PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (547292)

Clipboard (0)
None

Related Articles

1.  IL-22 Is Produced by Innate Lymphoid Cells and Limits Inflammation in Allergic Airway Disease 
PLoS ONE  2011;6(7):e21799.
Interleukin (IL)-22 is an effector cytokine, which acts primarily on epithelial cells in the skin, gut, liver and lung. Both pro- and anti-inflammatory properties have been reported for IL-22 depending on the tissue and disease model. In a murine model of allergic airway inflammation, we found that IL-22 is predominantly produced by innate lymphoid cells in the inflamed lungs, rather than TH cells. To determine the impact of IL-22 on airway inflammation, we used allergen-sensitized IL-22-deficient mice and found that they suffer from significantly higher airway hyperreactivity upon airway challenge. IL-22-deficiency led to increased eosinophil infiltration lymphocyte invasion and production of CCL17 (TARC), IL-5 and IL-13 in the lung. Mice treated with IL-22 before antigen challenge displayed reduced expression of CCL17 and IL-13 and significant amelioration of airway constriction and inflammation. We conclude that innate IL-22 limits airway inflammation, tissue damage and clinical decline in allergic lung disease.
doi:10.1371/journal.pone.0021799
PMCID: PMC3138740  PMID: 21789181
2.  Intrinsic Defect in T Cell Production of Interleukin (IL)-13 in the Absence of Both IL-5 and Eotaxin Precludes the Development of Eosinophilia and Airways Hyperreactivity in Experimental Asthma 
The Journal of Experimental Medicine  2002;195(11):1433-1444.
Interleukin (IL)-5 and IL-13 are thought to play key roles in the pathogenesis of asthma. Although both cytokines use eotaxin to regulate eosinophilia, IL-13 is thought to operate a separate pathway to IL-5 to induce airways hyperreactivity (AHR) in the allergic lung. However, identification of the key pathway(s) used by IL-5 and IL-13 in the disease process is confounded by the failure of anti–IL-5 or anti–IL-13 treatments to completely inhibit the accumulation of eosinophils in lung tissue. By using mice deficient in both IL-5 and eotaxin (IL-5/eotaxin−/−) we have abolished tissue eosinophilia and the induction of AHR in the allergic lung. Notably, in mice deficient in IL-5/eotaxin the ability of CD4+ T helper cell (Th)2 lymphocytes to produce IL-13, a critical regulator of airways smooth muscle constriction and obstruction, was significantly impaired. Moreover, the transfer of eosinophils to IL-5/eotaxin−/− mice overcame the intrinsic defect in T cell IL-13 production. Thus, factors produced by eosinophils may either directly or indirectly modulate the production of IL-13 during Th2 cell development. Our data show that IL-5 and eotaxin intrinsically modulate IL-13 production from Th2 cells and that these signaling systems are not necessarily independent effector pathways and may also be integrated to regulate aspects of allergic disease.
doi:10.1084/jem.20020009
PMCID: PMC2193548  PMID: 12045241
allergy; cytokines; eosinophils; lung; inflammation
3.  The Coordinated Action of CC Chemokines in the Lung Orchestrates Allergic Inflammation and Airway Hyperresponsiveness  
The complex pathophysiology of lung allergic inflammation and bronchial hyperresponsiveness (BHR) that characterize asthma is achieved by the regulated accumulation and activation of different leukocyte subsets in the lung. The development and maintenance of these processes correlate with the coordinated production of chemokines. Here, we have assessed the role that different chemokines play in lung allergic inflammation and BHR by blocking their activities in vivo. Our results show that blockage of each one of these chemokines reduces both lung leukocyte infiltration and BHR in a substantially different way. Thus, eotaxin neutralization reduces specifically BHR and lung eosinophilia transiently after each antigen exposure. Monocyte chemoattractant protein (MCP)-5 neutralization abolishes BHR not by affecting the accumulation of inflammatory leukocytes in the airways, but rather by altering the trafficking of the eosinophils and other leukocytes through the lung interstitium. Neutralization of RANTES (regulated upon activation, normal T cell expressed and secreted) receptor(s) with a receptor antagonist decreases significantly lymphocyte and eosinophil infiltration as well as mRNA expression of eotaxin and RANTES. In contrast, neutralization of one of the ligands for RANTES receptors, macrophage-inflammatory protein 1α, reduces only slightly lung eosinophilia and BHR. Finally, MCP-1 neutralization diminishes drastically BHR and inflammation, and this correlates with a pronounced decrease in monocyte- and lymphocyte-derived inflammatory mediators. These results suggest that different chemokines activate different cellular and molecular pathways that in a coordinated fashion contribute to the complex pathophysiology of asthma, and that their individual blockage results in intervention at different levels of these processes.
