PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1556349)

Clipboard (0)
None

Related Articles

1.  Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this analysis was to determine the effectiveness of the influenza vaccination and the pneumococcal vaccination in patients with chronic obstructive pulmonary disease (COPD) in reducing the incidence of influenza-related illness or pneumococcal pneumonia.
Clinical Need: Condition and Target Population
Influenza Disease
Influenza is a global threat. It is believed that the risk of a pandemic of influenza still exists. Three pandemics occurred in the 20th century which resulted in millions of deaths worldwide. The fourth pandemic of H1N1 influenza occurred in 2009 and affected countries in all continents.
Rates of serious illness due to influenza viruses are high among older people and patients with chronic conditions such as COPD. The influenza viruses spread from person to person through sneezing and coughing. Infected persons can transfer the virus even a day before their symptoms start. The incubation period is 1 to 4 days with a mean of 2 days. Symptoms of influenza infection include fever, shivering, dry cough, headache, runny or stuffy nose, muscle ache, and sore throat. Other symptoms such as nausea, vomiting, and diarrhea can occur.
Complications of influenza infection include viral pneumonia, secondary bacterial pneumonia, and other secondary bacterial infections such as bronchitis, sinusitis, and otitis media. In viral pneumonia, patients develop acute fever and dyspnea, and may further show signs and symptoms of hypoxia. The organisms involved in bacterial pneumonia are commonly identified as Staphylococcus aureus and Hemophilus influenza. The incidence of secondary bacterial pneumonia is most common in the elderly and those with underlying conditions such as congestive heart disease and chronic bronchitis.
Healthy people usually recover within one week but in very young or very old people and those with underlying medical conditions such as COPD, heart disease, diabetes, and cancer, influenza is associated with higher risks and may lead to hospitalization and in some cases death. The cause of hospitalization or death in many cases is viral pneumonia or secondary bacterial pneumonia. Influenza infection can lead to the exacerbation of COPD or an underlying heart disease.
Streptococcal Pneumonia
Streptococcus pneumoniae, also known as pneumococcus, is an encapsulated Gram-positive bacterium that often colonizes in the nasopharynx of healthy children and adults. Pneumococcus can be transmitted from person to person during close contact. The bacteria can cause illnesses such as otitis media and sinusitis, and may become more aggressive and affect other areas of the body such as the lungs, brain, joints, and blood stream. More severe infections caused by pneumococcus are pneumonia, bacterial sepsis, meningitis, peritonitis, arthritis, osteomyelitis, and in rare cases, endocarditis and pericarditis.
People with impaired immune systems are susceptible to pneumococcal infection. Young children, elderly people, patients with underlying medical conditions including chronic lung or heart disease, human immunodeficiency virus (HIV) infection, sickle cell disease, and people who have undergone a splenectomy are at a higher risk for acquiring pneumococcal pneumonia.
Technology
Influenza and Pneumococcal Vaccines
Trivalent Influenza Vaccines in Canada
In Canada, 5 trivalent influenza vaccines are currently authorized for use by injection. Four of these are formulated for intramuscular use and the fifth product (Intanza®) is formulated for intradermal use.
The 4 vaccines for intramuscular use are:
Fluviral (GlaxoSmithKline), split virus, inactivated vaccine, for use in adults and children ≥ 6 months;
Vaxigrip (Sanofi Pasteur), split virus inactivated vaccine, for use in adults and children ≥ 6 months;
Agriflu (Novartis), surface antigen inactivated vaccine, for use in adults and children ≥ 6 months; and
Influvac (Abbott), surface antigen inactivated vaccine, for use in persons ≥ 18 years of age.
FluMist is a live attenuated virus in the form of an intranasal spray for persons aged 2 to 59 years. Immunization with current available influenza vaccines is not recommended for infants less than 6 months of age.
Pneumococcal Vaccine
Pneumococcal polysaccharide vaccines were developed more than 50 years ago and have progressed from 2-valent vaccines to the current 23-valent vaccines to prevent diseases caused by 23 of the most common serotypes of S pneumoniae. Canada-wide estimates suggest that approximately 90% of cases of pneumococcal bacteremia and meningitis are caused by these 23 serotypes. Health Canada has issued licenses for 2 types of 23-valent vaccines to be injected intramuscularly or subcutaneously:
Pneumovax 23® (Merck & Co Inc. Whitehouse Station, NJ, USA), and
Pneumo 23® (Sanofi Pasteur SA, Lion, France) for persons 2 years of age and older.
Other types of pneumococcal vaccines licensed in Canada are for pediatric use. Pneumococcal polysaccharide vaccine is injected only once. A second dose is applied only in some conditions.
Research Questions
What is the effectiveness of the influenza vaccination and the pneumococcal vaccination compared with no vaccination in COPD patients?
What is the safety of these 2 vaccines in COPD patients?
What is the budget impact and cost-effectiveness of these 2 vaccines in COPD patients?
Research Methods
Literature search
Search Strategy
A literature search was performed on July 5, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2000 to July 5, 2010. The search was updated monthly through the AutoAlert function of the search up to January 31, 2011. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Articles with an unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established. Data extraction was carried out by the author.
Inclusion Criteria
studies comparing clinical efficacy of the influenza vaccine or the pneumococcal vaccine with no vaccine or placebo;
randomized controlled trials published between January 1, 2000 and January 31, 2011;
studies including patients with COPD only;
studies investigating the efficacy of types of vaccines approved by Health Canada;
English language studies.
Exclusion Criteria
non-randomized controlled trials;
studies investigating vaccines for other diseases;
studies comparing different variations of vaccines;
studies in which patients received 2 or more types of vaccines;
studies comparing different routes of administering vaccines;
studies not reporting clinical efficacy of the vaccine or reporting immune response only;
studies investigating the efficacy of vaccines not approved by Health Canada.
Outcomes of Interest
Primary Outcomes
Influenza vaccination: Episodes of acute respiratory illness due to the influenza virus.
Pneumococcal vaccination: Time to the first episode of community-acquired pneumonia either due to pneumococcus or of unknown etiology.
Secondary Outcomes
rate of hospitalization and mechanical ventilation
mortality rate
adverse events
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses. The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Efficacy of the Influenza Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The influenza vaccination was associated with significantly fewer episodes of influenza-related acute respiratory illness (ARI). The incidence density of influenza-related ARI was:
All patients: vaccine group: (total of 4 cases) = 6.8 episodes per 100 person-years; placebo group: (total of 17 cases) = 28.1 episodes per 100 person-years, (relative risk [RR], 0.2; 95% confidence interval [CI], 0.06−0.70; P = 0.005).
Patients with severe airflow obstruction (forced expiratory volume in 1 second [FEV1] < 50% predicted): vaccine group: (total of 1 case) = 4.6 episodes per 100 person-years; placebo group: (total of 7 cases) = 31.2 episodes per 100 person-years, (RR, 0.1; 95% CI, 0.003−1.1; P = 0.04).
Patients with moderate airflow obstruction (FEV1 50%−69% predicted): vaccine group: (total of 2 cases) = 13.2 episodes per 100 person-years; placebo group: (total of 4 cases) = 23.8 episodes per 100 person-years, (RR, 0.5; 95% CI, 0.05−3.8; P = 0.5).
Patients with mild airflow obstruction (FEV1 ≥ 70% predicted): vaccine group: (total of 1 case) = 4.5 episodes per 100 person-years; placebo group: (total of 6 cases) = 28.2 episodes per 100 person-years, (RR, 0.2; 95% CI, 0.003−1.3; P = 0.06).
The Kaplan-Meier survival analysis showed a significant difference between the vaccinated group and the placebo group regarding the probability of not acquiring influenza-related ARI (log-rank test P value = 0.003). Overall, the vaccine effectiveness was 76%. For categories of mild, moderate, or severe COPD the vaccine effectiveness was 84%, 45%, and 85% respectively.
With respect to hospitalization, fewer patients in the vaccine group compared with the placebo group were hospitalized due to influenza-related ARIs, although these differences were not statistically significant. The incidence density of influenza-related ARIs that required hospitalization was 3.4 episodes per 100 person-years in the vaccine group and 8.3 episodes per 100 person-years in the placebo group (RR, 0.4; 95% CI, 0.04−2.5; P = 0.3; log-rank test P value = 0.2). Also, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD.
Fewer patients in the vaccine group compared with the placebo group required mechanical ventilation due to influenza-related ARIs. However, these differences were not statistically significant. The incidence density of influenza-related ARIs that required mechanical ventilation was 0 episodes per 100 person-years in the vaccine group and 5 episodes per 100 person-years in the placebo group (RR, 0.0; 95% CI, 0−2.5; P = 0.1; log-rank test P value = 0.4). In addition, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD. The effectiveness of the influenza vaccine in preventing influenza-related ARIs and influenza-related hospitalization was not related to age, sex, severity of COPD, smoking status, or comorbid diseases.
safety
Overall, significantly more patients in the vaccine group than the placebo group experienced local adverse reactions (vaccine: 17 [27%], placebo: 4 [6%]; P = 0.002). Significantly more patients in the vaccine group than the placebo group experienced swelling (vaccine 4, placebo 0; P = 0.04) and itching (vaccine 4, placebo 0; P = 0.04). Systemic reactions included headache, myalgia, fever, and skin rash and there were no significant differences between the 2 groups for these reactions (vaccine: 47 [76%], placebo: 51 [81%], P = 0.5).
With respect to lung function, dyspneic symptoms, and exercise capacity, there were no significant differences between the 2 groups at 1 week and at 4 weeks in: FEV1, maximum inspiratory pressure at residual volume, oxygen saturation level of arterial blood, visual analogue scale for dyspneic symptoms, and the 6 Minute Walking Test for exercise capacity.
There was no significant difference between the 2 groups with regard to the probability of not acquiring total ARIs (influenza-related and/or non-influenza-related); (log-rank test P value = 0.6).
Summary of Efficacy of the Pneumococcal Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The Kaplan-Meier survival analysis showed no significant differences between the group receiving the penumoccocal vaccination and the control group for time to the first episode of community-acquired pneumonia due to pneumococcus or of unknown etiology (log-rank test 1.15; P = 0.28). Overall, vaccine efficacy was 24% (95% CI, −24 to 54; P = 0.33).
With respect to the incidence of pneumococcal pneumonia, the Kaplan-Meier survival analysis showed a significant difference between the 2 groups (vaccine: 0/298; control: 5/298; log-rank test 5.03; P = 0.03).
Hospital admission rates and median length of hospital stays were lower in the vaccine group, but the difference was not statistically significant. The mortality rate was not different between the 2 groups.
Subgroup Analysis
The Kaplan-Meier survival analysis showed significant differences between the vaccine and control groups for pneumonia due to pneumococcus and pneumonia of unknown etiology, and when data were analyzed according to subgroups of patients (age < 65 years, and severe airflow obstruction FEV1 < 40% predicted). The accumulated percentage of patients without pneumonia (due to pneumococcus and of unknown etiology) across time was significantly lower in the vaccine group than in the control group in patients younger than 65 years of age (log-rank test 6.68; P = 0.0097) and patients with a FEV1 less than 40% predicted (log-rank test 3.85; P = 0.0498).
Vaccine effectiveness was 76% (95% CI, 20−93; P = 0.01) for patients who were less than 65 years of age and −14% (95% CI, −107 to 38; P = 0.8) for those who were 65 years of age or older. Vaccine effectiveness for patients with a FEV1 less than 40% predicted and FEV1 greater than or equal to 40% predicted was 48% (95% CI, −7 to 80; P = 0.08) and −11% (95% CI, −132 to 47; P = 0.95), respectively. For patients who were less than 65 years of age (FEV1 < 40% predicted), vaccine effectiveness was 91% (95% CI, 35−99; P = 0.002).
Cox modelling showed that the effectiveness of the vaccine was dependent on the age of the patient. The vaccine was not effective in patients 65 years of age or older (hazard ratio, 1.53; 95% CI, 0.61−a2.17; P = 0.66) but it reduced the risk of acquiring pneumonia by 80% in patients less than 65 years of age (hazard ratio, 0.19; 95% CI, 0.06−0.66; P = 0.01).
safety
No patients reported any local or systemic adverse reactions to the vaccine.
PMCID: PMC3384373  PMID: 23074431
2.  A Population-Based Evaluation of a Publicly Funded, School-Based HPV Vaccine Program in British Columbia, Canada: Parental Factors Associated with HPV Vaccine Receipt 
PLoS Medicine  2010;7(5):e1000270.
Analysis of a telephone survey by Gina Ogilvie and colleagues identifies the parental factors associated with HPV vaccine uptake in a school-based program in Canada.
Background
Information on factors that influence parental decisions for actual human papillomavirus (HPV) vaccine receipt in publicly funded, school-based HPV vaccine programs for girls is limited. We report on the level of uptake of the first dose of the HPV vaccine, and determine parental factors associated with receipt of the HPV vaccine, in a publicly funded school-based HPV vaccine program in British Columbia, Canada.
Methods and Findings
All parents of girls enrolled in grade 6 during the academic year of September 2008–June 2009 in the province of British Columbia were eligible to participate. Eligible households identified through the provincial public health information system were randomly selected and those who consented completed a validated survey exploring factors associated with HPV vaccine uptake. Bivariate and multivariate analyses were conducted to calculate adjusted odds ratios to identify the factors that were associated with parents' decision to vaccinate their daughter(s) against HPV. 2,025 parents agreed to complete the survey, and 65.1% (95% confidence interval [CI] 63.1–67.1) of parents in the survey reported that their daughters received the first dose of the HPV vaccine. In the same school-based vaccine program, 88.4% (95% CI 87.1–89.7) consented to the hepatitis B vaccine, and 86.5% (95% CI 85.1–87.9) consented to the meningococcal C vaccine. The main reasons for having a daughter receive the HPV vaccine were the effectiveness of the vaccine (47.9%), advice from a physician (8.7%), and concerns about daughter's health (8.4%). The main reasons for not having a daughter receive the HPV vaccine were concerns about HPV vaccine safety (29.2%), preference to wait until the daughter is older (15.6%), and not enough information to make an informed decision (12.6%). In multivariate analysis, overall attitudes to vaccines, the impact of the HPV vaccine on sexual practices, and childhood vaccine history were predictive of parents having a daughter receive the HPV vaccine in a publicly funded school-based HPV vaccine program. By contrast, having a family with two parents, having three or more children, and having more education was associated with a decreased likelihood of having a daughter receive the HPV vaccine.
Conclusions
This study is, to our knowledge, one of the first population-based assessments of factors associated with HPV vaccine uptake in a publicly funded school-based program worldwide. Policy makers need to consider that even with the removal of financial and health care barriers, parents, who are key decision makers in the uptake of this vaccine, are still hesitant to have their daughters receive the HPV vaccine, and strategies to ensure optimal HPV vaccine uptake need to be employed.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
About 10% of cancers in women occur in the cervix, the structure that connects the womb to the vagina. Every year, globally, more than a quarter of a million women die because of cervical cancer, which only occurs after the cervix has been infected with a human papillomavirus (HPV) through sexual intercourse. There are many types of HPV, a virus that infects the skin and the mucosa (the moist membranes that line various parts of the body, including the cervix). Although most people become infected with HPV at some time in their life, most never know they are infected. However, some HPV types cause harmless warts on the skin or around the genital area and several—in particular, HPV 16 and HPV 18, so-called high-risk HPVs—can cause cervical cancer. HPV infections are usually cleared by the immune system, but about 10% of women infected with a high-risk HPV develop a long-term infection that puts them at risk of developing cervical cancer.
Why Was This Study Done?
Screening programs have greatly reduced cervical cancer deaths in developed countries in recent decades by detecting the cancer early when it can be treated; but it would be better to prevent cervical cancer ever developing. Because HPV is necessary for the development of cervical cancer, vaccination of girls against HPV infection before the onset of sexual activity might be one way to do this. Scientists recently developed a vaccine that prevents infection with HPV 16 and HPV 18 (and with two HPVs that cause genital warts) and that should, therefore, reduce the incidence of cervical cancer. Publicly funded HPV vaccination programs are now planned or underway in several countries; but before girls can receive the HPV vaccine, parental consent is usually needed, so it is important to know what influences parental decisions about HPV vaccination. In this study, the researchers undertake a telephone survey to determine the uptake of the HPV vaccine by 11-year-old girls (grade 6) in British Columbia, Canada, and to determine the parental factors associated with vaccine uptake; British Columbia started a voluntary school-based HPV vaccine program in September 2008.
What Did the Researchers Do and Find?
In early 2009, the researchers contacted randomly selected parents of girls enrolled in grade 6 during the 2008–2009 academic year and asked them to complete a telephone survey that explored factors associated with HPV vaccine uptake. 65.1% of the 2,025 parents who completed the survey had consented to their daughter receiving the first dose of HPV vaccine. By contrast, more than 85% of the parents had consented to hepatitis B and meningitis C vaccination of their daughters. Nearly half of the parents surveyed said their main reason for consenting to HPV vaccination was the effectiveness of the vaccine. Conversely, nearly a third of the parents said concern about the vaccine's safety was their main reason for not consenting to vaccination and one in eight said they had been given insufficient information to make an informed decision. In a statistical analysis of the survey data, the researchers found that a positive parental attitude towards vaccination, a parental belief that HPV vaccination had limited impact on sexual practices, and completed childhood vaccination increased the likelihood of a daughter receiving the HPV vaccine. Having a family with two parents or three or more children and having well-educated parents decreased the likelihood of a daughter receiving the vaccine.
What Do These Findings Mean?
These findings provide one of the first population-based assessments of the factors that affect HPV vaccine uptake in a setting where there are no financial or health care barriers to vaccination. By identifying the factors associated with parental reluctance to agree to HPV vaccination for their daughters, these findings should help public-health officials design strategies to ensure optimal HPV vaccine uptake, although further studies are needed to discover why, for example, parents with more education are less likely to agree to vaccination than parents with less education. Importantly, the findings of this study, which are likely to be generalizable to other high-income countries, indicate that there is a continued need to ensure that the public receives credible, clear information about both the benefits and long-term safety of HPV vaccination.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000270.
The US National Cancer Institute provides information about cervical cancer for patients and for health professionals, including information on HPV vaccines (in English and Spanish)
The US Centers for Disease Control and Prevention also has information about cervical cancer and about HPV
The UK National Health Service Choices website has pages on cervical cancer and on HPV vaccination
More information about cervical cancer and HPV vaccination is available from the Macmillan cancer charity
ImmunizeBC provides general information about vaccination and information about HPV vaccination in British Columbia
MedlinePlus provides links to additional resources about cervical cancer (in English and Spanish)
doi:10.1371/journal.pmed.1000270
PMCID: PMC2864299  PMID: 20454567
3.  Screening and Rapid Molecular Diagnosis of Tuberculosis in Prisons in Russia and Eastern Europe: A Cost-Effectiveness Analysis 
PLoS Medicine  2012;9(11):e1001348.
Daniel Winetsky and colleagues investigate eight strategies for screening and diagnosis of tuberculosis within prisons of the former Soviet Union.
Background
Prisons of the former Soviet Union (FSU) have high rates of multidrug-resistant tuberculosis (MDR-TB) and are thought to drive general population tuberculosis (TB) epidemics. Effective prison case detection, though employing more expensive technologies, may reduce long-term treatment costs and slow MDR-TB transmission.
Methods and Findings
We developed a dynamic transmission model of TB and drug resistance matched to the epidemiology and costs in FSU prisons. We evaluated eight strategies for TB screening and diagnosis involving, alone or in combination, self-referral, symptom screening, mass miniature radiography (MMR), and sputum PCR with probes for rifampin resistance (Xpert MTB/RIF). Over a 10-y horizon, we projected costs, quality-adjusted life years (QALYs), and TB and MDR-TB prevalence. Using sputum PCR as an annual primary screening tool among the general prison population most effectively reduced overall TB prevalence (from 2.78% to 2.31%) and MDR-TB prevalence (from 0.74% to 0.63%), and cost US$543/QALY for additional QALYs gained compared to MMR screening with sputum PCR reserved for rapid detection of MDR-TB. Adding sputum PCR to the currently used strategy of annual MMR screening was cost-saving over 10 y compared to MMR screening alone, but produced only a modest reduction in MDR-TB prevalence (from 0.74% to 0.69%) and had minimal effect on overall TB prevalence (from 2.78% to 2.74%). Strategies based on symptom screening alone were less effective and more expensive than MMR-based strategies. Study limitations included scarce primary TB time-series data in FSU prisons and uncertainties regarding screening test characteristics.
