed spartin binds to the Ile44 hydrophobic pocket of ubiquitin, suggesting spartin might contain a ubiquitin-binding domain. In the present study, we demonstrate that spartin contributes to the formation of dendritic aggresome-like induced structures (DALIS) through a unique ubiquitin-binding region (UBR). Using short hairpin RNA, we knocked down spartin in RAW264.7 cells and found that DALIS frequency decreased; conversely, overexpression of spartin increased the percentage of cells containing DALIS. Using nuclear magnetic resonance spectroscopy, we characterized spartin's UBR and defined the UBR's amino acids that are key for ubiquitin binding. We also found that spartin, via the UBR, binds Lys-63–linked ubiquitin chains but does not bind Lys-48–linked ubiquitin chains. Finally, we demonstrate that spartin's role in DALIS formation depends on key residues within its UBR.
PMCID: PMC3982999  PMID: 24523286
3.  Modulation of ubiquitin dynamics and suppression of DALIS formation by the Legionella pneumophila Dot/Icm system 
Cellular microbiology  2008;11(2):261-278.
Legionella pneumophila is an intracellular pathogen that uses effector proteins translocated by the Dot/Icm type IV secretion system to modulate host cellular processes. Here we investigate the dynamics of subcellular structures containing ubiquitin during L. pneumophila infection of phagocytic host cells. The Dot/Icm system mediated the formation of K48 and K63 poly-ubiquitin conjugates to proteins associated with L. pneumophila-containing vacuoles in macrophages and dendritic cells, suggesting that regulatory events and degradative events involving ubiquitin are regulated by bacterial effectors during infection. Stimulation of TLR2 on the surface of macrophages and dendritic cells by L. pneumophila-derived molecules resulted in the production of ubiquitin-rich dendritic cell aggresome-like structures (DALIS). Cells infected by L. pneumophila with a functional Dot/Icm system, however, failed to produce DALIS. Suppression of DALIS formation did not affect the accumulation of ubiquitinated proteins on vacuoles containing L. pneumophila. Examining other species of Legionella revealed that L. jordanis was unable to suppress DALIS formation after creating a ubiquitin-decorated vacuole. Thus, the L. pneumophila Dot/Icm system has the ability to modulate host processes to promote K48 and K63 ubiquitin conjugates on proteins at the vacuole membrane, and independently suppress cellular events required for the formation of DALIS.
PMCID: PMC2856068  PMID: 19016782
Legionella; DALIS; Ubiquitin
4.  Particle-Rich Cytoplasmic Structure (PaCS): Identification, Natural History, Role in Cell Biology and Pathology 
Biomolecules  2014;4(3):848-861.
Cytoplasmic structures showing a selective concentration of both polyubiquitinated proteins and proteasome have been described in various epithelial, hematopoietic, mesenchymal and neural cells in vitro or in fetal tissues, as well as in chronically-infected, mutated preneoplastic and neoplastic tissues. These cytoplasmic structures differ from other ubiquitin-reactive cytoplasmic bodies, like sequestosomes, aggresome-like-induced structures in dendritic cells (DALIS)/non-dendritic cells (ALIS) and aggresomes in showing distinctive ultrastructural organization (particle-rich cytoplasmic structure or PaCS), a cytochemical pattern and a functional profile. Their formation can be induced in vitro in dendritic or natural killer cells by trophic factors and interleukin treatment. They originate in close connection with ribosomes, while, as a result of their growth, the cytoskeleton and other surrounding organelles are usually dislocated outside their core. Interestingly, these particulate cytoplasmic structures are often found to fill cytoplasmic blebs forming proteasome- and polyubiquitinated protein-discharging vesicles, called ectosomes, which are found to detach from the cell and freely float in the extracellular space. To clearly point out the importance of the polyubiquitinated proteins and proteasome containing cytoplasmic structures, their role in cell biology and pathology has been carefully analyzed.
PMCID: PMC4192675  PMID: 25247343
PaCS; ubiquitin proteasome system; misfolded proteins; inclusion bodies; neoplastic cells; developing fetal cells; immunocompetent cells
5.  Endosome-mediated autophagy 
Autophagy  2013;9(6):861-880.
Activation of TLR signaling has been shown to induce autophagy in antigen-presenting cells (APCs). Using high-resolution microscopy approaches, we show that in LPS-stimulated dendritic cells (DCs), autophagosomes emerge from MHC class II compartments (MIICs) and harbor both the molecular machinery for antigen processing and the autophagosome markers LC3 and ATG16L1. This ENdosome-Mediated Autophagy (ENMA) appears to be the major type of autophagy in DCs, as similar structures were observed upon established autophagy-inducing conditions (nutrient deprivation, rapamycin) and under basal conditions in the presence of bafilomycin A1. Autophagosome formation was not significantly affected in DCs expressing ATG4BC74A mutant and atg4b−/− bone marrow DCs, but the degradation of the autophagy substrate SQSTM1/p62 was largely impaired. Furthermore, we demonstrate that the previously described DC aggresome-like LPS-induced structures (DALIS) contain vesicular membranes, and in addition to SQSTM1 and ubiquitin, they are positive for LC3. LC3 localization on DALIS is independent of its lipidation. MIIC-driven autophagosomes preferentially engulf the LPS-induced SQSTM1-positive DALIS, which become later degraded in autolysosomes. DALIS-associated membranes also contain ATG16L1, ATG9 and the Q-SNARE VTI1B, suggesting that they may represent (at least in part) a membrane reservoir for autophagosome expansion. We propose that ENMA constitutes an unconventional, APC-specific type of autophagy, which mediates the processing and presentation of cytosolic antigens by MHC class II machinery, and/or the selective clearance of toxic by-products of elevated ROS/RNS production in activated DCs, thereby promoting their survival.
PMCID: PMC3672296  PMID: 23481895
MHC class II; dendritic cell; autophagy; LC3; electron tomography
6.  Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3 
eLife  2013;2:e00828.