PMCID: PMC2525544  PMID: 9653092
chemokines; allergic inflammation; bronchial hyperresponsiveness; eosinophilia; leukocytes
4.  Interleukin-4 induction of the CC chemokine TARC (CCL17) in murine macrophages is mediated by multiple STAT6 sites in the TARC gene promoter 
Background
Macrophages (Mθ) play a central role in the innate immune response and in the pathology of chronic inflammatory diseases. Macrophages treated with Th2-type cytokines such as Interleukin-4 (IL-4) and Interleukin-13 (IL-13) exhibit an altered phenotype and such alternatively activated macrophages are important in the pathology of diseases characterised by allergic inflammation including asthma and atopic dermatitis. The CC chemokine Thymus and Activation-Regulated Chemokine (TARC/CCL17) and its murine homologue (mTARC/ABCD-2) bind to the chemokine receptor CCR4, and direct T-cell and macrophage recruitment into areas of allergic inflammation. Delineating the molecular mechanisms responsible for the IL-4 induction of TARC expression will be important for a better understanding of the role of Th2 cytokines in allergic disease.
Results
We demonstrate that mTARC mRNA and protein are potently induced by the Th2 cytokine, Interleukin-4 (IL-4), and inhibited by Interferon-γ (IFN-γ) in primary macrophages (Mθ). IL-4 induction of mTARC occurs in the presence of PI3 kinase pathway and translation inhibitors, but not in the absence of STAT6 transcription factor, suggesting a direct-acting STAT6-mediated pathway of mTARC transcriptional activation. We have functionally characterised eleven putative STAT6 sites identified in the mTARC proximal promoter and determined that five of these contribute to the IL-4 induction of mTARC. By in vitro binding assays and transient transfection of isolated sites into the RAW 264.7 Mθ cell-line, we demonstrate that these sites have widely different capacities for binding and activation by STAT6. Site-directed mutagenesis of these sites within the context of the mTARC proximal promoter revealed that the two most proximal sites, conserved between the human and mouse genes, are important mediators of the IL-4 response.
Conclusion
The induction of mTARC by IL-4 results from cooperative interactions between STAT6 sites within the mTARC gene promoter. Significantly, we have shown that transfer of the nine most proximal mTARC STAT6 sites in their endogenous conformation confers potent (up to 130-fold) IL-4 inducibility on heterologous promoters. These promoter elements constitute important and sensitive IL-4-responsive transcriptional units that could be used to drive transgene expression in sites of Th2 inflammation in vivo.
doi:10.1186/1471-2199-7-45
PMCID: PMC1698493  PMID: 17134490
5.  S-Nitrosoglutathione Reductase Inhibition Regulates Allergen-Induced Lung Inflammation and Airway Hyperreactivity 
PLoS ONE  2013;8(7):e70351.
Allergic asthma is characterized by Th2 type inflammation, leading to airway hyperresponsivenes, mucus hypersecretion and tissue remodeling. S-Nitrosoglutathione reductase (GSNOR) is an alcohol dehydrogenase involved in the regulation of intracellular levels of S-nitrosothiols. GSNOR activity has been shown to be elevated in human asthmatic lungs, resulting in diminished S-nitrosothiols and thus contributing to increased airway hyperreactivity. Using a mouse model of allergic airway inflammation, we report that intranasal administration of a new selective inhibitor of GSNOR, SPL-334, caused a marked reduction in airway hyperreactivity, allergen-specific T cells and eosinophil accumulation, and mucus production in the lungs in response to allergen inhalation. Moreover, SPL-334 treatment resulted in a significant decrease in the production of the Th2 cytokines IL-5 and IL-13 and the level of the chemokine CCL11 (eotaxin-1) in the airways. Collectively, these observations reveal that GSNOR inhibitors are effective not only in reducing airway hyperresponsiveness but also in limiting lung inflammatory responses mediated by CD4+ Th2 cells. These findings suggest that the inhibition of GSNOR may provide a novel therapeutic approach for the treatment of allergic airway inflammation.
doi:10.1371/journal.pone.0070351
PMCID: PMC3723687  PMID: 23936192
6.  T cell-dependent regulation of eotaxin in antigen-induced pulmonary eosinophila 
The Journal of Experimental Medicine  1996;184(4):1461-1469.
T lymphocytes have been implicated in controlling the recruitment of eosinophils into the lung in murine models of allergic asthma. The mechanism by which T cells assist in the recruitment of eosinophils to the lung in these models is not completely understood. We hypothesized that eosinophil-active chemokines might be regulated by antigen (Ag)- induced T cell activation in vivo and thereby mediate T cell-dependent eosinophil recruitment. To test this hypothesis, we examined the effect of an anti-CD3 mAb on Ag-induced pulmonary eosinophilia and correlated this with the expression of three eosinophil-active chemokines: eotaxin, macrophage inflammatory protein (MIP)-1 alpha, and RANTES. We found that Ag-induced pulmonary eosinophilia was associated with the induction of eotaxin and MIP-1 alpha, but not RANTES mRNA. Prechallenge treatment with anti-CD3 mAb inhibited eotaxin, but not MIP-1 alpha and RANTES mRNA induction, and significantly reduced eosinophil accumulation in the lung. In addition, Ag-specific antibody responses and mast cell degranulation after Ag challenge in sensitized mice were not affected by T cell elimination, and were not sufficient to induce the expression of eotaxin and cause pulmonary eosinophilia. These findings suggest that eotaxin is one of the molecular links between Ag- specific T cell activation and the recruitment of eosinophils into the airways.
PMCID: PMC2192832  PMID: 8879217
7.  Strain-specific requirement for eosinophils in the recruitment of T cells to the lung during the development of allergic asthma 
The Journal of Experimental Medicine  2008;205(6):1285-1292.
