PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (493776)

Clipboard (0)
None

Related Articles

1.  Crystallization and preliminary X-ray diffraction analysis of a galactose-specific lectin from the seeds of Butea monosperma  
A galactose specific lectin was purified from the seeds of a tropical tree, Butea monosperma. Its X-ray structure was solved by molecular replacement.
The galactose-specific lectin from the seeds of Butea monosperma has been crystallized by the hanging-drop vapour-diffusion technique. The crystals belonged to space group P1, with unit-cell parameters a = 78.45, b = 78.91, c = 101.85 Å, α = 74.30, β = 76.65, γ = 86.88°. X-ray diffraction data were collected to a resolution of 2.44 Å under cryoconditions (100 K) using a MAR image-plate detector system mounted on a rotating-anode X-ray generator. Molecular-replacement calculations carried out using the coordinates of several structures of legume lectins as search models indicate that the galactose-specific lectin from B. monosperma forms an octamer.
doi:10.1107/S1744309111006853
PMCID: PMC3080167  PMID: 21505258
galactose-specific lectin; Butea monosperma
2.  Crystallization and preliminary X-ray studies of a galactose-specific lectin from the seeds of Spatholobus parviflorus  
A galactose specific lectin was purified from the seeds of a tropical plant, Spatholobus parviflorus. Its X-ray crystallographic structure was solved by the molecular replacement method.
A galactose-specific seed lectin was purified from the legume Spatholobus parviflorus and crystallized using the hanging-drop vapour-diffusion technique. The crystals belonged to space group P1, with unit-cell parameters a = 60.998, b = 60.792, c = 78.179 Å, α = 101.32, β = 91.38, γ = 104.32°. X-ray diffraction data were collected under cryoconditions (100 K) to a resolution of 2.04 Å using a MAR image-plate detector system mounted on a rotating-anode X-ray (Cu Kα) generator. Molecular replacement using legume-lectin coordinates as a search model gave a tetrameric structure.
doi:10.1107/S174430911101387X
PMCID: PMC3107147  PMID: 21636916
galactose-specific lectins; Spatholobus parviflorus; seed lectins
3.  Energetics of 5-bromo-4-chloro-3-indolyl-α-d-mannose binding to the Parkia platycephala seed lectin and its use for MAD phasing 
The first crystal structure of a Mimosoideae lectin, Parkia platycephala has been solved by MAD phasing using 5-bromo-4-chloro-3-indolyl-α-d-mannose as an anomalous X-ray scatterer. This strategy may be useful for structure elucidation of novel lectins or when molecular replacement methods fail.
Parkia platycephala belongs to the most primitive group of Leguminosae plants. Its seed lectin is made up of three homologous β-prism repeats and exhibits binding specificity for mannose/glucose. The properties of the association between the lectin from P. platycephala seeds and monosaccharide ligands were analysed by isothermal titration calorimetry and surface plasmon resonance. The results are consistent with the lectin bearing three thermodynamically identical binding sites for mannose/glucose per monomer with dissociation constants in the millimolar range. Binding of each ligand by the lectin is enthalpically driven. Crystals have been obtained of the lectin in complex with a brominated derivative of mannose (5-bromo-4-chloro-3-indolyl-α-d-mannose), which were suitable for deriving an electron-density map by MAD phasing. In agreement with the thermodynamic data, six Br atoms were found in the asymmetric unit of the monoclinic P21 crystals, which contained two P. platycephala lectin molecules. The availability of other Br derivatives of monosaccharides (glucose, galactose, fucose) may make this strategy widely useful for structure elucidation of novel lectins or when (as in the case of the P. platycephala lectin) molecular-replacement methods fail.
doi:10.1107/S1744309105004835
PMCID: PMC1952276  PMID: 16511032
protein–carbohydrate interactions; Parkia platycephala lectin; isothermal titration calorimetry; surface plasmon resonance; β-prism domain; MAD phasing
4.  Crystallization and preliminary X-ray studies of a galactose-specific lectin from the seeds of bitter gourd (Momordica charantia) 
A galactose-specific lectin purified from the seeds of bitter gourd (M. charantia) has been crystallized and preliminary X-ray study of the crystals has been carried out.