Ubiquitination by HECT E3 enzymes regulates myriad processes, including tumor suppression, transcription, protein trafficking, and degradation. HECT E3s use a two-step mechanism to ligate ubiquitin to target proteins. The first step is guided by interactions between the catalytic HECT domain and the E2∼ubiquitin intermediate, which promote formation of a transient, thioester-bonded HECT∼ubiquitin intermediate. Here we report that the second step of ligation is mediated by a distinct catalytic architecture established by both the HECT E3 and its covalently linked ubiquitin. The structure of a chemically trapped proxy for an E3∼ubiquitin-substrate intermediate reveals three-way interactions between ubiquitin and the bilobal HECT domain orienting the E3∼ubiquitin thioester bond for ligation, and restricting the location of the substrate-binding domain to prioritize target lysines for ubiquitination. The data allow visualization of an E2-to-E3-to-substrate ubiquitin transfer cascade, and show how HECT-specific ubiquitin interactions driving multiple reactions are repurposed by a major E3 conformational change to promote ligation.
eLife digest
Ubiquitin is a small protein that can be covalently linked to other, ‘target’, proteins in a cell to influence their behavior. Ubiquitin can be linked to its targets either as single copies or as polyubiquitin chains in which several ubiquitin molecules are bound end-on-end to each other, with one end of the chain attached to the target protein. A multi-step cascade involving enzymes known as E1, E2, and E3 adds ubiquitin to its targets. These enzymes function in a manner like runners in a relay, with ubiquitin a baton that is passed from E1 to E2 to E3 to the target.
The E3 enzyme is a ligase that catalyzes the formation of a new chemical bond between a ubiquitin and its target. There are approximately 600 different E3 enzymes in human cells that regulate a wide variety of target proteins. A major class of E3 enzymes, called HECT E3s, attaches ubiquitin to its targets in a unique two-step mechanism: the E2 enzymes covalently link a ubiquitin to a HECT E3 to form a complex that subsequently transfers the ubiquitin to its target protein. The ubiquitin is typically added to a particular amino acid, lysine, on the target protein, but the details of how HECT E3s execute this transfer are not well understood. To address this issue, Kamadurai et al. investigate how Rsp5, a HECT E3 ligase in yeast, attaches ubiquitin to a target protein called Sna3.
All HECT E3s have a domain—the HECT domain—that catalyzes the transfer of ubiquitin to its target protein. This domain consists of two sub-structures: the C-lobe, which can receive ubiquitin from E2 and then itself become linked to ubiquitin, and the N-lobe. These lobes were previously thought to adopt various orientations relative to each other to deliver ubiquitin to sites on different target proteins (including to multiple lysines on a single target protein). Unexpectedly, Kamadurai et al. find that in order to transfer the ubiquitin to Sna3, Rsp5 adopts a discrete HECT domain architecture that creates an active site in which parts of the C-lobe and the N-lobe, which are normally separated, are brought together with a ubiquitin molecule. This architecture also provides a mechanism that dictates which substrate lysines can be ubiquitinated based on how accessible they are to this active site.
The same regions of Rsp5 transfer ubiquitin to targets other than Sna3, suggesting that a uniform mechanism—which Kamadurai et al. show is conserved in two related human HECT E3 ligases—might transfer ubiquitin to all its targets. These studies therefore represent a significant step toward understanding how a major class of E3 enzymes modulates the functions of their targets.
PMCID: PMC3738095  PMID: 23936628
ubiquitin; HECT; E3 ligase; E2 conjugating enzyme; NEDD4; Rsp5; S. cerevisiae
7.  MHC Class I Antigen Presentation of DRiP-Derived Peptides from a Model Antigen Is Not Dependent on the AAA ATPase p97 
PLoS ONE  2013;8(7):e67796.
CD8+ T cells are responsible for killing cells of the body that have become infected or oncogenically transformed. In order to do so, effector CD8+ T cells must recognize their cognate antigenic peptide bound to a MHC class I molecule that has been directly presented by the target cell. Due to the rapid nature of antigen presentation, it is believed that antigenic peptides are derived from a subset of newly synthesized proteins which are degraded almost immediately following synthesis and termed Defective Ribosomal Products or DRiPs. We have recently reported on a bioassay which can distinguish antigen presentation of DRiP substrates from other forms of rapidly degraded proteins and found that poly-ubiquitin chain disassembly may be necessary for efficient DRiP presentation. The AAA ATPase p97 protein is necessary for efficient cross-presentation of antigens on MHC class I molecules and plays an important role in extracting mis-folded proteins from the endoplasmic reticulum. Here, we find that genetic ablation or chemical inhibition of p97 does not diminish DRiP antigen presentation to any great extent nor does it alter the levels of MHC class I molecules on the cell surface, despite our observations that p97 inhibition increased the levels of poly-ubiquitinated proteins in the cell. These data demonstrate that inhibiting poly-ubiquitin chain disassembly alone is insufficient to abolish DRiP presentation.
PMCID: PMC3699533  PMID: 23844095
8.  Distinct Pathways Generate Peptides from Defective Ribosomal Products for CD8+ T Cell Immunosurveillance 
To understand better the endogenous sources of MHC class I peptide ligands, we generated an antigenic reporter protein whose degradation is rapidly and reversibly controlled with Shield-1, a cell-permeant drug. Using this system, we demonstrate that defective ribosomal products (DRiPs) represent a major and highly efficient source of peptides and are completely resistant to our attempts to stabilize the protein. Although peptides also derive from nascent Shield-1–sensitive proteins and “retirees” created by Shield-1 withdrawal, these are much less efficient sources on a molar basis. We use this system to identify two drugs—each known to inhibit polyubiquitin chain disassembly—that selectively inhibit presentation of Shield-1–resistant DRiPs. These findings provide the initial evidence for distinct biochemical pathways for presentation of DRiPs versus retirees and implicate polyubiquitin chain disassembly or the actions of deubiquitylating enzymes as playing an important role in DRiP presentation.
PMCID: PMC3408966  PMID: 21228349
9.  Proteomic snapshot of the EGF-induced ubiquitin network 
In this work, the authors report the first proteome-wide analysis of EGF-regulated ubiquitination, revealing surprisingly pervasive growth factor-induced ubiquitination across a broad range of cellular systems and signaling pathways.
