PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1414136)

Clipboard (0)
None

Related Articles

1.  Plasma Chemokine signature correlates with lung goblet cell hyperplasia in smokers with and without chronic obstructive pulmonary disease 
BMC Pulmonary Medicine  2015;15:111.
Background
Chronic Obstructive Pulmonary Disease (COPD) is characterized by lung and systemic inflammation as well as airway goblet cell hyperplasia (GCH). Mucin production is activated in part by stimulation of the epidermal growth factor (EGF) receptor pathway through neutrophils and macrophages. How circulating cytokine levels relate to GCH is not clear.
Methods
We performed phlebotomy and bronchoscopy on 25 subjects (six nonsmokers, 11 healthy smokers, and eight COPD subjects FEV1 30–60 %). Six endobronchial biopsies per subject were performed. GCH was measured by measuring mucin volume density (MVD) using stereological techniques on periodic acid fast-Schiff stained samples. We measured the levels of chemokines CXCL8/IL-8, CCL2/MCP-1, CCL7/MCP-3, CCL22/MCD, CCL3/MIP-1α, and CCL4/MIP-1β, and the cytokines IL-1, IL-4, IL-6, IL-9, IL-17, EGF, and vascular endothelial growth factor (VEGF). Differences between groups were assessed using one-way ANOVA, t test, or Chi squared test. Post hoc tests after ANOVA were performed using Bonferroni correction.
Results
MVD was highest in healthy smokers (27.78 ± 10.24 μL/mm2) compared to COPD subjects (16.82 ± 16.29 μL/mm2, p = 0.216) and nonsmokers (3.42 ± 3.07 μL/mm2, p <0.0001). Plasma CXCL8 was highest in healthy smokers (11.05 ± 8.92 pg/mL) compared to nonsmokers (1.20 ± 21.92 pg/mL, p = 0.047) and COPD subjects (6.01 ± 5.90 pg/mL, p = 0.366). CCL22 and CCL4 followed the same trends. There were no significant differences in the other cytokines measured. When the subjects were divided into current smokers (healthy smokers and COPD current smokers) and non/ex-smokers (nonsmokers and COPD ex-smokers), plasma CXCL8, CCL22, CCL4, and MVD were greater in current smokers. No differences in other cytokines were seen. Plasma CXCL8 moderately correlated with MVD (r = 0.552, p = 0.003).
Discussion
In this small cohort, circulating levels of the chemokines CXCL8, CCL4, and CCL22, as well as MVD, attain the highest levels in healthy smokers compared to nonsmokers and COPD subjects. These findings seem to be driven by current smoking and are independent of airflow obstruction.
Conclusions
These data suggest that smoking upregulates a systemic pattern of neutrophil and macrophage chemoattractant expression, and this correlates significantly with the development of goblet cell hyperplasia.
doi:10.1186/s12890-015-0103-2
PMCID: PMC4589974  PMID: 26424214
Mucin; Chronic obstructive pulmonary disease; Goblet cell hyperplasia; Chemokine; Neutrophil; Macrophage
2.  Association of plasma sRAGE, but not esRAGE with lung function impairment in COPD 
Respiratory Research  2014;15(1):24.
Rationale
Plasma soluble Receptor for Advanced Glycation End Product (sRAGE) is considered as a biomarker in COPD. The contribution of endogenous sRAGE (esRAGE) to the pool of plasma sRAGE and the implication of both markers in COPD pathogenesis is however not clear yet. The aim of the current study was therefore to measure plasma levels of esRAGE comparative to total sRAGE in patients with COPD and a control group. Further, we established the relations of esRAGE and total sRAGE with disease specific characteristics such as lung function and DLCO, and with different circulating AGEs.
Methods
Plasma levels of esRAGE and sRAGE were measured in an 88 patients with COPD and in 55 healthy controls. FEV1 (%predicted) and FEV1/VC (%) were measured in both groups; DLCO (%predicted) was measured in patients only. In this study population we previously reported that the AGE Nϵ-(carboxymethyl) lysine (CML) was decreased, Nϵ-(carboxyethyl) lysine (CEL) increased and pentosidine was not different in plasma of COPD patients compared to controls.
Results
Plasma esRAGE (COPD: 533.9 ± 412.4, Controls: 848.7 ± 690.3 pg/ml; p = 0.000) was decreased in COPD compared to controls. No significant correlations were observed between plasma esRAGE levels and lung function parameters or plasma AGEs. A positive correlation was present between esRAGE and total sRAGE levels in the circulation. Confirming previous findings, total sRAGE (COPD: 512.6 ± 403.8, Controls: 1834 ± 804.2 pg/ml; p < 0.001) was lower in patients compared to controls and was positively correlated FEV1 (r = 0.235, p = 0.032), FEV1/VC (r = 0.218, p = 0.047), and DLCO (r = 0.308, p = 0.006). sRAGE furthermore did show a significant positive association with CML (r = 0.321, p = 0.003).
Conclusion
Although plasma esRAGE is decreased in COPD patients compared to controls, only total sRAGE showed a significant and independent association with FEV1, FEV1/VC and DLCO, indicating that total sRAGE but not esRAGE may serve as marker of COPD disease state and severity.
doi:10.1186/1465-9921-15-24
PMCID: PMC3944004  PMID: 24564838
sRAGE; esRAGE; FEV1; COPD
3.  Systemic Biomarkers of Neutrophilic Inflammation, Tissue Injury and Repair in COPD Patients with Differing Levels of Disease Severity 
PLoS ONE  2012;7(6):e38629.
The identification and validation of biomarkers to support the assessment of novel therapeutics for COPD continues to be an important area of research. The aim of the current study was to identify systemic protein biomarkers correlated with measures of COPD severity, as well as specific protein signatures associated with comorbidities such as metabolic syndrome. 142 protein analytes were measured in serum of 140 patients with stable COPD, 15 smokers without COPD and 30 non-smoking controls. Seven analytes (sRAGE, EN-RAGE, NGAL, Fibrinogen, MPO, TGF-α and HB-EGF) showed significant differences between severe/very severe COPD, mild/moderate COPD, smoking and non-smoking control groups. Within the COPD subjects, univariate and multivariate analyses identified analytes significantly associated with FEV1, FEV1/FVC and DLCO. Most notably, a set of 5 analytes (HB-EGF, Fibrinogen, MCP-4, sRAGE and Sortilin) predicted 21% of the variability in DLCO values. To determine common functions/pathways, analytes were clustered in a correlation network by similarity of expression profile. While analytes related to neutrophil function (EN-RAGE, NGAL, MPO) grouped together to form a cluster associated with FEV1 related parameters, analytes related to the EGFR pathway (HB-EGF, TGF-α) formed another cluster associated with both DLCO and FEV1 related parameters. Associations of Fibrinogen with DLCO and MPO with FEV1/FVC were stronger in patients without metabolic syndrome (r  =  −0.52, p  = 0.005 and r  =  −0.61, p  = 0.023, respectively) compared to patients with coexisting metabolic syndrome (r  =  −0.25, p  = 0.47 and r  =  −0.15, p  = 0.96, respectively), and may be driving overall associations in the general cohort. In summary, our study has identified known and novel serum protein biomarkers and has demonstrated specific associations with COPD disease severity, FEV1, FEV1/FVC and DLCO. These data highlight systemic inflammatory pathways, neutrophil activation and epithelial tissue injury/repair processes as key pathways associated with COPD.
doi:10.1371/journal.pone.0038629
PMCID: PMC3373533  PMID: 22701684
4.  Comparison of clinical features between non-smokers with COPD and smokers with COPD: a retrospective observational study 
Background
Smoking is a major risk factor for chronic obstructive pulmonary disease (COPD); however, the similarities and differences in clinical presentation between smokers and nonsmokers are not fully described in patients with COPD. This study was designed to address this issue in a general teaching hospital in the People’s Republic of China.
Methods
The medical records of patients hospitalized with a lung mass for further evaluation at Zhongshan Hospital, Fudan University, from January 2006 to December 2010 were reviewed and the data of interest were collected. The definition of COPD was according to Global Initiative for Chronic Obstructive Lung Disease (GOLD) spirometric criteria. Participants who had a previous exacerbation within 4 weeks of admission, airflow limitation due to abnormalities in the large airways, or with other pulmonary diseases were excluded. Included subjects were divided into nonsmokers with COPD and smokers with COPD by a cutoff of a 5 pack-year smoking history.
Results
A total of 605 subjects were included in the final analysis. The average age was 64.8±8.5 years and 62.0% (375/605) were smokers. Eighty percent of the patients had mild to moderate disease (GOLD grade 1–2). Age and years with COPD were comparable between the two groups. Compared with smokers with COPD, nonsmokers with COPD were more likely to be female, reported less chronic cough and sputum, have less emphysema on radiologic examination, and higher measures of forced expiratory volume in the first second percent predicted (FEV1), forced expiratory volume in one second/forced vital capacity (FEV1/FVC%) percent predicted, maximal voluntary ventilation percent predicted, diffusing capacity of lung (DLCO) percent predicted, and DLCO/alveolar volume percent predicted, with lower levels of residual volume percent predicted and residual volume/total lung capacity percent predicted. There were no significant differences between the two groups with regard to distribution of disease severity, vital capacity percent predicted, total lung capacity percent predicted, PaO2, PaCO2, modified Medical Research Council dyspnea score, wheezing, airway reversibility, and comorbidities. Smoking amount (pack-years) was correlated negatively with FEV1 percent predicted, FEV1/FVC% percent predicted, inspiratory capacity percent predicted, inspiratory capacity/total lung capacity percent predicted, and DLCO percent predicted, and correlated positively with GOLD grade and symptoms.
Conclusion
Non-smokers with COPD had less impairment in airflow limitation and gas exchange, and a lower prevalence of emphysema, chronic cough, and sputum compared with their smoking counterparts. Tobacco cessation is warranted in smokers with COPD.
doi:10.2147/COPD.S52416
PMCID: PMC3890400  PMID: 24426780
chronic obstructive pulmonary disease; smokers; non-smokers; lung function; symptoms; emphysema
5.  Soluble receptor for advanced glycation end-products and progression of airway disease 
Background
The receptor for advanced glycation end-products (RAGE) is highly expressed in the lung, where it is believed to have a homeostatic role. Reduced plasma levels of soluble RAGE (sRAGE) have been reported in patients with chronic obstructive pulmonary disease (COPD). The aim of the present study was to evaluate the association of plasma sRAGE levels with a longitudinal decline of lung function. We have also measured plasma levels of high mobility group box 1 (HMGB1), a RAGE ligand which has been associated with chronic inflammatory diseases including COPD.
Methods
Baseline plasma concentrations of sRAGE and HMGB1 were measured in non-smokers (n = 32), smokers without COPD (n = 212), and smokers with COPD (n = 51), and the associations of the plasma sRAGE and HMGB1 levels with longitudinal declines of lung function during a 4-year follow-up period were analysed.