A galactose-specific lectin from the seeds of bitter gourd (Momordica charantia) is a four-chain type II ribosome-inactivating protein (RIP) resulting from covalent association through a disulfide bridge between two identical copies of a two-chain unit. The available structural information on such four-chain RIPs is meagre. The bitter gourd lectin was therefore crystallized for structural investigation and the crystals have been characterized. It is anticipated that the structure of the orthorhombic crystals will be analysed using molecular replacement by taking advantage of its sequence, and presumably structural, homology to normal two-chain type II RIPs.
doi:10.1107/S174430911002659X
PMCID: PMC2935221  PMID: 20823520
galactose-specific lectins; bitter gourd; Momordica charantia; ribosome-inactivating proteins
5.  Purification, crystallization and preliminary X-ray crystallographic analysis of rice lectin from Oryza sativa  
Rice lectin was crystallized and analyzed by X-ray crystallography.
Lectins with sugar-binding specificity are widely distributed in higher plants and various other species. The expression of rice lectin from Oryza sativa is up-regulated in the growing coleoptile when anaerobic stress persists. A rice lectin of molecular weight 15.2 kDa has been crystallized using the hanging-drop vapour-diffusion method. From the diffraction of the lectin crystals at 1.93 Å resolution, the unit cell belongs to space group P31, with unit-cell parameters a = 98.58, b = 98.58, c = 44.72 Å. Preliminary analysis indicates that there are two lectin molecules in an asymmetric unit with a large solvent content, 70.1%.
doi:10.1107/S1744309105040698
PMCID: PMC2150942  PMID: 16511272
lectins; rice
6.  Crystallization and preliminary X-ray characterization of a lectin from Cicer arietinum (chickpea) 
The crystallization and characterization of a lectin isolated and purified from C. arietinum and possessing complex sugar specificity is reported.
The lectin isolated from mature seeds of Cicer arietinum (CAL) agglutinates pronase-treated rabbit and human erythrocytes and its haemagglutination activity is inhibited by fetuin and desialated fetuin but not by simple monosaccharides or oligosaccharides. The purified lectin is a dimer of molecular weight 43 000 Da composed of two identical subunits (MW 21 500), as confirmed by SDS–PAGE. The lectin has been crystallized using the hanging-drop vapour-diffusion method at 295 K over a well solution containing 0.2 M sodium acetate, 0.1 M sodium phosphate buffer pH 6.5 and 14%(w/v) polyethylene glycol 8000. The triangular prism-shaped crystals belong to space group R3 and have unit-cell parameters a = b = 81.2, c = 69.4 Å. The diffraction data are 93.8% complete to 2.3 Å Bragg spacing with an R merge of 0.103.
doi:10.1107/S1744309104032166
PMCID: PMC1952404  PMID: 16508116
complex sugar specificity; legume lectin; seed albumins
7.  Terminal N-Acetylgalactosamine-Specific Leguminous Lectin from Wisteria japonica as a Probe for Human Lung Squamous Cell Carcinoma 
PLoS ONE  2013;8(12):e83886.
Millettia japonica was recently reclassified into the genus Wisteria japonica based on chloroplast and nuclear DNA sequences. Because the seed of Wisteria floribunda expresses leguminous lectins with unique N-acetylgalactosamine-binding specificity, we purified lectin from Wisteria japonica seeds using ion exchange and gel filtration chromatography. Glycan microarray analysis demonstrated that unlike Wisteria floribunda and Wisteria brachybotrys lectins, which bind to both terminal N-acetylgalactosamine and galactose residues, Wisteria japonica lectin (WJA) specifically bound to both α- and β-linked terminal N-acetylgalactosamine, but not galactose residues on oligosaccharides and glycoproteins. Further, frontal affinity chromatography using more than 100 2-aminopyridine-labeled and p-nitrophenyl-derivatized oligosaccharides demonstrated that the ligands with the highest affinity for Wisteria japonica lectin were GalNAcβ1-3GlcNAc and GalNAcβ1-4GlcNAc, with Ka values of 9.5 × 104 and 1.4 × 105 M-1, respectively. In addition, when binding was assessed in a variety of cell lines, Wisteria japonica lectin bound specifically to EBC-1 and HEK293 cells while other Wisteria lectins bound equally to all of the cell lines tested. Wisteria japonica lectin binding to EBC-1 and HEK293 cells was dramatically decreased in the presence of N-acetylgalactosamine, but not galactose, mannose, or N-acetylglucosamine, and was completely abrogated by β-hexosaminidase-digestion of these cells. These results clearly demonstrate that Wisteria japonica lectin binds to terminal N-acetylgalactosamine but not galactose. In addition, histochemical analysis of human squamous cell carcinoma tissue sections demonstrated that Wisteria japonica lectin specifically bound to differentiated cancer tissues but not normal tissue. This novel binding characteristic of Wisteria japonica lectin has the potential to become a powerful tool for clinical applications.
doi:10.1371/journal.pone.0083886
PMCID: PMC3862811  PMID: 24349556
8.  Purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies of catfish (Clarias magur) haemoglobin 
Purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies have been carried out on Clarias magur haemoglobin.