Epidermal growth factor (EGF) triggers a novel ubiquitin (Ub)-based signaling cascade that appears to intersect both housekeeping and regulatory circuitries of cellular physiology.The EGF-regulated Ubiproteome includes scores ubiquitinating and deubiquitinating enzymes, suggesting that the Ub signal might be rapidly transmitted and amplified through the Ub machinery.The EGF-Ubiproteome overlaps significantly with the EGF-phosphotyrosine proteome, pointing to a possible crosstalk between these two signaling mechanisms.The significant number of biological insights uncovered in our study (among which EphA2 as a novel, downstream ubiquitinated target of EGF receptor) illustrates the general relevance of such proteomic screens and calls for further analysis of the dynamics of the Ubiproteome.
Ubiquitination is a process by which one or more ubiquitin (Ub) monomers or chains are covalently attached to target proteins by E3 ligases. Deubiquitinating enzymes (DUBs) revert Ub conjugation, thus ensuring a dynamic equilibrium between pools of ubiquitinated and deubiquitinated proteins (Amerik and Hochstrasser, 2004). Traditionally, ubiquitination has been associated with protein degradation; however, it is now becoming apparent that this post-translation modification is an important signaling mechanism that can modulate the function, localization and protein/protein interaction abilities of targets (Mukhopadhyay and Riezman, 2007; Ravid and Hochstrasser, 2008).
One of the best-characterized signaling pathways involving ubiquitination is the epidermal growth factor (EGF)-induced pathway. Upon EGF stimulation, a variety of proteins are subject to Ub modification. These include the EGF receptor (EGFR), which undergoes both multiple monoubiquitination (Haglund et al, 2003) and K63-linked polyubiquitination (Huang et al, 2006), as well as components of the downstream endocytic machinery, which are modified by monoubiquitination (Polo et al, 2002; Mukhopadhyay and Riezman, 2007). Ubiquitination of the EGFR has been shown to have an impact on receptor internalization, intracellular sorting and metabolic fate (Acconcia et al, 2009). However, little is known about the wider impact of EGF-induced ubiquitination on cellular homeostasis and on the pleiotropic biological functions of the EGFR. In this paper, we attempt to address this issue by characterizing the repertoire of proteins that are ubiquitinated upon EGF stimulation, i.e., the EGF-Ubiproteome.
To achieve this, we employed two different purification procedures (endogenous—based on the purification of proteins modified by endogenous Ub from human cells; tandem affinity purification (TAP)—based on the purification of proteins modified by an ectopically expressed tagged-Ub from mouse cells) with stable isotope labeling with amino acids in cell culture-based MS to obtain both steady-state Ubiproteomes and EGF-induced Ubiproteomes. The steady-state Ubiproteomes consist of 1175 and 582 unambiguously identified proteins for the endogenous and TAP approaches, respectively, which we largely validated. Approximately 15% of the steady-state Ubiproteome was EGF-regulated at 10 min after stimulation; 176 of 1175 in the endogenous approach and 105 of 582 in the TAP approach. Both hyper- and hypoubiquitinated proteins were detected, indicating that EGFR-mediated signaling can modulate the ubiquitin network in both directions. Interestingly, many E2, E3 and DUBs were present in the EGF-Ubiproteome, suggesting that the Ub signal might be rapidly transmitted and amplified through the Ub machinery. Moreover, analysis of Ub-chain topology, performed using mass spectrometry and specific abs, suggested that the K63-linkage was the major Ub-based signal in the EGF-induced pathway.
To obtain a higher-resolution molecular picture of the EGF-regulated Ub network, we performed a network analysis on the non-redundant EGF-Ubiproteome (265 proteins). This analysis revealed that in addition to well-established liaisons with endocytosis-related pathways, the EGF-Ubiproteome intersects many circuitries of intracellular signaling involved in, e.g., DNA damage checkpoint regulation, cell-to-cell adhesion mechanisms and actin remodeling (Figure 5A).
Moreover, the EGF-Ubiproteome was enriched in hubs, proteins that can establish multiple protein/protein interaction and thereby regulate the organization of networks. These results are indicative of a crosstalk between EGFR-activated pathways and other signaling pathways through the Ub-network.
As EGF binding to its receptor also triggers a series of phosphorylation events, we examined whether there was any overlap between our EGF-Ubiproteome and published EGF-induced phosphotyrosine (pY) proteomes (Blagoev et al, 2004; Oyama et al, 2009; Hammond et al, 2010). We observed a significant overlap between ubiquitinated and pY proteins: 23% (61 of 265) of the EGF-Ubiproteome proteins were also tyrosine phosphorylated. Pathway analysis of these 61 Ub/pY-containing proteins revealed a significant enrichment in endocytic and signal-transduction pathways, while ‘hub analysis' revealed that Ub/pY-containing proteins are enriched in highly connected proteins to an even greater extent than Ub-containing proteins alone. These data point to a complex interplay between the Ub and pY networks and suggest that the flow of information from the receptor to downstream signaling molecules is driven by two complementary and interlinked enzymatic cascades: kinases/phosphatases and E3 ligases/DUBs.
Finally, we provided a proof of principle of the biological relevance of our EGF-Ubiproteome. We focused on EphA2, a receptor tyrosine kinase, which is involved in development and is often overexpressed in cancer (Pasquale, 2008). We started from the observation that EphA2 is present in the EGF-Ubiproteome and that proteins of the EGF-Ubiproteome are enriched in the Ephrin receptor signaling pathway(s). We confirmed the MS data by demonstrating that the EphA2 is ubiquitinated upon EGF stimulation. Moreover, EphA2 also undergoes tyrosine phosphorylation, indicating crosstalk between the two receptors. The EGFR kinase domain was essential for these modifications of EphA2, and a partial co-internalization with EGFR upon EGF activation was clearly detectable. Finally, we demonstrated by knockdown of EphA2 in MCF10A cells that this receptor is critically involved in EGFR biological outcomes, such as proliferation and migration (Figure 7).
Overall, our results unveil the complex impact of growth factor signaling on Ub-based intracellular networks to levels that extend well beyond what might have been expected and highlight the ‘resource' feature of our EGF-Ubiproteome.