Results
The plasma levels of sRAGE were significantly lower in smokers without COPD and in smokers with COPD, as compared to those of non-smokers. Plasma sRAGE levels positively correlated with FVC and FEV1 and inversely correlated with BMI and pack-years. Lower sRAGE levels were associated with greater declines of FEV1/FVC over 4 years in all participants. Moreover, multivariate regression analysis indicated that the baseline plasma sRAGE concentration was an independent predictor of FEV1/FVC decline in all groups. A subgroup analysis showed that decreased sRAGE levels are significantly associated with a more rapid decline of FEV1/FVC in smokers with COPD. There was no significant correlation between plasma HMGB1 levels and longitudinal decline of lung function.
Conclusions
Lower plasma concentrations of sRAGE were associated with greater progression of airflow limitations over time, especially in smokers with COPD, suggesting that RAGE might have a protective role in the lung.
doi:10.1186/1471-2466-14-68
PMCID: PMC4021457  PMID: 24758342
6.  Budesonide/Formoterol Enhances the Expression of Pro Surfactant Protein-B in Lungs of COPD Patients 
PLoS ONE  2013;8(12):e83881.
Rationale & Aim
Pulmonary surfactants are essential components of lung homeostasis. In chronic obstructive pulmonary disease (COPD), surfactant expression decreases in lungs whereas, there is a paradoxical increase in protein expression in plasma. The latter has been associated with poor health outcomes in COPD. The purpose of this study was to determine the relationship of surfactants and other pneumoproteins in bronchoalveolar lavage (BAL) fluid and plasma to airflow limitation and the effects of budesonide/formoterol on this relationship.
Methods
We recruited (clinical trials.gov identifier: NCT00569712) 7 smokers without COPD and 30 ex and current smokers with COPD who were free of exacerbations for at least 4 weeks. All subjects were treated with budesonide/formoterol 400/12 µg twice a day for 4 weeks. BAL fluid and plasma samples were obtained at baseline and the end of the 4 weeks. We measured lung-predominant pneumoproteins: pro-Surfactant Protein-B (pro-SFTPB), Surfactant Protein-D (SP-D), Club Cell Secretory Protein-16 (CCSP-16) and Pulmonary and Activation-Regulated Chemokine (PARC/CCL-18) in BAL fluid and plasma.
Results
BAL Pro-SFTPB concentrations had the strongest relationship with airflow limitation as measured by FEV1/FVC (Spearman rho = 0.509; p = 0.001) and FEV1% of predicted (Spearman rho =  0.362; p = 0.028). Plasma CCSP-16 concentrations were also significantly related to airflow limitation (Spearman rho = 0.362; p = 0.028 for FEV1% of predicted). The other biomarkers in BAL fluid or plasma were not significantly associated with airflow limitation. In COPD subjects, budesonide/formoterol significantly increased the BAL concentrations of pro-SFTPB by a median of 62.46 ng/ml (p = 0.022) or 48.7% from baseline median value.
Conclusion
Increased severity of COPD is associated with reduced Pro-SFTPB levels in BAL fluid. Short-term treatment with budesonide/formoterol increases these levels in BAL fluid. Long term studies will be needed to determine the clinical relevance of this observation.
doi:10.1371/journal.pone.0083881
PMCID: PMC3873417  PMID: 24386300
7.  Ttiotropium increases cytosolic muscarinic M3 receptors and acetylated H3 histone proteins in induced sputum cells of COPD patients 
European Journal of Medical Research  2010;15(Suppl 2):64-67.
Objective
Chronic obstructive pulmonary disease (COPD) is characterized by irreversible progressive airflow limitation related to tobacco smoking. This limitation is caused by chronic inflammation of the airways and lung parenchyma and is associated with increased activity of parasympathetic system. The most effective bronchodilators in COPD are muscarinic receptor antagonists (MRA), which reverse, at least in part, compromised respiratory function. MRA also contribute to control inflammatory processes via interactions with inflammatory signaling molecules. The use of the long-acting cholinolytic bronchodilatator - tiotropium, with high affinity to M3 receptors, is suggested as a first line maintenance treatment in COPD patients.
Materials and methods
In this study we assessed M3 receptor protein expression in induced sputum of 27 stable COPD patients before and after therapy consisting of 18 μg once daily tiotropium for 12 weeks. Lung function tests including spirometry, lung volumes, and DLCO were performed before and after therapy in all COPD patients. The patients were subjected to the sputum induction procedures before and after therapy. Sputum cells were isolated, sample-specific cell profiles were characterized, and the cells were processed to isolate pure cytosolic fractions. Cytosolic M3 protein and HDAC2 levels and nuclear acetylated histone H3 (AcH3) expression was quantified using specific antibodies against human proteins and Western blot with enhanced luminescence detection.
Results
Therapy significantly increased the mean forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) volume (P < 0.05). The mean expression of M3 protein was higher by 37% after therapy (P < 0.05), HDAC2 expression was not altered, while AcH3 level was increased by about 90% (P < 0.01), compared with the corresponding data before therapy. HDAC2 expression before therapy was positively correlated with AcH3 expression (r = 0.74), while after therapy no correlation was detected. FEV1, FCV, and cytosolic M3 protein expression did not correlate with other biochemical parameters tested.
Conclusions
Twelve weeks of tiotropium therapy in COPD patients improves clinical indices of lung function and involves alterations in sputum cell chromatin acetylation and also increased cholinergic M3 receptor internalization.
doi:10.1186/2047-783X-15-S2-64
PMCID: PMC4360339  PMID: 21147623
COPD; chromatin; histone acetylation; M3 receptors; tiotropium
8.  Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this analysis was to determine the effectiveness of the influenza vaccination and the pneumococcal vaccination in patients with chronic obstructive pulmonary disease (COPD) in reducing the incidence of influenza-related illness or pneumococcal pneumonia.
Clinical Need: Condition and Target Population
Influenza Disease
Influenza is a global threat. It is believed that the risk of a pandemic of influenza still exists. Three pandemics occurred in the 20th century which resulted in millions of deaths worldwide. The fourth pandemic of H1N1 influenza occurred in 2009 and affected countries in all continents.
Rates of serious illness due to influenza viruses are high among older people and patients with chronic conditions such as COPD. The influenza viruses spread from person to person through sneezing and coughing. Infected persons can transfer the virus even a day before their symptoms start. The incubation period is 1 to 4 days with a mean of 2 days. Symptoms of influenza infection include fever, shivering, dry cough, headache, runny or stuffy nose, muscle ache, and sore throat. Other symptoms such as nausea, vomiting, and diarrhea can occur.
Complications of influenza infection include viral pneumonia, secondary bacterial pneumonia, and other secondary bacterial infections such as bronchitis, sinusitis, and otitis media. In viral pneumonia, patients develop acute fever and dyspnea, and may further show signs and symptoms of hypoxia. The organisms involved in bacterial pneumonia are commonly identified as Staphylococcus aureus and Hemophilus influenza. The incidence of secondary bacterial pneumonia is most common in the elderly and those with underlying conditions such as congestive heart disease and chronic bronchitis.
Healthy people usually recover within one week but in very young or very old people and those with underlying medical conditions such as COPD, heart disease, diabetes, and cancer, influenza is associated with higher risks and may lead to hospitalization and in some cases death. The cause of hospitalization or death in many cases is viral pneumonia or secondary bacterial pneumonia. Influenza infection can lead to the exacerbation of COPD or an underlying heart disease.
Streptococcal Pneumonia
Streptococcus pneumoniae, also known as pneumococcus, is an encapsulated Gram-positive bacterium that often colonizes in the nasopharynx of healthy children and adults. Pneumococcus can be transmitted from person to person during close contact. The bacteria can cause illnesses such as otitis media and sinusitis, and may become more aggressive and affect other areas of the body such as the lungs, brain, joints, and blood stream. More severe infections caused by pneumococcus are pneumonia, bacterial sepsis, meningitis, peritonitis, arthritis, osteomyelitis, and in rare cases, endocarditis and pericarditis.
People with impaired immune systems are susceptible to pneumococcal infection. Young children, elderly people, patients with underlying medical conditions including chronic lung or heart disease, human immunodeficiency virus (HIV) infection, sickle cell disease, and people who have undergone a splenectomy are at a higher risk for acquiring pneumococcal pneumonia.
Technology
Influenza and Pneumococcal Vaccines
Trivalent Influenza Vaccines in Canada
In Canada, 5 trivalent influenza vaccines are currently authorized for use by injection. Four of these are formulated for intramuscular use and the fifth product (Intanza®) is formulated for intradermal use.
The 4 vaccines for intramuscular use are:
Fluviral (GlaxoSmithKline), split virus, inactivated vaccine, for use in adults and children ≥ 6 months;
Vaxigrip (Sanofi Pasteur), split virus inactivated vaccine, for use in adults and children ≥ 6 months;
Agriflu (Novartis), surface antigen inactivated vaccine, for use in adults and children ≥ 6 months; and
Influvac (Abbott), surface antigen inactivated vaccine, for use in persons ≥ 18 years of age.
FluMist is a live attenuated virus in the form of an intranasal spray for persons aged 2 to 59 years. Immunization with current available influenza vaccines is not recommended for infants less than 6 months of age.
Pneumococcal Vaccine
Pneumococcal polysaccharide vaccines were developed more than 50 years ago and have progressed from 2-valent vaccines to the current 23-valent vaccines to prevent diseases caused by 23 of the most common serotypes of S pneumoniae. Canada-wide estimates suggest that approximately 90% of cases of pneumococcal bacteremia and meningitis are caused by these 23 serotypes. Health Canada has issued licenses for 2 types of 23-valent vaccines to be injected intramuscularly or subcutaneously:
Pneumovax 23® (Merck & Co Inc. Whitehouse Station, NJ, USA), and
Pneumo 23® (Sanofi Pasteur SA, Lion, France) for persons 2 years of age and older.
Other types of pneumococcal vaccines licensed in Canada are for pediatric use. Pneumococcal polysaccharide vaccine is injected only once. A second dose is applied only in some conditions.
Research Questions
What is the effectiveness of the influenza vaccination and the pneumococcal vaccination compared with no vaccination in COPD patients?
What is the safety of these 2 vaccines in COPD patients?
What is the budget impact and cost-effectiveness of these 2 vaccines in COPD patients?
Research Methods
Literature search
Search Strategy
A literature search was performed on July 5, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2000 to July 5, 2010. The search was updated monthly through the AutoAlert function of the search up to January 31, 2011. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Articles with an unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established. Data extraction was carried out by the author.
Inclusion Criteria
studies comparing clinical efficacy of the influenza vaccine or the pneumococcal vaccine with no vaccine or placebo;
randomized controlled trials published between January 1, 2000 and January 31, 2011;
studies including patients with COPD only;
studies investigating the efficacy of types of vaccines approved by Health Canada;
English language studies.
Exclusion Criteria
non-randomized controlled trials;
studies investigating vaccines for other diseases;
studies comparing different variations of vaccines;
studies in which patients received 2 or more types of vaccines;
studies comparing different routes of administering vaccines;
studies not reporting clinical efficacy of the vaccine or reporting immune response only;
studies investigating the efficacy of vaccines not approved by Health Canada.