Conclusions
In prisons of the FSU, annual screening of the general inmate population with sputum PCR most effectively reduces TB and MDR-TB prevalence, doing so cost-effectively. If this approach is not feasible, the current strategy of annual MMR is both more effective and less expensive than strategies using self-referral or symptom screening alone, and the addition of sputum PCR for rapid MDR-TB detection may be cost-saving over time.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Tuberculosis (TB)—a contagious bacterial disease—is a major public health problem, particularly in low- and middle-income countries. In 2010, about nine million people developed TB, and about 1.5 million people died from the disease. Mycobacterium tuberculosis, the bacterium that causes TB, is spread in airborne droplets when people with active disease cough or sneeze. The characteristic symptoms of TB include fever, a persistent cough, and night sweats. Diagnostic tests include sputum smear microscopy (examination of mucus from the lungs for M. tuberculosis bacilli), mycobacterial culture (growth of M. tuberculosis from sputum), and chest X-rays. TB can also be diagnosed by looking for fragments of the M. tuberculosis genetic blueprint in sputum samples (sputum PCR). Importantly, sputum PCR can detect the genetic changes that make M. tuberculosis resistant to rifampicin, a constituent of the cocktail of antibiotics that is used to cure TB. Rifampicin resistance is an indicator of multidrug-resistant TB (MDR-TB), the emergence of which is thwarting ongoing global efforts to control TB.
Why Was This Study Done?
Prisons present unique challenges for TB control. Overcrowding, poor ventilation, and inadequate medical care increase the spread of TB among prisoners, who often come from disadvantaged populations where the prevalence of TB (the proportion of the population with TB) is already high. Prisons also act as reservoirs for TB, recycling the disease back into the civilian population. The prisons of the former Soviet Union, for example, which have extremely high rates of MDR-TB, are thought to drive TB epidemics in the general population. Because effective identification of active TB among prison inmates has the potential to improve TB control outside prisons, the World Health Organization recommends active TB case finding among prisoners using self-referral, screening with symptom questionnaires, or screening with chest X-rays or mass miniature radiography (MMR). But which of these strategies will reduce the prevalence of TB in prisons most effectively, and which is most cost-effective? Here, the researchers evaluate the relative effectiveness and cost-effectiveness of alternative strategies for screening and diagnosis of TB in prisons by modeling TB and MDR-TB epidemics in prisons of the former Soviet Union.
What Did the Researchers Do and Find?
The researchers used a dynamic transmission model of TB that simulates the movement of individuals in prisons in the former Soviet Union through different stages of TB infection to estimate the costs, quality-adjusted life years (QALYs; a measure of disease burden that includes both the quantity and quality of life) saved, and TB and MDR-TB prevalence for eight TB screening/diagnostic strategies over a ten-year period. Compared to annual MMR alone (the current strategy), annual screening with sputum PCR produced the greatest reduction in the prevalence of TB and of MDR-TB among the prison population. Adding sputum PCR for detection of MDR-TB to annual MMR screening did not affect the overall TB prevalence but slightly reduced the MDR-TB prevalence and saved nearly US$2,000 over ten years per model prison of 1,000 inmates, compared to MMR screening alone. Annual sputum PCR was the most cost-effective strategy, costing US$543/QALY for additional QALYs gained compared to MMR screening plus sputum PCR for MDR-TB detection. Other strategies tested, including symptom screening alone or combined with sputum PCR, were either more expensive and less effective or less cost-effective than these two options.
What Do These Findings Mean?
These findings suggest that, in prisons in the former Soviet Union, annual screening with sputum PCR will most effectively reduce TB and MDR-TB prevalence and will be cost-effective. That is, the cost per QALY saved of this strategy is less than the per-capita gross domestic product of any of the former Soviet Union countries. The paucity of primary data on some facets of TB epidemiology in prisons in the former Soviet Union and the assumptions built into the mathematical model limit the accuracy of these findings. Moreover, because most of the benefits of sputum PCR screening come from treating the MDR-TB cases that are detected using this screening approach, these findings cannot be generalized to prison settings without a functioning MDR-TB treatment program or with a very low MDR-TB prevalence. Despite these and other limitations, these findings provide valuable information about the screening strategies that are most likely to interrupt the TB cycle in prisons, thereby saving resources and averting preventable deaths both inside and outside prisons.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001348.
The World Health Organization provides information (in several languages) on all aspects of tuberculosis, including general information on tuberculosis diagnostics and on tuberculosis in prisons; a report published in the Bulletin of the World Health Organization in 2006 describes tough measures taken in Russian prisons to slow the spread of TB
The Stop TB Partnership is working towards tuberculosis elimination; patient stories about tuberculosis are available (in English and Spanish)
The US Centers for Disease Control and Prevention has information about tuberculosis, about its diagnosis, and about tuberculosis in prisons (some information in English and Spanish)
A PLOS Medicine Research Article by Iacapo Baussano et al. describes a systematic review of tuberculosis incidence in prisons; a linked editorial entitled The Health Crisis of Tuberculosis in Prisons Extends beyond the Prison Walls is also available
The Tuberculosis Survival Project, which aims to raise awareness of tuberculosis and provide support for people with tuberculosis, provides personal stories about treatment for tuberculosis; the Tuberculosis Vaccine Initiative also provides personal stories about dealing with tuberculosis
MedlinePlus has links to further information about tuberculosis (in English and Spanish)
doi:10.1371/journal.pmed.1001348
PMCID: PMC3507963  PMID: 23209384
4.  Hepatitis B vaccination practices in state and federal prisons. 
Public Health Reports  2001;116(3):203-209.
OBJECTIVE: Incarcerated populations are a group at high risk for hepatitis B. About 30% of people experiencing acute hepatitis B virus infection (HBV) have a history of incarceration. Offering routine HBV vaccinations to incarcerated individuals could have a significant effect on public health. The objective of this study is to identify current vaccine practices and the perceived feasibility of routine vaccinations for hepatitis B within correctional settings. METHOD: The authors surveyed the medical directors of state correctional facilities in all 50 states and the federal prison system regarding current HBV vaccine practices. Surveys were faxed or mailed between July 1 and September 1, 2000. RESULTS: Thirty-five states and the federal system responded (response rate = 70.6%). These systems account for 77% of all inmates in federal or state prisons and jails. Two states give hepatitis B vaccine routinely, nine states offer no hepatitis B vaccine, and 26 states and the Federal Bureau of Prisons offer hepatitis vaccine to some inmates. Most states do not spend enough money to vaccinate even those prisoners at highest risk. Under the Vaccine for Children program, 19,520 youths could receive vaccine immediately. According to the respondents, if vaccine were available at no-cost, 25 states and the Federal Bureau of Prisons would routinely offer vaccination to all inmates. CONCLUSIONS: Most correctional systems do not routinely offer vaccine to their incarcerated populations, but would if funds were available. There exists now a unique public health opportunity to prevent a significant proportion of new hepatitis B infections.
PMCID: PMC1497321  PMID: 12034909
5.  Decline in Diarrhea Mortality and Admissions after Routine Childhood Rotavirus Immunization in Brazil: A Time-Series Analysis 
PLoS Medicine  2011;8(4):e1001024.
A time series analysis by Manish Patel and colleagues shows that the introduction of rotavirus vaccination in Brazil is associated with reduced diarrhea-related deaths and hospital admissions in children under 5 years of age.
Background
In 2006, Brazil began routine immunization of infants <15 wk of age with a single-strain rotavirus vaccine. We evaluated whether the rotavirus vaccination program was associated with declines in childhood diarrhea deaths and hospital admissions by monitoring disease trends before and after vaccine introduction in all five regions of Brazil with varying disease burden and distinct socioeconomic and health indicators.
Methods and Findings
National data were analyzed with an interrupted time-series analysis that used diarrhea-related mortality or hospitalization rates as the main outcomes. Monthly mortality and admission rates estimated for the years after rotavirus vaccination (2007–2009) were compared with expected rates calculated from pre-vaccine years (2002–2005), adjusting for secular and seasonal trends. During the three years following rotavirus vaccination in Brazil, rates for diarrhea-related mortality and admissions among children <5 y of age were 22% (95% confidence interval 6%–44%) and 17% (95% confidence interval 5%–27%) lower than expected, respectively. A cumulative total of ∼1,500 fewer diarrhea deaths and 130,000 fewer admissions were observed among children <5 y during the three years after rotavirus vaccination. The largest reductions in deaths (22%–28%) and admissions (21%–25%) were among children younger than 2 y, who had the highest rates of vaccination. In contrast, lower reductions in deaths (4%) and admissions (7%) were noted among children two years of age and older, who were not age-eligible for vaccination during the study period.
Conclusions
After the introduction of rotavirus vaccination for infants, significant declines for three full years were observed in under-5-y diarrhea-related mortality and hospital admissions for diarrhea in Brazil. The largest reductions in diarrhea-related mortality and hospital admissions for diarrhea were among children younger than 2 y, who were eligible for vaccination as infants, which suggests that the reduced diarrhea burden in this age group was associated with introduction of the rotavirus vaccine. These real-world data are consistent with evidence obtained from clinical trials and strengthen the evidence base for the introduction of rotavirus vaccination as an effective measure for controlling severe and fatal childhood diarrhea.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Diarrheal disease, usually caused by infectious agents, is the second major cause of death in children aged under five years. As highlighted in a recent PLoS Medicine series, access to clean water and improved sanitation is the key to the primary prevention of diarrheal illnesses. Yet despite the targets of Millennium Development Goal 7 to half the number of people without access to clean water or improved sanitation by 2015, over one billion people worldwide do not currently have access to clean water and over two billion do not currently have access to improved sanitation.
Since enteric viruses are primarily transmitted directly from one person to another, they cannot be controlled completely by improvements in sanitation. Therefore, although not replacing the urgent need to provide access to clean water and improved sanitation for all, vaccination programs that protect young children against some infections that cause diarrhea, such as rotavirus, which accounts for one-third of all child deaths caused by diarrhea, are a pragmatic way forward. As large clinical trials have shown the safety and efficacy of rotavirus vaccines in population settings, in July 2009, the World Health Organization recommended including rotavirus vaccines into every country's national immunization programs.
Why Was This Study Done?
Although the protective effect of rotavirus vaccines has been assessed in various high-, middle-, and low-income settings, for reasons that remain unclear, the efficacy of live, oral rotavirus vaccines appears to be dependent on geographical location and correlated to the socioeconomic status of the population. Because of these concerns, evaluating the health impact of large-scale rotavirus vaccine programs and ensuring their equity in a real-world setting (rather than in clinical trial conditions) is important.
Therefore, the researchers addressed this issue by conducting this study to evaluate the effect of rotavirus vaccination on mortality and hospital admissions for diarrhea due to all causes among young children in the five regions of Brazil. The researchers chose to do this study in Brazil because of the high incidence of diarrhea-related deaths and hospital admissions and because five years ago, in July 2006, the Brazilian Ministry of Health introduced the single-strain rotavirus vaccine simultaneously in all 27 states through its national immunization program—allowing for “before” and “after” intervention analysis.
What Did the Researchers Do and Find?
The researchers obtained data on diarrheal deaths and hospital admissions in children aged under five years for the period 2002–2005 and 2007–2009 and data on rotavirus vaccination rates. The researchers got the data on diarrhea deaths from the Brazilian Mortality Information System—the national database of information collected from death certificates that covers 90% of all deaths in Brazil. The data on hospital admissions came from the electronic Hospital Information System of Brazil's Unified Health System (Sistema Unico de Saúde, SUS)—the publicly funded health-care system that covers roughly 70% of the hospitalizations and includes information on all admissions (from public hospitals and some private hospitals) authorized for payment by the Unified Health System. The researchers got regional rotavirus vaccination coverage estimates for 2007–2009 from the information department of the Ministry of Health, and estimated coverage of the two doses of oral rotavirus vaccine by taking the annual number of second doses administered divided by the number of infants in the region.
In 2007, an estimated 80% of infants received two doses of rotavirus vaccine, and by 2009, this proportion rose to 84% of children younger than one year of age. The researchers found that in the three years following the introduction of rotavirus vaccination, diarrhea-related mortality rates and admissions among children aged under five years were respectively 22% and 17% lower than expected, with a cumulative total of 1,500 fewer diarrhea deaths and 130,000 fewer admissions. Furthermore, the largest reductions in deaths and admissions were among children who had the highest rates of vaccination (less than two years of age), and the lowest reductions were among children who were not eligible for vaccination during the study period (aged 2–4 years).
What Do These Findings Mean?
These findings suggest that the introduction of rotavirus vaccination in all areas of Brazil is associated with reduced diarrhea-related deaths and hospital admissions in children aged under five years. These real-world impact data are consistent with the clinical trials and strengthen the evidence base for rotavirus vaccination as an effective measure for controlling severe and fatal childhood diarrhea.
These findings have important global policy implications. In middle-income countries, such as Brazil, that are not eligible for financial support from donors, the potential reductions in admissions and other health-care costs will be important for cost-effectiveness considerations to justify the purchase of these still relatively expensive vaccines.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001024
PLoS Medicine has published a series on water and sanitation
More information is available from the World Health Organization on diarrheal illness in children
More information is available about rotavirus vaccines from the World Health Organization, the US Centers for Disease Control and Prevention, and the Rotavirus Vaccine Program
doi:10.1371/journal.pmed.1001024
PMCID: PMC3079643  PMID: 21526228
6.  Removing the Age Restrictions for Rotavirus Vaccination: A Benefit-Risk Modeling Analysis 
PLoS Medicine  2012;9(10):e1001330.
A modeling analysis conducted by Manish Patel and colleagues predicts the possible number of rotavirus deaths prevented, and number of intussusception deaths caused, by use of an unrestricted rotavirus schedule in low- and middle-income countries.
Background
To minimize potential risk of intussusception, the World Health Organization (WHO) recommended in 2009 that rotavirus immunization should be initiated by age 15 weeks and completed before 32 weeks. These restrictions could adversely impact vaccination coverage and thereby its health impact, particularly in developing countries where delays in vaccination often occur.
Methods and Findings
We conducted a modeling study to estimate the number of rotavirus deaths prevented and the number of intussusception deaths caused by vaccination when administered on the restricted schedule versus an unrestricted schedule whereby rotavirus vaccine would be administered with DTP vaccine up to age 3 years. Countries were grouped on the basis of child mortality rates, using WHO data. Inputs were estimates of WHO rotavirus mortality by week of age from a recent study, intussusception mortality based on a literature review, predicted vaccination rates by week of age from USAID Demographic and Health Surveys, the United Nations Children's Fund (UNICEF) Multiple Indicator Cluster Surveys (MICS), and WHO-UNICEF 2010 country-specific coverage estimates, and published estimates of vaccine efficacy and vaccine-associated intussusception risk. On the basis of the error estimates and distributions for model inputs, we conducted 2,000 simulations to obtain median estimates of deaths averted and caused as well as the uncertainty ranges, defined as the 5th–95th percentile, to provide an indication of the uncertainty in the estimates.
We estimated that in low and low-middle income countries a restricted schedule would prevent 155,800 rotavirus deaths (5th–95th centiles, 83,300–217,700) while causing potentially 253 intussusception deaths (76–689). In contrast, vaccination without age restrictions would prevent 203,000 rotavirus deaths (102,000–281,500) while potentially causing 547 intussusception deaths (237–1,160). Thus, removing the age restrictions would avert an additional 47,200 rotavirus deaths (18,700–63,700) and cause an additional 294 (161–471) intussusception deaths, for an incremental benefit-risk ratio of 154 deaths averted for every death caused by vaccine. These extra deaths prevented under an unrestricted schedule reflect vaccination of an additional 21%–25% children, beyond the 63%–73% of the children who would be vaccinated under the restricted schedule. Importantly, these estimates err on the side of safety in that they assume high vaccine-associated risk of intussusception and do not account for potential herd immunity or non-fatal outcomes.
Conclusions
Our analysis suggests that in low- and middle-income countries the additional lives saved by removing age restrictions for rotavirus vaccination would far outnumber the potential excess vaccine-associated intussusception deaths.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Rotavirus causes severe diarrhea and vomiting. It is responsible for a large number of hospitalizations among young children in developed countries (an estimated 60,000 hospitalizations per year in the US in 2005, for example). In poor countries, rotavirus is a major cause of death in children under five. In 1998, the first rotavirus vaccine, called RotaShield, was approved in the US by the Food and Drug Administration. Shortly after the vaccine became widely used, doctors noticed a small increase in a problem called intussusception among the vaccinated infants. Intussusception is a rare type of bowel obstruction that occurs when the bowel telescopes in on itself. Prompt treatment of intussusception normally leads to full recovery, but some children with the condition need surgery, and when the disease is left untreated it can be fatal. Because intussusception is a serious condition and because very few children die from rotavirus infection in the United States, the US authorities stopped recommending vaccination with RotaShield in 1999. The manufacturer withdrew the vaccine from the market shortly thereafter.
Since then, two new vaccines (named Rotarix and RotaTeq) have been developed. Before they were approved in the US and elsewhere, they were extensively tested for any adverse side effects, especially intussusception. No increase in the risk for intussusception was found in these studies, and both are now approved and recommended for vaccination of infants around the world.
Why Was This Study Done?
Since 2006, hundreds of thousands of infants have been vaccinated with Rotarix or RotaTeq, with safety being closely monitored. Some countries have reported a small increase in intussusception (one to four additional cases per 100,000 vaccinated infants, compared with one per 2,000 of cases that occur in unvaccinated children). This increase is much lower than the one seen previously with RotaShield. In response to these findings, authorities in the US and other developed countries as well as the World Health Organization declared that the benefits of the vaccine outweigh the risks of the small number of additional intussusception cases in both developed and poor countries. However, because older infants have a higher risk of naturally occurring intussusception, they decided that the course of vaccination (three oral doses for Rotarix and two for RotaTeq) should be initiated before 15 weeks of age and completed before the age of 32 weeks. This is usually not a problem in countries with easy access to health facilities. However, in many poor countries where delays in infant vaccination are common, giving the vaccine only to very young children means that many others who could benefit from its protection will be excluded. In this study, the researchers examined the risks and benefits of rotavirus vaccination in poor countries where most of the rotavirus deaths occur. Specifically, they looked at the benefits and risks if the age restrictions were removed, with a particular emphasis on allowing infants to initiate rotavirus immunization even if they arrive after 15 weeks of age.
What Did the Researchers Do and Find?
The researchers used the most recent estimates for how well the vaccines protect children in Africa and Asia from becoming infected with rotavirus, how many deaths from rotavirus infection can be avoided by vaccination, how many additional cases of intussusception will likely occur in vaccinated children, and what proportion of children would be excluded from rotavirus vaccination because they are too old when they come to a health facility for their infant vaccination. They then estimated the number of rotavirus deaths prevented and the number of intussusception deaths caused by vaccination in two scenarios. The first one (the restricted scenario) corresponds to previous guidelines from WHO and others, in which rotavirus vaccination needs to be initiated before 15 weeks and the full series completed before 32 weeks. The second one (called the unrestricted scenario) allows rotavirus vaccination of children alongside current routinely administered vaccines up to three years of age, recognizing that most children receive their vaccination by 1 year of life.
The researchers estimated that removing the age restriction would prevent an additional 154 rotavirus deaths for each intussusception death caused by the vaccine. Under the unrestricted scenario, roughly a third more children would get vaccinated, which would prevent an additional approximately 47,000 death from rotavirus while causing approximately 300 additional intussusception deaths.
They also calculated some best- and worst-case scenarios. The worst-case scenario assumed a much higher risk of intussusception for children receiving their first dose after 15 weeks of life than what has been seen anywhere, and also that an additional 20% of children with intussusception would die from it than what was already assumed in their routine scenario (again, a higher number than seen in reality). In addition, it assumes a lower protection from rotavirus death for the vaccine than has been observed in children vaccinated so far. In this pessimistic case, the number of rotavirus deaths prevented was 24 for each intussusception death caused by the vaccine.
What Do These Findings Mean?
If one accepts that deaths caused by a vaccine are not fundamentally different from deaths caused by a failure to vaccinate, then these results show that the benefits of lifting the age restriction for rotavirus vaccine clearly outweigh the risks, at least when only examining mortality outcomes. The calculations are valid only for low-income countries in Africa and Asia where both vaccination delays and deaths from rotavirus are common. The risk-benefit ratio will be different elsewhere. There are also additional risks and benefits that are not included in the study's estimates. For example, early vaccination might be seen as less of an urgent priority when this vaccine can be had at a later date, leaving very young children more vulnerable. On the other hand, when many children in the community are vaccinated, even the unvaccinated children are less likely to get infected (what is known as “herd immunity”), something that has not been taken into account in the benefits here. The results of this study (and its limitations) were reviewed in April 2012 by WHO's Strategic Advisory Group of Experts. The group then recommended that, while early vaccination is still strongly encouraged, the age restriction on rotavirus vaccination should be removed in countries where delays in vaccination and rotavirus mortality are common so that more vulnerable children can be vaccinated and deaths from rotavirus averted.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001330.