Eosinophils have been implicated as playing a major role in allergic airway responses. However, the importance of these cells to the development of this disease has remained ambiguous despite many studies, partly because of lack of appropriate model systems. In this study, using transgenic murine models, we more clearly delineate a role for eosinophils in asthma. We report that, in contrast to results obtained on a BALB/c background, eosinophil-deficient C57BL/6 ΔdblGATA mice (eosinophil-null mice via the ΔDblGATA1 mutation) have reduced airway hyperresponsiveness, and cytokine production of interleukin (IL)-4, -5, and -13 in ovalbumin-induced allergic airway inflammation. This was caused by reduced T cell recruitment into the lung, as these mouse lungs had reduced expression of CCL7/MCP-3, CC11/eotaxin-1, and CCL24/eotaxin-2. Transferring eosinophils into these eosinophil-deficient mice and, more importantly, delivery of CCL11/eotaxin-1 into the lung during the development of this disease rescued lung T cell infiltration and airway inflammation when delivered together with allergen. These studies indicate that on the C57BL/6 background, eosinophils are integral to the development of airway allergic responses by modulating chemokine and/or cytokine production in the lung, leading to T cell recruitment.
doi:10.1084/jem.20071836
PMCID: PMC2413027  PMID: 18490489
8.  The importance of leukotrienes in airway inflammation in a mouse model of asthma 
The Journal of Experimental Medicine  1996;184(4):1483-1494.
Inhalation of antigen in immunized mice induces an infiltration of eosinophils into the airways and increased bronchial hyperreactivity as are observed in human asthma. We employed a model of late-phase allergic pulmonary inflammation in mice to address the role of leukotrienes (LT) in mediating airway eosinophilia and hyperreactivity to methacholine. Allergen intranasal challenge in OVA-sensitized mice induced LTB4 and LTC4 release into the airspace, widespread mucus occlusion of the airways, leukocytic infiltration of the airway tissue and broncho-alveolar lavage fluid that was predominantly eosinophils, and bronchial hyperreactivity to methacholine. Specific inhibitors of 5- lipoxygenase and 5-lipoxygenase-activating protein (FLAP) blocked airway mucus release and infiltration by eosinophils indicating a key role for leukotrienes in these features of allergic pulmonary inflammation. The role of leukotrienes or eosinophils in mediating airway hyperresponsiveness to aeroallergen could not be established, however, in this murine model.
PMCID: PMC2192843  PMID: 8879219
9.  Targeted Disruption of the Chemokine Eotaxin Partially Reduces Antigen-induced Tissue Eosinophilia 
The chemokines are a large group of chemotactic cytokines that regulate leukocyte trafficking and have recently been shown to inhibit human immunodeficiency virus entry into cells. Eotaxin is a C–C chemokine implicated in the recruitment of eosinophils in a variety of inflammatory disorders and, unlike all other eosinophil chemoattractants, is eosinophil specific. However, given the large number of chemoattractants that have activities on eosinophils, it is unclear whether eotaxin has an important role in vivo. Furthermore, it remains unclear why there is constitutive expression of eotaxin in healthy states in the absence of eosinophilic inflammation. To begin to determine the significance of eotaxin at baseline and during eosinophil-mediated disease processes, we have used targeted gene disruption to generate mice that are deficient in eotaxin. Such mice demonstrate that eotaxin enhances the magnitude of the early (but not late) eosinophil recruitment after antigen challenge in models of asthma and stromal keratitis. Surprisingly, a role for eotaxin in regulating the constitutive number of eosinophils in the peripheral circulation is also demonstrated. These results indicate a contributory role for eotaxin in the generation of peripheral blood and antigen-induced tissue eosinophilia.
PMCID: PMC2196140  PMID: 9034156
10.  The roles of a Th2 cytokine and CC chemokine in children with stable asthma: Potential implication in eosinophil degranulation 
Th2 cytokine IL-5 and CC chemokine eotaxin are thought to be key regulators of eosinophils in bronchial asthma. However, their involvement in children with stable asthma (SA) has not been determined. We investigated the roles of IL-5 and eotaxin in eosinophil degranulation in children with SA. Induced sputum was obtained from 30 SA, 21 allergic rhinitis (AR), and 22 non-atopic healthy control (HC) children. We measured sputum levels of IL-5, eotaxin, and eosinophil indices [percentage eosinophils, eosinophil-derived neurotoxin (EDN), and eosinophil- cationic protein (ECP)]. We also examined correlations of IL-5 and eotaxin with eosinophil indices. Sputum percentage eosinophils and EDN and ECP levels were significantly higher in the SA group than in the HC group, while only the sputum EDN and ECP levels were significantly higher in the AR group than in the HC group. Unexpectedly, sputum levels of IL-5 were not significantly different among the three groups; however, the levels of eotaxin were higher in the SA group when compared to the HC group. No significant correlations were found between IL-5 and percentage eosinophils, EDN, or ECP levels; in contrast, eotaxin levels correlated significantly with percentage eosinophils (R­= 0.638; p = 0.0001), EDN (R­= 0.522; p = 0.003), and ECP levels (R­= 0.630 and p = 0.0002). The elevated levels and good correlations of eotaxin with sputum eosinophil indices, and no elevation or correlation of IL-5 with these indices, suggest that CC chemokine eotaxin may play a more important role in eosinophil degranulation in children with SA.
doi:10.1111/j.1399-3038.2010.01047.x
PMCID: PMC3899091  PMID: 20444156
eosinophil degranulation; eosinophil indices; eotaxin; interleukin-5; stable asthma
11.  Early phase resolution of mucosal eosinophilic inflammation in allergic rhinitis 
Respiratory Research  2010;11(1):54.