Outcomes of Interest
Primary Outcomes
Influenza vaccination: Episodes of acute respiratory illness due to the influenza virus.
Pneumococcal vaccination: Time to the first episode of community-acquired pneumonia either due to pneumococcus or of unknown etiology.
Secondary Outcomes
rate of hospitalization and mechanical ventilation
mortality rate
adverse events
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses. The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Efficacy of the Influenza Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The influenza vaccination was associated with significantly fewer episodes of influenza-related acute respiratory illness (ARI). The incidence density of influenza-related ARI was:
All patients: vaccine group: (total of 4 cases) = 6.8 episodes per 100 person-years; placebo group: (total of 17 cases) = 28.1 episodes per 100 person-years, (relative risk [RR], 0.2; 95% confidence interval [CI], 0.06−0.70; P = 0.005).
Patients with severe airflow obstruction (forced expiratory volume in 1 second [FEV1] < 50% predicted): vaccine group: (total of 1 case) = 4.6 episodes per 100 person-years; placebo group: (total of 7 cases) = 31.2 episodes per 100 person-years, (RR, 0.1; 95% CI, 0.003−1.1; P = 0.04).
Patients with moderate airflow obstruction (FEV1 50%−69% predicted): vaccine group: (total of 2 cases) = 13.2 episodes per 100 person-years; placebo group: (total of 4 cases) = 23.8 episodes per 100 person-years, (RR, 0.5; 95% CI, 0.05−3.8; P = 0.5).
Patients with mild airflow obstruction (FEV1 ≥ 70% predicted): vaccine group: (total of 1 case) = 4.5 episodes per 100 person-years; placebo group: (total of 6 cases) = 28.2 episodes per 100 person-years, (RR, 0.2; 95% CI, 0.003−1.3; P = 0.06).
The Kaplan-Meier survival analysis showed a significant difference between the vaccinated group and the placebo group regarding the probability of not acquiring influenza-related ARI (log-rank test P value = 0.003). Overall, the vaccine effectiveness was 76%. For categories of mild, moderate, or severe COPD the vaccine effectiveness was 84%, 45%, and 85% respectively.
With respect to hospitalization, fewer patients in the vaccine group compared with the placebo group were hospitalized due to influenza-related ARIs, although these differences were not statistically significant. The incidence density of influenza-related ARIs that required hospitalization was 3.4 episodes per 100 person-years in the vaccine group and 8.3 episodes per 100 person-years in the placebo group (RR, 0.4; 95% CI, 0.04−2.5; P = 0.3; log-rank test P value = 0.2). Also, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD.
Fewer patients in the vaccine group compared with the placebo group required mechanical ventilation due to influenza-related ARIs. However, these differences were not statistically significant. The incidence density of influenza-related ARIs that required mechanical ventilation was 0 episodes per 100 person-years in the vaccine group and 5 episodes per 100 person-years in the placebo group (RR, 0.0; 95% CI, 0−2.5; P = 0.1; log-rank test P value = 0.4). In addition, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD. The effectiveness of the influenza vaccine in preventing influenza-related ARIs and influenza-related hospitalization was not related to age, sex, severity of COPD, smoking status, or comorbid diseases.
safety
Overall, significantly more patients in the vaccine group than the placebo group experienced local adverse reactions (vaccine: 17 [27%], placebo: 4 [6%]; P = 0.002). Significantly more patients in the vaccine group than the placebo group experienced swelling (vaccine 4, placebo 0; P = 0.04) and itching (vaccine 4, placebo 0; P = 0.04). Systemic reactions included headache, myalgia, fever, and skin rash and there were no significant differences between the 2 groups for these reactions (vaccine: 47 [76%], placebo: 51 [81%], P = 0.5).
With respect to lung function, dyspneic symptoms, and exercise capacity, there were no significant differences between the 2 groups at 1 week and at 4 weeks in: FEV1, maximum inspiratory pressure at residual volume, oxygen saturation level of arterial blood, visual analogue scale for dyspneic symptoms, and the 6 Minute Walking Test for exercise capacity.
There was no significant difference between the 2 groups with regard to the probability of not acquiring total ARIs (influenza-related and/or non-influenza-related); (log-rank test P value = 0.6).
Summary of Efficacy of the Pneumococcal Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The Kaplan-Meier survival analysis showed no significant differences between the group receiving the penumoccocal vaccination and the control group for time to the first episode of community-acquired pneumonia due to pneumococcus or of unknown etiology (log-rank test 1.15; P = 0.28). Overall, vaccine efficacy was 24% (95% CI, −24 to 54; P = 0.33).
With respect to the incidence of pneumococcal pneumonia, the Kaplan-Meier survival analysis showed a significant difference between the 2 groups (vaccine: 0/298; control: 5/298; log-rank test 5.03; P = 0.03).
Hospital admission rates and median length of hospital stays were lower in the vaccine group, but the difference was not statistically significant. The mortality rate was not different between the 2 groups.
Subgroup Analysis
The Kaplan-Meier survival analysis showed significant differences between the vaccine and control groups for pneumonia due to pneumococcus and pneumonia of unknown etiology, and when data were analyzed according to subgroups of patients (age < 65 years, and severe airflow obstruction FEV1 < 40% predicted). The accumulated percentage of patients without pneumonia (due to pneumococcus and of unknown etiology) across time was significantly lower in the vaccine group than in the control group in patients younger than 65 years of age (log-rank test 6.68; P = 0.0097) and patients with a FEV1 less than 40% predicted (log-rank test 3.85; P = 0.0498).
Vaccine effectiveness was 76% (95% CI, 20−93; P = 0.01) for patients who were less than 65 years of age and −14% (95% CI, −107 to 38; P = 0.8) for those who were 65 years of age or older. Vaccine effectiveness for patients with a FEV1 less than 40% predicted and FEV1 greater than or equal to 40% predicted was 48% (95% CI, −7 to 80; P = 0.08) and −11% (95% CI, −132 to 47; P = 0.95), respectively. For patients who were less than 65 years of age (FEV1 < 40% predicted), vaccine effectiveness was 91% (95% CI, 35−99; P = 0.002).
Cox modelling showed that the effectiveness of the vaccine was dependent on the age of the patient. The vaccine was not effective in patients 65 years of age or older (hazard ratio, 1.53; 95% CI, 0.61−a2.17; P = 0.66) but it reduced the risk of acquiring pneumonia by 80% in patients less than 65 years of age (hazard ratio, 0.19; 95% CI, 0.06−0.66; P = 0.01).
safety
No patients reported any local or systemic adverse reactions to the vaccine.
PMCID: PMC3384373  PMID: 23074431
9.  Expression of chemokines in the CSF and correlation with clinical disease activity in patients with multiple sclerosis 
Objective: To define the chemokine profile in the CSF of patients with multiple sclerosis (MS) and compare it with three control groups; patients with benign headache (headache), non-inflammatory neurological diseases (NIND), and other inflammatory neurological diseases (IND). In addition, the correlations of CSF chemokine concentrations with chemokine receptor expression on CSF CD4+ T cells and with clinical disease activity were assessed.
Methods: Forty three patients with MS, 24 with IND, 44 with NIND, and 12 with benign headache undergoing diagnostic or therapeutic lumbar puncture were included. Supernatant fluid from CSF was analysed for four ß (CCL2, CCL3, CCL4, CCL5) and two α (CXCL9, CXCL10)chemokines by enzyme linked immunosorbent assay (ELISA). Chemokine receptors CCR3, CCR5, and CXCR3 on CD4+ T cells from eight patients with MS were analysed using directly conjugated fluorescent labelled monoclonal antibodies and flow cytometry.
Results: CXCL10, formerly interferon-γ inducible protein-10 (IP-10), was significantly increased and CCL2, formerly monocyte chemoattractant protein-1 (MCP-1), was significantly reduced in the CSF of patients with MS and IND compared with those with benign headache and NIND. Concentrations of CXCL10 were significantly greater in patients with relapsing-remitting compared with secondary progressive MS and correlated significantly with CXCR3 expression on CSF CD4+ T cells from patients with MS. Concentrations of CXCL10 decreased and CCL2 concentrations increased as time from the last relapse increased in patients with MS.
Conclusion: Increased CXCL10 and decreased CCL2 concentrations in the CSF are associated with relapses in MS. Although serial values from individual patients were not available, this study suggests that CXCL10 and CCL2 may return towards baseline concentrations after a relapse. Correlation of CXCL10 with CD4+ T cell expression of CXCR3 was consistent with its chemoattractant role for activated lymphocytes. Thus CXCL10 neutralising agents and CXCR3 receptor antagonists may be therapeutic targets in MS.
doi:10.1136/jnnp.72.4.498
PMCID: PMC1737819  PMID: 11909910
10.  Interferon Inducible Chemokines Correlate with Disease Severity in Systemic Sclerosis 
Arthritis and rheumatism  2013;65(1):226-235.
Objective
To measure interferon (IFN) inducible chemokines in plasma of patients with systemic sclerosis (SSc) and investigate their correlation with disease severity.
Methods
We examined the correlation of IFN-inducible chemokines, IFNγ-inducible protein-10 (IP-10/CXCL10), IFN-inducible T cell alpha chemoattractant (I-TAC/CXCL11), and monocyte chemoattractant protein-1 (MCP-1/CCL2) with the IFN gene expression signature. We generated an IFN-inducible chemokine score with the correlated chemokines, IP-10 and I-TAC and compared it in 266 SSc patients enrolled in the GENISOS cohort to that of 97 matched controls. Subsequently, the correlation between the baseline IFN-inducible chemokine score and markers of disease severity was assessed. Finally, the course of IFN-inducible chemokine score over time was examined.
Results
The plasma IFN-inducible chemokine score correlated with the IFN gene expression signature and this score was higher in SSc patients. It also was associated with the absence of anti–RNA polymerase III antibodies, presence of anti–U1 ribonucleoprotein antibodies (RNP), but not with disease duration, type, or other autoantibodies. The chemokine scores correlated with concomitantly obtained muscle, skin and lung components of the Medsger Severity Index, as well as, FVC, DLco, creatine kinase. Its association with disease severity was independent of anti-RNP or other potential confounders (age, gender, ethnicity, disease duration, and treatment with immunosuppressive agents). Finally, there was not a significant change in the IFN-inducible chemokine score over time.
Conclusions
The IFN-inducible chemokine score is a stable serological marker of more severe subtype of SSc and may be useful for risk stratification regardless of disease type or duration.
doi:10.1002/art.37742
PMCID: PMC3687352  PMID: 23055137
11.  Basal Gene Expression by Lung CD4+ T Cells in Chronic Obstructive Pulmonary Disease Identifies Independent Molecular Correlates of Airflow Obstruction and Emphysema Extent 
PLoS ONE  2014;9(5):e96421.