The activity, localization and fate of many cellular proteins are regulated through ubiquitination, a process whereby one or more ubiquitin (Ub) monomers or chains are covalently attached to target proteins. While Ub-conjugated and Ub-associated proteomes have been described, we lack a high-resolution picture of the dynamics of ubiquitination in response to signaling. In this study, we describe the epidermal growth factor (EGF)-regulated Ubiproteome, as obtained by two complementary purification strategies coupled to quantitative proteomics. Our results unveil the complex impact of growth factor signaling on Ub-based intracellular networks to levels that extend well beyond what might have been expected. In addition to endocytic proteins, the EGF-regulated Ubiproteome includes a large number of signaling proteins, ubiquitinating and deubiquitinating enzymes, transporters and proteins involved in translation and transcription. The Ub-based signaling network appears to intersect both housekeeping and regulatory circuitries of cellular physiology. Finally, as proof of principle of the biological relevance of the EGF-Ubiproteome, we demonstrated that EphA2 is a novel, downstream ubiquitinated target of epidermal growth factor receptor (EGFR), critically involved in EGFR biological responses.
PMCID: PMC3049407  PMID: 21245847
EGF; network; proteomics; signaling; ubiquitin
10.  Defective Ribosomal Products Are the Major Source of Antigenic Peptides Endogenously Generated from Influenza A Virus Neuraminidase 
The defective ribosomal product (DRiP) hypothesis of endogenous Ag processing posits that rapidly degraded forms of nascent proteins are a major source of peptide ligands for MHC class I molecules. Although there is broad experimental support for the DRiP hypothesis, careful kinetic analysis of the generation of defined peptide class I complexes has been limited to studies of recombinant vaccinia viruses expressing genes derived from other organisms. In this study, we show that insertion of the SIIN-FEKL peptide into the stalk of influenza A virus neuraminidase (NA) does not detectably modify NA folding, degradation, transport, or sp. act. when expressed in its natural context of influenza A virus infection. Using the 25-D1.16 mAb specific for Kb-SIINFEKL to precisely quantitate cell surface complexes by flow cytometry, we demonstrate that SIINFEKL is generated in complete lockstep with initiation and abrogation of NA biosynthesis in both L-Kb fibroblast cells and DC2.4 dendritic/monocyte cells. SIINFEKL presentation requires active proteasomes and TAP, consistent with its generation from a cytosolic DRiP pool. From the difference in the shutoff kinetics of Kb-SIINFEKL complex expression following protein synthesis versus proteasome inhibition, we estimate that the t1/2 of the biosynthetic source of NA peptide is ~5 min. These observations extend the relevance of the DRiP hypothesis to viral proteins generated in their natural context.
PMCID: PMC2940057  PMID: 20038640
11.  A Critical Role for CHIP in the Aggresome Pathway ▿ †  
Molecular and Cellular Biology  2008;29(1):116-128.
Recent evidence suggests that aggresome formation is a physiologic stress response not limited to misfolded proteins. That stress response, termed “physiologic aggresome,” is exemplified by aggresome formation of inducible nitric oxide synthase (iNOS), an important host defense protein. CHIP (carboxy terminus of Hsp70-interacting protein) is a highly conserved protein that has been shown to mediate substrate ubiquitination and degradation by the proteasome. In this study, we show that CHIP has a previously unexpected critical role in the aggresome pathway. CHIP interacts with iNOS and promotes its ubiquitination and degradation by the proteasome as well as its sequestration to the aggresome. CHIP-mediated iNOS targeting to the proteasome sequentially precedes CHIP-mediated iNOS sequestration to the aggresome. CHIP is required for iNOS preaggresome structures to form a mature aggresome. Furthermore, CHIP is required for targeting the mutant form of cystic fibrosis transconductance regulator (CFTRΔF508) to the aggresome. Importantly, the ubiquitin ligase function of CHIP is required in targeting preaggresomal structures to the aggresome by promoting an iNOS interaction with histone deacetylase 6, which serves as an adaptor between ubiquitinated proteins and the dynein motor. This study reveals a critical role for CHIP in the aggresome pathway.
PMCID: PMC2612489  PMID: 18955503
12.  USP13 antagonizes gp78 to maintain functionality of a chaperone in ER-associated degradation 
eLife  2014;3:e01369.
Physiological adaptation to proteotoxic stress in the endoplasmic reticulum (ER) requires retrotranslocation of misfolded proteins into the cytoplasm for ubiquitination and elimination by ER-associated degradation (ERAD). A surprising paradox emerging from recent studies is that ubiquitin ligases (E3s) and deubiquitinases (DUBs), enzymes with opposing activities, can both promote ERAD. Here we demonstrate that the ERAD E3 gp78 can ubiquitinate not only ERAD substrates, but also the machinery protein Ubl4A, a key component of the Bag6 chaperone complex. Remarkably, instead of targeting Ubl4A for degradation, polyubiquitination is associated with irreversible proteolytic processing and inactivation of Bag6. Importantly, we identify USP13 as a gp78-associated DUB that eliminates ubiquitin conjugates from Ubl4A to maintain the functionality of Bag6. Our study reveals an unexpected paradigm in which a DUB prevents undesired ubiquitination to sharpen substrate specificity for an associated ubiquitin ligase partner and to promote ER quality control.
eLife digest
Cells make proteins inside a structure called the endoplasmic reticulum. However, some of these proteins cannot fold into the correct shape, so cells rely on a process called the ERAD pathway to degrade and eliminate these faulty proteins. First, however, the misfolded proteins must be moved from the endoplasmic reticulum to the main body of the cell (the cytosol).
The process by which the misfolded proteins are moved through the membrane that encloses the endoplasmic reticulum is complex, with ‘ERAD machinery proteins’ playing an important role. Among them, a series of enzymes called E3 ligases ‘tag’ the faulty proteins with a small protein called ubiquitin, and a complex called the proteasome then recognizes and degrades those proteins that have been tagged with ubiquitin. However, it is not clear why the E3 ligases that tag the misfolded proteins with ubiquitin don’t also tag the machinery proteins that from complexes with the faulty proteins.
Now Liu et al. have used a combination of biochemical and genetic tools to shed light on this puzzle by studying the interaction of gp78—which is an E3 ligase—and USP13, an enzyme that opposes the actions of the E3 ligases by removing ubiquitin. Liu et al. showed that gp78 can indeed tag certain machinery proteins with ubiquitin, which would stop the removal of misfolded proteins from the endoplasmic reticulum. However, USP13 opposed the action of gp78, thus allowing the removal to continue.