Background
It is widely assumed that apoptosis of eosinophils is a central component of resolution of allergic airway disease. However, this has not been demonstrated in human allergic airways in vivo. Based on animal in vivo observations we hypothesised that steroid-induced resolution of human airway eosinophilic inflammation involves inhibition of CCL5 (RANTES), a CC-chemokine regulating eosinophil and lymphocyte traffic, and elimination of eosinophils without evident occurrence of apoptotic eosinophils in the diseased tissue.
Objective
To determine mucosal eosinophilia, apoptotic eosinophils, general cell apoptosis and cell proliferation, and expression of CCL5 and CCL11 (eotaxin) in human allergic airway tissues in vivo at resolution of established symptomatic eosinophilic inflammation.
Methods
Twenty-one patients with intermittent (birch and/or grass) allergic rhinitis received daily nasal allergen challenges for two seven days' periods separated by more than two weeks washout. Five days into these "artificial pollen seasons", nasal treatment with budesonide was instituted and continued for six days in a double blinded, randomized, placebo-controlled, and crossover design. This report is a parallel group comparison of nasal biopsy histochemistry data obtained on the final day of the second treatment period.
Results
Treatments were instituted when clinical rhinitis symptoms had been established. Compared to placebo, budesonide reduced tissue eosinophilia, and subepithelial more than epithelial eosinophilia. Steroid treatment also attenuated tissue expression of CCL5, but CCL11 was not reduced. General tissue cell apoptosis and epithelial cell proliferation were reduced by budesonide. However, apoptotic eosinophils were not detected in any biopsies, irrespective of treatment.
Conclusions
Inhibition of CCL5-dependent recruitment of cells to diseased airway tissue, and reduced cell proliferation, reduced general cell apoptosis, but not increased eosinophil apoptosis, are involved in early phase steroid-induced resolution of human allergic rhinitis.
doi:10.1186/1465-9921-11-54
PMCID: PMC2873933  PMID: 20459697
12.  Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model  
Airways inflammation is thought to play a central role in the pathogenesis of asthma. However, the precise role that individual inflammatory cells and mediators play in the development of airways hyperreactivity and the morphological changes of the lung during allergic pulmonary inflammation is unknown. In this investigation we have used a mouse model of allergic pulmonary inflammation and interleukin (IL) 5-deficient mice to establish the essential role of this cytokine and eosinophils in the initiation of aeroallergen-induced lung damage and the development of airways hyperreactivity. Sensitization and aerosol challenge of mice with ovalbumin results in airways eosinophilia and extensive lung damage analogous to that seen in asthma. Aeroallergen-challenged mice also display airways hyperreactivity to beta-methacholine. In IL-5-deficient mice, the eosinophilia, lung damage, and airways hyperreactivity normally resulting from aeroallergen challenge were abolished. Reconstitution of IL-5 production with recombinant vaccinia viruses engineered to express this factor completely restored aeroallergen-induced eosinophilia and airways dysfunction. These results indicate that IL-5 and eosinophils are central mediators in the pathogenesis of allergic lung disease.
PMCID: PMC2192412  PMID: 8551223
13.  Eosinophilic Inflammation in Allergic Asthma 
Eosinophils are circulating granulocytes involved in pathogenesis of asthma. A cascade of processes directed by Th2 cytokine producing T-cells influence the recruitment of eosinophils into the lungs. Furthermore, multiple elements including interleukin (IL)-5, IL-13, chemoattractants such as eotaxin, Clara cells, and CC chemokine receptor (CCR)3 are already directly involved in recruiting eosinophils to the lung during allergic inflammation. Once recruited, eosinophils participate in the modulation of immune response, induction of airway hyperresponsiveness and remodeling, characteristic features of asthma. Various types of promising treatments for reducing asthmatic response are related to reduction in eosinophil counts both in human and experimental models of pulmonary allergic inflammation, showing that the recruitment of these cells really plays an important role in the pathophysiology of allergic diseases such asthma.