Lung CD4+ T cells accumulate as chronic obstructive pulmonary disease (COPD) progresses, but their role in pathogenesis remains controversial. To address this controversy, we studied lung tissue from 53 subjects undergoing clinically-indicated resections, lung volume reduction, or transplant. Viable single-cell suspensions were analyzed by flow cytometry or underwent CD4+ T cell isolation, followed either by stimulation with anti-CD3 and cytokine/chemokine measurement, or by real-time PCR analysis. In lung CD4+ T cells of most COPD subjects, relative to lung CD4+ T cells in smokers with normal spirometry: (a) stimulation induced minimal IFN-γ or other inflammatory mediators, but many subjects produced more CCL2; (b) the T effector memory subset was less uniformly predominant, without correlation with decreased IFN-γ production. Analysis of unstimulated lung CD4+ T cells of all subjects identified a molecular phenotype, mainly in COPD, characterized by markedly reduced mRNA transcripts for the transcription factors controlling TH1, TH2, TH17 and FOXP3+ T regulatory subsets and their signature cytokines. This mRNA-defined CD4+ T cell phenotype did not result from global inability to elaborate mRNA; increased transcripts for inhibitory CD28 family members or markers of anergy; or reduced telomerase length. As a group, these subjects had significantly worse spirometry, but not DLCO, relative to subjects whose lung CD4+ T cells expressed a variety of transcripts. Analysis of mRNA transcripts of unstimulated lung CD4+ T cell among all subjects identified two distinct molecular correlates of classical COPD clinical phenotypes: basal IL-10 transcripts correlated independently and inversely with emphysema extent (but not spirometry); by contrast, unstimulated IFN-γ transcripts correlated independently and inversely with reduced spirometry (but not reduced DLCO or emphysema extent). Aberrant lung CD4+ T cells polarization appears to be common in advanced COPD, but also exists in some smokers with normal spirometry, and may contribute to development and progression of specific COPD phenotypes.
Trial Registration
ClinicalTrials.gov as NCT00281229
doi:10.1371/journal.pone.0096421
PMCID: PMC4013040  PMID: 24805101
12.  Contributors to diffusion impairment in HIV-infected persons 
The European respiratory journal  2013;43(1):195-203.
Abnormal diffusing capacity is common in HIV-infected individuals including never smokers. Etiologies for diffusing capacity impairment in HIV are not understood, particularly in those without a history of cigarette smoking.
A cross-sectional analysis of 158 HIV-infected individuals without acute respiratory symptoms or infection to determine associations between a DLCO % predicted and participant demographics, pulmonary spirometric measures (FEV1 and FEV1/FVC), radiographic emphysema (fraction of lung voxels <-950 Hounsfield units), pulmonary vascular/cardiovascular disease (echocardiographic tricuspid regurgitant jet velocity [TRV], N-terminal pro-brain natriuretic peptide), and airway inflammation (induced sputum cell counts), stratified by history of smoking.
Mean DLCO was 65.9% predicted, and 55 (34.8%) participants had a significantly reduced DLCO (<60 % predicted). Lower DLCO % predicted in ever smokers was associated with lower post-bronchodilator FEV1 % predicted (p<0.001) and greater radiographic emphysema (p=0.001). In never smokers, mean (standard deviation) DLCO was 72.7% (13.4%) predicted, and DLCO correlated with post-bronchodilator FEV1 (p=0.02), sputum neutrophils (p=0.03), and sputum lymphocytes (p=0.009), but not radiographic emphysema.
Airway obstruction, emphysema, and inflammation influence DLCO in HIV. Never smokers may have a unique phenotype of diffusing capacity impairment. The interaction of multiple factors may account for the pervasive nature of diffusing capacity impairment in HIV infection.
doi:10.1183/09031936.00157712
PMCID: PMC4023348  PMID: 23429919
HIV; Pulmonary function; Diffusing capacity; AIDS
13.  Cross-sectional study of soluble selectins, fractions of circulating microparticles and their relationship to lung and skin involvement in systemic sclerosis 
Background
Endothelial damage and activation may play central roles in the pathogenesis of systemic sclerosis (SSc) and are reflected by microparticles (MPs) and soluble selectins. The objective of this study was to determine if these potential biomarkers are associated with specific organ involvements or cutaneous subgroups of SSc patients.
Method
MPs in platelet-poor plasma from 121 patients with SSc, 79 and 42 with limited and diffuse cutaneous disease, respectively, were characterized by flow cytometry for their capacity to bind annexin V in combination with surface markers of either platelets (PMPs), leukocytes (LMPs) or endothelial cells (EMPs). Soluble E- and P-selectin levels were determined in plasma. By correlation analyses, this was held against involvement of skin, lung function, lung fibrosis, pulmonary artery hypertension, and serology.
Results
None of the markers were associated with cutaneous subgroups of SSc. Concentrations of annexin V non-binding EMPs and annexin V non-binding LMPs were negatively correlated to pulmonary diffusing capacity (DLCO) (r = -0.28; p = 0.003; r = -0.26; p = 0.005) and forced vital capacity (FVC) (r = -0.24; p = 0.009; r = -0.29; p = 0.002), driven by patients with limited and diffuse cutaneous disease, respectively. Soluble E-selectin levels correlated negatively to DLCO (r = -0.21, p = 0.03) and FVC (r = -0.25; p = 0.007); and soluble P-selectin correlated negatively to DLCO (r = -0.23, p = 0.01).
Conclusion
Negative correlations between annexin V non-binding EMP and LMP concentrations with lung function parameters (DLCO and FVC) differed between limited and diffuse cutaneous subsets of SSc, indicative of various pathogeneses of lung involvement in SSc, possibly with a differential role of MPs.
doi:10.1186/s12891-015-0653-8
PMCID: PMC4534013  PMID: 26265409
14.  Lower Corticosteroid Skin Blanching Response Is Associated with Severe COPD 
PLoS ONE  2014;9(3):e91788.
Background
Chronic obstructive pulmonary disease (COPD) is characterized by chronic airflow limitation caused by ongoing inflammatory and remodeling processes of the airways and lung tissue. Inflammation can be targeted by corticosteroids. However, airway inflammation is generally less responsive to steroids in COPD than in asthma. The underlying mechanisms are yet unclear. This study aimed to assess whether skin corticosteroid insensitivity is associated with COPD and COPD severity using the corticosteroid skin blanching test.
Methods
COPD patients GOLD stage I–IV (n = 27, 24, 22, and 16 respectively) and healthy never-smokers and smokers (n = 28 and 56 respectively) were included. Corticosteroid sensitivity was assessed by the corticosteroid skin blanching test. Budesonide was applied in 8 logarithmically increasing concentrations (0–100 μg/ml) on subject's forearm. Assessment of blanching was performed after 7 hours using a 7-point scale (normal skin to intense blanching). All subjects performed spirometry and body plethysmography.
Results
Both GOLD III and GOLD IV COPD patients showed significantly lower skin blanching responses than healthy never-smokers and smokers, GOLD I, and GOLD II patients. Their area under the dose-response curve values of the skin blanching response were 586 and 243 vs. 1560, 1154, 1380, and 1309 respectively, p<0.05. Lower FEV1 levels and higher RV/TLC ratios were significantly associated with lower skin blanching responses (p = 0.001 and p = 0.004 respectively). GOLD stage I, II, III and IV patients had similar age and packyears.
Conclusions
In this study, severe and very severe COPD patients had lower skin corticosteroid sensitivity than mild and moderate COPD patients and non-COPD controls with comparable age and packyears. Our findings together suggest that the reduced skin blanching response fits with a subgroup of COPD patients that has an early-onset COPD phenotype.
doi:10.1371/journal.pone.0091788
PMCID: PMC3951419  PMID: 24622644
15.  Survival in COPD: Impact of Lung Dysfunction and Comorbidities 
Medicine  2014;93(12):e76.
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality in industrialized countries. Recent studies investigated the impact of comorbidities on the survival in COPD, but most of them lacked a referent group of comorbidity-matched, nonobstructed individuals.
We examined the 10-year mortality in a sample of 200 COPD patients and 201 nonobstructed controls. They were part of a larger cohort enrolled in a European case–control study aimed at assessing genetic susceptibility to COPD. By design, the COPD group included patients with a forced expiratory volume in 1 second (FEV1) ≤70% predicted. Cases and controls were matched on age, sex, and cumulative smoking history, and shared a nearly identical prevalence of cardiovascular and metabolic disorders. We estimated the hazard of death with Cox regression and percentiles of survival with Laplace regression. COPD was the main exposure variable of interest. Five comorbidities (hypertension, coronary artery disease, prior myocardial infarction, chronic heart failure, and diabetes) were included as covariates in multiple regression models.
The all-cause mortality rate was significantly higher in cases than in controls (43% vs 16%, P < 0.001). The unadjusted hazard of death for COPD was 3-fold higher than the referent category (P < 0.001), and remained nearly unchanged after introducing the 5 comorbidities in multiple regression. Patients with COPD had significantly shorter survival percentiles than comorbidity-matched controls (P < 0.001). Notably, 15% of the nonobstructed controls died by 10.3 years into the study; the same proportion of COPD patients had died some 6 years earlier, at 4.6 years.
In a separate analysis, we split the whole sample into 2 groups based on the lower tertile of FEV1 and carbon monoxide lung diffusing capacity (DLCO). The hazard of death for COPD patients with low FEV1 and DLCO was nearly 3.5-fold higher than in all the others (P < 0.001), and decreased only slightly after introducing age and chronic heart failure as relevant covariates.
COPD is a strong predictor of reduced survival independently of coexisting cardiovascular and metabolic disorders. Efforts should be made to identify patients at risk and to ensure adherence to prescribed therapeutic regimens.
doi:10.1097/MD.0000000000000076
PMCID: PMC4616266  PMID: 25211048
16.  Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this evidence-based analysis was to examine the effectiveness, safety, and cost-effectiveness of noninvasive positive pressure ventilation (NPPV) in the following patient populations: patients with acute respiratory failure (ARF) due to acute exacerbations of chronic obstructive pulmonary disease (COPD); weaning of COPD patients from invasive mechanical ventilation (IMV); and prevention of or treatment of recurrent respiratory failure in COPD patients after extubation from IMV.
Clinical Need and Target Population
Acute Hypercapnic Respiratory Failure
Respiratory failure occurs when the respiratory system cannot oxygenate the blood and/or remove carbon dioxide from the blood. It can be either acute or chronic and is classified as either hypoxemic (type I) or hypercapnic (type II) respiratory failure. Acute hypercapnic respiratory failure frequently occurs in COPD patients experiencing acute exacerbations of COPD, so this is the focus of this evidence-based analysis. Hypercapnic respiratory failure occurs due to a decrease in the drive to breathe, typically due to increased work to breathe in COPD patients.
Technology
There are several treatment options for ARF. Usual medical care (UMC) attempts to facilitate adequate oxygenation and treat the cause of the exacerbation, and typically consists of supplemental oxygen, and a variety of medications such as bronchodilators, corticosteroids, and antibiotics. The failure rate of UMC is high and has been estimated to occur in 10% to 50% of cases.
The alternative is mechanical ventilation, either invasive or noninvasive. Invasive mechanical ventilation involves sedating the patient, creating an artificial airway through endotracheal intubation, and attaching the patient to a ventilator. While this provides airway protection and direct access to drain sputum, it can lead to substantial morbidity, including tracheal injuries and ventilator-associated pneumonia (VAP).