Haemoglobin is an interesting physiologically significant protein composed of specific functional prosthetic haem and globin moieties. In recent decades, there has been substantial interest in attempting to understand the structural basis and functional diversity of fish haemoglobins (Hbs). Towards this end, purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies have been carried out on Clarias magur Hb. Crystals were grown by the hanging-drop vapour-diffusion method using PEG 2000 and NaCl as precipitants. The crystals belonged to the primitive monoclinic system P2, with unit-cell parameters a = 98.35, b = 56.63, c = 112.88 Å, β = 100.22°; a complete data set was collected to a resolution of 2.4 Å. The Matthews coefficient of 2.42 Å3 Da−1 for the crystal indicated the presence of two α2β2 tetramers in the asymmetric unit.
doi:10.1107/S1744309112040547
PMCID: PMC3515384  PMID: 23143252
fish haemoglobin; Clarias magur
9.  Crystallization and preliminary X-ray analysis of a bifunctional catalase-phenol oxidase from Scytalidium thermophilum  
The bifunctional enzyme catalase-phenol oxidase from S. thermophilum was crystallized by the hanging-drop vapour-diffusion method in space group P21 and diffraction data were collected to 2.8 Å resolution.
Catalase-phenol oxidase from Scytalidium thermophilum is a bifunctional enzyme: its major activity is the catalase-mediated decomposition of hydrogen peroxide, but it also catalyzes phenol oxidation. To understand the structural basis of this dual functionality, the enzyme, which has been shown to be a tetramer in solution, has been purified by anion-exchange and gel-filtration chromatography and has been crystallized using the hanging-drop vapour-diffusion technique. Streak-seeding was used to obtain larger crystals suitable for X-ray analysis. Diffraction data were collected to 2.8 Å resolution at the Daresbury Synchrotron Radiation Source. The crystals belonged to space group P21 and contained one tetramer per asymmetric unit.
doi:10.1107/S1744309109012007
PMCID: PMC2675591  PMID: 19407383
Scytalidium thermophilum; Humicola insolens; catalases; phenol oxidases; catechol oxidases; CATPO
10.  Effects of processing conditions on the stability of polyphenolic contents and antioxidant capacity of Dolichos lablab L. 
The effects of raw, dry heated and pressure cooked samples on total phenolic components and antioxidant activity in commonly consumed field bean, Dolichos lablab L. was investigated. The raw and processed samples were extracted with 70% methanol. Processing of legumes caused decreases in total phenolic content when compared to the raw samples. However, the dry heating caused remarkable increase in tannin contents (1.809 ± 0.25 g GAE/100 g extract). Dry heated samples of D. lablab was found to possess the highest DPPH (IC50, 2.53 ± 0.17 μg/ml), TEAC (4649.8 ± 38.4 μmol/g DM), OH˙ radical (IC50, 42.2 ± 0.67 μg/ml) scavenging activities, inhibition of linoleic acid and ferric reducing capacity than other samples. The raw samples displayed the highest antihemolytic activity (59.6 ± 1.53%) and chelating capacity (74.2 ± 1.37 mg EDTA/g). Dry heat processing exhibited several advantages in retaining the antioxidant components and activities. The higher correlation was found the phenolic content with chelating (r2 = 0.933) and antihemolytic (r2 = 0.839) activities, but a poor correlation with other assays. Moreover, the content of tannins gave good correlation (r2 = 0.644–0.997) with all antioxidant assays. The low correlation values between total phenols and the antioxidative activity suggest that the major antioxidant compounds in studied seeds might be tannins.
doi:10.1007/s13197-011-0387-z
PMCID: PMC3671044  PMID: 24425975
Antioxidant activity; Dolichos lablab L.; Field bean; Phenolic content; Processing methods
11.  The quaternary structure of the amidase from Geobacillus pallidus RAPc8 is revealed by its crystal packing 
The amidase from G. pallidus RAPc8, a moderate thermophile, converts amides to the corresponding acids and ammonia and has application as an industrial catalyst. RAPc8 amidase has been cloned, expressed and purified, and then crystallized using the hanging-drop vapour-diffusion method.