doi:10.3389/fphar.2013.00046
PMCID: PMC3627984  PMID: 23616768
airway remodeling; asthma; eosinophils; experimental models of asthma; inflammation; respiratory hypersensitivity
14.  Allergic Challenge–Elicited Lipid Bodies Compartmentalize In Vivo Leukotriene C4 Synthesis within Eosinophils 
Eosinophils are an important source of leukotriene (LT)C4, which can be synthesized within lipid bodies—cytoplasmic organelles where eicosanoid formation may take place. Allergy-driven lipid body formation and function have never been investigated. Here, we studied the in vivo induction and role of lipid bodies within eosinophils recruited to sites of allergic inflammation. Using two murine models of allergic inflammation (asthma and pleurisy), we verified that parallel to the eosinophil influx, allergic challenge also induced lipid body formation within recruited eosinophils. Neutralizing antibodies to eotaxin/CCL11, RANTES/CCL5, or CCR3 partially inhibited lipid body formation within recruited eosinophils in the allergic pleurisy model. Likewise, intrapleural administration of RANTES or eotaxin also induced significant influx of eosinophils loaded with lipid bodies. By immunolabeling, we detected the presence of a key enzyme involved in the leukotriene metabolism—5-lipoxygenase—within eosinophil lipid bodies formed in vivo after allergen challenge. Furthermore, specific immunolocalization of newly formed LTC4 demonstrated that lipid bodies were the sites of formation of this eicosanoid within infiltrating eosinophils. Therefore, allergic inflammation triggers in vivo formation of new lipid bodies within infiltrating eosinophils, a phenomenon largely mediated by eotaxin/RANTES acting via CCR3 receptors. Such in vivo allergen-driven lipid bodies function as intracellular compartments of LTC4 synthesis.
doi:10.1165/rcmb.2005-0145OC
PMCID: PMC2715315  PMID: 15947420
allergy; CCR3; eosinophils; lipid bodies; LTC4
15.  Interleukin-17 regulation: an attractive therapeutic approach for asthma 
Respiratory Research  2010;11(1):78.
Interleukin (IL)-17 is recognized to play a critical role in numerous immune and inflammatory responses by regulating the expression of various inflammatory mediators, which include cytokines, chemokines, and adhesion molecules. There is growing evidence that IL-17 is involved in the pathogenesis of asthma. IL-17 orchestrates the neutrophilic influx into the airways and also enhances T-helper 2 (Th2) cell-mediated eosinophilic airway inflammation in asthma. Recent studies have demonstrated that not only inhibitor of IL-17 per se but also diverse regulators of IL-17 expression reduce antigen-induced airway inflammation, bronchial hyperresponsiveness, and Th2 cytokine levels in animal models of asthma. This review will summarize the role of IL-17 in the context of allergic airway inflammation and discuss the therapeutic potential of various strategies targeting IL-17 for asthma.
doi:10.1186/1465-9921-11-78
PMCID: PMC2894770  PMID: 20565710
16.  IL-4 induces expression of TARC/CCL17 via two STAT6 binding sites 
European journal of immunology  2006;36(7):1882-1891.
A cardinal feature of allergic disorders and immune responses is enhanced leukocyte trafficking. This is largely orchestrated by chemokines. The CC chemokine thymus- and activation-regulated chemokine (TARC/CCL17) selectively attracts Th2 cells via the G protein-coupled chemokine receptor CCR4. We show here that TARC/CCL17 is expressed by human T cells upon stimulation with IL-4. Mapping of the transcriptional start site revealed the presence of two putative STAT6 binding motifs in proximity to the start position. EMSA and chromatin immunoprecipitation experiments demonstrated that STAT6 was able to bind to both motifs. A fragment of the TARC/CCL17 promoter containing both sites was tested in reporter gene assays for IL-4 inducibility. The promoter was inducible in a STAT6-deficient cell line only after introduction of functional STAT6. When mutations were inserted into one of the STAT6 motifs, IL-4-induced promoter activation was reduced. With both sites mutated, inducibility was completely abrogated. These data demonstrate collectively that T cells serve as a source of TARC/CCL17 when stimulated with IL-4 and that STAT6 is essential for this.
doi:10.1002/eji.200635972
PMCID: PMC2988193  PMID: 16810739
Allergy; Chemokines; Human; T cells; Transcription factors
17.  Murine lung eosinophil activation and chemokine production in allergic airway inflammation 
Cellular & molecular immunology  2010;7(5):361-374.
Eosinophils play important roles in asthma and lung infections. Murine models are widely used for assessing the functional significance and mechanistic basis for eosinophil involvements in these diseases. However, little is known about tissue eosinophils in homeostasis. In addition, little data on eosinophil chemokine production during allergic airway inflammation are available. In this study, the properties and functions of homeostatic and activated eosinophils were compared. Eosinophils from normal tissues expressed costimulation and adhesion molecules B7-1, B7-2 and ICAM-1 for Ag presentation but little major histocompatibility complex (MHC) class II, and were found to be poor stimulators of T-cell proliferation. However, these eosinophils expressed high levels of chemokine mRNA including C10, macrophage inflammatory protein (MIP)-1α, MIP-1γ, MIP-2, eotaxin and monocyte chemoattractant protein-5 (MCP-5), and produced chemokine proteins. Eosinophil intracellular chemokines decreased rapidly with concomitant surface marker downregulation upon in vitro culturing consistent with piecemeal degranulation. Lung eosinophils from mice with induced allergic airway inflammation exhibited increased chemokines mRNA expression and chemokines protein production and upregulated MHC class II and CD11c expression. They were also found to be the predominant producers of the CCR1 ligands CCL6/C10 and CCL9/MIP-1γ in inflamed lungs. Eosinophil production of C10 and MIP-1γ correlated with the marked influx of CD11bhigh lung dendritic cells during allergic airway inflammation and the high of CCR1 on these dendritic cells (DCs). The study provided baseline information on tissue eosinophils, documented the upregulation of activation markers and chemokine production in activated eosinophils, and indicated that eosinophils were a key chemokine-producing cell type in allergic lung inflammation.