While both positive and negative pressure noninvasive ventilation exists, noninvasive negative pressure ventilation such as the iron lung is no longer in use in Ontario. Noninvasive positive pressure ventilation provides ventilatory support through a facial or nasal mask and reduces inspiratory work. Noninvasive positive pressure ventilation can often be used intermittently for short periods of time to treat respiratory failure, which allows patients to continue to eat, drink, talk, and participate in their own treatment decisions. In addition, patients do not require sedation, airway defence mechanisms and swallowing functions are maintained, trauma to the trachea and larynx are avoided, and the risk for VAP is reduced. Common complications are damage to facial and nasal skin, higher incidence of gastric distension with aspiration risk, sleeping disorders, and conjunctivitis. In addition, NPPV does not allow direct access to the airway to drain secretions and requires patients to cooperate, and due to potential discomfort, compliance and tolerance may be low.
In addition to treating ARF, NPPV can be used to wean patients from IMV through the gradual removal of ventilation support until the patient can breathe spontaneously. Five to 30% of patients have difficultly weaning. Tapering levels of ventilatory support to wean patients from IMV can be achieved using IMV or NPPV. The use of NPPV helps to reduce the risk of VAP by shortening the time the patient is intubated.
Following extubation from IMV, ARF may recur, leading to extubation failure and the need for reintubation, which has been associated with increased risk of nosocomial pneumonia and mortality. To avoid these complications, NPPV has been proposed to help prevent ARF recurrence and/or to treat respiratory failure when it recurs, thereby preventing the need for reintubation.
Research Questions
What is the effectiveness, cost-effectiveness, and safety of NPPV for the treatment of acute hypercapnic respiratory failure due to acute exacerbations of COPD compared with
usual medical care, and
invasive mechanical ventilation?
What is the effectiveness, cost-effectiveness, and safety of NPPV compared with IMV in COPD patients after IMV for the following purposes:
weaning COPD patients from IMV,
preventing ARF in COPD patients after extubation from IMV, and
treating ARF in COPD patients after extubation from IMV?
Research Methods
Literature Search
A literature search was performed on December 3, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), Wiley Cochrane, and the Centre for Reviews and Dissemination/International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2004 until December 3, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search.
Since there were numerous studies that examined the effectiveness of NPPV for the treatment of ARF due to exacerbations of COPD published before 2004, pre-2004 trials which met the inclusion/exclusion criteria for this evidence-based review were identified by hand-searching reference lists of included studies and systematic reviews.
Inclusion Criteria
English language full-reports;
health technology assessments, systematic reviews, meta-analyses, and randomized controlled trials (RCTs);
studies performed exclusively in patients with a diagnosis of COPD or studies performed with patients with a mix of conditions if results are reported for COPD patients separately;
patient population: (Question 1) patients with acute hypercapnic respiratory failure due to an exacerbation of COPD; (Question 2a) COPD patients being weaned from IMV; (Questions 2b and 2c) COPD patients who have been extubated from IMV.
Exclusion Criteria
< 18 years of age
animal studies
duplicate publications
grey literature
studies examining noninvasive negative pressure ventilation
studies comparing modes of ventilation
studies comparing patient-ventilation interfaces
studies examining outcomes not listed below, such as physiologic effects including heart rate, arterial blood gases, and blood pressure
Outcomes of Interest
mortality
intubation rates
length of stay (intensive care unit [ICU] and hospital)
health-related quality of life
breathlessness
duration of mechanical ventilation
weaning failure
complications
NPPV tolerance and compliance
Statistical Methods
When possible, results were pooled using Review Manager 5 Version 5.1, otherwise, the results were summarized descriptively. Dichotomous data were pooled into relative risks using random effects models and continuous data were pooled using weighted mean differences with a random effects model. Analyses using data from RCTs were done using intention-to-treat protocols; P values < 0.05 were considered significant. A priori subgroup analyses were planned for severity of respiratory failure, location of treatment (ICU or hospital ward), and mode of ventilation with additional subgroups as needed based on the literature. Post hoc sample size calculations were performed using STATA 10.1.
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
NPPV for the Treatment of ARF due to Acute Exacerbations of COPD
NPPV Plus Usual Medical Care Versus Usual Medical Care Alone for First Line Treatment
A total of 1,000 participants were included in 11 RCTs1; the sample size ranged from 23 to 342. The mean age of the participants ranged from approximately 60 to 72 years of age. Based on either the Global Initiative for Chronic Obstructive Lung Disease (GOLD) COPD stage criteria or the mean percent predicted forced expiratory volume in 1 second (FEV1), 4 of the studies included people with severe COPD, and there was inadequate information to classify the remaining 7 studies by COPD severity. The severity of the respiratory failure was classified into 4 categories using the study population mean pH level as follows: mild (pH ≥ 7.35), moderate (7.30 ≤ pH < 7.35), severe (7.25 ≤ pH < 7.30), and very severe (pH < 7.25). Based on these categories, 3 studies included patients with a mild respiratory failure, 3 with moderate respiratory failure, 4 with severe respiratory failure, and 1 with very severe respiratory failure.
The studies were conducted either in the ICU (3 of 11 studies) or general or respiratory wards (8 of 11 studies) in hospitals, with patients in the NPPV group receiving bilevel positive airway pressure (BiPAP) ventilatory support, except in 2 studies, which used pressure support ventilation and volume cycled ventilation, respectively. Patients received ventilation through nasal, facial, or oronasal masks. All studies specified a protocol or schedule for NPPV delivery, but this varied substantially across the studies. For example, some studies restricted the amount of ventilation per day (e.g., 6 hours per day) and the number of days it was offered (e.g., maximum of 3 days); whereas, other studies provided patients with ventilation for as long as they could tolerate it and recommended it for much longer periods of time (e.g., 7 to 10 days). These differences are an important source of clinical heterogeneity between the studies. In addition to NPPV, all patients in the NPPV group also received UMC. Usual medical care varied between the studies, but common medications included supplemental oxygen, bronchodilators, corticosteroids, antibiotics, diuretics, and respiratory stimulators.
The individual quality of the studies ranged. Common methodological issues included lack of blinding and allocation concealment, and small sample sizes.
Need for Endotracheal Intubation
Eleven studies reported the need for endotracheal intubation as an outcome. The pooled results showed a significant reduction in the need for endotracheal intubation in the NPPV plus UMC group compared with the UMC alone group (relative risk [RR], 0.38; 95% confidence interval [CI], 0.28−0.50). When subgrouped by severity of respiratory failure, the results remained significant for the mild, severe, and very severe respiratory failure groups.
GRADE: moderate
Inhospital Mortality
Nine studies reported inhospital mortality as an outcome. The pooled results showed a significant reduction in inhospital mortality in the NPPV plus UMC group compared with the UMC group (RR, 0.53; 95% CI, 0.35−0.81). When subgrouped by severity of respiratory failure, the results remained significant for the moderate and severe respiratory failure groups.
GRADE: moderate
Hospital Length of Stay
Eleven studies reported hospital length of stay (LOS) as an outcome. The pooled results showed a significant decrease in the mean length of stay for the NPPV plus UMC group compared with the UMC alone group (weighted mean difference [WMD], −2.68 days; 95% CI, −4.41 to −0.94 days). When subgrouped by severity of respiratory failure, the results remained significant for the mild, severe, and very severe respiratory failure groups.
GRADE: moderate
Complications
Five studies reported complications. Common complications in the NPPV plus UMC group included pneumonia, gastrointestinal disorders or bleeds, skin abrasions, eye irritation, gastric insufflation, and sepsis. Similar complications were observed in the UMC group including pneumonia, sepsis, gastrointestinal disorders or bleeds, pneumothorax, and complicated endotracheal intubations. Many of the more serious complications in both groups occurred in those patients who required endotracheal intubation. Three of the studies compared complications in the NPPV plus UMC and UMC groups. While the data could not be pooled, overall, the NPPV plus UMC group experienced fewer complications than the UMC group.
GRADE: low
Tolerance/Compliance
Eight studies reported patient tolerance or compliance with NPPV as an outcome. NPPV intolerance ranged from 5% to 29%. NPPV tolerance was generally higher for patients with more severe respiratory failure. Compliance with the NPPV protocol was reported by 2 studies, which showed compliance decreases over time, even over short periods such as 3 days.
NPPV Versus IMV for the Treatment of Patients Who Failed Usual Medical Care
A total of 205 participants were included in 2 studies; the sample sizes of these studies were 49 and 156. The mean age of the patients was 71 to 73 years of age in 1 study, and the median age was 54 to 58 years of age in the second study. Based on either the GOLD COPD stage criteria or the mean percent predicted FEV1, patients in 1 study had very severe COPD. The COPD severity could not be classified in the second study. Both studies had study populations with a mean pH less than 7.23, which was classified as very severe respiratory failure in this analysis. One study enrolled patients with ARF due to acute exacerbations of COPD who had failed medical therapy. The patient population was not clearly defined in the second study, and it was not clear whether they had to have failed medical therapy before entry into the study.
Both studies were conducted in the ICU. Patients in the NPPV group received BiPAP ventilatory support through nasal or full facial masks. Patients in the IMV group received pressure support ventilation.
Common methodological issues included small sample size, lack of blinding, and unclear methods of randomization and allocation concealment. Due to the uncertainty about whether both studies included the same patient population and substantial differences in the direction and significance of the results, the results of the studies were not pooled.
Mortality
Both studies reported ICU mortality. Neither study showed a significant difference in ICU mortality between the NPPV and IMV groups, but 1 study showed a higher mortality rate in the NPPV group (21.7% vs. 11.5%) while the other study showed a lower mortality rate in the NPPV group (5.1% vs. 6.4%). One study reported 1-year mortality and showed a nonsignificant reduction in mortality in the NPPV group compared with the IMV group (26.1% vs. 46.1%).
GRADE: low to very low
Intensive Care Unit Length of Stay
Both studies reported LOS in the ICU. The results were inconsistent. One study showed a statistically significant shorter LOS in the NPPV group compared with the IMV group (5 ± 1.35 days vs. 9.29 ± 3 days; P < 0.001); whereas, the other study showed a nonsignificantly longer LOS in the NPPV group compared with the IMV group (22 ± 19 days vs. 21 ± 20 days; P = 0.86).
GRADE: very low
Duration of Mechanical Ventilation
Both studies reported the duration of mechanical ventilation (including both invasive and noninvasive ventilation). The results were inconsistent. One study showed a statistically significant shorter duration of mechanical ventilation in the NPPV group compared with the IMV group (3.92 ± 1.08 days vs. 7.17 ± 2.22 days; P < 0.001); whereas, the other study showed a nonsignificantly longer duration of mechanical ventilation in the NPPV group compared with the IMV group (16 ± 19 days vs. 15 ± 21 days; P = 0.86). GRADE: very low
Complications
Both studies reported ventilator-associated pneumonia and tracheotomies. Both showed a reduction in ventilator-associated pneumonia in the NPPV group compared with the IMV group, but the results were only significant in 1 study (13% vs. 34.6%, P = 0.07; and 6.4% vs. 37.2%, P < 0.001, respectively). Similarly, both studies showed a reduction in tracheotomies in the NPPV group compared with the IMV group, but the results were only significant in 1 study (13% vs. 23.1%, P = 0.29; and 6.4% vs. 34.6%; P < 0.001).