The World Health Organization provides information on rotavirus
Wikipedia has information on rotavirus vaccine and intussusception (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The US Centers for Disease Control and Prevention rotavirus vaccination page includes a link to frequently asked questions
PATH Rotavirus Vaccine Access and Delivery has timely, useful updates on status of rotavirus vaccines globally
doi:10.1371/journal.pmed.1001330
PMCID: PMC3479108  PMID: 23109915
7.  Frequency of Adverse Events after Vaccination with Different Vaccinia Strains 
PLoS Medicine  2006;3(8):e272.
Background
Large quantities of smallpox vaccine have been stockpiled to protect entire nations against a possible reintroduction of smallpox. Planning for an appropriate use of these stockpiled vaccines in response to a smallpox outbreak requires a rational assessment of the risks of vaccination-related adverse events, compared to the risk of contracting an infection. Although considerable effort has been made to understand the dynamics of smallpox transmission in modern societies, little attention has been paid to estimating the frequency of adverse events due to smallpox vaccination. Studies exploring the consequences of smallpox vaccination strategies have commonly used a frequency of approximately one death per million vaccinations, which is based on a study of vaccination with the New York City Board of Health (NYCBH) strain of vaccinia virus. However, a multitude of historical studies of smallpox vaccination with other vaccinia strains suggest that there are strain-related differences in the frequency of adverse events after vaccination. Because many countries have stockpiled vaccine based on the Lister strain of vaccinia virus, a quantitative evaluation of the adverse effects of such vaccines is essential for emergency response planning. We conducted a systematic review and statistical analysis of historical data concerning vaccination against smallpox with different strains of vaccinia virus.
Methods and Findings
We analyzed historical vaccination data extracted from the literature. We extracted data on the frequency of postvaccinal encephalitis and death with respect to vaccinia strain and age of vaccinees. Using a hierarchical Bayesian approach for meta-analysis, we estimated the expected frequencies of postvaccinal encephalitis and death with respect to age at vaccination for smallpox vaccines based on the NYCBH and Lister vaccinia strains. We found large heterogeneity between findings from different studies and a time-period effect that showed decreasing incidences of adverse events over several decades. To estimate death rates, we then restricted our analysis to more-recent studies. We estimated that vaccination with the NYCBH strain leads to an average of 1.4 deaths per million vaccinations (95% credible interval, 0–6) and that vaccination with Lister vaccine leads to an average of 8.4 deaths per million vaccinations (95% credible interval, 0–31). We combined age-dependent estimates of the frequency of death after vaccination and revaccination with demographic data to obtain estimates of the expected number of deaths in present societies due to vaccination with the NYCBH and Lister vaccinia strains.
Conclusions
Previous analyses of smallpox vaccination policies, which rely on the commonly assumed value of one death per million vaccinations, may give serious underestimates of the number of deaths resulting from vaccination. Moreover, because there are large, strain-dependent differences in the frequency of adverse events due to smallpox vaccination, it is difficult to extrapolate from predictions for the NYCBH-derived vaccines (stockpiled in countries such as the US) to predictions for the Lister-derived vaccines (stockpiled in countries such as Germany). In planning for an effective response to a possible smallpox outbreak, public-health decision makers should reconsider their strategies of when to opt for ring vaccination and when to opt for mass vaccination.
Analysis of historical data for adverse events suggests that the commonly assumed number of one death per million vaccinations is inaccurate. Large differences between different vaccinia strains used should be taken into account when mass vaccinations are considered.
Editors' Summary
Background.
For thousands of years, smallpox was one of the world's most-feared diseases. This contagious disease, caused by the variola virus, historically killed about 30 percent of the people it infected. Over the centuries, it probably killed more people than all other infectious diseases combined, but it was also the first disease to be prevented by vaccination. In 1796, the English physician Edward Jenner rubbed pus from the spots of a milkmaid with cowpox into scratches on a young boy's arm; according to folklore, people who caught cowpox, a related but mild disease of cows, were protected against smallpox. Six weeks later, after a mild bout of cowpox, when the boy was challenged with pus from a smallpox patient, he did not develop smallpox. This vaccination procedure was later refined so that people were inoculated with pure preparations of live vaccinia virus, which is closely related to the smallpox and cowpox viruses, and by 1979 a global vaccination campaign had totally eradicated the disease.
Why Was This Study Done?
Smallpox vaccination has some adverse effects. In particular, vaccinia virus occasionally infects the brain. This so-called post-vaccination encephalitis can cause permanent brain damage and, it has been estimated, kills one vaccinee in every million. Consequently, as smallpox became rarer, the dangers of vaccination began to outweigh its benefits. Routine smallpox vaccination stopped in the US in 1972, and in 1980 the World Health Organization recommended that all countries stop vaccination. Now, however, there are fears that smallpox may be used for bioterrorism. If this did happen, exposed individuals and their contacts, possibly even whole populations, would have to be vaccinated as quickly as possible (very few people now have strong immunity to smallpox). Many countries have stockpiles of smallpox vaccines for this eventuality, but these contain different vaccinia virus strains. In this study, the researchers examined historical data to discover whether these strains differ in their potential to cause encephalitis and death. This information should help public-health officials plan their vaccination strategies in response to a bioterrorism attack with smallpox.
What Did the Researchers Do and Find?
The researchers collected data from published studies on smallpox vaccination and adverse events from several countries from the late 1950s onwards. They then used these data to extrapolate how often the different vaccinia strains might cause encephalitis and death if they were used today in vaccination programs. They estimate that vaccinating with the New York City Board of Health (NYCBH) strain, which is stockpiled in the US, might cause 2.9 cases of post-vaccination encephalitis and 1.4 deaths per million vaccinated individuals. In contrast, the Lister strain, which is stockpiled in many European countries, might cause 26.2 cases of post-vaccination encephalitis and 2.5 deaths per million vaccinees. For both strains, vaccination of children younger than 1 year old would cause the highest death rate, and individuals being re-vaccinated would be less likely to die than those being vaccinated for the first time. Finally, the researchers use their figures to estimate that about ten people would die if mass vaccination with the NYCBH strain were used in the Netherlands (population 16 million), whereas 55 people would die if the Lister strain were used.
What Do These Findings Mean?
The data used in this study are of variable quality, so the figures calculated by the researchers are only estimates. For instance, given the scatter of the original data, mass vaccination in the Netherlands with the Lister strain might cause anywhere between seven and nearly 200 deaths. However, the study clearly suggests that more serious adverse events would occur after vaccination with the Lister strain than after vaccination with the NYCBH strain. It also indicates that even in the US, where the NYCBH vaccine strain is stockpiled, previous analyses of the effects of vaccination in response to a bioterrorist attack have probably underestimated how many people might die from post-vaccination encephalitis. Public-health decision makers should incorporate these new estimates into their planning for a smallpox outbreak. These increased estimates of adverse events after vaccination might, for example, make mass vaccination with the Lister strain of vaccinia virus less acceptable. Instead, public-health officials might decide to rely on vaccination of only the people directly exposed to released smallpox virus and their close contacts (ring vaccination) to contain a smallpox outbreak.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030272.
World Health Organization, information on smallpox and preparedness in the event of a smallpox outbreak
MedlinePlus encyclopedia entry on smallpox
US National Institute of Allergy and Infectious Diseases, patient fact sheet on smallpox
US Centers for Disease Control and Prevention, information for patients and professionals on smallpox
Wikipedia page on smallpox (note that Wikipedia is a free online encyclopedia that anyone can edit)
Wellcome Library MedHist, links to information on the history of smallpox vaccination
doi:10.1371/journal.pmed.0030272
PMCID: PMC1551910  PMID: 16933957
8.  Efficacy of Pneumococcal Nontypable Haemophilus influenzae Protein D Conjugate Vaccine (PHiD-CV) in Young Latin American Children: A Double-Blind Randomized Controlled Trial 
PLoS Medicine  2014;11(6):e1001657.
In a double-blind randomized controlled trial, Xavier Saez-Llorens and colleagues examine the vaccine efficacy of PHiD-CV against community-acquired pneumonia in young children in Panama, Argentina, and Columbia.
Please see later in the article for the Editors' Summary
Background
The relationship between pneumococcal conjugate vaccine–induced antibody responses and protection against community-acquired pneumonia (CAP) and acute otitis media (AOM) is unclear. This study assessed the impact of the ten-valent pneumococcal nontypable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) on these end points. The primary objective was to demonstrate vaccine efficacy (VE) in a per-protocol analysis against likely bacterial CAP (B-CAP: radiologically confirmed CAP with alveolar consolidation/pleural effusion on chest X-ray, or non-alveolar infiltrates and C-reactive protein ≥ 40 µg/ml); other protocol-specified outcomes were also assessed.
Methods and Findings
This phase III double-blind randomized controlled study was conducted between 28 June 2007 and 28 July 2011 in Argentine, Panamanian, and Colombian populations with good access to health care. Approximately 24,000 infants received PHiD-CV or hepatitis control vaccine (hepatitis B for primary vaccination, hepatitis A at booster) at 2, 4, 6, and 15–18 mo of age. Interim analysis of the primary end point was planned when 535 first B-CAP episodes, occurring ≥2 wk after dose 3, were identified in the per-protocol cohort. After a mean follow-up of 23 mo (PHiD-CV, n = 10,295; control, n = 10,201), per-protocol VE was 22.0% (95% CI: 7.7, 34.2; one-sided p = 0.002) against B-CAP (conclusive for primary objective) and 25.7% (95% CI: 8.4%, 39.6%) against World Health Organization–defined consolidated CAP. Intent-to-treat VE was 18.2% (95% CI: 5.5%, 29.1%) against B-CAP and 23.4% (95% CI: 8.8%, 35.7%) against consolidated CAP. End-of-study per-protocol analyses were performed after a mean follow-up of 28–30 mo for CAP and invasive pneumococcal disease (IPD) (PHiD-CV, n = 10,211; control, n = 10,140) and AOM (n = 3,010 and 2,979, respectively). Per-protocol VE was 16.1% (95% CI: −1.1%, 30.4%; one-sided p = 0.032) against clinically confirmed AOM, 67.1% (95% CI: 17.0%, 86.9%) against vaccine serotype clinically confirmed AOM, 100% (95% CI: 74.3%, 100%) against vaccine serotype IPD, and 65.0% (95% CI: 11.1%, 86.2%) against any IPD. Results were consistent between intent-to-treat and per-protocol analyses. Serious adverse events were reported for 21.5% (95% CI: 20.7%, 22.2%) and 22.6% (95% CI: 21.9%, 23.4%) of PHiD-CV and control recipients, respectively. There were 19 deaths (n = 11,798; 0.16%) in the PHiD-CV group and 26 deaths (n = 11,799; 0.22%) in the control group. A significant study limitation was the lower than expected number of captured AOM cases.
Conclusions
Efficacy was demonstrated against a broad range of pneumococcal diseases commonly encountered in young children in clinical practice.
Trial registration
www.ClinicalTrials.gov NCT00466947
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Pneumococcal diseases are illnesses caused by Streptococcus pneumoniae bacteria, pathogens (disease-causing organisms) that are transmitted through contact with infected respiratory secretions. S. pneumoniae causes mucosal diseases–infections of the lining of the body cavities that are connected to the outside world–such as community-acquired pneumonia (CAP; lung infection) and acute otitis media (AOM; middle-ear infection). It also causes invasive pneumococcal diseases (IPDs) such as septicemia and meningitis (infections of the bloodstream and the covering of the brain, respectively). Although pneumococcal diseases can sometimes be treated with antibiotics, CAP and IPDs are leading global causes of childhood deaths, particularly in developing countries. It is best therefore to avoid S. pneumoniae infections through vaccination. Vaccination primes the immune system to recognize and attack pathogens rapidly and effectively by exposing it to weakened or dead pathogens or to pathogen molecules that it recognizes as foreign (antigens). Because there are more than 90 S. pneumoniae variants (“serotypes”), each characterized by a different antigenic polysaccharide (complex sugar) coat, S. pneumoniae vaccines have to include antigens from multiple serotypes. For example, the PHiD-CV vaccine contains polysaccharides from ten S. pneumoniae serotypes.
Why Was This Study Done?
Although in most countries PHiD-CV has been licensed for protection against IPD and pneumococcal AOM, at the time of study, it was not known how well it protected against CAP and overall AOM, which are important public health problems. In this double-blind randomized controlled trial (the Clinical Otitis Media and Pneumonia Study; COMPAS), the researchers investigate the efficacy of PHiD-CV against CAP and AOM and assess other clinical end points, such as IPD, in Latin American infants. Double-blind randomized controlled trials compare the effects of interventions by assigning study participants to different interventions randomly and measuring predefined outcomes without the study participants or researchers knowing who has received which intervention until the trial is completed. Vaccine efficacy is the reduction in the incidence of a disease (the number of new cases that occur in a population in a given time) among trial participants who receive the vaccine compared to the incidence among participants who do not receive the vaccine.
What Did the Researchers Do and Find?
The researchers enrolled around 24,000 infants living in urban areas of Argentina, Panama, and Colombia. Half the infants were given PHiD-CV at 2, 4, and 6 months of age and a booster dose at age 15–18 months. The remaining infants were given a hepatitis control vaccine at the same intervals. The trial's primary end point was likely bacterial CAP (B-CAP) –radiologically confirmed CAP, with the airspaces (alveoli) in the lungs filled with liquid instead of gas (alveolar consolidation) or with non-alveolar infiltrates and raised blood levels of C-reactive protein (a marker of inflammation). In a planned interim analysis, which was undertaken after an average follow-up of 23 months, the vaccine efficacy in the per-protocol cohort (the group of participants who actually received their assigned intervention) was 22% against B-CAP. Intent-to-treat vaccine efficacy in the interim analysis (which considered all the trial participants regardless of whether they received their assigned intervention) was 18.2%. At the end of the study (average follow up 30 months), the vaccine efficacy against B-CAP was 18.2% and 16.7% in the per-protocol and intent-to-treat cohorts, respectively. Per-protocol vaccine efficacies against clinically confirmed AOM and vaccine serotype AOM were 16.1% and 67.1%, respectively. Against any IPD and against vaccine serotype IPD, the respective vaccine efficacies were 65% and 100%. Finally, about one-fifth of children who received PHiD-CV and a similar proportion who received the control vaccine experienced a serious adverse event (for example, gastroenteritis); 19 children who received PHiD-CV died compared to 26 children who received the control vaccine.
What Do These Findings Mean?
These findings indicate that in Latin America, a region with an intermediate burden of pneumococcal disease, PHiD-CV is efficacious against a broad range of pneumococcal diseases that often affect young children. The accuracy of these findings may be limited by the withdrawal of 14% of participants from the trial because of adverse media coverage and by the low number of reported cases of AOM. Moreover, because most study participants lived in urban areas, these findings may not be generalizable to rural settings. Despite these and other study limitations, these findings provide new information about the magnitude of the effect of PHiD-CV vaccination against CAP and AOM, two mucosal pneumococcal diseases of global public health importance.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001657.
The US Centers for Disease Control and Prevention provides information for patients and health professionals on all aspects of pneumococcal disease and pneumococcal vaccination, including personal stories
Public Health England provides information on pneumococcal disease and on pneumococcal vaccines
The not-for-profit Immunization Action Coalition has information on pneumococcal disease, including personal stories
The GAVI Alliance provides information about pneumococcal disease and the importance of vaccination
MedlinePlus has links to further information about pneumococcal infections, including pneumonia and otitis media (in English and Spanish)
More information about COMPAS is available
The European Medicines Agency provides information about PHiD-CV (Synflorix)
doi:10.1371/journal.pmed.1001657
PMCID: PMC4043495  PMID: 24892763
9.  The Impact of a One-Dose versus Two-Dose Oral Cholera Vaccine Regimen in Outbreak Settings: A Modeling Study 
PLoS Medicine  2015;12(8):e1001867.
Background
In 2013, a stockpile of oral cholera vaccine (OCV) was created for use in outbreak response, but vaccine availability remains severely limited. Innovative strategies are needed to maximize the health impact and minimize the logistical barriers to using available vaccine. Here we ask under what conditions the use of one dose rather than the internationally licensed two-dose protocol may do both.
Methods and Findings
Using mathematical models we determined the minimum relative single-dose efficacy (MRSE) at which single-dose reactive campaigns are expected to be as or more effective than two-dose campaigns with the same amount of vaccine. Average one- and two-dose OCV effectiveness was estimated from published literature and compared to the MRSE. Results were applied to recent outbreaks in Haiti, Zimbabwe, and Guinea using stochastic simulations to illustrate the potential impact of one- and two-dose campaigns. At the start of an epidemic, a single dose must be 35%–56% as efficacious as two doses to avert the same number of cases with a fixed amount of vaccine (i.e., MRSE between 35% and 56%). This threshold decreases as vaccination is delayed. Short-term OCV effectiveness is estimated to be 77% (95% CI 57%–88%) for two doses and 44% (95% CI −27% to 76%) for one dose. This results in a one-dose relative efficacy estimate of 57% (interquartile range 13%–88%), which is above conservative MRSE estimates. Using our best estimates of one- and two-dose efficacy, we projected that a single-dose reactive campaign could have prevented 70,584 (95% prediction interval [PI] 55,943–86,205) cases in Zimbabwe, 78,317 (95% PI 57,435–100,150) in Port-au-Prince, Haiti, and 2,826 (95% PI 2,490–3,170) cases in Conakry, Guinea: 1.1 to 1.2 times as many as a two-dose campaign. While extensive sensitivity analyses were performed, our projections of cases averted in past epidemics are based on severely limited single-dose efficacy data and may not fully capture uncertainty due to imperfect surveillance data and uncertainty about the transmission dynamics of cholera in each setting.
Conclusions
Reactive vaccination campaigns using a single dose of OCV may avert more cases and deaths than a standard two-dose campaign when vaccine supplies are limited, while at the same time reducing logistical complexity. These findings should motivate consideration of the trade-offs between one- and two-dose campaigns in resource-constrained settings, though further field efficacy data are needed and should be a priority in any one-dose campaign.
Modelling the efficacy of single-dose cholera vaccination in resource-limited settings.
Editors' Summary
Background
Cholera—a bacterial gut infection caused by Vibrio cholerae—is a major global killer. Every year, epidemics (outbreaks) of cholera make 2 to 3 million people ill and kill about 100,000 people. People get cholera by eating food or drinking water contaminated with feces from an infected person, so cholera epidemics occur in places with poor sanitation such as slums and refugee camps. Earthquakes, floods, and other natural disasters that disrupt water and sanitation systems can also trigger cholera epidemics. Most people who become infected with V. cholerae have no or mild symptoms, but they may shed bacteria in their feces for up to two weeks. Other infected individuals develop severe diarrhea, producing profuse watery feces. The standard treatment for cholera is replacement of the fluids and salts lost through diarrhea by drinking an oral rehydration fluid or, in the worst cases, by fluid replacement directly into a vein. With prompt treatment, less than 1% of patients die, but untreated patients with severe cholera can die from dehydration within hours of developing symptoms.
Why Was This Study Done?
The best way to control cholera is to ensure that everyone has access to safe water and good sanitation, but this is often impossible in poor countries, in refugee camps, or after natural disasters. In 2013, the World Health Organization created a global stockpile of an oral cholera vaccine (a preparation given by mouth that stimulates the immune system to attack V. cholerae) for use in cholera outbreaks. The licensed protocol for the currently stockpiled vaccine requires two doses of the vaccine to be given two weeks apart, but it can be difficult to ensure that everyone at risk of infection receives two doses. Moreover, the stockpile contains only one to two million doses of vaccine, which would have been insufficient to protect every individual at risk of infection in several recent cholera outbreaks. Here, the researchers use mathematical modeling to investigate whether one dose of oral cholera vaccine, rather than two doses, could be used to maximize the health impact of cholera vaccination and minimize logistical barriers to cholera vaccination during cholera outbreaks.
What Did the Researchers Do and Find?
The researchers used cholera transmission models to determine the “minimum relative single-dose efficacy” (MRSE), the threshold at which single-dose vaccination campaigns begun after an outbreak has started (reactive vaccination) are expected to be as or more effective than two-dose campaigns with the same amount of vaccine. The researchers report that, at the start of an epidemic, the MRSE is between 35% and 56%. That is, a single dose of vaccine must be at least 35%–56% as efficacious as two doses to avert the same number of cases with a fixed amount of vaccine. By searching the literature, the researchers estimated that the short-term protection against infection provided by oral cholera vaccines is 77% for two doses and 44% for one dose—a one-dose relative efficacy of 57%, which is above the MRSE estimate. Finally, the researchers used their models to project that, in three recent cholera outbreaks, a single-dose campaign could have prevented between 1.1 and 1.2 times more cases of cholera than a two-dose campaign using the same amount of vaccine.