doi:10.1038/cmi.2010.31
PMCID: PMC3045045  PMID: 20622891
allergy; chemokines; eosinophils; lung; mouse
18.  Cc Chemokine Receptor (Ccr)3/Eotaxin Is Followed by Ccr4/Monocyte-Derived Chemokine in Mediating Pulmonary T Helper Lymphocyte Type 2 Recruitment after Serial Antigen Challenge in Vivo 
Isolated peripheral blood CD4 cells from allergic individuals express CC chemokine receptor (CCR)3 and CCR4 after expansion in vitro. In addition, human T helper type 2 (Th2) cells polarized in vitro selectively express CCR3 and CCR4 at certain stages of activation/differentiation and respond preferentially to the ligands eotaxin and monocyte-derived chemokine (MDC). However, controversy arises when the in vivo significance of this distinct expression is discussed. To address the functional role of CCR3/eotaxin and CCR4/MDC during the in vivo recruitment of Th2 cells, we have transferred effector Th cells into naive mice to induce allergic airway disease. Tracking of these cells after repeated antigen challenge has established that both CCR3/eotaxin and CCR4/MDC axes contribute to the recruitment of Th2 cells to the lung, demonstrating the in vivo relevance of the expression of these receptors on Th2 cells. We have shown that involvement of the CCR3/eotaxin pathway is confined to early stages of the response in vivo, whereas repeated antigen stimulation results in the predominant use of the CCR4/MDC pathway. We propose that effector Th2 cells respond to both CCR3/eotaxin and CCR4/MDC pathways initially, but that a progressive increase in CCR4-positive cells results in the predominance of the CCR4/MDC axis in the long-term recruitment of Th2 cells in vivo.
PMCID: PMC2195756  PMID: 10637271
chemokines; effector T helper type 2 cells; migration; allergic airway disease; chemokine receptors
19.  Rhinovirus infection of allergen-sensitized and -challenged mice induces eotaxin release from functionally polarized macrophages 
Human rhinovirus is responsible for the majority of virus-induced asthma exacerbations. To determine the immunologic mechanisms underlying rhinovirus-induced asthma exacerbations, we combined mouse models of allergic airways disease and human rhinovirus infection. We inoculated ovalbumin-sensitized and challenged BALB/c mice with rhinovirus serotype 1B, a minor group strain capable of infecting mouse cells. Compared to sham-infected, ovalbumin-treated mice, virus-infected mice showed increased lung infiltration with neutrophils, eosinophils and macrophages, airway cholinergic hyperresponsiveness, and increased lung expression of cytokines including eotaxin-1/CCL11, IL-4, IL-13 and IFN-γ. Administration of anti-eotaxin-1 attenuated rhinovirus-induced airway eosinophilia and responsiveness. Immunohistochemistry showed eotaxin-1 in the lung macrophages of virus-infected, ovalbumin-treated mice, and confocal fluorescence microscopy revealed co-localization of rhinovirus, eotaxin-1 and IL-4 in CD68-positive cells. RV inoculation of lung macrophages from ovalbumin-treated, but not PBS-treated, mice induced expression of eotaxin-1, IL-4, and IL-13 ex vivo. Macrophages from ovalbumin-treated mice showed increased expression of arginase-1, Ym-1, Mgl-2 and IL-10, indicating a shift in macrophage activation status. Depletion of macrophages from ovalbumin-sensitized and -challenged mice reduced eosinophilic inflammation and airway hyperreactivity following RV infection. We conclude that augmented airway eosinophilic inflammation and hyperresponsiveness in RV-infected mice with allergic airways disease is directed in part by eotaxin-1. Airway macrophages from mice with allergic airways disease demonstrate a change in activation state characterized in part by altered eotaxin and IL-4 production in response to RV infection. These data provide a new paradigm to explain RV-induced asthma exacerbations.
doi:10.4049/jimmunol.1000286
PMCID: PMC3208235  PMID: 20644177
20.  Aspergillus antigen induces robust Th2 cytokine production, inflammation, airway hyperreactivity and fibrosis in the absence of MCP-1 or CCR2 
Respiratory Research  2004;5(1):12.
Background
Asthma is characterized by type 2 T-helper cell (Th2) inflammation, goblet cell hyperplasia, airway hyperreactivity, and airway fibrosis. Monocyte chemoattractant protein-1 (MCP-1 or CCL2) and its receptor, CCR2, have been shown to play important roles in the development of Th2 inflammation. CCR2-deficient mice have been found to have altered inflammatory and physiologic responses in some models of experimental allergic asthma, but the role of CCR2 in contributing to inflammation and airway hyperreactivity appears to vary considerably between models. Furthermore, MCP-1-deficient mice have not previously been studied in models of experimental allergic asthma.
Methods
To test whether MCP-1 and CCR2 are each required for the development of experimental allergic asthma, we applied an Aspergillus antigen-induced model of Th2 cytokine-driven allergic asthma associated with airway fibrosis to mice deficient in either MCP-1 or CCR2. Previous studies with live Aspergillus conidia instilled into the lung revealed that MCP-1 and CCR2 play a role in anti-fungal responses; in contrast, we used a non-viable Aspergillus antigen preparation known to induce a robust eosinophilic inflammatory response.