The amidase from Geobacillus pallidus RAPc8, a moderate thermophile, is a member of the nitrilase enzyme superfamily. It converts amides to the corresponding acids and ammonia and has application as an industrial catalyst. RAPc8 amidase has been cloned and functionally expressed in Escherichia coli and has been purified by heat treatment and a number of chromatographic steps. The enzyme was crystallized using the hanging-drop vapour-diffusion method. Crystals produced in the presence of 1.2 M sodium citrate, 400 mM NaCl, 100 mM sodium acetate pH 5.6 were selected for X-ray diffraction studies. A data set having acceptable statistics to 1.96 Å resolution was collected under cryoconditions using an in-house X-ray source. The space group was determined to be primitive cubic P4232, with unit-cell parameter a = 130.49 (±0.05) Å. The structure was solved by molecular replacement using the backbone of the hypothetical protein PH0642 from Pyrococcus horikoshii (PDB code 1j31) with all non-identical side chains substituted with alanine as a probe. There is one subunit per asymmetric unit. The subunits are packed as trimers of dimers with D3 point-group symmetry around the threefold axis in such a way that the dimer interface seen in the homologues is preserved.
doi:10.1107/S1744309106043855
PMCID: PMC2225364  PMID: 17142891
amidases; nitrilases; Geobacillus pallidus RAPc8; acylamide amidohydrolase
12.  Crystallization and preliminary X-ray diffraction analysis of the putative aldose 1-epimerase YeaD from Escherichia coli  
The putative aldose 1-epimerase YeaD from Escherichia coli was crystallized and diffraction data were collected to a resolution of 1.9 Å.
Escherichia coli YeaD (ecYeaD) is suggested to be a member of the galactose mutarotase-like superfamily. Galactose mutarotase is an enzyme that converts α-galactose to β-galactose. The known structures of these galactose mutarotase-like proteins are similar to those of galactose mutarotases, with the catalytic residues being conserved, but there are some differences between them in the substrate-binding pocket. In order to reveal the specificity of ecYeaD, a three-dimensional structure is essential. Full-length ecYeaD with an additional 6×His tag at the C-­terminus was crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 4000 as a precipitant at 283 K. An X-ray diffraction data set was collected to a resolution of 1.9 Å from a single flash-cooled crystal that belonged to space group P212121.
doi:10.1107/S1744309110024140
PMCID: PMC2917301  PMID: 20693678
aldose 1-epimerases; YeaD; Escherichia coli; galactose mutarotases
13.  Crystallization and preliminary characterization of a highly thermostable lectin from Trichosanthes dioica and comparison with other Trichosanthes lectins 
A lectin from Trichosanthes dioica seeds has been purified and crystallized using 25%(w/v) PEG 2K MME, 0.2 M ammonium acetate, 0.1 M Tris–HCl pH 8.5 and 50 µl 0.5%(w/v) n-octyl β-d-glucopyranoside as thick needles belonging to hexagonal space group P64.
A lectin from Trichosanthes dioica seeds has been purified and crystallized using 25%(w/v) PEG 2K MME, 0.2 M ammonium acetate, 0.1 M Tris–HCl pH 8.5 and 50 µl 0.5%(w/v) n-octyl β-d-glucopyranoside as thick needles belonging to hexagonal space group P64. Unit-cell parameters were a = b = 167.54, c = 77.42 Å. The crystals diffracted to a Bragg spacing of 2.8 Å. Both the structures of abrin-a and T. kirilowii lectin could be used as a model in structure determination using the molecular-replacement method; however, T. kirilowii lectin coordinates gave better values of reliability and correlation parameters. The thermal, chemical and pH stability of this lectin have also been studied. When heated, its haemagglutination activity remained unaffected up to 363 K. Other stability studies show that 4 M guanidinium hydrochloride (Gdn–HCl) initiates unfolding and that the protein is completely unfolded at 6 M Gdn–HCl. Treatment with urea resulted in a total loss of activity at higher concentrations of denaturant with no major structural changes. The protein remained stable over a wide pH range, from pH 6 to pH 12, except for partial unfolding at extremely alkaline pH. The role of disulfide bonds in the protein stability was found to be insignificant. Rayleigh light-scattering studies showed no molecular aggregation in any of the extreme treated conditions. The unusual stability of this lectin resembles that of type II ribosome-inactivating proteins (type II RIPs), which is also supported by structure determination. The structural features observed in a preliminary electron-density map were compared with the other two available Trichosanthes lectin structures.
doi:10.1107/S174430910600265X
PMCID: PMC2197176  PMID: 16511302
T. dioica lectin; ribosome-inactivating proteins; denaturation; thermostability
14.  Potential of Leguminous Cover Crops in Management of a Mixed Population of Root-knot Nematodes (Meloidogyne spp.) 
Journal of Nematology  2010;42(3):173-178.