What Do These Findings Mean?
The finding that the relative single-dose efficacy of oral cholera vaccination is above the estimated MRSE suggests that one-dose reactive vaccination campaigns might avert more cases and deaths than a standard two-dose campaign when vaccine supplies are limited. The accuracy of this and other study findings is limited, however, by the assumptions used to build the mathematical models and by the quality of the data used to run them. In particular, a lack of data on the efficacy of single-dose vaccination limits the ability to apply these findings. Thus, before one-dose campaigns are used widely, more data on the effectiveness on one-dose vaccination must be obtained. Notably, by increasing herd immunity (the vaccination of a significant portion of a population provides some protection for individuals in the population who have not been vaccinated), one-dose campaigns are likely to provide better population-level protection than two-dose campaigns. On the other hand, the individual who is given one rather than two vaccine doses is more vulnerable to cholera illness if exposed to cholera-causing bacteria. Strategies that balance the trade-off between individual- and population-level benefits must be carefully considered to ensure the best future use of the oral cholera vaccine stockpile. Moreover, every effort should be made to increase the size and availability of this stockpile.
Additional Information
This list of resources contains links that can be accessed when viewing the PDF on a device or via the online version of the article at http://dx.doi.org/10.1371/journal.pmed.1001867.
The World Health Organization provides information about cholera in several languages, including technical information about cholera vaccination and the oral cholera vaccine stockpile
The US Centers for Disease Control and Prevention also provides information about cholera for the public, medical professionals, and travelers
The UK National Health Service Choices website provides information about cholera and cholera vaccination; it also provides information, including a simple animation, about how vaccines work and herd immunity
MedlinePlus provides links to further resources about cholera
The not-for-profit organization Médecins Sans Frontières is tackling several cholera outbreaks around the world; its website includes a description of the recent vaccination of refugees against cholera in Tanzania
A personal story about the 2008–2009 cholera outbreak in Zimbabwe is available from UNICEF
StopCholera.org provides detailed information on oral cholera vaccines useful for public health officials, scientists, and clinicians
doi:10.1371/journal.pmed.1001867
PMCID: PMC4549326  PMID: 26305226
10.  Broad Blockade Antibody Responses in Human Volunteers after Immunization with a Multivalent Norovirus VLP Candidate Vaccine: Immunological Analyses from a Phase I Clinical Trial 
PLoS Medicine  2015;12(3):e1001807.
Background
Human noroviruses (NoVs) are the primary cause of acute gastroenteritis and are characterized by antigenic variation between genogroups and genotypes and antigenic drift of strains within the predominant GII.4 genotype. In the context of this diversity, an effective NoV vaccine must elicit broadly protective immunity. We used an antibody (Ab) binding blockade assay to measure the potential cross-strain protection provided by a multivalent NoV virus-like particle (VLP) candidate vaccine in human volunteers.
Methods and Findings
Sera from ten human volunteers immunized with a multivalent NoV VLP vaccine (genotypes GI.1/GII.4) were analyzed for IgG and Ab blockade of VLP interaction with carbohydrate ligand, a potential correlate of protective immunity to NoV infection and illness. Immunization resulted in rapid rises in IgG and blockade Ab titers against both vaccine components and additional VLPs representing diverse strains and genotypes not represented in the vaccine. Importantly, vaccination induced blockade Ab to two novel GII.4 strains not in circulation at the time of vaccination or sample collection. GII.4 cross-reactive blockade Ab titers were more potent than responses against non-GII.4 VLPs, suggesting that previous exposure history to this dominant circulating genotype may impact the vaccine Ab response. Further, antigenic cartography indicated that vaccination preferentially activated preexisting Ab responses to epitopes associated with GII.4.1997. Study interpretations may be limited by the relevance of the surrogate neutralization assay and the number of immunized participants evaluated.
Conclusions
Vaccination with a multivalent NoV VLP vaccine induces a broadly blocking Ab response to multiple epitopes within vaccine and non-vaccine NoV strains and to novel antigenic variants not yet circulating at the time of vaccination. These data reveal new information about complex NoV immune responses to both natural exposure and to vaccination, and support the potential feasibility of an efficacious multivalent NoV VLP vaccine for future use in human populations.
Trial Registration
ClinicalTrials.gov NCT01168401
Lisa Lindesmith and colleagues assess the potential of a candidate virus-like particle (VLP) vaccine to induce antibody responses to antigenically divergent norovirus strains.
Editors' Summary
Background
Worldwide, noroviruses cause one in five cases of viral gastroenteritis (often called stomach flu or winter vomiting disease), the symptoms of which include nausea, vomiting, and diarrhea. There is no specific treatment for infection with these highly contagious viruses, and no established approach to vaccine development. While most people recover from the symptoms of norovirus infection within a few days, young children and the elderly may become severely ill or die. An estimated annual 300 million cases of norovirus infection contribute to roughly 260,000 deaths, mostly among this vulnerable demographic and mostly in low-income countries. Like influenza viruses, many noroviruses are evolving via a process known as antigenic drift. Antigens are components of infectious agents (including viruses) that are recognized by antibodies, proteins that bind to and neutralize foreign invaders. Over time, noroviruses develop small changes in their antigens that allow them to escape from antibodies produced in response to earlier infections. Every two to four years, because of accumulated antigenic drift, a new strain of norovirus emerges to which the human population has no direct antibody immunity, and an outbreak occurs. Because vaccines usually contain a component of the infectious agent that stimulates immunity, antigenic drift complicates the process of vaccine development. To be worth the cost and effort, a norovirus vaccine must confer immunity against a diverse range of norovirus strains, ideally including strains beyond those represented within the vaccine itself.
Partly because there is not a reliable method for growing noroviruses in the laboratory, recent efforts have focused on developing candidate vaccines using virus-like particles (VLPs). VLPs are constructed from laboratory-generated molecules of the virus’s capsid (outer shell). These capsid proteins self-assemble into icosahedral VLPs, which resemble the viral shell. VLPs cannot infect people or cause illness, but because they contain viral antigens, they can induce the immune system to produce antibodies that may neutralize actual viruses. VLPs can also be used to study the antibodies that people produce in response to vaccination or infection.
Why Was This Study Done?
VLP-based vaccines are relatively new, and their capacity to elicit a broad immune response conferring protection to an evolving range of norovirus strains is not established. One VLP vaccine based on a single strain that circulates primarily in children conferred immunity to that strain. Another, multivalent (containing a mix of VLPs from more than one strain) VLP vaccine elicited antibody generation, but in a phase I clinical trial did not confer immunity to infection by a strain that had previously circulated globally. In the current study, the researchers explored two key questions using laboratory analysis of blood samples drawn from participants in that trial. First, they tested whether the vaccine elicits antibody responses to a broad range of norovirus strains, as antibody responses can provide clues to the potential for this type of vaccine to confer broad immunity in the future. Second, they investigated how preexisting exposure to noroviruses affects the immune system’s response to a vaccine—strategic information that could aid in future vaccine development.
What Did the Researchers Do and Find?
The researchers tested serum (blood without cells or clotting proteins; serum contains the antibodies generated by the immune system) collected from ten participants receiving one injection of the VLP vaccine followed by a second injection 28 days later. They analyzed the serum specimens for antibodies to vaccine VLPs and also to VLPs representing viruses that were not contained in the vaccine. They used two methods, both utilizing VLPs generated from 11 norovirus strains: a traditional method that assesses binding of serum antibodies to each of these VLPs, and a more recent method that assays the ability of antibodies to block the interaction of each VLP with a molecule on intestinal cells that binds to the virus (the gut epithelial ligand), enabling norovirus to enter and infect cells. Prior studies suggest that this latter assay may be a better proxy for actual immunity.
The researchers’ major finding is that a multivalent VLP vaccine (two VLPs representing four strains of norovirus: one from a subgroup called genotype GI.1 and another consensus VLP of three strains from the subgroup GII.4) can rapidly elicit serum antibodies that bind a range of vaccine and non-vaccine VLPs, and that block binding of these VLPs to the gut epithelial ligand. Notably, vaccine recipients also generated antibodies reactive to two novel VLPs representing human noroviruses that they could not have previously encountered, indicating that prior exposure to each norovirus strain was not required for the full antibody response following vaccination. However, based on an analysis of which specific epitopes (small regions on an antigen) the population of antibodies binds, the authors report that antibody responses to the vaccine prominently target epitopes of a 1997 strain of human GII.4 norovirus, and propose that exposure history does influence the antibody response.
What Do these Findings Mean?
These findings raise the possibility that the VLP vaccine may induce immunity not only to norovirus strains that have caused past outbreaks, but also to variants that have yet to enter the population—a necessary attribute given the antigenic drift observed among noroviruses. The study also indicates that VLP-induced antibody responses to norovirus are consistent with the “antigenic seniority” model, in which strains to which an individual was previously exposed influence the binding properties of a vaccine-induced antibody population. This latter finding may influence the design of future norovirus vaccines.
These results must be interpreted cautiously, particularly as they pertain to the potential for a norovirus vaccine to protect against natural infection. The study is small, and antibody binding and blocking assays may not replicate how the immune system of a vaccine recipient will respond to true norovirus infection. Additionally, the study participants were all adults aged 18 to 49 years, while a vaccine is most needed for young children (who account for the majority of severe infections) and the elderly (who are most likely to die from infection). Unlike the study participants, young children lack preexisting antibodies to norovirus. Older people are more likely to have been previously exposed to norovirus, but may show attenuated immune responses to vaccination. Adapting to the different immune responses of these two groups remains a central challenge to norovirus vaccine development.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001807.
The World Health Organization provides a comprehensive description of the disease burden from diarrheal disease
The MedlinePlus encyclopedia has a page on viral gastroenteritis (in English and Spanish)
The US Centers for Disease Control and Prevention provides information on disease trends and outbreaks
The US Department of Health and Human Services offers guidance for prevention based on food safety
A 2014 interview with Academic Editor Benjamin Lopman explores the difficulty of developing a norovirus vaccine
The authors have previously published findings on the evolution of norovirus strains in PLOS Medicine and have discussed the challenges of norovirus therapeutic design in PLOS Pathogens
doi:10.1371/journal.pmed.1001807
PMCID: PMC4371888  PMID: 25803642
11.  Dynamics of Polymorphism in a Malaria Vaccine Antigen at a Vaccine-Testing Site in Mali 
PLoS Medicine  2007;4(3):e93.
Background
Malaria vaccines based on the 19-kDa region of merozoite surface protein 1 (MSP-119) derived from the 3D7 strain of Plasmodium falciparum are being tested in clinical trials in Africa. Knowledge of the distribution and natural dynamics of vaccine antigen polymorphisms in populations in which malaria vaccines will be tested will guide vaccine design and permit distinction between natural fluctuations in genetic diversity and vaccine-induced selection.
Methods and Findings
Using pyrosequencing, six single-nucleotide polymorphisms in the nucleotide sequence encoding MSP-119 were genotyped from 1,363 malaria infections experienced by 100 children who participated in a prospective cohort study in Mali from 1999 to 2001. The frequencies of 14 MSP-119 haplotypes were compared over the course of the malaria transmission season for all three years, in three age groups, and in consecutive infections within individuals. While the frequency of individual MSP-119 haplotypes fluctuated, haplotypes corresponding to FVO and FUP strains of P. falciparum (MSP-119 haplotypes QKSNGL and EKSNGL, respectively) were most prevalent during three consecutive years and in all age groups with overall prevalences of 46% (95% confidence interval [CI] 44%–49%) and 36% (95% CI 34%–39%), respectively. The 3D7 haplotype had a lower overall prevalence of 16% (95% CI 14%–18%). Multiplicity of infection based on MSP-119 was higher at the beginning of the transmission season and in the oldest individuals (aged ≥11 y). Three MSP-119 haplotypes had a reduced frequency in symptomatic infections compared to asymptomatic infections. Analyses of the dynamics of MSP-119 polymorphisms in consecutive infections implicate three polymorphisms (at positions 1691, 1700, and 1701) as being particularly important in determining allele specificity of anti-MSP-119 immunity.
Conclusions
Parasites with MSP-119 haplotypes different from that of the leading vaccine strain were consistently the most prevalent at a vaccine trial site. If immunity elicited by an MSP-1-based vaccine is allele-specific, a vaccine based on either the FVO or FUP strain might have better initial efficacy at this site. This study, to our knowledge the largest of its kind to date, provides molecular information needed to interpret population responses to MSP-1-based vaccines and suggests that certain MSP-119 polymorphisms may be relevant to cross-protective immunity.
Christopher Plowe and colleagues surveyed local malaria parasites for genetic diversity in MSP-1, a candidate vaccine antigen. These data are needed to interpret population responses to MSP-1-based vaccines during trials planned at this site.
Editors' Summary
Background.
Malaria, a tropical parasitic disease, kills about one million people—mainly children—every year. Most of these deaths are caused by Plasmodium falciparum, which is transmitted to humans through the bites of infected mosquitoes. These insects inject a form of the parasite known as sporozoites into people that replicates inside liver cells without causing symptoms. Four to five days later, merozoites (another form of the parasite) are released from the liver cells and invade red blood cells. Here, they replicate 10-fold before bursting out and infecting other red blood cells. This massive increase in parasite burden causes malaria's flu-like symptoms. If untreated, it also causes anemia (a red blood cell deficit) and damages the brain and other organs where parasitized red blood cells sequester. Malaria can be treated with antimalarial drugs and partly prevented by reducing the chances of being bitten by an infected mosquito. In addition, researchers are developing vaccines designed to reduce the global burden of malaria. These contain individual malaria antigens (proteins from the parasite that stimulate an immune response) that should, when injected into people, prime the immune system so that it can rapidly control malaria infections.
Why Was This Study Done?
The development of an effective malaria vaccine is not easy, in part because people can be simultaneously infected with several parasite strains. These often carry different variants (alleles) of the genes encoding antigens, which means that the actual parasite proteins might differ from the ones used for vaccination. If this is the case, the immune response generated by the vaccine might be less effective or even ineffective. An ideal vaccine would therefore stimulate an immune response that recognizes all these strain-specific antigens. However, little is known about their distribution in parasite populations in malarial regions, or about how this distribution changes over time (its dynamics). This information is needed to aid vaccine design and development. In this study, the researchers have investigated the distribution and dynamics of genetic variants of a merozoite antigen called MSP-119, which is included in a vaccine currently being tested in Mali, West Africa. Although most of the MSP-119 sequence is conserved, it contains six strain-specific polymorphisms (genetic variations); the candidate vaccine contains MSP-119 from the 3D7 strain of P. falciparum.
What Did the Researchers Do and Find?
The researchers used rapid DNA sequencing (pyrosequencing) to examine the MSP-119 sequence in more than 1,300 malaria infections in 100 Malian children. They compared the frequencies of 14 MSP-119 haplotypes (sets of polymorphisms at the six variant sites) over three years, in three age groups, and in consecutive infections within individuals. They found that the frequency of individual MSP-119 haplotypes fluctuated in their study population but that those found in P. falciparum FVO and FUP strains were always the commonest, each being present in about 40% of the infections. By contrast, the P. falciparum 3D7 MSP-119 haplotype was present in only 16% of the infections. They also found that mixed infections were more common at the start of each malaria season and in older individuals. In addition, individuals who were infected repeatedly by parasites from different strains (with different MSP-119 variants) seemed to get sick with malaria more often than those infected multiple times by the same strain. The differences might, therefore, be important in determining the specificity of the immune response to MSP-119.
What Do These Findings Mean?
These findings indicate that most parasites that cause malaria at the Malian test site for the malaria vaccine that contains 3D7-specific MSP-119 have a different form of MSP-119. Although early results from field trials suggest that the 3D7-derived vaccine provides some protection against the more common FVO and FUP strains, the immunity stimulated by the vaccine might be mainly allele specific. If this turns out to be the case, these results suggest that a FVO- or FUP-derived vaccine might be more effective in Mali than the 3D7-derived vaccine, though not necessarily elsewhere. More generally, these results show the importance of determining the genetics of pathogen populations before starting vaccine trials. Without this information, a vaccine's ability to prevent infections with specific parasite strains cannot be determined accurately and potentially useful vaccines might be abandoned if they are tested in inappropriate populations. Importantly, baseline information of this sort will also allow vaccine developers to detect any vaccine-induced changes in the pathogen population that might affect the long-term efficacy of their vaccines.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040093.
A related PLoS Medicine Perspective by Colin Sutherland discusses variation in malaria antigens as a challenge in vaccine development
The malaria program of the University of Maryland Center for Vaccine Development performs research on many aspects of malaria
Information on malaria and the development of vaccines is available from the Malaria Vaccine Initiative
The World Health Organization provides links to general information on malaria plus some specific information on malaria vaccine development
MedlinePlus encyclopedia has entries on malaria and on vaccination
US Centers for Disease Control and Prevention provides information for patients and professionals on malaria
US National Institute of Allergy and Infectious Diseases has information on malaria, including research into vaccines
doi:10.1371/journal.pmed.0040093
PMCID: PMC1820605  PMID: 17355170
12.  Efficacy of Neonatal HBV Vaccination on Liver Cancer and Other Liver Diseases over 30-Year Follow-up of the Qidong Hepatitis B Intervention Study: A Cluster Randomized Controlled Trial 
PLoS Medicine  2014;11(12):e1001774.
In a 30-year follow-up of the Qidong Hepatitis B Intervention Study, Yawei Zhang and colleagues examine the effects of neonatal vaccination on liver diseases.
Please see later in the article for the Editors' Summary
Background
Neonatal hepatitis B vaccination has been implemented worldwide to prevent hepatitis B virus (HBV) infections. Its long-term protective efficacy on primary liver cancer (PLC) and other liver diseases has not been fully examined.
Methods and Findings
The Qidong Hepatitis B Intervention Study, a population-based, cluster randomized, controlled trial between 1985 and 1990 in Qidong, China, included 39,292 newborns who were randomly assigned to the vaccination group in which 38,366 participants completed the HBV vaccination series and 34,441 newborns who were randomly assigned to the control group in which the participants received neither a vaccine nor a placebo. However, 23,368 (67.8%) participants in the control group received catch-up vaccination at age 10–14 years. By December 2013, a total of 3,895 (10.2%) in the vaccination group and 3,898 (11.3%) in the control group were lost to follow-up. Information on PLC incidence and liver disease mortality were collected through linkage of all remaining cohort members to a well-established population-based tumor registry until December 31, 2013. Two cross-sectional surveys on HBV surface antigen (HBsAg) seroprevalence were conducted in 1996–2000 and 2008–2012. The participation rates of the two surveys were 57.5% (21,770) and 50.7% (17,204) in the vaccination group and 36.3% (12,184) and 58.6% (17,395) in the control group, respectively. Using intention-to-treat analysis, we found that the incidence rate of PLC and the mortality rates of severe end-stage liver diseases and infant fulminant hepatitis were significantly lower in the vaccination group than the control group with efficacies of 84% (95% CI 23%–97%), 70% (95% CI 15%–89%), and 69% (95% CI 34%–85%), respectively. The estimated efficacy of catch-up vaccination on HBsAg seroprevalence in early adulthood was 21% (95% CI 10%–30%), substantially weaker than that of the neonatal vaccination (72%, 95% CI 68%–75%). Receiving a booster at age 10–14 years decreased HBsAg seroprevalence if participants were born to HBsAg-positive mothers (hazard ratio [HR] = 0.68, 95% CI 0.47–0.97). Limitations to consider in interpreting the study results include the small number of individuals with PLC, participants lost to follow-up, and the large proportion of participants who did not provide serum samples at follow-up.
Conclusions
Neonatal HBV vaccination was found to significantly decrease HBsAg seroprevalence in childhood through young adulthood and subsequently reduce the risk of PLC and other liver diseases in young adults in rural China. The findings underscore the importance of neonatal HBV vaccination. Our results also suggest that an adolescence booster should be considered in individuals born to HBsAg-positive mothers and who have completed the HBV neonatal vaccination series.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Hepatitis B is a life-threatening liver infection caused by the hepatitis B virus (HBV). HBV, which is transmitted through contact with the blood or other bodily fluids of an infected person, can cause both acute (short-term) and chronic (long-term) liver infections. Acute infections rarely cause any symptoms and more than 90% of adults who become infected with HBV (usually through sexual intercourse with an infected partner or through the use of contaminated needles) are virus-free within 6 months. However, in sub-Saharan Africa, East Asia, and other regions where HBV infection is common, HBV is usually transmitted from mother to child at birth or between individuals during early childhood and, unfortunately, most infants who are infected with HBV during the first year of life and many children who are infected before the age of 6 years develop a chronic HBV infection. Such infections can cause liver cancer, liver cirrhosis (scarring of the liver), and other fatal liver diseases. In addition, HBV infection around the time of birth can cause infant fulminant hepatitis, a rare but frequently fatal condition.