It has been known for some time that enzymes with opposing roles—the addition and removal of ubiquitin—can work together, but the biological significance of this phenomenon was not fully understood. The work of Liu et al. suggests that USP13 makes the elimination of misfolded proteins more efficient by ensuring that gp78 only tags those proteins that are misfolded: it does this by removing ubiquitin from proteins that should not have been tagged. A similar phenomenon is known to occur in genetics during DNA replication, with the enzyme complex that replicates the DNA including an enzyme that performs a proofreading role.
PMCID: PMC3889402  PMID: 24424410
ubiquitin; ERAD; deubiquitinase; ubiquitin ligase; Bag6; gp78; Human
13.  Positional Bias of MHC Class I Restricted T-Cell Epitopes in Viral Antigens Is Likely due to a Bias in Conservation 
PLoS Computational Biology  2013;9(1):e1002884.
The immune system rapidly responds to intracellular infections by detecting MHC class I restricted T-cell epitopes presented on infected cells. It was originally thought that viral peptides are liberated during constitutive protein turnover, but this conflicts with the observation that viral epitopes are detected within minutes of their synthesis even when their source proteins exhibit half-lives of days. The DRiPs hypothesis proposes that epitopes derive from Defective Ribosomal Products (DRiPs), rather than degradation of mature protein products. One potential source of DRiPs is premature translation termination. If this is a major source of DRiPs, this should be reflected in positional bias towards the N-terminus. By contrast, if downstream initiation is a major source of DRiPs, there should be positional bias towards the C-terminus. Here, we systematically assessed positional bias of epitopes in viral antigens, exploiting the large set of data available in the Immune Epitope Database and Analysis Resource. We show a statistically significant degree of positional skewing among epitopes; epitopes from both ends of antigens tend to be under-represented. Centric-skewing correlates with a bias towards class I binding peptides being over-represented in the middle, in parallel with a higher degree of evolutionary conservation.
Author Summary
To defend the host from an infection, the immune system continuously scans cell surfaces for foreign objects. Specifically, a virus inside a cell exploits the host to make copies of its proteins; viral proteins are broken up into peptide fragments; and the fragments are displayed on the infected cell's surface, thereby allowing detection and cell-killing. How these peptide fragments for cell-surface presentation are generated remains unknown. An understanding of this step will lead to rational design of vaccines and insights into tumor immunosurveillance and autoimmunity. One possible mechanism is that the peptide fragments come from defective proteins missing either the beginning or end regions, which may result in a bias. Here, we analyzed locations of a large set of known viral epitopes, peptide fragments recognized by the immune system, within their proteins. We find that all regions of proteins are represented well by the immune system. However, there is a statistically significant bias in the central regions of proteins, which correlate with a pattern of conservation spanning the length of viral proteins. Our results suggest a combined effect of conservation and enhancement of immune responses through repeated exposures in shaping the distribution of known viral epitopes.
PMCID: PMC3554532  PMID: 23357871
14.  Adenovirus Exploits the Cellular Aggresome Response To Accelerate Inactivation of the MRN Complex 
Journal of Virology  2005;79(22):14004-14016.
Results reported here indicate that adenovirus 5 exploits the cellular aggresome response to accelerate inactivation of MRE11-RAD50-NBS1 (MRN) complexes that otherwise inhibit viral DNA replication and packaging. Aggresomes are cytoplasmic inclusion bodies, observed in many degenerative diseases, that are formed from aggregated proteins by dynein-dependent retrograde transport on microtubules to the microtubule organizing center. Viral E1B-55K protein forms aggresomes that sequester p53 and MRN in transformed cells and in cells transfected with an E1B-55K expression vector. During adenovirus infection, the viral protein E4orf3 associates with MRN in promyelocytic leukemia protein nuclear bodies before MRN is bound by E1B-55K. Either E4orf3 or E4orf6 is required in addition to E1B-55K for E1B-55K aggresome formation and MRE11 export to aggresomes in adenovirus-infected cells. Aggresome formation contributes to the protection of viral DNA from MRN activity by sequestering MRN in the cytoplasm and greatly accelerating its degradation by proteosomes following its ubiquitination by the E1B-55K/E4orf6/elongin BC/Cullin5/Rbx1 ubiquitin ligase. Our results show that aggresomes significantly accelerate protein degradation by the ubiquitin-proteosome system. The observation that a normal cellular protein is inactivated when sequestered into an aggresome through association with an aggresome-inducing protein has implications for the potential cytotoxicity of aggresome-like inclusion bodies in degenerative diseases.
PMCID: PMC1280221  PMID: 16254336
15.  RNA Polymerase II Inhibitors Dissociate Antigenic Peptide Generation from Normal Viral Protein Synthesis: A Role for Nuclear Translation in Defective Ribosomal Product Synthesis? 
Following viral infection, cells rapidly present peptides from newly synthesized viral proteins on MHC class I molecules, likely from rapidly degraded forms of nascent proteins. The nature of these defective ribosomal products (DRiPs) remains largely undefined. Using inhibitors of RNA polymerase II that block influenza A virus neuraminidase (NA) mRNA export from the nucleus and inhibit cytoplasmic NA translation, we demonstrate a surprising disconnect between levels of NA translation and generation of SIINFEKL peptide genetically inserted into the NA stalk. A 33-fold reduction in NA expression is accompanied by only a 5-fold reduction in Kb-SIINFEKL complex cell-surface expression, resulting in a net 6-fold increase in the overall efficiency of Ag presentation. Although the proteasome inhibitor MG132 completely blocked Kb-SIINFEKL complex generation, we were unable to biochemically detect a MG132-dependent cohort of NA DRiPs relevant for Ag processing, suggesting that a minute population of DRiPs is a highly efficient source of antigenic peptides. These data support the idea that Ag processing uses compartmentalized translation, perhaps even in the nucleus itself, to increase the efficiency of the generation of class I peptide ligands.
PMCID: PMC3398797  PMID: 21048111
16.  Terminating protein ubiquitination 
Cell Cycle  2011;10(18):3067-3071.