Root-knot nematode is an important pest in agricultural production worldwide. Crop rotation is the only management strategy in some production systems, especially for resource poor farmers in developing countries. A series of experiments was conducted in the laboratory with several leguminous cover crops to investigate their potential for managing a mixture of root-knot nematodes (Meloidogyne arenaria, M. incognita, M. javanica). The root-knot nematode mixture failed to multiply on Mucuna pruriens and Crotalaria spectabilis but on Dolichos lablab the population increased more than 2- fold when inoculated with 500 and 1,000 nematodes per plant. There was no root-galling on M. pruriens and C. spectabilis but the gall rating was noted on D. lablab. Greater mortality of juvenile root-knot nematodes occurred when exposed to eluants of roots and leaves of leguminous crops than those of tomato; 48.7% of juveniles died after 72 h exposure to root eluant of C. spectabilis. The leaf eluant of D. lablab was toxic to nematodes but the root eluant was not. Thus, different parts of a botanical contain different active ingredients or different concentrations of the same active ingredient. The numbers of root-knot nematode eggs that hatched in root exudates of M. pruriens and C. spectabilis were significantly lower (20% and 26%) than in distilled water, tomato and P. vulgaris root exudates (83%, 72% and 89%) respectively. Tomato lacks nematotoxic compounds found in M. pruriens and C. spectabilis. Three months after inoculating plants with 1,000 root-knot nematode juveniles the populations in pots with M. pruriens, C. spectabilis and C. retusa had been reduced by approximately 79%, 85% and 86% respectively; compared with an increase of 262% nematodes in pots with Phaseolus vulgaris. There was significant reduction of 90% nematodes in fallow pots with no growing plant. The results from this study demonstrate that some leguminous species contain compounds that either kill root-knot nematodes or interfere with hatching and affect their capacity to invade and develop within their roots. M. pruriens, C. spectabilis and C. retusa could be used with effect to decrease a mixed field populations of root-knot nematodes.
PMCID: PMC3380490  PMID: 22736854
Crotalaria spectabilis; Crotalaria retusa; Dolichos lablab; Mucuna pruriens; Phaseolus vulgaris; nematicidal compounds; phytoalexins
15.  Lectin Binding to the Root and Root Hair Tips of the Tropical Legume Macroptilium atropurpureum Urb 
Ten fluorescein isothiocyanate-labeled lectins were tested on the roots of the tropical legume Macroptilium atropurpureum Urb. Four of these (concanavalin A, peanut agglutinin, Ricinis communis agglutinin I [RCA-I], wheat germ agglutinin) were found to bind to the exterior of root cap cells, the root cap slime, and the channels between epidermal cells in the root elongation zone. One of these lectins, RCA-I, bound to the root hair tips in the mature and emerging hair zones and also to sites at which root hairs were only just emerging. There was no RCA-I binding to immature trichoblasts. Preincubation of these lectins with their hapten sugars eliminated all types of root cell binding. By using a microinoculation technique, preincubation of the root surface with RCA-I lectin was found to inhibit infection and nodulation by Rhizobium spp. Preincubation of the root surface with the RCA-I hapten β-d-galactose or a mixture of RCA-I lectin and its hapten failed to inhibit nodulation. Application of RCA-I lectin to the root surface caused no apparent detrimental effects to the root hair cells and did not prevent the growth of root hairs. The lectin did not prevent Rhizobium sp. motility or viability even after 24 h of incubation. It was concluded that the RCA-I lectin-specific sugar β-d-galactose may be involved in the recognition or early infection stages, or both, in the Rhizobium sp. infection of M. atropurpureum.
Images
PMCID: PMC238868  PMID: 16346989
16.  Crystallization and X-ray analysis of the salmon-egg lectin SEL24K 
The 24 kDa egg lectin of Chinook salmon (Oncorhynchus tshawytscha) was purified by affinity chromatography from salmon eggs and crystallized by the hanging-drop vapor-diffusion method using 15/4 EO/OH (pentaerythritol ethoxylate) as a precipitant.