Why Was This Study Done?
HBV infections kill about 780,000 people worldwide annually but can be prevented by neonatal vaccination—immunization against HBV at birth. A vaccine against HBV became available in 1982 and many countries now include HBV vaccination at birth followed by additional vaccine doses during early childhood in their national vaccination programs. But, although HBV vaccination has greatly reduced the rate of chronic HBV infection, the protective efficacy of neonatal HBV vaccination against liver diseases has not been fully examined. Here, the researchers investigate how well neonatal HBV vaccination protects against primary liver cancer and other liver diseases by undertaking a 30-year follow-up of the Qidong Hepatitis B intervention Study (QHBIS). This cluster randomized controlled trial of neonatal HBV vaccination was conducted between 1983 and 1990 in Qidong County, a rural area in China with a high incidence of HBV-related primary liver cancer and other liver diseases. A cluster randomized controlled trial compares outcomes in groups of people (towns in this study) chosen at random to receive an intervention or a control treatment (here, vaccination or no vaccination; this study design was ethically acceptable during the 1980s when HBV vaccination was unavailable in rural China but would be unethical nowadays).
What Did the Researchers Do and Find?
The QHBIS assigned nearly 80,000 newborns to receive either a full course of HBV vaccinations (the vaccination group) or no vaccination (the control group); two-thirds of the control group participants received a catch-up vaccination at age 10–14 years. The researchers obtained data on how many trial participants developed primary liver cancer or died from a liver disease during the follow-up period from a population-based tumor registry. They also obtained information on HBsAg seroprevalence—the presence of HBsAg (an HBV surface protein) in the blood of the participants, an indicator of current HBV infection—from surveys undertaken in1996–2000 and 2008–2012. The researchers estimate that the protective efficacy of vaccination was 84% for primary liver cancer (vaccination reduced the incidence of liver cancer by 84%), 70% for death from liver diseases, and 69% for the incidence of infant fulminant hepatitis. Overall, the efficacy of catch-up vaccination on HBsAg seroprevalence in early adulthood was weak compared with neonatal vaccination (21% versus 72%). Notably, receiving a booster vaccination at age 10–14 years decreased HBsAg seroprevalence among participants who were born to HBsAg-positive mothers.
What Do These Findings Mean?
The small number of cases of primary liver cancer and other liver diseases observed during the 30-year follow-up, the length of follow-up, and the availability of incomplete data on seroprevalence all limit the accuracy of these findings. Nevertheless, these findings indicate that neonatal HBV vaccination greatly reduced HBsAg seroprevalence (an indicator of current HBV infection) in childhood and young adulthood and subsequently reduced the risk of liver cancer and other liver diseases in young adults. These findings therefore support the importance of neonatal HBV vaccination. In addition, they suggest that booster vaccination during adolescence might consolidate the efficacy of neonatal vaccination among individuals who were born to HBsAg-positive mothers, a suggestion that needs to be confirmed in randomized controlled trials before booster vaccines are introduced into vaccination programs.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001774.
The World Health Organization provides a fact sheet about hepatitis B (available in several languages) and information about hepatitis B vaccination
The World Hepatitis Alliance (an international not-for-profit, non-governmental organization) provides information about viral hepatitis, including some personal stories about hepatitis B from Bangladesh, Pakistan, the Philippines, and Malawi
The UK National Health Service Choices website provides information about hepatitis B
The not-for-profit British Liver Trust provides information about hepatitis B, including Hepatitis B: PATH B, an interactive educational resource designed to improve the lives of people living with chronic hepatitis B
MedlinePlus provides links to other resources about hepatitis B (in English and Spanish)
Information about the Qidong Hepatitis B intervention Study is available
Chinese Center for Disease Control and Prevention provides links about hepatitis B prevention in Chinese
doi:10.1371/journal.pmed.1001774
PMCID: PMC4280122  PMID: 25549238
13.  Estimates of Pandemic Influenza Vaccine Effectiveness in Europe, 2009–2010: Results of Influenza Monitoring Vaccine Effectiveness in Europe (I-MOVE) Multicentre Case-Control Study 
PLoS Medicine  2011;8(1):e1000388.
Results from a European multicentre case-control study reported by Marta Valenciano and colleagues suggest good protection by the pandemic monovalent H1N1 vaccine against pH1N1 and no effect of the 2009–2010 seasonal influenza vaccine on H1N1.
Background
A multicentre case-control study based on sentinel practitioner surveillance networks from seven European countries was undertaken to estimate the effectiveness of 2009–2010 pandemic and seasonal influenza vaccines against medically attended influenza-like illness (ILI) laboratory-confirmed as pandemic influenza A (H1N1) (pH1N1).
Methods and Findings
Sentinel practitioners swabbed ILI patients using systematic sampling. We included in the study patients meeting the European ILI case definition with onset of symptoms >14 days after the start of national pandemic vaccination campaigns. We compared pH1N1 cases to influenza laboratory-negative controls. A valid vaccination corresponded to >14 days between receiving a dose of vaccine and symptom onset. We estimated pooled vaccine effectiveness (VE) as 1 minus the odds ratio with the study site as a fixed effect. Using logistic regression, we adjusted VE for potential confounding factors (age group, sex, month of onset, chronic diseases and related hospitalizations, smoking history, seasonal influenza vaccinations, practitioner visits in previous year). We conducted a complete case analysis excluding individuals with missing values and a multiple multivariate imputation to estimate missing values. The multivariate imputation (n = 2902) adjusted pandemic VE (PIVE) estimates were 71.9% (95% confidence interval [CI] 45.6–85.5) overall; 78.4% (95% CI 54.4–89.8) in patients <65 years; and 72.9% (95% CI 39.8–87.8) in individuals without chronic disease. The complete case (n = 1,502) adjusted PIVE were 66.0% (95% CI 23.9–84.8), 71.3% (95% CI 29.1–88.4), and 70.2% (95% CI 19.4–89.0), respectively. The adjusted PIVE was 66.0% (95% CI −69.9 to 93.2) if vaccinated 8–14 days before ILI onset. The adjusted 2009–2010 seasonal influenza VE was 9.9% (95% CI −65.2 to 50.9).
Conclusions
Our results suggest good protection of the pandemic monovalent vaccine against medically attended pH1N1 and no effect of the 2009–2010 seasonal influenza vaccine. However, the late availability of the pandemic vaccine and subsequent limited coverage with this vaccine hampered our ability to study vaccine benefits during the outbreak period. Future studies should include estimation of the effectiveness of the new trivalent vaccine in the upcoming 2010–2011 season, when vaccination will occur before the influenza season starts.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Following the World Health Organization's declaration of pandemic phase six in June 2009, manufacturers developed vaccines against pandemic influenza A 2009 (pH1N1). On the basis of the scientific opinion of the European Medicines Agency, the European Commission initially granted marketing authorization to three pandemic vaccines for use in European countries. During the autumn of 2009, most European countries included the 2009–2010 seasonal influenza vaccine and the pandemic vaccine in their influenza vaccination programs.
The Influenza Monitoring Vaccine Effectiveness in Europe network (established to monitor seasonal and pandemic influenza vaccine effectiveness) conducted seven case-control and three cohort studies in seven European countries in 2009–2010 to estimate the effectiveness of the pandemic and seasonal vaccines. Data from the seven pilot case-control studies were pooled to provide overall adjusted estimates of vaccine effectiveness.
Why Was This Study Done?
After seasonal and pandemic vaccines are made available to populations, it is necessary to estimate the effectiveness of the vaccines at the population level during every influenza season. Therefore, this study was conducted in European countries to estimate the pandemic influenza vaccine effectiveness and seasonal influenza vaccine effectiveness against people presenting to their doctor with influenza-like illness who were confirmed (by laboratory tests) to be infected with pH1N1.
What Did the Researchers Do and Find?
The researchers conducted a multicenter case-control study on the basis of practitioner surveillance networks from seven countries—France, Hungary, Ireland, Italy, Romania, Portugal, and Spain. Patients consulting a participating practitioner for influenza-like illness had a nasal or throat swab taken within 8 days of symptom onset. Cases were swabbed patients who tested positive for pH1N1. Patients presenting with influenza-like illness whose swab tested negative for any influenza virus were controls.
Individuals were considered vaccinated if they had received a dose of the vaccine more than 14 days before the date of onset of influenza-like illness and unvaccinated if they were not vaccinated at all, or if the vaccine was given less than 15 days before the onset of symptoms. The researchers analyzed pandemic influenza vaccination effectiveness in those vaccinated less than 8 days, those vaccinated between and including 8 and 14 days, and those vaccinated more than 14 days before onset of symptoms compared to those who had never been vaccinated.
The researchers used modeling (taking account of all potential confounding factors) to estimate adjusted vaccine effectiveness and stratified the adjusted pandemic influenza vaccine effectiveness and the adjusted seasonal influenza vaccine effectiveness in three age groups (<15, 15–64, and ≥65 years of age).
The adjusted results suggest that the 2009–2010 seasonal influenza vaccine did not protect against pH1N1 illness. However, one dose of the pandemic vaccines used in the participating countries conferred good protection (65.5%–100% according to various stratifications performed) against pH1N1 in people who attended their practitioner with influenza-like illness, especially in people aged <65 years and in those without any chronic disease. Furthermore, good pandemic influenza vaccine effectiveness was observed as early as 8 days after vaccination.
What Do These Findings Mean?
The results of this study provide early estimates of the pandemic influenza vaccine effectiveness suggesting that the monovalent pandemic vaccines have been effective. The findings also give an indication of the vaccine effectiveness for the Influenza A (H1N1) 2009 strain included in the 2010–2011 seasonal vaccines, although specific vaccine effectiveness studies will have to be conducted to verify if similar good effectiveness are observed with 2010–2011 trivalent vaccines. However, the results of this study should be interpreted with caution because of limitations in the pandemic context (late timing of the studies, low incidence, low vaccine coverage leading to imprecise estimates) and potential biases due the study design, confounding factors, and missing values. The researchers recommend that in future season studies, the sample size per country should be enlarged in order to allow for precise pooled and stratified analyses.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000388.
The World Health Organization has information on H1N1 vaccination
The US Centers for Disease Control and Prevention provides a fact sheet on the 2009 H1N1 influenza virus
The US Department of Health and Human services has a comprehensive website on flu
The European Centre for Disease Prevention and Control provides information on 2009 H1N1 pandemic
The European Centre for Disease Prevention and Control presents a summary of the 2009 H1N1 pandemic in Europe and elsewhere
doi:10.1371/journal.pmed.1000388
PMCID: PMC3019108  PMID: 21379316
14.  Strategies to Prevent Cholera Introduction during International Personnel Deployments: A Computational Modeling Analysis Based on the 2010 Haiti Outbreak 
PLoS Medicine  2016;13(1):e1001947.
Background
Introduction of Vibrio cholerae to Haiti during the deployment of United Nations (UN) peacekeepers in 2010 resulted in one of the largest cholera epidemics of the modern era. Following the outbreak, a UN-commissioned independent panel recommended three pre-deployment intervention strategies to minimize the risk of cholera introduction in future peacekeeping operations: screening for V. cholerae carriage, administering prophylactic antimicrobial chemotherapies, or immunizing with oral cholera vaccines. However, uncertainty regarding the effectiveness of these approaches has forestalled their implementation by the UN. We assessed how the interventions would have impacted the likelihood of the Haiti cholera epidemic.
Methods and Findings
We developed a stochastic model for cholera importation and transmission, fitted to reported cases during the first weeks of the 2010 outbreak in Haiti. Using this model, we estimated that diagnostic screening reduces the probability of cases occurring by 82% (95% credible interval: 75%, 85%); however, false-positive test outcomes may hamper this approach. Antimicrobial chemoprophylaxis at time of departure and oral cholera vaccination reduce the probability of cases by 50% (41%, 57%) and by up to 61% (58%, 63%), respectively. Chemoprophylaxis beginning 1 wk before departure confers a 91% (78%, 96%) reduction independently, and up to a 98% reduction (94%, 99%) if coupled with vaccination. These results are not sensitive to assumptions about the background cholera incidence rate in the endemic troop-sending country. Further research is needed to (1) validate the sensitivity and specificity of rapid test approaches for detecting asymptomatic carriage, (2) compare prophylactic efficacy across antimicrobial regimens, and (3) quantify the impact of oral cholera vaccine on transmission from asymptomatic carriers.
Conclusions
Screening, chemoprophylaxis, and vaccination are all effective strategies to prevent cholera introduction during large-scale personnel deployments such as that precipitating the 2010 Haiti outbreak. Antimicrobial chemoprophylaxis was estimated to provide the greatest protection at the lowest cost among the approaches recently evaluated by the UN.
A cholera outbreak modeling study reveals that chemprophylaxis treatment for deployed peacekeepers in Haiti would have reduced the risk of disease introduction by 90%.
Editors' Summary
Background
Cholera—a bacterial gut infection caused by Vibrio cholerae—is a global killer. Epidemics (outbreaks) of cholera in countries across Africa, Asia, and South and Central America where cholera is endemic (always present) affect 1–4 million people and kill up to 142,000 people every year. People get cholera by eating food or drinking water contaminated with feces from an infected person, so cholera epidemics occur in places with poor sanitation such as refugee camps and in regions where an earthquake or another natural disaster has disrupted water and sanitation systems. Most people who become infected with V. cholerae have no or mild symptoms, but these asymptomatically infected individuals can shed bacteria in their feces for up to 2 wk. Other infected people develop severe diarrhea, producing profuse watery feces. The standard treatment for cholera is replacement of fluids and salts lost through diarrhea with oral rehydration fluid or, in the worst cases, by fluid replacement directly into a vein. If left untreated, patients with severe cholera can die from dehydration within hours of developing symptoms.
Why Was This Study Done?
In 2010, a large cholera epidemic affected Haiti, which had been free of cholera for more than a century. This epidemic, which has resulted in nearly 9,000 deaths to date, was probably caused by contamination of water by infected sewage from the MINUSTAH (Mission des Nations Unies pour la stabilisation en Haïti) base, a UN peacekeeping mission established in Haiti in 2004. In January 2010, a massive earthquake hit Haiti, and in October that year, 454 troops from Nepal (a cholera-endemic country) were deployed to a MINUSTAH base in central Haiti as part of an ongoing peacekeeping operation to maintain political stability. Following the Haiti cholera outbreak, a panel of experts recommended that peacekeeping troops coming from countries where cholera is endemic should be screened for V. cholerae carriage, treated prophylactically with antimicrobial drugs (prophylactic treatments prevent a disease occurring), and/or immunized with oral cholera vaccines before deployment. However, because of uncertainty about the effectiveness of these pre-deployment intervention strategies, the UN has not implemented any of them. Here, the researchers use computational modeling to investigate whether these interventions would have prevented the Haiti cholera outbreak.
What Did the Researchers Do and Find?
The researchers developed a mathematical model to simulate the arrival of asymptomatically infected peacekeepers (or those with mild illness that would not have prevented their deployment) and the dynamics of cholera transmission from the MINUSTAH base to the community. They used this model to investigate the effect of the three proposed pre-deployment intervention strategies on (1) the probability of undetected importation of V. cholerae from an endemic source country by an asymptomatically infected peacekeeper, and (2) the subsequent probability of transmission of V. cholerae from peacekeepers to the general public, two events needed to establish an epidemic. According to the model, diagnostic screening reduced the probability of cases occurring by 82%, whereas antimicrobial chemoprophylaxis at the time of departure and oral cholera vaccination reduced the probability of cases by 50% and 61%, respectively. Chemoprophylaxis beginning a week before deployment reduced the probability of cases by 91% when used alone and by 98% when coupled with vaccination. Finally, the researchers estimated that antimicrobial chemoprophylaxis with conventional therapies would cost under US$1 per peacekeeper, whereas the other two pre-deployment intervention strategies would be considerably more expensive.
What Do These Findings Mean?
The accuracy of these findings is likely to be affected by the many assumptions made by the researchers in constructing their mathematical model. In addition, further research is needed to validate the use of rapid tests for detecting asymptomatic V. cholerae carriage, to compare the prophylactic efficacy of different antimicrobial regimens, and to quantify the impact of oral cholera vaccination on disease transmission from asymptomatic carriers. Nevertheless, these findings, which are likely to be generalizable to other settings, suggest that screening, chemoprophylaxis, and vaccination would all effectively prevent cholera introduction during large-scale personnel deployments like the one that precipitated the cholera outbreak in Haiti. However, although antimicrobial chemoprophylaxis is likely to provide the greatest protection at the lowest cost, this strategy is controversial because of increasing levels of drug resistance. Moreover, the researchers stress that proper sewage disposal must be implemented in tandem with any biomedical intervention designed to limit the risk of cholera introduction into disease-free areas by peacekeepers or other troops.
Additional Information
This list of resources contains links that can be accessed when viewing the PDF on a device or via the online version of the article at http://dx.doi.org/10.1371/journal.pmed.1001947.
The World Health Organization provides information about cholera in several languages
The US Centers for Disease Control and Prevention also provides information about cholera for the public, medical professionals and travelers, specific information about the cholera epidemic in Haiti published a year into the outbreak, and CDC videos about defeating cholera and managing dehydration (in English, French and Spanish) are available
The UK National Health Service (NHS) Choices website provides information about cholera
Information about the UN in Haiti is available, including information on fighting cholera in the country, a recent fact sheet about the ongoing cholera epidemic, and a warning that cholera eradication in Haiti will take many years
The United Nations has published the report of the Independent Panel of Experts on the Cholera Outbreak in Haiti and its own follow-up to the panel’s policy recommendations
The not-for-profit organization Médecins Sans Frontières (MSF) is tackling several cholera outbreaks around the world; its website includes a 2014 report about the cholera epidemic in Haiti
MedlinePlus provides links to further resources about cholera
doi:10.1371/journal.pmed.1001947
PMCID: PMC4727895  PMID: 26812236
15.  Routine Pediatric Enterovirus 71 Vaccination in China: a Cost-Effectiveness Analysis 
PLoS Medicine  2016;13(3):e1001975.
Background
China accounted for 87% (9.8 million/11.3 million) of all hand, foot, and mouth disease (HFMD) cases reported to WHO during 2010–2014. Enterovirus 71 (EV71) is responsible for most of the severe HFMD cases. Three EV71 vaccines recently demonstrated good efficacy in children aged 6–71 mo. Here we assessed the cost-effectiveness of routine pediatric EV71 vaccination in China.
Methods and Findings
We characterized the economic and health burden of EV71-associated HFMD (EV71-HFMD) in China using (i) the national surveillance database, (ii) virological surveillance records from all provinces, and (iii) a caregiver survey on the household costs and health utility loss for 1,787 laboratory-confirmed pediatric cases. Using a static model parameterized with these data, we estimated the effective vaccine cost (EVC, defined as cost/efficacy or simply the cost of a 100% efficacious vaccine) below which routine pediatric vaccination would be considered cost-effective. We performed the base-case analysis from the societal perspective with a willingness-to-pay threshold of one times the gross domestic product per capita (GDPpc) and an annual discount rate of 3%. We performed uncertainty analysis by (i) accounting for the uncertainty in the risk of EV71-HFMD due to missing laboratory data in the national database, (ii) excluding productivity loss of parents and caregivers, (iii) increasing the willingness-to-pay threshold to three times GDPpc, (iv) increasing the discount rate to 6%, and (v) accounting for the proportion of EV71-HFMD cases not registered by national surveillance. In each of these scenarios, we performed probabilistic sensitivity analysis to account for parametric uncertainty in our estimates of the risk of EV71-HFMD and the expected costs and health utility loss due to EV71-HFMD. Routine pediatric EV71 vaccination would be cost-saving if the all-inclusive EVC is below US$10.6 (95% CI US$9.7–US$11.5) and would remain cost-effective if EVC is below US$17.9 (95% CI US$16.9–US$18.8) in the base case, but these ceilings could be up to 66% higher if all the test-negative cases with missing laboratory data are EV71-HFMD. The EVC ceiling is (i) 10%–14% lower if productivity loss of parents/caregivers is excluded, (ii) 58%–84% higher if the willingness-to-pay threshold is increased to three times GDPpc, (iii) 14%–19% lower if the discount rate is increased to 6%, and (iv) 36% (95% CI 23%–50%) higher if the proportion of EV71-HFMD registered by national surveillance is the same as that observed in the three EV71 vaccine phase III trials. The validity of our results relies on the following assumptions: (i) self-reported hospital charges are a good proxy for the opportunity cost of care, (ii) the cost and health utility loss estimates based on laboratory-confirmed EV71-HFMD cases are representative of all EV71-HFMD cases, and (iii) the long-term average risk of EV71-HFMD in the future is similar to that registered by national surveillance during 2010–2013.