Results
We found that wild-type C57BL/6 mice developed eosinophilic airway inflammation, goblet cell hyperplasia, airway hyperreactivity, elevations in serum IgE, and airway fibrosis in response to airway challenge with Aspergillus antigen. Surprisingly, mice deficient in either MCP-1 or CCR2 had responses to Aspergillus antigen similar to those seen in wild-type mice, including production of Th2 cytokines.
Conclusion
We conclude that robust Th2-mediated lung pathology can occur even in the complete absence of MCP-1 or CCR2.
doi:10.1186/1465-9921-5-12
PMCID: PMC520828  PMID: 15377395
21.  Essential Role of Nuclear Factor κB in the Induction of Eosinophilia in Allergic Airway Inflammation  
The Journal of Experimental Medicine  1998;188(9):1739-1750.
The molecular mechanisms that contribute to an eosinophil-rich airway inflammation in asthma are unclear. A predominantly T helper 2 (Th2)-type cell response has been documented in allergic asthma. Here we show that mice deficient in the p50 subunit of nuclear factor (NF)- κB are incapable of mounting eosinophilic airway inflammation compared with wild-type mice. This deficiency was not due to a block in T cell priming or proliferation in the p50−/− mice, nor was it due to a defect in the expression of the cell adhesion molecules VCAM-1 and ICAM-1 that are required for the extravasation of eosinophils into the airways. The major defects in the p50−/− mice were the lack of production of the Th2 cytokine interleukin 5 and the chemokine eotaxin, which are crucial for proliferation and for differentiation and recruitment, respectively, of eosinophils into the asthmatic airway. Additionally, the p50−/− mice were deficient in the production of the chemokines macrophage inflammatory protein (MIP)-1α and MIP-1β that have been implicated in T cell recruitment to sites of inflammation. These results demonstrate a crucial role for NF-κB in vivo in the expression of important molecules that have been implicated in the pathogenesis of asthma.
PMCID: PMC2212522  PMID: 9802985
allergic inflammation; eosinophils; nuclear factor κB; interleukin 5; eotaxin
22.  Both Hematopoietic-Derived and Non–Hematopoietic-Derived β-Arrestin–2 Regulates Murine Allergic Airway Disease 
Allergic asthma, a major cause of morbidity and leading cause of hospitalizations, is an inflammatory disease orchestrated by T helper cells and characterized by the lung migration of eosinophils, which are important asthma effector cells. Lung migration of inflammatory cells requires, among other events, the chemokine receptor transduction of lung-produced inflammatory chemokines. Despite the widespread prevalence of this disease, the molecular mechanisms regulating chemokine production and receptor regulation in asthma are poorly understood. Previous work from our laboratory demonstrated that β-arrestin−2 positively regulates the development of allergic airway disease in a mouse model, partly through positive regulation of T-lymphocyte chemotaxis to the lung. However, β-arrestin−2 is expressed in many cell types, including other hematopoietic cells and lung structural cells, which are involved in the development and manifestation of allergic airway disease. To determine the cell types required for β-arrestin–2–dependent allergic inflammation, we generated bone marrow chimera mice. Using the ovalbumin murine model of allergic airway disease, we show that eosinophilic and lymphocytic inflammation is restored in chimeric mice, with expression of β-arrestin−2 exclusively on hematopoietic-derived cell types. In contrast, airway hyperresponsiveness is dependent on the expression of β-arrestin−2 in structural cells. Our data demonstrate that the expression of β-arrestin−2 in at least two divergent cell types contributes to the pathogenesis of allergic airway disease.
doi:10.1165/rcmb.2009-0198OC
PMCID: PMC2933545  PMID: 19805483
asthma; bone marrow transplant; β-arrestin-2; airway hyperresponsiveness
23.  Low dose of Mycoplasma pneumoniae (Mp) infection enhances an established allergic inflammation in mice: Role of prostaglandin E2 (PGE2) pathway 
Summary
Background
Over 40% of chronic stable asthma patients have evidence of respiratory Mycoplasma pneumoniae (Mp) infection as detected by polymerase chain reaction (PCR), but not by serology and culture, suggesting a low-level Mp involved in chronic asthma. However, the role of such a low-level Mp infection in regulation of allergic inflammation remains unknown.
Objective
To determine the impact of a low-level Mp infection in mice with established airway allergic inflammation on allergic responses such as eosinophilia and chemokine eotaxin-2, and the underlying mechanisms (i.e., prostaglandin E2 [PGE2] pathway) since PGE2 inhalation before allergen challenge suppressed eosinophil infiltration in human airways.
Methods
BALB/c mouse models of ovalbumin (OVA)-induced allergic asthma with an ensuing low-dose or high-dose Mp were used to assess IL-4 expression, BAL eosinophil, eotaxin-2 and PGE2 levels, and lung mRNA levels of microsomal prostaglandin E synthase-1 (mPGES-1). Primary alveolar macrophages (pAMs) from naïve BALB/c mice were cultured to determine if Mp-induced PGE2 or exogenous PGE2 down-regulates IL-4/IL-13-induced eotaxin-2.