GRADE: very low
Other Outcomes
One of the studies followed patients for 12 months. At the end of follow-up, patients in the NPPV group had a significantly lower rate of needing de novo oxygen supplementation at home. In addition, the IMV group experienced significant increases in functional limitations due to COPD, while no increase was seen in the NPPV group. Finally, no significant differences were observed for hospital readmissions, ICU readmissions, and patients with an open tracheotomy, between the NPPV and IMV groups.
NPPV for Weaning COPD Patients From IMV
A total of 80 participants were included in the 2 RCTs; the sample sizes of the studies were 30 and 50 patients. The mean age of the participants ranged from 58 to 69 years of age. Based on either the GOLD COPD stage criteria or the mean percent predicted FEV1, both studies included patients with very severe COPD. Both studies also included patients with very severe respiratory failure (mean pH of the study populations was less than 7.23). Chronic obstructive pulmonary disease patients receiving IMV were enrolled in the study if they failed a T-piece weaning trial (spontaneous breathing test), so they could not be directly extubated from IMV.
Both studies were conducted in the ICU. Patients in the NPPV group received weaning using either BiPAP or pressure support ventilation NPPV through a face mask, and patients in the IMV weaning group received pressure support ventilation. In both cases, weaning was achieved by tapering the ventilation level.
The individual quality of the studies ranged. Common methodological problems included unclear randomization methods and allocation concealment, lack of blinding, and small sample size.
Mortality
Both studies reported mortality as an outcome. The pooled results showed a significant reduction in ICU mortality in the NPPV group compared with the IMV group (RR, 0.47; 95% CI, 0.23−0.97; P = 0.04).
GRADE: moderate
Intensive Care Unit Length of Stay
Both studies reported ICU LOS as an outcome. The pooled results showed a nonsignificant reduction in ICU LOS in the NPPV group compared with the IMV group (WMD, −5.21 days; 95% CI, −11.60 to 1.18 days).
GRADE: low
Duration of Mechanical Ventilation
Both studies reported duration of mechanical ventilation (including both invasive and noninvasive ventilation) as an outcome. The pooled results showed a nonsignificant reduction in duration of mechanical ventilation (WMD, −3.55 days; 95% CI, −8.55 to 1.44 days).
GRADE: low
Nosocomial Pneumonia
Both studies reported nosocominal pneumonia as an outcome. The pooled results showed a significant reduction in nosocomial pneumonia in the NPPV group compared with the IMV group (RR, 0.14; 95% CI, 0.03−0.71; P = 0.02).
GRADE: moderate
Weaning Failure
One study reported a significant reduction in weaning failure in the NPPV group compared with the IMV group, but the results were not reported in the publication. In this study, 1 of 25 patients in the NPPV group and 2 of 25 patients in the IMV group could not be weaned after 60 days in the ICU.
NPPV After Extubation of COPD Patients From IMV
The literature was reviewed to identify studies examining the effectiveness of NPPV compared with UMC in preventing recurrence of ARF after extubation from IMV or treating acute ARF which has recurred after extubation from IMV. No studies that included only COPD patients or reported results for COPD patients separately were identified for the prevention of ARF postextubation.
One study was identified for the treatment of ARF in COPD patients that recurred within 48 hours of extubation from IMV. This study included 221 patients, of whom 23 had COPD. A post hoc subgroup analysis was conducted examining the rate of reintubation in the COPD patients only. A nonsignificant reduction in the rate of reintubation was observed in the NPPV group compared with the UMC group (7 of 14 patients vs. 6 of 9 patients, P = 0.67). GRADE: low
Conclusions
NPPV Plus UMC Versus UMC Alone for First Line Treatment of ARF due to Acute Exacerbations of COPD
Moderate quality of evidence showed that compared with UMC, NPPV plus UMC significantly reduced the need for endotracheal intubation, inhospital mortality, and the mean length of hospital stay.
Low quality of evidence showed a lower rate of complications in the NPPV plus UMC group compared with the UMC group.
NPPV Versus IMV for the Treatment of ARF in Patients Who Have Failed UMC
Due to inconsistent and low to very low quality of evidence, there was insufficient evidence to draw conclusions on the comparison of NPPV versus IMV for patients who failed UMC.
NPPV for Weaning COPD Patients From IMV
Moderate quality of evidence showed that weaning COPD patients from IMV using NPPV results in significant reductions in mortality, nosocomial pneumonia, and weaning failure compared with weaning with IMV.
Low quality of evidence showed a nonsignificant reduction in the mean LOS and mean duration of mechanical ventilation in the NPPV group compared with the IMV group.
NPPV for the Treatment of ARF in COPD Patients After Extubation From IMV
Low quality of evidence showed a nonsignificant reduction in the rate of reintubation in the NPPV group compared with the UMC group; however, there was inadequate evidence to draw conclusions on the effectiveness of NPPV for the treatment of ARF in COPD patients after extubation from IMV
PMCID: PMC3384377  PMID: 23074436
17.  Lung Function and Incidence of Chronic Obstructive Pulmonary Disease after Improved Cooking Fuels and Kitchen Ventilation: A 9-Year Prospective Cohort Study 
PLoS Medicine  2014;11(3):e1001621.
Pixin Ran, Nanshan Zhong, and colleagues report that cleaner cooking fuels and improved ventilation were associated with better lung function and reduced COPD among a cohort of villagers in Southern China.
Please see later in the article for the Editors' Summary
Background
Biomass smoke is associated with the risk of chronic obstructive pulmonary disease (COPD), but few studies have elaborated approaches to reduce the risk of COPD from biomass burning. The purpose of this study was to determine whether improved cooking fuels and ventilation have effects on pulmonary function and the incidence of COPD.
Methods and Findings
A 9-y prospective cohort study was conducted among 996 eligible participants aged at least 40 y from November 1, 2002, through November 30, 2011, in 12 villages in southern China. Interventions were implemented starting in 2002 to improve kitchen ventilation (by providing support and instruction for improving biomass stoves or installing exhaust fans) and to promote the use of clean fuels (i.e., biogas) instead of biomass for cooking (by providing support and instruction for installing household biogas digesters); questionnaire interviews and spirometry tests were performed in 2005, 2008, and 2011. That the interventions improved air quality was confirmed via measurements of indoor air pollutants (i.e., SO2, CO, CO2, NO2, and particulate matter with an aerodynamic diameter of 10 µm or less) in a randomly selected subset of the participants' homes. Annual declines in lung function and COPD incidence were compared between those who took up one, both, or neither of the interventions.
Use of clean fuels and improved ventilation were associated with a reduced decline in forced expiratory volume in 1 s (FEV1): decline in FEV1 was reduced by 12 ml/y (95% CI, 4 to 20 ml/y) and 13 ml/y (95% CI, 4 to 23 ml/y) in those who used clean fuels and improved ventilation, respectively, compared to those who took up neither intervention, after adjustment for confounders. The combined improvements of use of clean fuels and improved ventilation had the greatest favorable effects on the decline in FEV1, with a slowing of 16 ml/y (95% CI, 9 to 23 ml/y). The longer the duration of improved fuel use and ventilation, the greater the benefits in slowing the decline of FEV1 (p<0.05). The reduction in the risk of COPD was unequivocal after the fuel and ventilation improvements, with an odds ratio of 0.28 (95% CI, 0.11 to 0.73) for both improvements.
Conclusions
Replacing biomass with biogas for cooking and improving kitchen ventilation are associated with a reduced decline in FEV1 and risk of COPD.
Trial Registration
Chinese Clinical Trial Register ChiCTR-OCH-12002398
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Nearly 3 billion people in developing countries heat their homes and cook by burning biomass—wood, crop waste, and animal dung—in open fires and leaky stoves. Burning biomass this way releases pollutants into the home that impair lung function and that are responsible for more than a million deaths from chronic obstructive pulmonary disease (COPD) every year. COPD is a group of diseases that interfere with breathing. Normally, air is breathed in through the nose or mouth and travels down the windpipe into two bronchial tubes (airways) in the lungs. These tubes branch into smaller tubes (bronchioles) that end in bunches of tiny air sacs (alveoli). Oxygen in the air passes through the thin walls of these sacs into small blood vessels and is taken to the heart for circulation round the body. The two main types of COPD—chronic bronchitis (long-term irritation and swelling of the bronchial tubes) and emphysema (damage to the walls of the alveoli)—make it hard for people to breathe. Most people with COPD have both chronic bronchitis and emphysema, both of which are caused by long-term exposure to cigarette smoke, indoor air pollution, and other lung irritants. Symptoms of COPD include breathlessness during exercise and a persistent cough that produces large amounts of phlegm (mucus). There is no cure for COPD, but drugs and oxygen therapy can relieve its symptoms, and avoiding lung irritants can slow disease progression.
Why Was This Study Done?
Exposure to indoor air pollution has been associated with impaired lung function and COPD in several studies. However, few studies have assessed the long-term effects on lung function and on the incidence of COPD (the proportion of a population that develops COPD each year) of replacing biomass with biogas (a clean fuel produced by bacterial digestion of biodegradable materials) for cooking and heating, or of improving kitchen ventilation during cooking. Here, the researchers undertook a nine-year prospective cohort study in rural southern China to investigate whether these interventions are associated with any effects on lung function and on the incidence of COPD. A prospective cohort study enrolls a group of people, determines their characteristics at baseline, and follows them over time to see whether specific characteristic are associated with specific outcomes.
What Did the Researchers Do and Find?
The researchers offered nearly 1,000 people living in 12 villages in southern China access to biogas and to improved kitchen ventilation. All the participants, who adopted these interventions according to personal preferences, completed a questionnaire about their smoking habits and occupational exposure to pollutants and had their lung function measured using a spirometry test at the start and end of the study. Some participants also completed a questionnaire and had their lung function measured three and six years into the study. Finally, the researchers measured levels of indoor air pollution in a randomly selected subset of homes at the end of the study to confirm that the interventions had reduced indoor air pollution. Compared with non-use, the use of clean fuels and of improved ventilation were both associated with a reduction in the decline in lung function over time after adjusting for known characteristics that affect lung function, such as smoking. The use of both interventions reduced the decline in lung function more markedly than either intervention alone, and the benefits of using the interventions increased with length of use. Notably, the combined use of both interventions reduced the risk of COPD occurrence among the study participants.
What Do These Findings Mean?
These findings suggest that, among people living in rural southern China, the combined interventions of use of biogas instead of biomass and improved kitchen ventilation were associated with a reduced decline in lung function over time and with a reduced risk of COPD. Because participants were not randomly allocated to intervention groups, the people who adopted the interventions may have shared other unknown characteristics (confounders) that affected their lung function (for example, having a healthier lifestyle). Thus, it is not possible to conclude that either intervention actually caused a reduction in the decline in lung function. Nevertheless, these findings suggest that the use of biogas as a substitute for biomass for cooking and heating and improvements in kitchen ventilation might lead to a reduction in the global burden of COPD associated with biomass smoke.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001621.