Conclusions
Compared to no vaccination, routine pediatric EV71 vaccination would be very cost-effective in China if the cost of immunization (including all logistical, procurement, and administration costs needed to confer 5 y of vaccine protection) is below US$12.0–US$18.3, depending on the choice of vaccine among the three candidates. Given that the annual number of births in China has been around 16 million in recent years, the annual costs for routine pediatric EV71 vaccination at this cost range should not exceed US$192–US$293 million. Our results can be used to determine the optimal vaccine when the prices of the three vaccines are known.
Using surveillance and survey data, Joseph T. Wu and colleagues assess the cost-effectiveness of routine pediatric EV71 vaccination in China.
Editors' Summary
Background
Since 2007, outbreaks of hand, foot, and mouth disease (HFMD)—a contagious infection that mainly affects young children—have been occurring annually in China. Between 2010 and 2014, China accounted for 9.8 million of the 11.3 million cases of HFMD reported to the World Health Organization (WHO); in 2012, HFMD was the leading notifiable disease in China among children under five years old. HFMD is caused by a group of viruses called enteroviruses that are transmitted through contact with the mucus produced when an infected individual coughs or sneezes, through contact with the feces of an infected person, and through contact with contaminated surfaces. Good hygiene and frequent handwashing can reduce the spread of HFMD. The characteristic symptoms of HFMD are a non-itchy red rash with blisters on the hands and feet and painful mouth ulcers. There is no cure for HFMD, and most infected children get better within 7–10 days. However, some individuals develop potentially fatal complications such as encephalitis (infection and inflammation of the brain).
Why Was This Study Done?
In China, enterovirus 71 (EV71) causes most laboratory-confirmed fatal cases of HFMD. Routine vaccination against EV71 during the first few months of life might therefore be one way to reduce China’s HFMD burden. In clinical trials, three inactivated monovalent EV71 vaccines made in China were shown to be safe and highly efficacious against EV71-associated HFMD (inactivated monovalent vaccines contain a single virus strain that cannot replicate; exposure to the vaccine “primes” the immune system to respond quickly when challenged with live virus, thereby preventing infection with that virus). However, before implementing routine EV71 vaccination, it is important to know whether this intervention is a good value for the money it would cost. For example, how much money needs to be spent on vaccination to save one life? In this cost-effectiveness analysis (a study that estimates the costs and health effects of a medical intervention), the researchers assess the value for money of routine vaccination of young children against EV71 in China.
What Did the Researchers Do and Find?
The researchers characterized the health and economic burden of EV71-associated HFMD in China using the national surveillance database, HFMD laboratory test results, and information on household costs and health utility loss associated with HFMD cases (health utility is a number that is assigned to a state of health; perfect health and death have utility values of 1 and 0, respectively) collected in a caregiver survey. They then used a mathematical model to estimate the effective vaccine cost (EVC; vaccine cost divided by efficacy) below which routine pediatric vaccination would be cost-effective; WHO defines a cost-effective intervention as one in which the incremental cost-effectiveness ratio (the incremental costs of introducing an intervention divided by the incremental benefits accrued by that introduction) is between one and three times the country’s gross domestic product (GDP) per capita. Routine pediatric vaccination was cost-effective in the researchers’ base-case analysis—which assumed a willingness-to-pay threshold of one times GDP per capita—if the EVC was below US$17.9. Increasing the willingness-to-pay threshold to three times GDP per capita increased the EVC below which routine vaccination would be cost-effective by 58%–84%, whereas excluding consideration of the productivity loss of parents/caregivers while caring for a child with HFMD reduced the EVC below which routine vaccination would be cost-effective by 10%–14%.
What Do These Findings Mean?
The validity of these findings depends on the assumptions included in the mathematical model and on the accuracy of the data fed into the model. However, routine pediatric EV71 vaccination remained cost-effective at broadly similar EVCs in sensitivity analyses in which the assumptions built into the model were altered. Overall, these findings suggest that routine pediatric EV71 vaccination would be very cost-effective in China provided the cost of immunization (including the cost of the vaccine and all the logistical and administration costs of vaccination) is below between US$12.0 and US$18.3 per vaccination; because the different vaccines have different efficacies, the exact value depends on which vaccine is used for vaccination. Thus, with 16 million births each year, the annual costs for routine pediatric EV71 vaccination in China should not exceed US$192–US$293 million. Importantly, when combined with the findings of a previous study in which the same researchers showed large geographical variations in the risk of EV71-associated HFMD across China, these findings can help policymakers identify those regions in China where EV71 vaccination is likely to be most cost-effective.
Additional Information
This list of resources contains links that can be accessed when viewing the PDF on a device or via the online version of the article at http://dx.doi.org/10.1371/journal.pmed.1001975.
A PLOS Medicine Research Article by Takahashi et al. provides information about the patterns of HFMD outbreaks in China
The US Centers for Disease Control and Prevention provides information on hand, foot, and mouth disease (in English and Spanish), including a podcast on the condition
The UK National Health Service Choices website provides detailed information on hand, foot, and mouth disease
Further information about hand, foot, and mouth disease is provided by the World Health Organization (including up-to-date HFMD surveillance reports from China), the Nemours Foundation (in English and Spanish), and MedlinePlus (in English and Spanish)
A WHO guide on cost-effectiveness analysis is available
doi:10.1371/journal.pmed.1001975
PMCID: PMC4792415  PMID: 26978565
16.  Seasonal Influenza Vaccination for Children in Thailand: A Cost-Effectiveness Analysis 
PLoS Medicine  2015;12(5):e1001829.
Background
Seasonal influenza is a major cause of mortality worldwide. Routine immunization of children has the potential to reduce this mortality through both direct and indirect protection, but has not been adopted by any low- or middle-income countries. We developed a framework to evaluate the cost-effectiveness of influenza vaccination policies in developing countries and used it to consider annual vaccination of school- and preschool-aged children with either trivalent inactivated influenza vaccine (TIV) or trivalent live-attenuated influenza vaccine (LAIV) in Thailand. We also compared these approaches with a policy of expanding TIV coverage in the elderly.
Methods and Findings
We developed an age-structured model to evaluate the cost-effectiveness of eight vaccination policies parameterized using country-level data from Thailand. For policies using LAIV, we considered five different age groups of children to vaccinate. We adopted a Bayesian evidence-synthesis framework, expressing uncertainty in parameters through probability distributions derived by fitting the model to prospectively collected laboratory-confirmed influenza data from 2005-2009, by meta-analysis of clinical trial data, and by using prior probability distributions derived from literature review and elicitation of expert opinion. We performed sensitivity analyses using alternative assumptions about prior immunity, contact patterns between age groups, the proportion of infections that are symptomatic, cost per unit vaccine, and vaccine effectiveness. Vaccination of children with LAIV was found to be highly cost-effective, with incremental cost-effectiveness ratios between about 2,000 and 5,000 international dollars per disability-adjusted life year averted, and was consistently preferred to TIV-based policies. These findings were robust to extensive sensitivity analyses. The optimal age group to vaccinate with LAIV, however, was sensitive both to the willingness to pay for health benefits and to assumptions about contact patterns between age groups.
Conclusions
Vaccinating school-aged children with LAIV is likely to be cost-effective in Thailand in the short term, though the long-term consequences of such a policy cannot be reliably predicted given current knowledge of influenza epidemiology and immunology. Our work provides a coherent framework that can be used for similar analyses in other low- and middle-income countries.
Ben Cooper and colleagues use an age-structured model to estimate optimal cost-effectiveness of flu vaccination among Thai children aged 2 to 17.
Editors' Summary
Background
Every year, millions of people catch influenza, a viral disease of the airways. Most infected individuals recover quickly, but elderly people, the very young, and chronically ill individuals are at high risk of developing serious complications such as pneumonia; seasonal influenza kills about half a million people annually. Small but frequent changes in the influenza virus mean that an immune response produced one year by exposure to the virus provides only partial protection against influenza the next year. Annual immunization with a vaccine that contains killed or live-attenuated (weakened) influenza viruses of the major circulating strains can reduce a person’s chance of catching influenza. Consequently, many countries run seasonal influenza vaccination programs that target elderly people and other people at high risk of influenza complications, and people who care for these individuals.
Why Was This Study Done?
As well as reducing the vaccinated person’s risk of infection, influenza vaccination protects unvaccinated members of the population by reducing the chances of influenza spreading. Because children make a disproportionately large contribution to the transmission of influenza, vaccination of children might therefore provide greater benefits to the whole population than vaccination of elderly people, particularly when vaccination uptake among the elderly is low. Thus, many high-income countries now recommend annual influenza vaccination of children with a trivalent live-attenuated influenza vaccine (LAIV; a trivalent vaccine contains three viruses), which is sprayed into the nose. However, to date no low- or middle-income countries have evaluated this policy. Here, the researchers develop a mathematical model (framework) to evaluate the cost-effectiveness of annual vaccination of children with LAIV or trivalent inactivated influenza vaccine (TIV) in Thailand. A cost-effectiveness analysis evaluates whether a medical intervention is good value for money by comparing the health outcomes and costs associated with the introduction of the intervention with the health outcomes and costs of the existing standard of care. Thailand, a middle-income country, offers everyone over 65 years old free seasonal influenza vaccination with TIV, but vaccine coverage in this age group is low (10%).
What Did the Researchers Do and Find?
The researchers developed a modeling framework that contained six connected components including a transmission model that incorporated infectious contacts within and between different age groups, a health outcome model that calculated the disability-adjusted life years (DALYs, a measure of the overall disease burden) averted by specific vaccination policies, and a cost model that calculated the costs to the population of each policy. They used this framework and data from Thailand to calculate the cost-effectiveness of six childhood vaccination policies in Thailand (one with TIV and five with LAIV that targeted children of different ages) against a baseline policy of 10% TIV coverage in the elderly; they also investigated the cost-effectiveness of increasing vaccination in the elderly to 66%. All seven vaccination policies tested reduced influenza cases and deaths compared to the baseline policy, but the LAIV-based polices were consistently better than the TIV-based policies; the smallest reductions were seen when TIV coverage in elderly people was increased to 66%. All seven policies were highly cost-effective according to the World Health Organization’s threshold for cost-effectiveness. That is, the cost per DALY averted by each policy compared to the baseline policy (the incremental cost-effectiveness ratio) was less than Thailand’s gross domestic product per capita (the total economic output of a country divided by the number of people in the country).
What Do These Findings Mean?
These findings suggest that seasonal influenza vaccination of children with LAIV is likely to represent good value for money in Thailand and, potentially, in other middle- and low-income countries in the short term. The long-term consequences of annual influenza vaccination of children in Thailand cannot be reliably predicted, however, because of limitations in our current understanding of influenza immunity in populations. Moreover, the accuracy of these findings is limited by the assumptions built into the modeling framework, including the vaccine costs and efficacy that were used to run the model, which were estimated from limited data. Importantly, however, these findings support proposals for large-scale community-based controlled trials of policies to vaccinate children against influenza in low- and middle-income countries. Indeed, based on these findings, Thailand is planning to evaluate school-based seasonal influenza vaccination in a few provinces in 2016 before considering a nationwide program of seasonal influenza vaccination of children.
Additional Information
This list of resources contains links that can be accessed when viewing the PDF on a device or via the online version of the article at http://dx.doi.org/10.1371/journal.pmed.1001829.
The UK National Health Service Choices website provides information for patients about seasonal influenza, about influenza vaccination, and about influenza vaccination in children
The World Health Organization provides information on seasonal influenza (in several languages) and on influenza vaccines
The US Centers for Disease Control and Prevention also provides information for patients and health professionals on all aspects of seasonal influenza, including information about vaccination, about children, influenza, and vaccination, and about herd immunity; its website contains a short video about personal experiences of influenza
Flu.gov, a US government website, provides access to information on seasonal influenza and vaccination
MedlinePlus has links to further information about influenza and about vaccination (in English and Spanish)
The Thai National Influenza Center monitors influenza activity throughout Thailand
doi:10.1371/journal.pmed.1001829
PMCID: PMC4444096  PMID: 26011712
17.  Clinical Utility of Serologic Testing for Celiac Disease in Ontario 
Executive Summary
Objective of Analysis
The objective of this evidence-based evaluation is to assess the accuracy of serologic tests in the diagnosis of celiac disease in subjects with symptoms consistent with this disease. Furthermore the impact of these tests in the diagnostic pathway of the disease and decision making was also evaluated.
Celiac Disease
Celiac disease is an autoimmune disease that develops in genetically predisposed individuals. The immunological response is triggered by ingestion of gluten, a protein that is present in wheat, rye, and barley. The treatment consists of strict lifelong adherence to a gluten-free diet (GFD).
Patients with celiac disease may present with a myriad of symptoms such as diarrhea, abdominal pain, weight loss, iron deficiency anemia, dermatitis herpetiformis, among others.
Serologic Testing in the Diagnosis Celiac Disease
There are a number of serologic tests used in the diagnosis of celiac disease.
Anti-gliadin antibody (AGA)
Anti-endomysial antibody (EMA)
Anti-tissue transglutaminase antibody (tTG)
Anti-deamidated gliadin peptides antibodies (DGP)
Serologic tests are automated with the exception of the EMA test, which is more time-consuming and operator-dependent than the other tests. For each serologic test, both immunoglobulin A (IgA) or G (IgG) can be measured, however, IgA measurement is the standard antibody measured in celiac disease.
Diagnosis of Celiac Disease
According to celiac disease guidelines, the diagnosis of celiac disease is established by small bowel biopsy. Serologic tests are used to initially detect and to support the diagnosis of celiac disease. A small bowel biopsy is indicated in individuals with a positive serologic test. In some cases an endoscopy and small bowel biopsy may be required even with a negative serologic test. The diagnosis of celiac disease must be performed on a gluten-containing diet since the small intestine abnormalities and the serologic antibody levels may resolve or improve on a GFD.
Since IgA measurement is the standard for the serologic celiac disease tests, false negatives may occur in IgA-deficient individuals.
Incidence and Prevalence of Celiac Disease
The incidence and prevalence of celiac disease in the general population and in subjects with symptoms consistent with or at higher risk of celiac disease based on systematic reviews published in 2004 and 2009 are summarized below.
Incidence of Celiac Disease in the General Population
Adults or mixed population: 1 to 17/100,000/year
Children: 2 to 51/100,000/year
In one of the studies, a stratified analysis showed that there was a higher incidence of celiac disease in younger children compared to older children, i.e., 51 cases/100,000/year in 0 to 2 year-olds, 33/100,000/year in 2 to 5 year-olds, and 10/100,000/year in children 5 to 15 years old.
Prevalence of Celiac Disease in the General Population
The prevalence of celiac disease reported in population-based studies identified in the 2004 systematic review varied between 0.14% and 1.87% (median: 0.47%, interquartile range: 0.25%, 0.71%). According to the authors of the review, the prevalence did not vary by age group, i.e., adults and children.
Prevalence of Celiac Disease in High Risk Subjects
Type 1 diabetes (adults and children): 1 to 11%
Autoimmune thyroid disease: 2.9 to 3.3%
First degree relatives of patients with celiac disease: 2 to 20%
Prevalence of Celiac Disease in Subjects with Symptoms Consistent with the Disease
The prevalence of celiac disease in subjects with symptoms consistent with the disease varied widely among studies, i.e., 1.5% to 50% in adult studies, and 1.1% to 17% in pediatric studies. Differences in prevalence may be related to the referral pattern as the authors of a systematic review noted that the prevalence tended to be higher in studies whose population originated from tertiary referral centres compared to general practice.
Research Questions
What is the sensitivity and specificity of serologic tests in the diagnosis celiac disease?
What is the clinical validity of serologic tests in the diagnosis of celiac disease? The clinical validity was defined as the ability of the test to change diagnosis.
What is the clinical utility of serologic tests in the diagnosis of celiac disease? The clinical utility was defined as the impact of the test on decision making.
What is the budget impact of serologic tests in the diagnosis of celiac disease?
What is the cost-effectiveness of serologic tests in the diagnosis of celiac disease?
Methods
Literature Search
A literature search was performed on November 13th, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1st 2003 and November 13th 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. Articles with unknown eligibility were reviewed with a second clinical epidemiologist, then a group of epidemiologists until consensus was established. The quality of evidence was assessed as high, moderate, low or very low according to GRADE methodology.
Studies that evaluated diagnostic accuracy, i.e., both sensitivity and specificity of serology tests in the diagnosis of celiac disease.
Study population consisted of untreated patients with symptoms consistent with celiac disease.
Studies in which both serologic celiac disease tests and small bowel biopsy (gold standard) were used in all subjects.
Systematic reviews, meta-analyses, randomized controlled trials, prospective observational studies, and retrospective cohort studies.
At least 20 subjects included in the celiac disease group.
English language.
Human studies.
Studies published from 2000 on.
Clearly defined cut-off value for the serology test. If more than one test was evaluated, only those tests for which a cut-off was provided were included.
Description of small bowel biopsy procedure clearly outlined (location, number of biopsies per patient), unless if specified that celiac disease diagnosis guidelines were followed.
Patients in the treatment group had untreated CD.
Studies on screening of the general asymptomatic population.
Studies that evaluated rapid diagnostic kits for use either at home or in physician’s offices.
Studies that evaluated diagnostic modalities other than serologic tests such as capsule endoscopy, push enteroscopy, or genetic testing.
Cut-off for serologic tests defined based on controls included in the study.
Study population defined based on positive serology or subjects pre-screened by serology tests.
Celiac disease status known before study enrolment.
Sensitivity or specificity estimates based on repeated testing for the same subject.
Non-peer-reviewed literature such as editorials and letters to the editor.
Population
The population consisted of adults and children with untreated, undiagnosed celiac disease with symptoms consistent with the disease.
Serologic Celiac Disease Tests Evaluated
Anti-gliadin antibody (AGA)
Anti-endomysial antibody (EMA)
Anti-tissue transglutaminase antibody (tTG)
Anti-deamidated gliadin peptides antibody (DGP)
Combinations of some of the serologic tests listed above were evaluated in some studies
Both IgA and IgG antibodies were evaluated for the serologic tests listed above.
Outcomes of Interest
Sensitivity
Specificity
Positive and negative likelihood ratios
Diagnostic odds ratio (OR)
Area under the sROC curve (AUC)
Small bowel biopsy was used as the gold standard in order to estimate the sensitivity and specificity of each serologic test.
Statistical Analysis
Pooled estimates of sensitivity, specificity and diagnostic odds ratios (DORs) for the different serologic tests were calculated using a bivariate, binomial generalized linear mixed model. Statistical significance for differences in sensitivity and specificity between serologic tests was defined by P values less than 0.05, where “false discovery rate” adjustments were made for multiple hypothesis testing. The bivariate regression analyses were performed using SAS version 9.2 (SAS Institute Inc.; Cary, NC, USA). Using the bivariate model parameters, summary receiver operating characteristic (sROC) curves were produced using Review Manager 5.0.22 (The Nordiac Cochrane Centre, The Cochrane Collaboration, 2008). The area under the sROC curve (AUC) was estimated by bivariate mixed-efects binary regression modeling framework. Model specification, estimation and prediction are carried out with xtmelogit in Stata release 10 (Statacorp, 2007). Statistical tests for the differences in AUC estimates could not be carried out.
The study results were stratified according to patient or disease characteristics such as age, severity of Marsh grade abnormalities, among others, if reported in the studies. The literature indicates that the diagnostic accuracy of serologic tests for celiac disease may be affected in patients with chronic liver disease, therefore, the studies identified through the systematic literature review that evaluated the diagnostic accuracy of serologic tests for celiac disease in patients with chronic liver disease were summarized. The effect of the GFD in patiens diagnosed with celiac disease was also summarized if reported in the studies eligible for the analysis.
Summary of Findings
Published Systematic Reviews
Five systematic reviews of studies that evaluated the diagnostic accuracy of serologic celiac disease tests were identified through our literature search. Seventeen individual studies identified in adults and children were eligible for this evaluation.
In general, the studies included evaluated the sensitivity and specificity of at least one serologic test in subjects with symptoms consistent with celiac disease. The gold standard used to confirm the celiac disease diagnosis was small bowel biopsy. Serologic tests evaluated included tTG, EMA, AGA, and DGP, using either IgA or IgG antibodies. Indirect immunoflurorescence was used for the EMA serologic tests whereas enzyme-linked immunosorbent assay (ELISA) was used for the other serologic tests.