The 24 kDa egg lectin of Chinook salmon (Oncorhynchus tshawytscha) is released from the egg during the cortical reaction. The lectin functions in blocking polyspermy during the fertilization process. The egg lectin was purified by affinity chromatography from salmon eggs and crystallized by the hanging-drop vapor-diffusion method using 15/4 EO/OH (pentaerythritol ethoxylate) as a precipitant. The crystal diffracted synchrotron-radiation X-rays to 1.63 Å resolution. The crystal belongs to the monoclinic space group P21, with unit-cell parameters a = 93.0, b = 73.6, c = 113.6 Å, α = 90, β = 92.82, γ = 90°. The crystal is likely to contain eight molecules in the asymmetric unit (V M = 2.3 Å3 Da−1), corresponding to a solvent content of 45.5%. A self-rotation function suggests an arrangement with 222 point symmetry within the asymmetric unit.
doi:10.1107/S1744309107015345
PMCID: PMC2335001  PMID: 17565179
lectins; salmon; polyspermy
17.  Crystallization and initial X-ray diffraction studies of scaffolding protein (gp7) of bacteriophage ϕ29 
ϕ29 bacteriophage scaffolding protein (gp7) has been overproduced in E. coli, purified, crystallized and characterized by X-ray diffraction. Two distinct crystal forms were obtained and a diffraction data set was collected to 1.8 Å resolution.
The Bacillus subtilis bacteriophage ϕ29 scaffolding protein (gp7) has been crystallized by the hanging-drop vapour-diffusion method at 293 K. Two new distinct crystal forms that both differed from a previously crystallized and solved scaffolding protein were grown under the same conditions. Form I belongs to the primitive tetragonal space group P41212, with unit-cell parameters a = b = 77.13, c = 37.12 Å. Form II crystals exhibit an orthorhombic crystal form, with space group C222 and unit-cell parameters a = 107.50, b = 107. 80, c = 37.34 Å. Complete data sets have been collected to 1.78 and 1.80 Å for forms I and II, respectively, at 100 K using Cu Kα X-rays from a rotating-anode generator. Calculation of a V M value of 2.46 Å3 Da−1 for form I suggests the presence of one molecule in the asymmetric unit, corresponding to a solvent content of 50.90%, whereas form II has a V M of 4.80 Å3 Da−1 with a solvent content of 48.76% and two molecules in the asymmetric unit. The structures of both crystal forms are being determined by the molecular-replacement method using the coordinates of the published crystal structure of gp7.
doi:10.1107/S1744309105008511
PMCID: PMC1952437  PMID: 16511059
scaffolding protein; bacteriophage ϕ29
18.  Crystallization and preliminary X-ray diffraction analysis of a lectin from Canavalia maritima seeds 
A lectin from C. maritima was crystallized using the vapour-diffusion method and crystals diffracted to 2.1 Å resolution. A molecular-replacement search found a solution with a correlation coefficient of 69.2% and an R factor of 42.5%, refinement is in progress.
A lectin from Canavalia maritima seeds (ConM) was purified and submitted to crystallization experiments. The best crystals were obtained using the vapour-diffusion method at a constant temperature of 293 K and grew in 7 d. A complete structural data set was collected to 2.1 Å resolution using a synchrotron-radiation source. The ConM crystal belongs to the orthorhombic space group P21212, with unit-cell parameters a = 67.15, b = 70.90, c = 97.37 Å. A molecular-replacement search found a solution with a correlation coefficient of 69.2% and an R factor of 42.5%. Crystallographic refinement is under way.
doi:10.1107/S1744309104029197
PMCID: PMC1952371  PMID: 16508099
lectins; Canavalia maritima
19.  Crystallization and preliminary X-ray diffraction analysis of HML, a lectin from the red marine alga Hypnea musciformis  
The crystallization and preliminary X-ray diffraction analysis of a red marine alga lectin isolated from H. musciformis is reported.
HML, a lectin from the red marine alga Hypnea musciformis, defines a novel lectin family. Orthorhombic crystals of HML belonging to space group P212121 grew within three weeks at 293 K using the hanging-drop vapour-diffusion method. A complete data set was collected at 2.4 Å resolution. HML is the first marine alga lectin to be crystallized.
doi:10.1107/S1744309105033671
PMCID: PMC1978131  PMID: 16511217
red marine algal lectin; Hypnea musciformis; novel lectin family
20.  Crystallization and preliminary X-ray diffraction analysis of the lectin from Canavalia boliviana Piper seeds 
Canavalia boliviana lectin (Cbol) was purified using a Sephadex G-50 column and crystallized in the presence of X-Man by hanging-drop vapour diffusion at 293 K. After optimization, crystals suitable for diffraction were obtained using 0.1 M HEPES pH 7.5 and 3.0 M sodium formate.