The US National Heart, Lung, and Blood Institute provides detailed information for the public about COPD
The US Centers for Disease Control and Prevention provides information about COPD and links to other resources (in English and Spanish)
The UK National Health Service Choices website provides information for patients and carers about COPD, personal stories, and links to other resources
The British Lung Foundation, a not-for-profit organization, provides information about COPD in several languages
The Global Initiative for Chronic Obstructive Lung Disease works to improve prevention and treatment of COPD around the world
The World Health Organization provides information about all aspects of indoor air pollution and health (in English, French, and Spanish)
MedlinePlus provides links to other information about COPD (in English and Spanish)
doi:10.1371/journal.pmed.1001621
PMCID: PMC3965383  PMID: 24667834
18.  Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease (COPD) Using an Ontario Policy Model 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-Term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Background
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation throughout the airways, parenchyma, and pulmonary vasculature. The inflammation causes repeated cycles of injury and repair in the airway wall— inflammatory cells release a variety of chemicals and lead to cellular damage. The inflammation process also contributes to the loss of elastic recoil pressure in the lung, thereby reducing the driving pressure for expiratory flow through narrowed and poorly supported airways, in which airflow resistance is significantly increased. Expiratory flow limitation is the pathophysiological hallmark of COPD.
Exacerbations of COPD contribute considerably to morbidity and mortality, and impose a burden on the health care system. They are a leading cause of emergency room visits and hospitalizations, particularly in the winter. In Canada, the reported average cost for treating a moderate exacerbation is $641; for a major exacerbation, the cost is $10,086.
Objective
The objective of this study was to evaluate the cost-effectiveness and budget impact of the following interventions in moderate to very severe COPD, investigated in the Medical Advisory Secretariat Chronic Obstructive Pulmonary Disease Mega-Analysis Series:
smoking cessation programs in moderate COPD in an outpatient setting:
– intensive counselling (IC) versus usual care (UC)
– nicotine replacement therapy (NRT) versus UC
– IC + NRT versus placebo
– bupropion versus placebo
multidisciplinary care (MDC) teams versus UC in moderate to severe COPD in an outpatient setting
pulmonary rehabilitation (PR) versus UC following acute exacerbations in moderate to severe COPD
long-term oxygen therapy (LTOT) versus UC in severe hypoxemia in COPD in an outpatient setting
ventilation:
– noninvasive positive pressure ventilation (NPPV) + usual medical care versus usual medical care in acute respiratory failure due to an acute exacerbation in severe COPD in an inpatient setting
– weaning with NPPV versus weaning with invasive mechanical ventilation in acute respiratory failure due to an acute exacerbation in very severe COPD in an inpatient setting
Methods
A cost-utility analysis was conducted using a Markov probabilistic model. The model consists of different health states based on the Global Initiative for Chronic Obstructive Lung Disease COPD severity classification. Patients were assigned different costs and utilities depending on their severity health state during each model cycle. In addition to moving between health states, patients were at risk of acute exacerbations of COPD in each model cycle. During each cycle, patients could have no acute exacerbation, a minor acute exacerbation, or a major exacerbation. For the purposes of the model, a major exacerbation was defined as one that required hospitalization. Patients were assigned different costs and utilities in each model cycle, depending on whether they experienced an exacerbation, and its severity.
Starting cohorts reflected the various patient populations from the trials analyzed. Incremental cost-effectiveness ratios (ICERs)—that is, costs per quality-adjusted life-year (QALY)—were estimated for each intervention using clinical parameters and summary estimates of relative risks of (re)hospitalization, as well as mortality and abstinence rates, from the COPD mega-analysis evidence-based analyses.
A budget impact analysis was also conducted to project incremental costs already being incurred or resources already in use in Ontario. Using provincial data, medical literature, and expert opinion, health system impacts were calculated for the strategies investigated.
All costs are reported in Canadian dollars.
Results
All smoking cessation programs were dominant (i.e., less expensive and more effective overall). Assuming a base case cost of $1,041 and $1,527 per patient for MDC and PR, the ICER was calculated to be $14,123 per QALY and $17,938 per QALY, respectively. When the costs of MDC and PR were varied in a 1-way sensitivity analysis to reflect variation in resource utilization reported in the literature, the ICER increased to $55,322 per QALY and $56,270 per QALY, respectively. Assuming a base case cost of $2,261 per year per patient for LTOT as reported by data from the Ontario provincial program, the ICER was calculated to be $38,993 per QALY. Ventilation strategies were dominant (i.e., cheaper and more effective), as reflected by the clinical evidence of significant in-hospital days avoided in the study group.
Ontario currently pays for IC through physician billing (translating to a current burden of $8 million) and bupropion through the Ontario Drug Benefit program (translating to a current burden of almost $2 million). The burden of NRT was projected to be $10 million, with future expenditures of up to $1 million in Years 1 to 3 for incident cases.
Ontario currently pays for some chronic disease management programs. Based on the most recent Family Health Team data, the costs of MDC programs to manage COPD were estimated at $85 million in fiscal year 2010, with projected future expenditures of up to $51 million for incident cases, assuming the base case cost of the program. However, this estimate does not accurately reflect the current costs to the province because of lack of report by Family Health Teams, lack of capture of programs outside this model of care by any data set in the province, and because the resource utilization and frequency of visits/follow-up phone calls were based on the findings in the literature rather than the actual Family Health Team COPD management programs in place in Ontario. Therefore, MDC resources being utilized in the province are unknown and difficult to measure.
Data on COPD-related hospitalizations were pulled from Ontario administrative data sets and based on consultation with experts. Half of hospitalized patients will access PR resources at least once, and half of these will repeat the therapy, translating to a potential burden of $17 million to $32 million, depending on the cost of the program. These resources are currently being absorbed, but since utilization is not being captured by any data set in the province, it is difficult to quantify and estimate. Provincial programs may be under-resourced, and patients may not be accessing these services effectively.
Data from the LTOT provincial program (based on fiscal year 2006 information) suggested that the burden was $65 million, with potential expenditures of up to $0.2 million in Years 1 to 3 for incident cases.
From the clinical evidence on ventilation (i.e., reduction in length of stay in hospital), there were potential cost savings to the hospitals of $42 million and $12 million for NPPV and weaning with NPPV, respectively, if the study intervention were adopted. Future cost savings were projected to be up to $4 million and $1 million, respectively, for incident cases.
Conclusions
Currently, costs for most of these interventions are being absorbed by provider services, the Ontario Drug Benefit Program, the Assistive Devices Program, and the hospital global budget. The most cost-effective intervention for COPD will depend on decision-makers’ willingness to pay. Lack of provincial data sets capturing resource utilization for the various interventions poses a challenge for estimating current burden and future expenditures.
PMCID: PMC3384363  PMID: 23074422
19.  Cardiopulmonary function in individuals with HIV infection in the antiretroviral therapy era 
AIDS (London, England)  2012;26(6):731-740.
Objective
To determine relationship of echocardiographic measures of pulmonary hypertension to lung function and inflammatory biomarkers in HIV-infected individuals.
Design
Cross-sectional study of 116 HIV-infected outpatients.
Methods
Doppler-echocardiography and pulmonary function testing were performed. Induced sputum and plasma cytokines, sputum cell counts and differentials, markers of peripheral T cell activation, and serum N-terminal pro-brain natriuretic peptide (NT-proBNP) were measured. Univariate and multivariate analyses determined relationship of echocardiographic variables to pulmonary function, inflammation, and NT-proBNP.
Results
Mean estimated pulmonary artery systolic pressure (PASP) was 34.3 mmHg (SD 6.9) and mean tricuspid regurgitant jet velocity (TRV) was 2.5 m/sec (SD 0.32). Eighteen participants (15.5%) had PASP of at least 40 mmHg, and 9 (7.8%) had TRV of at least 3.0 m/sec. Elevated TRV was significantly associated with CD4 cell counts below 200 cells/μl and higher log HIV RNA levels. Forced expiratory volume in one second (FEV1) percent predicted, FEV1/forced vital capacity (FVC), and diffusing capacity for carbon monoxide (DLco) percent predicted were significantly lower in those with elevated PASP or TRV. Sputum interleukin-8, peripheral interleukin-8, peripheral interferon-γ levels, and CD8+ T-cell expression of CD69+ were associated increased with increasing PASP and TRV. Log NT-proBNP was significantly higher with increasing PASP and TRV. Left ventricular function was not associated with PASP or TRV.
Conclusions
Echocardiographic manifestations of pulmonary hypertension are common in HIV and are associated with respiratory symptoms, more advanced HIV disease, airway obstruction, abnormal DLco, and systemic and pulmonary inflammation. Pulmonary hypertension and COPD coexist in HIV and may arise secondary to common inflammatory mechanisms.
doi:10.1097/QAD.0b013e32835099ae
PMCID: PMC3606053  PMID: 22210636
HIV; pulmonary hypertension; emphysema; COPD; inflammation
20.  The effect of comorbidities on COPD assessment: a pilot study 
Introduction
Patients with chronic obstructive pulmonary disease (COPD) frequently suffer from comorbidities. COPD severity may be evaluated by the Global initiative for chronic Obstructive Lung Disease (GOLD) combined risk assessment score (GOLD score). Spirometry, body plethysmography, diffusing capacity of the lung for carbon monoxide (DLCO), and high-resolution computed tomography (HR-CT) measure lung function and elucidate pulmonary pathology. This study assesses associations between GOLD score and measurements of lung function in COPD patients with and without (≤1) comorbidities. It evaluates whether the presence of comorbidities influences evaluation by GOLD score of COPD severity, and questions whether GOLD score describes morbidity rather than COPD severity.
Methods
In this prospective study, 106 patients with stable COPD were included. Patients treated for lung cancer were excluded. Demographics, oxygen saturation (SpO2), modified Medical Research Council Dyspnea Scale, COPD exacerbations, and comorbidities were recorded. Body plethysmography and DLCO were measured, and HR-CT performed and evaluated for emphysema and airways disease. COPD severity was stratified by the GOLD score. Correlation analyses: 1) GOLD score, 2) emphysema grade, and 3) airways disease and lung function parameters, described by: forced expiratory volume in the first second in percent of expected value (FEV1%), inspiratory capacity (IC%), total lung volume (TLC%), IC/TLC, and SpO2. Correlation analyses between subgroups and hierarchical cluster analysis were performed.
Results
Significant associations were found between GOLD score and both emphysema grade (correlation coefficients [cc]: −0.2, P=0.03) and lung function parameters (cc: −0.5 to −0.7, P-values all <0.001) weakened in patients with >1 comorbidity (cc: −0.4 to −0.5, P-values all 0.001). Significant differences between subgroups were found in GOLD score and both FEV1% (cc: −0.2, P=0.02) and IC/TLC (cc: −0.2, P=0.02). Comorbidities were associated with GOLD score and composite measures in hierarchical cluster analysis.