Ubiquitination is a post-translational modification that generally directs proteins for degradation by the proteasome or by lysosomes. However, ubiquitination has been implicated in many other cellular processes, including transcriptional regulation, DNA repair, regulation of protein-protein interactions and association with ubiquitin-binding scaffolds. Ubiquitination is a dynamic process. Ubiquitin is added to proteins by E3 ubiquitin ligases as a covalent modification to one or multiple lysine residues as well as non-lysine amino acids. Ubiquitin itself contains seven lysines, each of which can also be ubiquitinated, leading to polyubiquitin chains that are best characterized for linkages occurring through K48 and K63. Ubiquitination can also be reversed by the action of deubiquitination enzymes (DUbs). Like E3 ligases, DUbs play diverse and critical roles in cells.1 Ubiquitin is expressed as a fusion protein, as a linear repeat or as a fusion to ribosomal subunits, and DUbs are necessary to liberate free ubiquitin, making them the first enzyme of the ubiquitin cascade. Proteins destined for degradation by the proteasome or by lysosomes are deubiquitinated prior to their degradation, which allows ubiquitin to be recycled by the cell, contributing to the steady-state pool of free ubiquitin. Proteins destined for degradation by lysosomes are also acted upon by both ligases and DUbs. Deubiquitination can also act as a means to prevent protein degradation, and many proteins are thought to undergo rounds of ubiquitination and deubiquitination, ultimately resulting in either the degradation or stabilization of those proteins. Despite years of study, examining the effects of the ubiquitination of proteins remains quite challenging. This is because the methods that are currently being employed to study ubiquitination are limiting. Here, we briefly examine current strategies to study the effects of ubiquitination and describe an additional novel approach that we have developed.
PMCID: PMC3685619  PMID: 21926471
ubiquitin; endosome; ligase; lysosome; degradation
17.  Ankyrin repeat and suppressor of cytokine signaling box containing protein-10 is associated with ubiquitin-mediated degradation pathways in trabecular meshwork cells 
Molecular Vision  2013;19:1639-1655.
Ankyrin repeat and suppressor of cytokine signaling (SOCS) box containing protein-10 (ASB10) was recently identified as a gene that causes primary open-angle glaucoma. Here, we investigated endogenous ASB10 protein expression in human trabecular meshwork (HTM) cells to provide the first clues to the biologic function of this protein.
Primary HTM cells were cultured and immunostained with anti-ASB10 and various biomarkers of the ubiquitin-mediated proteasomal and autophagy-lysosomal degradation pathways. Cells were imaged with confocal and high-resolution structured illumination microscopy. Colocalization was quantified using Imaris Bitplane software, which generated a Pearson’s correlation coefficient value. Coimmunoprecipitation of ASB10-transfected cells was performed.
Immunofluorescence and confocal analysis showed that ASB10 was localized in intracellular structures in HTM cells. Two populations were observed: small, spherical vesicles and larger, less abundant structures. In the ASB10-silenced cells, the number of large structures was significantly decreased. ASB10 partially colocalized with biomarkers of the ubiquitin-mediated proteasomal pathway including ubiquitin and the α4 subunit of the 20S proteasome. However, ASB10 itself was not ubiquitinated. ASB10 also colocalized with numerous biomarkers of specific autophagic structures: aggresomes (histone deacetylase 6 [HDAC6] and heat shock protein 70 [HSP70]), autophagosomes (light chain 3 [LC3] and p62), amphisomes (Rab7), and lysosomes (lysosomal-associated membrane protein 1 [LAMP1]). Pearson coefficients indicated strong colocalization of large ASB10-stained structures with the α4 subunit of the 20S proteasome, K48 and K63-linked ubiquitin antibodies, p62, HSP70, and HDAC6 (Pearson’s range, 0.59–0.82). Coimmunoprecipitation assays showed a positive interaction of ASB10 with HSP70 and with the α4 subunit of the 20S proteasome. Super-resolution structured illumination confocal microscopy suggested that the smaller ASB10-stained vesicles aggregated into the larger structures, which resembled aggresome-like induced structures. Treatment of HTM cells with an autophagy activator (MG132) or inhibitors (wortmannin, bafilomycin A1) significantly increased and decreased the number of small ASB10-stained vesicles, respectively. No discernible differences in the colocalization of large ASB10-stained structures with ubiquitin or HDAC6 were observed between dermal fibroblasts derived from a normal individual and a patient with primary open-angle glaucoma carrying a synonymous ASB10 mutation.
Our evidence suggests that ASB10 may play a role in ubiquitin-mediated degradation pathways in TM cells.
PMCID: PMC3724959  PMID: 23901248
18.  The Synthesis of Truncated Polypeptides for Immune Surveillance and Viral Evasion 
PLoS ONE  2010;5(1):e8692.
Cytotoxic T cells detect intracellular pathogens by surveying peptide loaded MHC class I molecules (pMHC I) on the cell surface. Effective immune surveillance also requires infected cells to present pMHC I promptly before viral progeny can escape. Rapid pMHC I presentation apparently occurs because infected cells can synthesize and present peptides from antigenic precursors called defective ribosomal products (DRiPs). The molecular characteristics of DRiPs are not known.
Methodology/Principal Findings
Here, using a novel method for detecting antigenic precursors and proteolytic intermediates, we tracked the synthesis and processing of Epstein-Barr Virus encoded nuclear antigen 1 (EBNA1). We find that ribosomes initiated translation appropriately, but rapidly produced DRiPs representing ∼120 amino acid truncated EBNA1 polypeptides by premature termination. Moreover, specific sequences in EBNA1 mRNA strongly inhibited the generation of truncated DRiPs and pMHC I presentation.
Our results reveal the first characterization of virus DRiPs as truncated translation products. Furthermore, production of EBNA1-derived DRiPs is down-regulated in cells, possibly limiting the antigenicity of EBNA1.
PMCID: PMC2809100  PMID: 20098683
19.  PaCS Is a Novel Cytoplasmic Structure Containing Functional Proteasome and Inducible by Cytokines/Trophic Factors 
PLoS ONE  2013;8(12):e82560.