Plant lectins are the most studied group of carbohydrate-binding proteins. Despite the high similarity between the members of the Diocleinae subtribe (Leguminosae) group, they present differing biological activities. Canavalia boliviana lectin (Cbol) was purified using a Sephadex G-50 column and crystallized in the presence of X-Man by hanging-drop vapour diffusion at 293 K. After optimization, crystals suitable for diffraction were obtained under the condition 0.1 M HEPES pH 7.5 and 3.0 M sodium formate. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 126.70, b = 66.64, c = 64.99 Å, α = 90.0, β = 120.8, γ = 90.0°. Assuming the presence of a dimer in the asymmetric unit, the solvent content was estimated to be about 46%. A complete data set was collected at 1.5 Å resolution.
doi:10.1107/S1744309109000797
PMCID: PMC2650465  PMID: 19255467
lectins; Canavalia boliviana Piper
21.  Functional Analysis of NopM, a Novel E3 Ubiquitin Ligase (NEL) Domain Effector of Rhizobium sp. Strain NGR234 
PLoS Pathogens  2012;8(5):e1002707.
Type 3 effector proteins secreted via the bacterial type 3 secretion system (T3SS) are not only virulence factors of pathogenic bacteria, but also influence symbiotic interactions between nitrogen-fixing nodule bacteria (rhizobia) and leguminous host plants. In this study, we characterized NopM (nodulation outer protein M) of Rhizobium sp. strain NGR234, which shows sequence similarities with novel E3 ubiquitin ligase (NEL) domain effectors from the human pathogens Shigella flexneri and Salomonella enterica. NopM expressed in Escherichia coli, but not the non-functional mutant protein NopM-C338A, showed E3 ubiquitin ligase activity in vitro. In vivo, NopM, but not inactive NopM-C338A, promoted nodulation of the host plant Lablab purpureus by NGR234. When NopM was expressed in yeast, it inhibited mating pheromone signaling, a mitogen-activated protein (MAP) kinase pathway. When expressed in the plant Nicotiana benthamiana, NopM inhibited one part of the plant's defense response, as shown by a reduced production of reactive oxygen species (ROS) in response to the flagellin peptide flg22, whereas it stimulated another part, namely the induction of defense genes. In summary, our data indicate the potential for NopM as a functional NEL domain E3 ubiquitin ligase. Our findings that NopM dampened the flg22-induced ROS burst in N. benthamiana but promoted defense gene induction are consistent with the concept that pattern-triggered immunity is split in two separate signaling branches, one leading to ROS production and the other to defense gene induction.
Author Summary
Many Gram-negative bacterial pathogens possess type 3 secretion systems, which deliver effector proteins into eukaryotic host cells through needle-like structures. Effectors manipulate the host cell and many of them suppress host defense responses. Interestingly, certain symbiotic strains of rhizobia also possess such secretion systems. Rhizobia infect legume roots and induce root nodules, where the bacteria convert atmospheric nitrogen into ammonia. Here, we characterize the effector NopM of Rhizobium sp. strain NGR234. We demonstrate that NopM possesses E3 ubiquitin ligase activity, indicating that NopM can “tag" proteins with ubiquitin, and thus target them for proteasome-dependent degradation. Using a mutant approach, we demonstrate that enzymatically active NopM promotes establishment of symbiosis with Lablab purpureus, the host plant from which NGR234 was originally isolated. We further examine effects of NopM when directly expressed in eukaryotic cells and show that NopM interferes with specific signaling pathways. NopM expressed in the model plant Nicotiana benthamiana dampened generation of reactive oxygen species (ROS), which are formed in response to the bacterial flagellin peptide flg22. We suggest that NopM promotes nodule initiation by reducing the levels of harmful ROS during the infection process.
doi:10.1371/journal.ppat.1002707
PMCID: PMC3355095  PMID: 22615567
22.  Purification, crystallization and preliminary crystallographic analysis of very-long-chain acyl-­CoA dehydrogenase from Caenorhabditis elegans  
Very-long-chain acyl-CoA dehydrogenase from Caenorhabditis elegans (cVLCAD) has been crystallized in space group C2 and its X-ray diffraction data set has been collected to 1.6 Å resolution. Unlike other VLCADs that were reported to form dimers, the purified cVLCAD was found as a homotetrameric protein according to static light-scattering measurements.