Results
Low-dose Mp in allergic mice significantly enhanced IL-4 and eotaxin-2, and moderately promoted lung eosinophilia, whereas high-dose Mp significantly reduced lung eosinophilia and tended to decrease IL-4 and eotaxin-2. Moreover, in both OVA-naïve and allergic mice, lung mPGES-1 mRNA and BAL PGE2 levels were elevated in mice infected with high-dose, but not low-dose Mp. In pAMs, IL-4/IL-13 significantly increased eotaxin-2, which was reduced by Mp infection accompanied by dose-dependent PGE2 induction. Exogenous PGE2 inhibited IL-4/IL-13-induced eotaxin-2 in a dose-dependent manner.
Conclusions
This study highlights a novel concept on how differing bacterial loads in the lung modify the established allergic airway inflammation, and thus interact with an allergen to further induce Th2 responses. That is: Unlike high-level Mp, low-level Mp fails to effectively induce PGE2 to down-regulate allergic responses (e.g., eotaxin-2), thus maintaining or even worsening allergic inflammation in asthmatic airways.
doi:10.1111/j.1365-2222.2009.03309.x
PMCID: PMC2784117  PMID: 19552640
asthma; Mycoplasma pneumoniae; eotaxin-2; PGE2; alveolar macrophages
24.  Allergen-Induced Eotaxin-rich Pro-angiogenic Bone Marrow Progenitors: A Blood Borne Cellular Envoy for Lung Eosinophilia 
Background
Eosinophilic inflammation is closely related to angiogenesis in asthmatic airway remodeling. In ovalbumin-sensitized mice, bone marrow-derived pro-angiogenic endothelial progenitor cells (EPCs) are rapidly recruited into the lungs after ovalbumin aerosol challenge, and promptly followed by mobilization and recruitment of eosinophils.
Objective
We hypothesized that bone marrow-derived EPCs initiate the recruitment of eosinophils through expression of eosinophil chemoattractant eotaxin-1.
Methods
EPCs were isolated from ovalbumin murine model of allergic airway inflammation and from asthma patients. Endothelial and smooth muscle cells were isolated from mice. Eotaxin-1 expression was analyzed by immunofluorescence, real-time PCR or by ELISA. In vivo recruitment of eosinophils by EPCs was analyzed in mice.
Results
Circulating EPCs of asthmatic individuals had higher levels of eotaxin-1 as compared to controls. In the murine model, ovalbumin allergen exposure augmented eotaxin-1 mRNA and protein levels in EPCs. The EPCs from ovalbumin-sensitized and challenged mice released high levels of eotaxin-1 upon contact with lung endothelial cells from sensitized and challenged mice, but not from control animals, and not upon contact with cardiac or hepatic endothelial cells from sensitized and challenged mice. Intranasal administration of the eotaxin-rich media overlying cultures of EPCs caused recruitment into lungs, confirming functional chemoattractant activity.
Conclusions
Bone marrow-derived EPCs are early responders to environmental allergen exposures, and initiate a parallel switch to a pro-angiogenic and pro-eosinophilic environment in the asthmatic lungs.
doi:10.1016/j.jaci.2010.01.017
PMCID: PMC2850950  PMID: 20227754
eosinophils; allergy; airway inflammation; angiogenesis; bone marrow; eotaxin
25.  Constitutive and allergen-induced expression of eotaxin mRNA in the guinea pig lung 
The Journal of Experimental Medicine  1995;181(3):1211-1216.
Eotaxin is a member of the C-C family of chemokines and is related during antigen challenge in a guinea pig model of allergic airway inflammation (asthma). Consistent with its putative role in eosinophilic inflammation, eotaxin induces the selective infiltration of eosinophils when injected into the lung and skin. Using a guinea pig lung cDNA library, we have cloned full-length eotaxin cDNA. The cDNA encodes a protein of 96 amino acids, including a putative 23-amino acid hydrophobic leader sequence, followed by 73 amino acids composing the mature active eotaxin protein. The protein-coding region of this cDNA is 73, 71, 50, and 48% identical in nucleic acid sequence to those of human macrophage chemoattractant protein (MCP) 3, MCP-1, macrophage inflammatory protein (MIP) 1 alpha, and RANTES, respectively. Analysis of genomic DNA suggested that there is a single eotaxin gene in guinea pig which is apparently conserved in mice. High constitutive levels of eotaxin mRNA expression were observed in the lung, while the intestines, stomach, spleen, liver, heart, thymus, testes, and kidney expressed lower levels. To determine if eotaxin mRNA levels are elevated during allergen-induced eosinophilic airway inflammation, ovalbumin (OVA)-sensitized guinea pigs were challenged with aerosolized antigen. Compared with the lungs from saline-challenged animals, eotaxin mRNA levels increased sixfold within 3 h and returned to baseline by 6 h. Thus, eotaxin mRNA levels are increased in response to allergen challenge during the late phase response. The identification of constitutive eotaxin mRNA expression in multiple tissues suggests that in addition to regulating airway eosinophilia, eotaxin is likely to be involved in eosinophil recruitment into other tissues as well as in baseline tissue homing.
PMCID: PMC2191932  PMID: 7869037

Results 1-25 (547292)