A variety of ubiquitinated protein-containing cytoplasmic structures has been reported, from aggresomes to aggresome-like induced structures/sequestosomes or particle-rich cytoplasmic structures (PaCSs) that we recently observed in some human diseases. Nevertheless, the morphological and cytochemical patterns of the different structures remain largely unknown thus jeopardizing their univocal identification. Here, we show that PaCSs resulted from proteasome and polyubiquitinated protein accumulation into well-demarcated, membrane-free, cytoskeleton-poor areas enriched in glycogen and glycosaminoglycans. A major requirement for PaCS detection by either electron or confocal microscopy was the addition of osmium to aldehyde fixatives. However, by analyzing living cells, we found that proteasome chymotrypsin-like activity concentrated in well-defined cytoplasmic structures identified as PaCSs by ultrastructural morphology and immunocytochemistry of the same cells. PaCSs differed ultrastructurally and cytochemically from sequestosomes which may coexist with PaCSs. In human dendritic or natural killer cells, PaCSs were induced in vitro by cytokines/trophic factors during differentiation/activation from blood progenitors. Our results provide evidence that PaCS is indeed a novel distinctive cytoplasmic structure which may play a critical role in the ubiquitin–proteasome system response to immune, infectious or proneoplastic stimuli.
PMCID: PMC3866174  PMID: 24358206
20.  Chaperone-mediated hierarchical control in targeting misfolded proteins to aggresomes 
Molecular Biology of the Cell  2011;22(18):3277-3288.
Not only do molecular chaperones assist protein folding, they also facilitate the degradation of misfolded polypeptides. In coordinating with cochaperones CHIP and BAG3, Hsp70 can also target misfolded proteins to aggresomes, thereby protecting cells from proteotoxic stress.
Protein misfolding is a common event in living cells. Molecular chaperones not only assist protein folding; they also facilitate the degradation of misfolded polypeptides. When the intracellular degradative capacity is exceeded, juxtanuclear aggresomes are formed to sequester misfolded proteins. Despite the well-established role of chaperones in both protein folding and degradation, how chaperones regulate the aggregation process remains controversial. Here we investigate the molecular mechanisms underlying aggresome formation in mammalian cells. Analysis of the chaperone requirements for the fate of misfolded proteins reveals an unexpected role of heat shock protein 70 (Hsp70) in promoting aggresome formation. This proaggregation function of Hsp70 relies on the interaction with the cochaperone ubiquitin ligase carboxyl terminal of Hsp70/Hsp90 interacting protein (CHIP). Disrupting Hsp70–CHIP interaction prevents the aggresome formation, whereas a dominant-negative CHIP mutant sensitizes the aggregation of misfolded protein. This accelerated aggresome formation also relies on the stress-induced cochaperone Bcl2-associated athanogene 3. Our results indicate that a hierarchy of cochaperone interaction controls different aspects of the intracellular protein triage decision, extending the function of Hsp70 from folding and degradation to aggregation.
PMCID: PMC3172255  PMID: 21775628
21.  Burden of epilepsy in rural Kenya measured in disability-adjusted life years 
Epilepsia  2014;55(10):1626-1633.
The burden of epilepsy, in terms of both morbidity and mortality, is likely to vary depending on the etiology (primary [genetic/unknown] vs. secondary [structural/metabolic]) and with the use of antiepileptic drugs (AEDs). We estimated the disability-adjusted life years (DALYs) and modeled the remission rates of active convulsive epilepsy (ACE) using epidemiologic data collected over the last decade in rural Kilifi, Kenya.
We used measures of prevalence, incidence, and mortality to model the remission of epilepsy using disease-modeling software (DisMod II). DALYs were calculated as the sum of Years Lost to Disability (YLD) and Years of Life Lost (YLL) due to premature death using the prevalence approach, with disability weights (DWs) from the 2010 Global Burden of Disease (GBD) study. DALYs were calculated with R statistical software with the associated uncertainty intervals (UIs) computed by bootstrapping.
A total of 1,005 (95% UI 797–1,213) DALYs were lost to ACE, which is 433 (95% UI 393–469) DALYs lost per 100,000 people. Twenty-six percent (113/100,000/year, 95% UI 106–117) of the DALYs were due to YLD and 74% (320/100,000/year, 95% UI 248–416) to YLL. Primary epilepsy accounted for fewer DALYs than secondary epilepsy (98 vs. 334 DALYs per 100,000 people). Those taking AEDs contributed fewer DALYs than those not taking AEDs (167 vs. 266 DALYs per 100,000 people). The proportion of people with ACE in remission per year was estimated at 11.0% in males and 12.0% in females, with highest rates in the 0–5 year age group.
The DALYs for ACE are high in rural Kenya, but less than the estimates of 2010 GBD study. Three-fourths of DALYs resulted from secondary epilepsy. Use of AEDs was associated with 40% reduction of DALYs. Improving adherence to AEDs may reduce the burden of epilepsy in this area.
PMCID: PMC4238788  PMID: 25131901
Burden; Disability-adjusted life years; Epilepsy; Remission; Treatment gap
22.  A simple and high-sensitivity method for analysis of ubiquitination and polyubiquitination based on wheat cell-free protein synthesis 
BMC Plant Biology  2009;9:39.
Ubiquitination is mediated by the sequential action of at least three enzymes: the E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme) and E3 (ubiquitin ligase) proteins. Polyubiquitination of target proteins is also implicated in several critical cellular processes. Although Arabidopsis genome research has estimated more than 1,300 proteins involved in ubiquitination, little is known about the biochemical functions of these proteins. Here we demonstrate a novel, simple and high-sensitive method for in vitro analysis of ubiquitination and polyubiquitination based on wheat cell-free protein synthesis and luminescent detection.
Using wheat cell-free synthesis, 11 E3 proteins from Arabidopsis full-length cDNA templates were produced. These proteins were analyzed either in the translation mixture or purified recombinant protein from the translation mixture. In our luminescent method using FLAG- or His-tagged and biotinylated ubiquitins, the polyubiquitin chain on AtUBC22, UPL5 and UPL7 (HECT) and CIP8 (RING) was detected. Also, binding of ubiquitin to these proteins was detected using biotinylated ubiquitin and FLAG-tagged recombinant protein. Furthermore, screening of the RING 6 subgroup demonstrated that At1g55530 was capable of polyubiquitin chain formation like CIP8. Interestingly, these ubiquitinations were carried out without the addition of exogenous E1 and/or E2 proteins, indicating that these enzymes were endogenous to the wheat cell-free system. The amount of polyubiquitinated proteins in the crude translation reaction mixture was unaffected by treatment with MG132, suggesting that our system does not contain 26S proteasome-dependent protein degradation activity.