Acyl-CoA dehydrogenase [acyl-CoA:(acceptor) 2,3-oxidoreductase; EC 1.3.99.3] catalyzes the first reaction step in mitochondrial fatty-acid β-oxidation. Here, the very-long-chain acyl-CoA dehydrogenase from Caenorhabditis elegans (cVLCAD) has been cloned and overexpressed in Escherichia coli strain BL21 (DE3). Interestingly, unlike other very-long-chain acyl-CoA dehydrogenases, cVLCAD was found to form a tetramer by size-exclusion chromatography coupled with in-line static light-scattering, refractive-index and ultraviolet measurements. Purified cVLCAD (12 mg ml−1) was successfully crystallized by the hanging-drop vapour-diffusion method under conditions containing 100 mM Tris–HCl pH 8.0, 150 mM sodium chloride, 200 mM magnesium formate and 13% PEG 3350. The crystal has a tetragonal form and a complete diffraction data set was collected and processed to 1.8 Å resolution. The crystal belonged to space group C2, with unit-cell parameters a = 138.6, b = 116.7, c = 115.3 Å, α = γ = 90.0, β = 124.0°. A self-rotation function indicated the existence of one noncrystallographic twofold axis. A preliminary molecular-replacement solution further confirmed the presence of two molecules in one asymmetric unit, which yields a Matthews coefficient V M of 2.76 Å3 Da−1 and a solvent content of 55%.
doi:10.1107/S1744309110005002
PMCID: PMC2852336  PMID: 20383014
very-long-chain acyl-CoA dehydrogenases; fatty-acid β-oxidation; Caenorhabditis elegans; SEC-LS/UV/RI
23.  Purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies of great cormorant (Phalacrocorax carbo) haemoglobin 
The great cormorant hemoglobin has been isolated, purified and crystallized and the three dimensional structure is solved using molecular replacement technique.
Haemoglobin is the iron-containing oxygen-transport metalloprotein that is present in the red blood cells of all vertebrates. In recent decades, there has been substantial interest in attempting to understand the structural basis and functional diversity of avian haemoglobins. Towards this end, purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies have been carried out on cormorant (Phalacrocorax carbo) haemoglobin. Crystals were grown by the hanging-drop vapour-diffusion method using PEG 3350, NaCl and glycerol as precipitants. The crystals belonged to the trigonal system P3121, with unit-cell parameters a = b = 55.64, c = 153.38 Å, β = 120.00°; a complete data set was collected to a resolution of 3.5 Å. Matthews coefficient analysis indicated that the crystals contained a half-tetramer in the asymmetric unit.
doi:10.1107/S2053230X14019943
PMCID: PMC4231857  PMID: 25372822
avian haemoglobin; great cormorant; Phalacrocorax carbo; molecular replacement
24.  Expression, purification, crystallization and preliminary X-ray diffraction studies of glyceraldehyde-3-phosphate dehydrogenase 1 from methicillin-resistant Staphylococcus aureus (MRSA252) 
The cloning, overexpression, purification, crystallization and preliminary X-ray crystallographic analysis of glyceraldehyde-3-phosphate dehydrogenase 1 (GAP1) from MRSA252 are reported.
Glyceraldehyde-3-phosphate dehydrogenase 1 from methicillin-resistant Staphylo­coccus aureus (MRSA252) was cloned in pQE30 vector, overexpressed in Escherichia coli M15(pREP4) cells and purified to homogeneity. The protein was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group P21, with unit-cell parameters a = 65.23, b = 95.58, c = 87.91 Å, β = 106.5°. X-ray diffraction data were collected and processed to a maximum resolution of 2.0 Å. The presence of one tetramer in the asymmetric unit gave a Matthews coefficient (V M) of 1.78 Å3 Da−1 and a solvent content of 31%. The structure was solved by molecular replacement and structure refinement is now in progress.
doi:10.1107/S1744309108027504
PMCID: PMC2564893  PMID: 18931438
glyceraldehyde-3-phosphate dehydrogenase 1; methicillin-resistant Staphylococcus aureus
25.  Purification, crystallization and preliminary X-ray analysis of apo glyceraldehyde-3-phosphate dehydrogenase 1 (GAP1) from methicillin-resistant Staphylococcus aureus (MRSA252) 
The purification, crystallization and preliminary X-ray crystallographic analysis of glyceraldehyde-3-phosphate dehydrogenase 1 (GAP1) from MRSA252 in the apo form is reported.
Glyceraldehyde-3-phosphate dehydrogenase 1 (GAP1) from methicillin-resistant Staphylococcus aureus (MRSA252) has been purified to homogeneity in the apo form. The protein was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group P21, with unit-cell parameters a = 69.95, b = 93.68, c = 89.05 Å, β = 106.84°. X-ray diffraction data have been collected and processed to a maximum resolution of 2.2 Å. The presence of one tetramer in the asymmetric unit gives a Matthews coefficient (V M) of 1.81 Å3 Da−1 with a solvent content of 32%. The structure has been solved by molecular replacement and structure refinement is now in progress.
doi:10.1107/S1744309110007980
PMCID: PMC2864678  PMID: 20445245
glyceraldehyde-3-phosphate dehydrogenase 1; Staphylococcus aureus; MRSA252

Results 1-25 (493776)