Common symptoms described in the studies were chronic diarrhea, abdominal pain, bloating, unexplained weight loss, unexplained anemia, and dermatitis herpetiformis.
The main conclusions of the published systematic reviews are summarized below.
IgA tTG and/or IgA EMA have a high accuracy (pooled sensitivity: 90% to 98%, pooled specificity: 95% to 99% depending on the pooled analysis).
Most reviews found that AGA (IgA or IgG) are not as accurate as IgA tTG and/or EMA tests.
A 2009 systematic review concluded that DGP (IgA or IgG) seems to have a similar accuracy compared to tTG, however, since only 2 studies identified evaluated its accuracy, the authors believe that additional data is required to draw firm conclusions.
Two systematic reviews also concluded that combining two serologic celiac disease tests has little contribution to the accuracy of the diagnosis.
MAS Analysis
Sensitivity
The pooled analysis performed by MAS showed that IgA tTG has a sensitivity of 92.1% [95% confidence interval (CI) 88.0, 96.3], compared to 89.2% (83.3, 95.1, p=0.12) for IgA DGP, 85.1% (79.5, 94.4, p=0.07) for IgA EMA, and 74.9% (63.6, 86.2, p=0.0003) for IgA AGA. Among the IgG-based tests, the results suggest that IgG DGP has a sensitivity of 88.4% (95% CI: 82.1, 94.6), 44.7% (30.3, 59.2) for tTG, and 69.1% (56.0, 82.2) for AGA. The difference was significant when IgG DGP was compared to IgG tTG but not IgG AGA. Combining serologic celiac disease tests yielded a slightly higher sensitivity compared to individual IgA-based serologic tests.
IgA deficiency
The prevalence of total or severe IgA deficiency was low in the studies identified varying between 0 and 1.7% as reported in 3 studies in which IgA deficiency was not used as a referral indication for celiac disease serologic testing. The results of IgG-based serologic tests were positive in all patients with IgA deficiency in which celiac disease was confirmed by small bowel biopsy as reported in four studies.
Specificity
The MAS pooled analysis indicates a high specificity across the different serologic tests including the combination strategy, pooled estimates ranged from 90.1% to 98.7% depending on the test.
Likelihood Ratios
According to the likelihood ratio estimates, both IgA tTG and serologic test combinationa were considered very useful tests (positive likelihood ratio above ten and the negative likelihood ratio below 0.1).
Moderately useful tests included IgA EMA, IgA DGP, and IgG DGP (positive likelihood ratio between five and ten and the negative likelihood ratio between 0.1 and 0.2).
Somewhat useful tests: IgA AGA, IgG AGA, generating small but sometimes important changes from pre- to post-test probability (positive LR between 2 and 5 and negative LR between 0.2 and 0.5)
Not Useful: IgG tTG, altering pre- to post-test probability to a small and rarely important degree (positive LR between 1 and 2 and negative LR between 0.5 and 1).
Diagnostic Odds Ratios (DOR)
Among the individual serologic tests, IgA tTG had the highest DOR, 136.5 (95% CI: 51.9, 221.2). The statistical significance of the difference in DORs among tests was not calculated, however, considering the wide confidence intervals obtained, the differences may not be statistically significant.
Area Under the sROC Curve (AUC)
The sROC AUCs obtained ranged between 0.93 and 0.99 for most IgA-based tests with the exception of IgA AGA, with an AUC of 0.89.
Sensitivity and Specificity of Serologic Tests According to Age Groups
Serologic test accuracy did not seem to vary according to age (adults or children).
Sensitivity and Specificity of Serologic Tests According to Marsh Criteria
Four studies observed a trend towards a higher sensitivity of serologic celiac disease tests when Marsh 3c grade abnormalities were found in the small bowel biopsy compared to Marsh 3a or 3b (statistical significance not reported). The sensitivity of serologic tests was much lower when Marsh 1 grade abnormalities were found in small bowel biopsy compared to Marsh 3 grade abnormalities. The statistical significance of these findings were not reported in the studies.
Diagnostic Accuracy of Serologic Celiac Disease Tests in Subjects with Chronic Liver Disease
A total of 14 observational studies that evaluated the specificity of serologic celiac disease tests in subjects with chronic liver disease were identified. All studies evaluated the frequency of false positive results (1-specificity) of IgA tTG, however, IgA tTG test kits using different substrates were used, i.e., human recombinant, human, and guinea-pig substrates. The gold standard, small bowel biopsy, was used to confirm the result of the serologic tests in only 5 studies. The studies do not seem to have been designed or powered to compare the diagnostic accuracy among different serologic celiac disease tests.
The results of the studies identified in the systematic literature review suggest that there is a trend towards a lower frequency of false positive results if the IgA tTG test using human recombinant substrate is used compared to the guinea pig substrate in subjects with chronic liver disease. However, the statistical significance of the difference was not reported in the studies. When IgA tTG with human recombinant substrate was used, the number of false positives seems to be similar to what was estimated in the MAS pooled analysis for IgA-based serologic tests in a general population of patients. These results should be interpreted with caution since most studies did not use the gold standard, small bowel biopsy, to confirm or exclude the diagnosis of celiac disease, and since the studies were not designed to compare the diagnostic accuracy among different serologic tests. The sensitivity of the different serologic tests in patients with chronic liver disease was not evaluated in the studies identified.
Effects of a Gluten-Free Diet (GFD) in Patients Diagnosed with Celiac Disease
Six studies identified evaluated the effects of GFD on clinical, histological, or serologic improvement in patients diagnosed with celiac disease. Improvement was observed in 51% to 95% of the patients included in the studies.
Grading of Evidence
Overall, the quality of the evidence ranged from moderate to very low depending on the serologic celiac disease test. Reasons to downgrade the quality of the evidence included the use of a surrogate endpoint (diagnostic accuracy) since none of the studies evaluated clinical outcomes, inconsistencies among study results, imprecise estimates, and sparse data. The quality of the evidence was considered moderate for IgA tTg and IgA EMA, low for IgA DGP, and serologic test combinations, and very low for IgA AGA.
Clinical Validity and Clinical Utility of Serologic Testing in the Diagnosis of Celiac Disease
The clinical validity of serologic tests in the diagnosis of celiac disease was considered high in subjects with symptoms consistent with this disease due to
High accuracy of some serologic tests.
Serologic tests detect possible celiac disease cases and avoid unnecessary small bowel biopsy if the test result is negative, unless an endoscopy/ small bowel biopsy is necessary due to the clinical presentation.
Serologic tests support the results of small bowel biopsy.
The clinical utility of serologic tests for the diagnosis of celiac disease, as defined by its impact in decision making was also considered high in subjects with symptoms consistent with this disease given the considerations listed above and since celiac disease diagnosis leads to treatment with a gluten-free diet.
Economic Analysis
A decision analysis was constructed to compare costs and outcomes between the tests based on the sensitivity, specificity and prevalence summary estimates from the MAS Evidence-Based Analysis (EBA). A budget impact was then calculated by multiplying the expected costs and volumes in Ontario. The outcome of the analysis was expected costs and false negatives (FN). Costs were reported in 2010 CAD$. All analyses were performed using TreeAge Pro Suite 2009.
Four strategies made up the efficiency frontier; IgG tTG, IgA tTG, EMA and small bowel biopsy. All other strategies were dominated. IgG tTG was the least costly and least effective strategy ($178.95, FN avoided=0). Small bowel biopsy was the most costly and most effective strategy ($396.60, FN avoided =0.1553). The cost per FN avoided were $293, $369, $1,401 for EMA, IgATTG and small bowel biopsy respectively. One-way sensitivity analyses did not change the ranking of strategies.
All testing strategies with small bowel biopsy are cheaper than biopsy alone however they also result in more FNs. The most cost-effective strategy will depend on the decision makers’ willingness to pay. Findings suggest that IgA tTG was the most cost-effective and feasible strategy based on its Incremental Cost-Effectiveness Ratio (ICER) and convenience to conduct the test. The potential impact of IgA tTG test in the province of Ontario would be $10.4M, $11.0M and $11.7M respectively in the following three years based on past volumes and trends in the province and basecase expected costs.
The panel of tests is the commonly used strategy in the province of Ontario therefore the impact to the system would be $13.6M, $14.5M and $15.3M respectively in the next three years based on past volumes and trends in the province and basecase expected costs.
Conclusions
The clinical validity and clinical utility of serologic tests for celiac disease was considered high in subjects with symptoms consistent with this disease as they aid in the diagnosis of celiac disease and some tests present a high accuracy.
The study findings suggest that IgA tTG is the most accurate and the most cost-effective test.
AGA test (IgA) has a lower accuracy compared to other IgA-based tests
Serologic test combinations appear to be more costly with little gain in accuracy. In addition there may be problems with generalizability of the results of the studies included in this review if different test combinations are used in clinical practice.
IgA deficiency seems to be uncommon in patients diagnosed with celiac disease.
The generalizability of study results is contingent on performing both the serologic test and small bowel biopsy in subjects on a gluten-containing diet as was the case in the studies identified, since the avoidance of gluten may affect test results.
PMCID: PMC3377499  PMID: 23074399
18.  Cost-effectiveness analysis of human papillomavirus vaccination in South Africa accounting for human immunodeficiency virus prevalence 
BMC Infectious Diseases  2015;15:566.
Background
This study aims at evaluating the cost-effectiveness of a 2-dose schedule human papillomavirus (HPV) vaccination programme of HPV and human immunodeficiency virus (HIV) naïve 12-year-old girls, in addition to cervical cancer (CC) screening alone, in South Africa. The study aims to account for both the impact of the vaccine among girls who are HIV-positive (HIV+) as well as HIV-negative (HIV-) population.
Methods
A previously published Markov cohort model was adapted to assess the impact and cost-effectiveness of a HPV vaccination programme in girls aged 12 years (N = 527 900) using the AS04-adjuvanted HPV-16/18 vaccine from a public payer perspective. Two subpopulations were considered: HIV- and HIV+ women. Each population followed the HPV natural history with different transition probabilities. Model input data were obtained from the literature, local databases and Delphi panel. Costs and outcomes were discounted at 5 %. Extensive sensitivity analyses were conducted to assess the robustness of the evaluation.
Results
Implementation of the AS04-adjuvanted HPV-16/18 vaccine in combination with current cytological screening in South African girls could prevent up to 8 869 CC cases and 5 436 CC deaths over the lifetime of a single cohort. Without discounting, this HPV vaccine is dominant over screening alone; with discounting, the incremental cost-effectiveness ratio is ZAR 81 978 (South African Rand) per quality-adjusted life years (QALY) gained. HPV vaccination can be considered cost-effective based on World Health Organization (WHO) recommended threshold (3 x gross domestic product/capita = ZAR 200 293). In a scenario with a hypothetical targeted vaccination in a HIV+ subpopulation alone, the modelled outcomes suggest that HPV vaccination is still cost-effective, although the incremental cost-effectiveness ratio increases to ZAR 102 479. Results were sensitive to discount rate, vaccine efficacy, HIV incidence and mortality rates, and HPV-related disease transition probabilities.
Conclusions
The AS04-adjuvanted HPV-16/18 vaccine can be considered cost-effective in a South African context although the cost-effectiveness is expected to be lower in the HIV+ subpopulation than in the overall female population. With improved access to HIV treatment, the HIV mortality and incidence rates are likely to be reduced, which could improve cost-effectiveness of the vaccination programme in South Africa.
Electronic supplementary material
The online version of this article (doi:10.1186/s12879-015-1295-z) contains supplementary material, which is available to authorized users.
doi:10.1186/s12879-015-1295-z
PMCID: PMC4676856  PMID: 26652918
Cervical cancer; Vaccine; Human immunodeficiency virus; Human papillomavirus; South Africa; 2-dose; Cost-effective
19.  Human papillomavirus (HPV) vaccination for the prevention of HPV 16/18 induced cervical cancer and its precursors 
Introduction
Essential precondition for the development of cervical cancer is a persistent human papillomavirus (HPV) infection. The majority - approximately 70% - of cervical carcinomas is caused by two high-risk HPV types (16 and 18). Recently, two vaccines have been approved to the German market with the potential to induce protection against HPV 16 and HPV 18 among additional low-risk virus types.
Objectives
To analyse whether HPV vaccination is effective with regard to the reduction of cervical cancer and precursors of cervical carcinoma (CIN), respectively? Does HPV vaccination represent a cost-effective alternative or supplement to present screening practice? Are there any differences concerning cost-effectiveness between the two available vaccines? Should HPV vaccination be recommended from a health economic point of view? If so, which recommendations can be conveyed with respect to a (re)organization of the German vaccination strategy? Which ethical, social and legal implications have to be considered?
Methods
Based on a systematic literature review, randomized controlled trials (RCT) looking at the effectiveness of HPV vaccination for the prevention of cervical carcinoma and its precursors - cervical intraepithelial neoplasia - have been identified. In addition, health economic models were identified to address the health economic research questions. Quality assessment of medical and economic literature was assured by application of general assessment standards for the systematic and critical appraisal of scientific studies.
Results
Vaccine efficacy in prevention of CIN 2 or higher lesions in HPV 16 or HPV 18 negative women, who received all vaccination doses, ranges between 98% and 100%. Side effects of the vaccination are mainly associated with injection site reactions (redness, turgor, pain). No significant differences concerning serious complications between the vaccination- and the placebo-groups were reported. Results of base case scenarios in the identified health economic modeling analyses range from approximately 3,000 Euro to 40,000 Euro per additional QALY (QALY = Quality-adjusted life year) and approximately 9,000 Euro to 65,000 Euro per additional life year (LYG), respectively.
Discussion
The included studies show that both available HPV vaccines are effective in preventing HPV 16 and HPV 18 infections and probable resulting premalignant lesions of the cervix. However, the duration of protection is currently unclear. With regard to side effects, the vaccination can be considered as secure. Nevertheless, the number of cases within the clinical studies is not sufficient to determine the occurrence of rarely occurring (severe) adverse events in a reliable way. A reduction in the incidence and induced mortality through cervical cancer in Germany is not only depending on the vaccine’s clinical efficacy. Effects of the new technology on the overall participation rate in screening programs and the resulting vaccination rate and immunization status are also important factors. The results of identified health economic models vary substantially due to the heterogeneity of methodological approaches as well as chosen input parameters. However, almost all model-based analyses reached the conclusion that the implementation of a vaccination with lifelong protection can be considered as cost-effective, if the present screening practice continues. A comparison of the two vaccines shows, that the cost effectiveness ratios are more favorable with the quadrivalent vaccine than with the bivalent alternative when considering QALY as primary outcome parameter. The reason for this finding might be that in the case of the quadrivalent vaccine the prevention of genital warts can also be incorporated into the analysis. Variations of the duration of protection as well as the discounting rate were identified as the primary influencing factors of cost-effectiveness results.
Conclusion
Implementation of HPV vaccination might lead to a reduction of cervical cancer in immunized women. However, uptake of immunization should be accompanied by further studies in order to assess long-term effectiveness and safety aiming at an optimization of possible implementation processes. High numbers of participants are of particular importance regarding immunization. This has to be backed up by programs to optimize early detection – as this affects even those women who already underwent immunization. Since cost-effectiveness evidence might be significantly affected by the unclear duration of protective benefits, a final verdict on the vaccination’s cost-effectiveness in the German setting is not possible. Hence, risk-sharing-agreements between third-party payers and manufacturers would pose an option to balance the consequences of uncertainty towards the duration of protection on cost-effectiveness.
doi:10.3205/hta000066
PMCID: PMC3011291  PMID: 21289891
20.  Economic Appraisal of Ontario's Universal Influenza Immunization Program: A Cost-Utility Analysis 
PLoS Medicine  2010;7(4):e1000256.
Beate Sander and colleagues assess the cost-effectiveness of the program that provides free seasonal influenza vaccines to the entire population of Ontario, Canada.
Background
In July 2000, the province of Ontario, Canada, initiated a universal influenza immunization program (UIIP) to provide free seasonal influenza vaccines for the entire population. This is the first large-scale program of its kind worldwide. The objective of this study was to conduct an economic appraisal of Ontario's UIIP compared to a targeted influenza immunization program (TIIP).
Methods and Findings
A cost-utility analysis using Ontario health administrative data was performed. The study was informed by a companion ecological study comparing physician visits, emergency department visits, hospitalizations, and deaths between 1997 and 2004 in Ontario and nine other Canadian provinces offering targeted immunization programs. The relative change estimates from pre-2000 to post-2000 as observed in other provinces were applied to pre-UIIP Ontario event rates to calculate the expected number of events had Ontario continued to offer targeted immunization. Main outcome measures were quality-adjusted life years (QALYs), costs in 2006 Canadian dollars, and incremental cost-utility ratios (incremental cost per QALY gained). Program and other costs were drawn from Ontario sources. Utility weights were obtained from the literature. The incremental cost of the program per QALY gained was calculated from the health care payer perspective. Ontario's UIIP costs approximately twice as much as a targeted program but reduces influenza cases by 61% and mortality by 28%, saving an estimated 1,134 QALYs per season overall. Reducing influenza cases decreases health care services cost by 52%. Most cost savings can be attributed to hospitalizations avoided. The incremental cost-effectiveness ratio is Can$10,797/QALY gained. Results are most sensitive to immunization cost and number of deaths averted.
Conclusions
Universal immunization against seasonal influenza was estimated to be an economically attractive intervention.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Annual outbreaks (epidemics) of influenza—a viral disease of the nose, throat, and airways—make millions of people ill and kill about 500,000 individuals every year. In doing so, they impose a considerable economic burden on society in terms of health care costs and lost productivity. Influenza epidemics occur because small but frequent changes in the viral proteins to which the immune system responds mean that an immune response produced one year by exposure to an influenza virus provides only partial protection against influenza the next year. Annual immunization with a vaccine that contains killed influenza viruses of the major circulating strains can boost this natural immunity and greatly reduce a person's chances of catching influenza. Consequently, many countries run seasonal influenza vaccine programs. These programs usually target people at high risk of complications from influenza and individuals likely to come into close contact with them, and people who provide essential community services. So, for example, in most Canadian provinces, targeted influenza immunization programs (TIIPs) offer free influenza vaccinations to people aged 65 years or older, to people with chronic medical conditions, and to health care workers.
Why Was This Study Done?
Some experts argue, however, that universal vaccination might provide populations with better protection from influenza. In 2000, the province of Ontario in Canada decided, therefore, to introduce a universal influenza immunization program (UIIP) to provide free influenza vaccination to everyone older than 6 months, the first large program of this kind in the world. A study published in 2008 showed that, following the introduction of the UIIP, vaccination rates in Ontario increased more than in other Canadian provinces. In addition, deaths from influenza and influenza-related use of health care facilities decreased more in Ontario than in provinces that continued to offer a TIIP. But is universal influenza vaccination good value for money? In this study, the researchers evaluate the cost-effectiveness of the Ontario UIIP by comparing the health outcomes and costs associated with its introduction with the health outcomes and costs associated with a hypothetical continuation of targeted influenza immunization.
What Did the Researchers Do and Find?
The researchers used data on TIIP and UIIP vaccine uptake, physician visits, emergency department visits, hospitalizations for influenza, and deaths from influenza between 1997 and 2004 in Ontario and in nine Canadian states offering TIIPs, and Ontario cost data, in their “cost-utility” analysis. This type of analysis estimates the additional cost required to generate a year of perfect health (a quality-adjusted life-year or QALY) through the introduction of an intervention. QALYs are calculated by multiplying the time spent in a certain health state by a measure of the quality of that health state. The researchers report that the cost of Ontario's UIIP was about twice as much as the cost of a TIIP for the province. However, the introduction of the UIIP reduced the number of influenza cases by nearly two-thirds and reduced deaths from influenza by more than a quarter compared with what would have been expected had the province continued to offer a TIIP, an overall saving of 1,134 QALYs. Furthermore, the reduction in influenza cases halved influenza-related health care costs, mainly because of reductions in hospitalization. Overall, this means that the additional cost to Ontario of saving one QALY through the introduction of the UIIP was Can$10,797, an “incremental cost-effectiveness ratio” of $10,797 per QALY gained.
What Do These Findings Mean?
In Canada, an intervention is considered cost-effective from the point of view of a health care purchaser if it costs less than Canadian $50,000 to gain one QALY. These findings indicate, therefore, that for Ontario the introduction of the UIIP is economically attractive. Indeed, the researchers calculate that even if the costs of the UIIP were to double, the additional cost of saving one QALY by introducing universal immunization would remain below $50,000. Other “sensitivity” analyses undertaken by the researchers also indicate that universal immunization is likely to be effective and cost-effective in Ontario if other key assumptions and/or data included in the calculations are varied within reasonable limits. Given these findings, the researchers suggest that a UIIP might be an appealing intervention in other Canadian provinces and in other high-income countries where influenza transmission and health-care costs are broadly similar to those in Ontario.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000256.