Conclusion
The presence of comorbidities influences the relationship between GOLD score and lung function measurements. GOLD score may be more representative of morbidity than of COPD severity.
doi:10.2147/COPD.S76124
PMCID: PMC4348050  PMID: 25750525
GOLD; diffusing capacity of the lung for carbon monoxide; high resolution computerized tomography; mMRC; total lung capacity; inspiratory capacity
21.  Blood fibrinogen as a biomarker of chronic obstructive pulmonary disease 
Thorax  2012;68(7):670-676.
Background
Chronic obstructive pulmonary disease (COPD) is a multicomponent condition that is characterised by airflow obstruction that is not fully reversible and is a major global cause of morbidity and mortality. The most widely used marker of disease severity and progression is FEV1. However, FEV1 correlates poorly with both symptoms and other measures of disease progression and thus there is an urgent need for other biological markers to better characterise individuals with COPD. Fibrinogen is an acute phase plasma protein that has emerged as a promising biomarker in COPD. Here we review the current clinical evidence linking fibrinogen with COPD and its associated co-morbidities and discuss its potential utility as a biomarker.
Methods
Searches for appropriate studies were undertaken on PubMed using search terms fibrinogen, COPD, emphysema, chronic bronchitis, FEV1, cardiovascular disease, exacerbation and mortality.
Results
There is strong evidence of an association between fibrinogen and the presence of COPD, the presence and frequency of exacerbations and with mortality. Fibrinogen is associated with disease severity but does not predict lung function decline, a measure used as a surrogate for disease activity. The role of fibrinogen in identifying inflammatory co morbidities, particularly cardiovascular disease, remains unclear. Fibrinogen is reduced by p38 mitogen-activated protein kinase inhibitors in individuals with stable disease and by oral corticosteroids during exacerbations.
Conclusions
Fibrinogen is likely to be a useful biomarker to stratify individuals with COPD into those with a high or low risk of future exacerbations and may identify those with a higher risk of mortality.
doi:10.1136/thoraxjnl-2012-201871
PMCID: PMC3711372  PMID: 22744884
Fibrinogen; inflammation; COPD; biomarker
22.  Gender difference in plasma fatty-acid-binding protein 4 levels in patients with chronic obstructive pulmonary disease 
Bioscience Reports  2016;36(1):e00303.
Plasma FABP4 levels were higher in females with COPD compared with both males with COPD and healthy females. FABP4 levels correlated inversely with lung function, and positively with adiponectin and TNFα in COPD.
COPD (chronic obstructive pulmonary disease) is characterized by airway inflammation and increases the likelihood of the development of atherosclerosis. Recent studies have indicated that FABP4 (fatty-acid-binding protein 4), an intracellular lipid chaperone of low molecular mass, plays an important role in the regulation of inflammation and atherosclerosis. We carried out a preliminary clinical study aiming at investigating the relationships between circulating FABP4 levels in patients with COPD and inflammation and lung function. We enrolled 50 COPD patients and 39 healthy controls in the study. Lung function tests were performed in all subjects. Plasma levels of FABP4 and adiponectin, TNFα (tumour necrosis factor α) and CRP (C-reactive protein) were measured. The correlations between FABP4 and lung function, adipokine (adiponectin), inflammatory factors and BMI (body mass index) were analysed. Compared with both males with COPD and healthy females, plasma FABP4 levels in females with COPD were significantly increased. Adiponectin and CRP levels were significantly higher in patients with COPD. Furthermore, we found that FABP4 levels were inversely correlated with FEV1% predicted (FEV1 is forced expiratory volume in 1 s) and positively correlated with adiponectin and TNFα in COPD patients. In addition, a positive correlation between plasma FABP4 and CRP was found in females with COPD. However, FABP4 levels were not correlated with BMI. Our results underline a gender difference in FABP4 secretion in stable COPD patients. Further studies are warranted to clarify the exact role of FABP4 in the pathogenesis of COPD.
doi:10.1042/BSR20150281
PMCID: PMC4770303  PMID: 26823558
chronic obstructive pulmonary disease; fatty-acid-binding protein 4; inflammation; lung function
23.  Is there any relationship between plasma antioxidant capacity and lung function in smokers and in patients with chronic obstructive pulmonary disease? 
Thorax  2000;55(3):189-193.
BACKGROUND—It has been suggested that oxidative stress is an important factor in the pathogenesis of chronic obstructive pulmonary disease (COPD). We have shown that an oxidant/antioxidant imbalance occurs in the distal air spaces of smokers and in patients with COPD which is reflected systemically in the plasma. A study was undertaken to determine whether plasma antioxidant status correlated with lung function as assessed by forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) in smokers and patients with COPD.
METHODS—Plasma antioxidant capacity, assessed by the Trolox equivalent antioxidant capacity (TEAC) as an index of overall systemic oxidative stress, and protein thiol levels were measured in 95patients with stable COPD, in 82 healthy smokers, and in 37 healthy non-smokers.
RESULTS—Mean (SE) plasma TEAC levels were significantly decreased in patients with COPD (0.81 (0.03) mmol/l, p<0.001) and in healthy smokers (0.87 (0.04) mmol/l, p<0.001) compared with healthy non-smokers (1.31 (0.11) mmol/l). The mean differences in plasma antioxidant capacity (mM) were (0.81, 95% confidence interval (CI) 0.22 to 1.48), (0.87, 95% CI 0.2 to 1.46), and (1.31, 95% CI 1.09 to 1.58) in patients with COPD, healthy smokers, and healthy non-smokers, respectively. This reduction was associated with a 29% (95% CI 18 to 38) and a 30% (95% CI 19 to 40) decrease in plasma protein thiol levels in COPD patients and smokers, respectively. Current smoking was not the main contributor to the reduction in antioxidant capacity in patients with COPD as those patients who were still smokers had similar TEAC levels (mean (SE) 0.78 (0.05); n = 25) to those who had stopped smoking (0.84 (0.02); n = 70). No significant correlations were found between spirometric data measured as FEV1 % predicted or FEV1/FVC % predicted and the plasma levels of TEAC in patients with COPD, healthy smokers, or healthy non-smokers. Similarly, there was no significant correlation between FEV1 %predicted or FEV1/FVC % predicted and the levels of plasma protein thiols in the three groups.
CONCLUSIONS—These data confirm decreased antioxidant capacity in smokers and patients with COPD, indicating the presence of systemic oxidative stress. However, no relationship was found between protein thiols or TEAC levels and measurements of airflow limitation in either smokers or in patients with COPD.


doi:10.1136/thorax.55.3.189
PMCID: PMC1745692  PMID: 10679536
24.  Changes in Pulmonary Function after Three-Dimensional Conformal Radiation Therapy, Intensity-Modulated Radiation Therapy, or Proton Beam Therapy for Non-Small Cell Lung Cancer 
Summary
We investigated the effect of modern radiation techniques on pulmonary function in non-small cell lung cancer patients. We found that lung diffusing capacity for carbon monoxide (DLCO) is reduced in the majority of patients after radiation. Moreover, we found that multiple factors, including pretreatment DLCO ≤50% and lung and heart dosimetric data >median were associated with larger posttreatment declines in DLCO.
Purpose
Definitive radiotherapy for non-small cell lung cancer (NSCLC) adversely affects pulmonary function. However, the extent of these effects after radiation delivered with modern techniques is not well known.
Methods and Materials
We analyzed 250 patients who had received ≥60 Gy radio(chemo)therapy, for primary NSCLC in 1998-2010 and had undergone pulmonary function tests (PFTs) before and within one year after treatment. Ninety three patients were treated with 3-dimensional conformal radiotherapy, 97 with intensity-modulated radiotherapy (IMRT), and 60 with proton beam therapy (PBT). Post-radiation PFT values were evaluated amongst individual patients compared to the same patient's pre-radiation value at the following time intervals: 0 to 4 (T1), 5 to 8 (T2), and 9 to 12 (T3) months.
Results
Lung diffusing capacity for carbon monoxide (DLCO) is reduced in the majority of patients along the 3 time periods after radiation, whereas the forced expiratory volume in 1 second per unit of vital capacity (FEV1/VC) showed an increase and decrease after radiation in a similar percentage of patients. There were baseline differences (stage, RT dose, concurrent chemotherapy) among the radiation technology groups. On multivariate analysis, the following features were associated with larger posttreatment declines in DLCO: pretreatment DLCO, gross tumor volume (GTV), lung and heart dosimetric data, and total radiation dose. Only pretreatment DLCO was associated with larger posttreatment declines in FEV1/VC.
Conclusions
DLCO is reduced in the majority of the patients after radiotherapy with modern techniques. Multiple factors, including GTV, pre-radiation lung function and dosimetric parameters, are associated with the DLCO decline. Prospective studies are needed to better understand whether new radiation technology such as PBT or IMRT may decrease the pulmonary impairment through greater lung sparing.
doi:10.1016/j.ijrobp.2012.01.019
PMCID: PMC3923580  PMID: 22420964
non–small cell lung cancer; radiation therapy; diffusing capacity of the lung for carbon monoxide; pulmonary function
25.  Idiopathic pulmonary fibrosis: New insights to functional characteristics at diagnosis 
Although idiopathic pulmonary fibrosis is the most severe of the idiopathic lung diseases, it has not been characterized in detail. This retrospective study analyzed lung function data collected from 93 patients at a tertiary care centre in Kingston, Ontario, in an attempt to more clearly delineate the physiological abnormalities present in the condition.
BACKGROUND:
The lung function of patients with idiopathic pulmonary fibrosis (IPF) has not been characterized in detail.
OBJECTIVE:
To characterize the heterogeneous physiological abnormalities that exist in patients with IPF during their initial clinical evaluation.
METHODS:
Lung function tests from 93 patients, performed within six months of the initial diagnosis of IPF, were obtained from a referral pulmonary function laboratory at a tertiary care hospital in Canada. A restrictive pattern was defined as total lung capacity (TLC) <95th percentile of predicted value. Patients with obstructive lung disease, lung cancer, emphysema and other restrictive lung diseases were excluded.
RESULTS:
On diagnosis, 73% of patients with IPF had a restrictive pattern, with a mean TLC of 72% of predicted. Mean forced vital capacity (FVC) was 71% and 44% of patients had an FVC <95th percentile. Mean diffusing capacity for carbon monoxide (DLco) was 60% and DLco/alveolar volume (VA) 92% of predicted. Increased severity of restriction – based on TLC – was associated with lower DLco (74% of predicted in mild restriction and 39% of predicted in severe restriction) and higher forced expiratory volume in 1 s (FEV1)/FVC ratio (82% of predicted in mild restriction and 90% of predicted in severe restriction) but not with age (76 years in mild restriction and 69 years in severe restriction). Regardless of severity of restriction, the average DLco/VA (≥86% of predicted) remained within normal limits.
CONCLUSIONS:
One in four patients with IPF had normal TLC and more than one-half had a normal FVC during initial evaluation. As the severity of the restriction increased, FEV1/FVC increased, DLco decreased but DLco/VA remained normal.
PMCID: PMC4128468  PMID: 24712014
Idiopathic pulmonary fibrosis; Lung function; Restrictive disease

Results 1-25 (1414136)