In this study, we developed a simple wheat cell-free based luminescence method that could be a powerful tool for comprehensive ubiquitination analysis.
PMCID: PMC2674041  PMID: 19348673
23.  Characterization and Dynamics of Aggresome Formation by a Cytosolic Gfp-Chimera✪ 
The Journal of Cell Biology  1999;146(6):1239-1254.
Formation of a novel structure, the aggresome, has been proposed to represent a general cellular response to the presence of misfolded proteins (Johnston, J.A., C.L. Ward, and R.R. Kopito. 1998. J. Cell Biol. 143:1883–1898; Wigley, W.C., R.P. Fabunmi, M.G. Lee, C.R. Marino, S. Muallem, G.N. DeMartino, and P.J. Thomas. 1999. J. Cell Biol. 145:481–490). To test the generality of this finding and characterize aspects of aggresome composition and its formation, we investigated the effects of overexpressing a cytosolic protein chimera (GFP-250) in cells. Overexpression of GFP-250 caused formation of aggresomes and was paralleled by the redistribution of the intermediate filament protein vimentin as well as by the recruitment of the proteasome, and the Hsp70 and the chaperonin systems of chaperones. Interestingly, GFP-250 within the aggresome appeared not to be ubiquitinated. In vivo time-lapse analysis of aggresome dynamics showed that small aggregates form within the periphery of the cell and travel on microtubules to the MTOC region where they remain as distinct but closely apposed particulate structures. Overexpression of p50/dynamitin, which causes the dissociation of the dynactin complex, significantly inhibited the formation of aggresomes, suggesting that the minus-end–directed motor activities of cytoplasmic dynein are required for aggresome formation. Perinuclear aggresomes interfered with correct Golgi localization and disrupted the normal astral distribution of microtubules. However, ER-to-Golgi protein transport occurred normally in aggresome containing cells. Our results suggest that aggresomes can be formed by soluble, nonubiquitinated proteins as well as by integral transmembrane ubiquitinated ones, supporting the hypothesis that aggresome formation might be a general cellular response to the presence of misfolded proteins.
PMCID: PMC2156127  PMID: 10491388
aggresome; p50/dynamitin; chaperones; proteasome; microtubules
24.  The loop-less tmCdc34 E2 mutant defective in polyubiquitination in vitro and in vivo supports yeast growth in a manner dependent on Ubp14 and Cka2 
Cell Division  2011;6:7.
The S73/S97/loop motif is a hallmark of the Cdc34 family of E2 ubiquitin-conjugating enzymes that together with the SCF E3 ubiquitin ligases promote degradation of proteins involved in cell cycle and growth regulation. The inability of the loop-less Δ12Cdc34 mutant to support growth was linked to its inability to catalyze polyubiquitination. However, the loop-less triple mutant (tm) Cdc34, which not only lacks the loop but also contains the S73K and S97D substitutions typical of the K73/D97/no loop motif present in other E2s, supports growth. Whether tmCdc34 supports growth despite defective polyubiquitination, or the S73K and S97D substitutions, directly or indirectly, correct the defect caused by the loop absence, are unknown.
tmCdc34 supports yeast viability with normal cell size and cell cycle profile despite producing fewer polyubiquitin conjugates in vivo and in vitro. The in vitro defect in Sic1 substrate polyubiquitination is similar to the defect observed in reactions with Δ12Cdc34 that cannot support growth. The synthesis of free polyubiquitin by tmCdc34 is activated only modestly and in a manner dependent on substrate recruitment to SCFCdc4. Phosphorylation of C-terminal serines in tmCdc34 by Cka2 kinase prevents the synthesis of free polyubiquitin chains, likely by promoting their attachment to substrate. Nevertheless, tmCDC34 yeast are sensitive to loss of the Ubp14 C-terminal ubiquitin hydrolase and DUBs other than Ubp14 inefficiently disassemble polyubiquitin chains produced in tmCDC34 yeast extracts, suggesting that the free chains, either synthesized de novo or recycled from substrates, have an altered structure.
The catalytic motif replacement compromises polyubiquitination activity of Cdc34 and alters its regulation in vitro and in vivo, but either motif can support Cdc34 function in yeast viability. Robust polyubiquitination mediated by the S73/S97/loop motif is thus not necessary for Cdc34 role in yeast viability, at least under typical laboratory conditions.
PMCID: PMC3080790  PMID: 21453497
25.  Polyubiquitin chain assembly and organization determine the dynamics of protein activation and degradation 
Protein degradation via ubiquitination is a major proteolytic mechanism in cells. Once a protein is destined for degradation, it is tagged by multiple ubiquitin (Ub) molecules. The synthesized polyubiquitin chains can be recognized by the 26S proteosome where proteins are degraded. These chains form through multiple ubiquitination cycles that are similar to multi-site phosphorylation cycles. As kinases and phosphatases, two opposing enzymes (E3 ligases and deubiquitinases DUBs) catalyze (de)ubiquitination cycles. Although multi-ubiquitination cycles are fundamental mechanisms of controlling protein concentrations within a cell, their dynamics have never been explored. Here, we fill this knowledge gap. We show that under permissive physiological conditions, the formation of polyubiquitin chain of length greater than two and subsequent degradation of the ubiquitinated protein, which is balanced by protein synthesis, can display bistable, switch-like responses. Interestingly, the occurrence of bistability becomes pronounced, as the chain grows, giving rise to “all-or-none” regulation at the protein levels. We give predictions of protein distributions under bistable regime awaiting experimental verification. Importantly, we show for the first time that sustained oscillations can robustly arise in the process of formation of ubiquitin chain, largely due to the degradation of the target protein. This new feature is opposite to the properties of multi-site phosphorylation cycles, which are incapable of generating oscillation if the total abundance of interconverted protein forms is conserved. We derive structural and kinetic constraints for the emergence of oscillations, indicating that a competition between different substrate forms and the E3 and DUB is critical for oscillation. Our work provides the first detailed elucidation of the dynamical features brought about by different molecular setups of the polyubiquitin chain assembly process responsible for protein degradation.
PMCID: PMC3901042  PMID: 24478717
ubiquitin; polyubiquitin chain; ubiquitination dynamics; bistability; oscillations; protein degradation; protein lifetime

Results 1-25 (1049632)