A PLoS Medicine Research Article by Kwong and colleagues describes how the introduction of universal influenza immunization in Ontario altered influenza-related health care use and deaths in the province
Wikipedia pages are available on QALYs and on cost-utility analysis (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
Bandolier, an independent online journal about evidence-based health-care, provides information about QALYs and their use in cost-utility analysis
The UK National Institute for Health and Clinical Excellence has a webpage on Measuring effectiveness and cost-effectiveness: the QALY
doi:10.1371/journal.pmed.1000256
PMCID: PMC2850382  PMID: 20386727
21.  The Relationship between Anti-merozoite Antibodies and Incidence of Plasmodium falciparum Malaria: A Systematic Review and Meta-analysis 
PLoS Medicine  2010;7(1):e1000218.
A systematic review and meta-analysis examining the association between anti-merozoite antibody responses and incidence of Plasmodium falciparum malaria by Freya Fowkes and colleagues aids identification of antigens that confer protection from malaria.
Background
One of the criteria to objectively prioritize merozoite antigens for malaria vaccine development is the demonstration that naturally acquired antibodies are associated with protection from malaria. However, published evidence of the protective effect of these antibodies is conflicting.
Methods and Findings
We performed a systematic review with meta-analysis of prospective cohort studies examining the association between anti-merozoite immunoglobin (Ig) G responses and incidence of Plasmodium falciparum malaria. Two independent researchers searched six databases and identified 33 studies that met predefined inclusion and quality criteria, including a rigorous definition of symptomatic malaria. We found that only five studies were performed outside sub-Saharan Africa and that there was a deficiency in studies investigating antibodies to leading vaccine candidates merozoite surface protein (MSP)-142 and erythrocyte binding antigen (EBA)-175. Meta-analyses of most-studied antigens were conducted to obtain summary estimates of the association between antibodies and incidence of P. falciparum malaria. The largest effect was observed with IgG to MSP-3 C terminus and MSP-119 (responders versus nonresponders, 54%, 95% confidence interval [CI] [33%–68%] and 18% [4%–30%] relative reduction in risk, respectively) and there was evidence of a dose-response relationship. A tendency towards protective risk ratios (RR<1) was also observed for individual study estimates for apical membrane antigen (AMA)-1 and glutamate-rich protein (GLURP)-R0. Pooled estimates showed limited evidence of a protective effect for antibodies to MSP-1 N-terminal regions or MSP-1-EGF (epidermal growth factor-like modules). There was no significant evidence for the protective effect for MSP-2 (responders versus nonresponders pooled RR, MSP-2FC27 0.82, 95% CI 0.62–1.08, p = 0.16 and MSP-23D7 0.92, 95% CI 0.75–1.13, p = 0.43). Heterogeneity, in terms of clinical and methodological diversity between studies, was an important issue in the meta-analysis of IgG responses to merozoite antigens.
Conclusions
These findings are valuable for advancing vaccine development by providing evidence supporting merozoite antigens as targets of protective immunity in humans, and to help identify antigens that confer protection from malaria. Further prospective cohort studies that include a larger number of lead antigens and populations outside Africa are greatly needed to ensure generalizability of results. The reporting of results needs to be standardized to maximize comparability of studies. We therefore propose a set of guidelines to facilitate the uniform reporting of malaria immuno-epidemiology observational studies.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Plasmodium falciparum malaria, a mosquito-borne parasitic infection, kills about one million people every year. Around a week after an infected mosquito has bitten a person, “merozoites” (one of the life-stages of the parasite) infect the person's red blood cells where they replicate and then burst out and infect more red blood cells. Rapid replication of parasites can occur in the bloodstream, leading to massive numbers of parasites that can damage vital organs. Although individuals can lower their risk of becoming infected with malaria parasites by avoiding mosquito bites, a vaccine is urgently needed to reduce the global burden of malaria. When malaria parasites infect a person for the first time, the human immune system begins to produce antibodies, proteins that recognize molecules (antigens) on the parasite's surface and that act directly or cooperate with other parts of the immune system to kill malaria parasites. The production of these “naturally acquired” antibodies is initially slow so the individual can become ill when infected. However, because the immune system “remembers” how to make the antibodies, its response to subsequent infections is quicker. The levels of these antibodies also build up with each infection and become more effective at killing parasites. Vaccines, which contain malaria antigens, “prime” the immune system to respond rapidly to malaria infections and produce high concentrations of antibodies to prevent the infection from causing serious illness.
Why Was This Study Done?
A malaria vaccine that stimulates an efficient immune response against merozoites would limit the severity of malarial infections and prevent many deaths but no one knows which (if any) of the antigens on merozoites stimulate a protective immune response. Although many different types of antibodies are produced by the immune system, only some of these are effective in protecting against malaria. By investigating whether there is an association between naturally acquired antibodies, which recognize specific candidate antigens, and protection from malaria in populations living in areas where malaria is endemic (always present), vaccine developers can get an idea about which antigens to include in their vaccines. Although many of these “malaria immuno-epidemiological studies” have been undertaken, their results are somewhat conflicting. In this study, the researchers reanalyze these results by doing a systematic review (a study that uses predefined criteria to identify all the research on a specific topic) and a meta-analysis (a statistical method for combining the results of several studies). The researchers evaluated studies of the relationship between anti-merozoite antibodies and the incidence (the number of new cases of a disease in a population per year) of P. falciparum malaria in naturally exposed populations in different regions of the world.
What Did the Researchers Do and Find?
The researchers' search of the published literature yielded 33 studies in which the incidence of malaria had been recorded over time in groups of people in whom levels of antibodies to specific merozoite antigens had been measured. These studies measured antibodies at the start of the study and examined the subsequent risk of malaria over several months of follow-up (these are known as prospective cohort studies). All but five of the studies were performed in Africa, and very few merozoite antigens had been well-studied in different populations, or studied at all. Of note, very few studies had examined naturally acquired antibodies to some leading vaccine candidates (for example, only one study considered antibodies to MSP-142, a leading vaccine candidate). Conversely, the association between malaria incidence and antibodies to the antigen MSP-119, which has been included in only one candidate vaccine, was frequently studied. In their meta-analyses, the researchers found that among people with antibodies to the merozoite antigens MSP-3 (C-terminal region) and MSP-119, the risk of developing P. falciparum malaria was reduced by 54% and 18%, respectively, compared to people without antibodies to these antigens. There was also some evidence of a reduced risk of malaria for people with antibodies to AMA1 and GLURP. For other merozoite antigens, MSP1 (N-terminal region) and MSP2, there was either weak or no evidence for a protective effect of naturally acquired antibodies.
What Do These Findings Mean?
These findings suggest that merozoite antigens are important targets of protective immunity in people who are naturally exposed to malaria and also suggest which of these antigens might be included in vaccines. However, the findings are limited by the small number of studies identified by the researchers and additional prospective cohort studies are clearly needed to guide vaccine development. These studies will need to include a larger number of lead antigens and populations outside Africa to ensure their generalizability, note the researchers. Furthermore, efforts will need to be made to ensure greater consistency between studies to improve the ability to compare results between different studies, which was a challenge in performing this study. To this end, the researchers propose a set of guidelines that, if followed, should make it easier to compare the results of different malaria immune-epidemiology studies in the future and thus lead to better identification of candidate vaccine antigens.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000218.
Information is available from the World Health Organization on malaria (in several languages) and on the development of malaria vaccines
The US Centers for Disease Control and Prevention provides information on malaria (in English and Spanish)
Information is available from the Wellcome Trust on all aspects of malaria, including vaccine development
The Malaria Vaccine Initiative provides information on the development of malaria vaccines and on ongoing trials
MedlinePlus provides links to additional information on malaria (in English and Spanish)
doi:10.1371/journal.pmed.1000218
PMCID: PMC2808214  PMID: 20098724
22.  Vaccination of children with a live-attenuated, intranasal influenza vaccine – analysis and evaluation through a Health Technology Assessment 
Background: Influenza is a worldwide prevalent infectious disease of the respiratory tract annually causing high morbidity and mortality in Germany. Influenza is preventable by vaccination and this vaccination is so far recommended by the The German Standing Committee on Vaccination (STIKO) as a standard vaccination for people from the age of 60 onwards. Up to date a parenterally administered trivalent inactivated vaccine (TIV) has been in use almost exclusively. Since 2011 however a live-attenuated vaccine (LAIV) has been approved additionally. Consecutively, since 2013 the STIKO recommends LAIV (besides TIV) for children from 2 to 17 years of age, within the scope of vaccination by specified indications. LAIV should be preferred administered in children from 2 to 6 of age. The objective of this Health Technology Assessment (HTA) is to address various research issues regarding the vaccination of children with LAIV. The analysis was performed from a medical, epidemiological and health economic perspective, as well as from an ethical, social and legal point of view.
Method: An extensive systematic database research was performed to obtain relevant information. In addition a supplementary research by hand was done. Identified literature was screened in two passes by two independent reviewers using predefined inclusion and exclusion criteria. Included literature was evaluated in full-text using acknowledged standards. Studies were graded with the highest level of evidence (1++), if they met the criteria of European Medicines Agency (EMA)-Guidance: Points to consider on applications with 1. meta-analyses; 2. one pivotal study.
Results: For the medical section, the age of the study participants ranges from 6 months to 17 years. Regarding study efficacy, in children aged 6 months to ≤7 years, LAIV is superior to placebo as well as to a vac-cination with TIV (Relative Risk Reduction – RRR – of laboratory confirmed influenza infection approx. 80% and 50%, respectively). In children aged >7 to 17 years (= 18th year of their lives), LAIV is superior to a vaccination with TIV (RRR 32%). For this age group, no studies that compared LAIV with placebo were identified. It can be concluded that there is high evidence for superior efficacy of LAIV (compared to placebo or TIV) among children aged 6 months to ≤7 years. For children from >7 to 17 years, there is moderate evidence for superiority of LAIV for children with asthma, while direct evidence for children from the general population is lacking for this age group. Due to the efficacy of LAIV in children aged 6 months to ≤7 years (high evidence) and the efficacy of LAIV in children with asthma aged >7 to 17 years (moderate evidence), LAIV is also very likely to be efficacious among children in the general population aged >7 to 17 years (indirect evidence). In the included studies with children aged 2 to 17 years, LAIV was safe and well-tolerated; while in younger children LAIV may increase the risk of obstruction of the airways (e.g. wheezing).
In the majority of the evaluated epidemiological studies, LAIV proved to be effective in the prevention of influenza among children aged 2–17 years under everyday conditions (effectiveness). The trend appears to indicate that LAIV is more effective than TIV, although this can only be based on limited evidence for methodological reasons (observational studies). In addition to a direct protective effect for vaccinated children themselves, indirect protective ("herd protection") effects were reported among non-vaccinated elderly population groups, even at relatively low vaccination coverage of children. With regard to safety, LAIV generally can be considered equivalent to TIV. This also applies to the use among children with mild chronically obstructive conditions, from whom LAIV therefore does not have to be withheld. In all included epidemiological studies, there was some risk of bias identified, e.g. due to residual confounding or other methodology-related sources of error.
In the evaluated studies, both the vaccination of children with previous illnesses and the routine vaccination of (healthy) children frequently involve cost savings. This is especially the case if one includes indirect costs from a societal perspective. From a payer perspective, a routine vaccination of children is often regarded as a highly cost-effective intervention. However, not all of the studies arrive at consistent results. In isolated cases, relatively high levels of cost-effectiveness are reported that make it difficult to perform a conclusive assessment from an economic perspective. Based on the included studies, it is not possible to make a clear statement about the budget impact of using LAIV. None of the evaluated studies provides results for the context of the German healthcare setting.
The efficacy of the vaccine, physicians' recommendations, and a potential reduction in influenza symptoms appear to play a role in the vaccination decision taken by parents/custodians on behalf of their children. Major barriers to the utilization of influenza vaccination services are a low level of perception and an underestimation of the disease risk, reservations concerning the safety and efficacy of the vaccine, and potential side effects of the vaccine. For some of the parents surveyed, the question as to whether the vaccine is administered as an injection or nasal spray might also be important.
Conclusion: In children aged 2 to 17 years, the use of LAIV can lead to a reduction of the number of influenza cases and the associated burden of disease. In addition, indirect preventive effects may be expected, especially among elderly age groups. Currently there are no data available for the German healthcare setting. Long-term direct and indirect effectiveness and safety should be supported by surveillance programs with a broader use of LAIV.
Since there is no general model available for the German healthcare setting, statements concerning the cost-effectiveness can be made only with precaution. Beside this there is a need to conduct health eco-nomic studies to show the impact of influenza vaccination for children in Germany. Such studies should be based on a dynamic transmission model. Only these models are able to include the indirect protective effects of vaccination correctly.
With regard to ethical, social and legal aspects, physicians should discuss with parents the motivations for vaccinating their children and upcoming barriers in order to achieve broader vaccination coverage.
The present HTA provides an extensive basis for further scientific approaches and pending decisions relating to health policy.
doi:10.3205/hta000119
PMCID: PMC4219018  PMID: 25371764
Health Technology Assessment; HTA; LAIV; live attenuated vaccine; TIV; trivalent inactivated vaccine
23.  Costs and Cost-Effectiveness of 9-Valent Human Papillomavirus (HPV) Vaccination in Two East African Countries 
PLoS ONE  2014;9(9):e106836.
Background
Current prophylactic vaccines against human papillomavirus (HPV) target two of the most oncogenic types, HPV-16 and -18, which contribute to roughly 70% of cervical cancers worldwide. Second-generation HPV vaccines include a 9-valent vaccine, which targets five additional oncogenic HPV types (i.e., 31, 33, 45, 52, and 58) that contribute to another 15–30% of cervical cancer cases. The objective of this study was to determine a range of vaccine costs for which the 9-valent vaccine would be cost-effective in comparison to the current vaccines in two less developed countries (i.e., Kenya and Uganda).
Methods and Findings
The analysis was performed using a natural history disease simulation model of HPV and cervical cancer. The mathematical model simulates individual women from an early age and tracks health events and resource use as they transition through clinically-relevant health states over their lifetime. Epidemiological data on HPV prevalence and cancer incidence were used to adapt the model to Kenya and Uganda. Health benefit, or effectiveness, from HPV vaccination was measured in terms of life expectancy, and costs were measured in international dollars (I$). The incremental cost of the 9-valent vaccine included the added cost of the vaccine counterbalanced by costs averted from additional cancer cases prevented. All future costs and health benefits were discounted at an annual rate of 3% in the base case analysis. We conducted sensitivity analyses to investigate how infection with multiple HPV types, unidentifiable HPV types in cancer cases, and cross-protection against non-vaccine types could affect the potential cost range of the 9-valent vaccine. In the base case analysis in Kenya, we found that vaccination with the 9-valent vaccine was very cost-effective (i.e., had an incremental cost-effectiveness ratio below per-capita GDP), compared to the current vaccines provided the added cost of the 9-valent vaccine did not exceed I$9.7 per vaccinated girl. To be considered very cost-effective, the added cost per vaccinated girl could go up to I$5.2 and I$16.2 in the worst-case and best-case scenarios, respectively. At a willingness-to-pay threshold of three times per-capita GDP where the 9-valent vaccine would be considered cost-effective, the thresholds of added costs associated with the 9-valent vaccine were I$27.3, I$14.5 and I$45.3 per vaccinated girl for the base case, worst-case and best-case scenarios, respectively. In Uganda, vaccination with the 9-valent vaccine was very cost-effective when the added cost of the 9-valent vaccine did not exceed I$8.3 per vaccinated girl. To be considered very cost-effective, the added cost per vaccinated girl could go up to I$4.5 and I$13.7 in the worst-case and best-case scenarios, respectively. At a willingness-to-pay threshold of three times per-capita GDP, the thresholds of added costs associated with the 9-valent vaccine were I$23.4, I$12.6 and I$38.4 per vaccinated girl for the base case, worst-case and best-case scenarios, respectively.
Conclusions
This study provides a threshold range of incremental costs associated with the 9-valent HPV vaccine that would make it a cost-effective intervention in comparison to currently available HPV vaccines in Kenya and Uganda. These prices represent a 71% and 61% increase over the price offered to the GAVI Alliance ($5 per dose) for the currently available 2- and 4-valent vaccines in Kenya and Uganda, respectively. Despite evidence of cost-effectiveness, critical challenges around affordability and feasibility of HPV vaccination and other competing needs in low-resource settings such as Kenya and Uganda remain.
doi:10.1371/journal.pone.0106836
PMCID: PMC4157790  PMID: 25198104
24.  Is a HIV vaccine a viable option and at what price? An economic evaluation of adding HIV vaccination into existing prevention programs in Thailand 
BMC Public Health  2011;11:534.
Background
This study aims to determine the maximum price at which HIV vaccination is cost-effective in the Thai healthcare setting. It also aims to identify the relative importance of vaccine characteristics and risk behavior changes among vaccine recipients to determine how they affect this cost-effectiveness.
Methods
A semi-Markov model was developed to estimate the costs and health outcomes of HIV prevention programs combined with HIV vaccination in comparison to the existing HIV prevention programs without vaccination. The estimation was based on a lifetime horizon period (99 years) and used the government perspective. The analysis focused on both the general population and specific high-risk population groups. The maximum price of cost-effective vaccination was defined by using threshold analysis; one-way and probabilistic sensitivity analyses were performed. The study employed an expected value of perfect information (EVPI) analysis to determine the relative importance of parameters and to prioritize future studies.
Results
The most expensive HIV vaccination which is cost-effective when given to the general population was 12,000 Thai baht (US$1 = 34 Thai baht in 2009). This vaccination came with 70% vaccine efficacy and lifetime protection as long as risk behavior was unchanged post-vaccination. The vaccine would be considered cost-ineffective at any price if it demonstrated low efficacy (30%) and if post-vaccination risk behavior increased by 10% or more, especially among the high-risk population groups. The incremental cost-effectiveness ratios were the most sensitive to change in post-vaccination risk behavior, followed by vaccine efficacy and duration of protection. The EVPI indicated the need to quantify vaccine efficacy, changed post-vaccination risk behavior, and the costs of vaccination programs.
Conclusions
The approach used in this study differentiated it from other economic evaluations and can be applied for the economic evaluation of other health interventions not available in healthcare systems. This study is important not only for researchers conducting future HIV vaccine research but also for policy decision makers who, in the future, will consider vaccine adoption.
doi:10.1186/1471-2458-11-534
PMCID: PMC3224093  PMID: 21729309
Vaccine; HIV; AIDS; Economic evaluation; Cost-utility analysis
25.  A cost-effectiveness analysis of hepatitis B vaccine in predialysis patients. 
Health Services Research  1993;28(1):97-121.
OBJECTIVE. Our objective was to assess the cost effectiveness of hepatitis B vaccine in predialysis patients. DATA SOURCES. Costs were calculated from estimated rates of health services use and unit costs of resource use. Efficacy data were based on probability estimates from the medical literature and included vaccination response rates, anticipated hepatitis B virus (HBV) infection rates, and outcomes from HBV. STUDY DESIGN. Costs and effectiveness of HBV vaccination was modeled with a decision tree constructed to analyze three vaccination strategies for patients with renal insufficiency: vaccine given prior to dialysis, vaccine given at time of dialysis, and no vaccine. Sensitivity analyses were performed to assess the effect of varying important clinical and cost variables. DATA COLLECTION/EXTRACTION METHODS. All analyses were based on efficacy and cost estimates derived from the medical literature. Analyses were conducted with the aid of SMLTREE software. PRINCIPAL FINDINGS. The number of patients requiring vaccination per case of HBV prevented was higher for dialysis patients (625 vaccinees/case prevented) than for predialysis patients (434 vaccinees/case prevented). The cost-effectiveness ratios were $25,313/case of HBV prevented for vaccination at the time of dialysis and $31,111 for the predialysis vaccine. When a higher HBV infection rate (based on clinical trial data) was substituted in the analysis, the cost effectiveness of a predialysis vaccination strategy improved to $856 per case prevented. Results were sensitive to the cost of the vaccine and the incidence of HBV infection in dialysis patients. For the predialysis strategy to become cost saving, the price of the vaccine would have to decrease from $114 to $1.50, or the incidence of infection would have to increase from 0.6 percent to 38 percent, holding all other variables constant. CONCLUSIONS. Additional HBV infection can be prevented by immunizing predialysis patients, but the cost is high. Decisions concerning vaccination policy should be influenced by local prevalence of HBV infection.
PMCID: PMC1069923  PMID: 8463111

Results 1-25 (1556349)