Search tips
Search criteria

Results 1-25 (1054834)

Clipboard (0)

Related Articles

1.  Muscle Strength and Weight-Bearing Symmetry Relate to Sit-to-Stand Performance in Individuals with Stroke 
Gait & posture  2005;22(2):126-131.
This study investigated the relationship of lower extremity joint torques and weight-bearing symmetry to sit-to-stand (STS) performance in individuals with chronic stroke. A motion analysis system and two force plates measured STS duration and weight-bearing symmetry (determined by ground reaction forces) during three self-paced and three fast-paced conditions. An isokinetic dynamometer measured maximum concentric joint torques of the paretic and nonparetic ankle, knee, and hip, which were normalized by body mass. Pearson correlations indicated that (a) paretic ankle dorsiflexion and knee extension torques related to the duration of the self-paced STS condition (r = −0.450, −0.716, respectively), (b) paretic ankle dorsiflexion, plantar flexion, and knee extension torques related to the duration of the fast-paced STS condition (r = −0.466, −0.616, −0.736, respectively), and (c) greater weight-bearing symmetry related to faster STS performance for both self-paced and fast-paced STS conditions (r = −0.565, −0.564, respectively) (p < 0.05). This evidence suggests that paretic muscle strength and the ability to load the paretic limb are important factors underlying the ability to rise from a chair in individuals with chronic stroke.
PMCID: PMC3167866  PMID: 16139747 CAMSID: cams1870
Stroke; Sit-to-stand; Torque; Weight-bearing
2.  Lower Extremity Passive Range of Motion in Community-Ambulating Stroke Survivors 
Physical therapists may prescribe stretching exercises for individuals with stroke to improve joint integrity and to reduce the risk of secondary musculoskeletal impairment. While deficits in passive range of motion (PROM) exist in stroke survivors with severe hemiparesis and spasticity, the extent to which impaired lower extremity PROM occurs in community-ambulating stroke survivors remains unclear. This study compared lower extremity PROM in able-bodied individuals and independent community-ambulatory stroke survivors with residual stroke-related neuromuscular impairments. Our hypothesis was that the stroke group would show decreased lower extremity PROM in the paretic but not the nonparetic side and that decreased PROM would be associated with increased muscle stiffness and decreased muscle length.
Individuals with chronic poststroke hemiparesis who reported the ability to ambulate independently in the community (n = 17) and age-matched control subjects (n = 15) participated. PROM during slow (5 degrees/sec) hip extension, hip flexion, and ankle dorsiflexion was examined bilaterally using a dynamometer that measured joint position and torque. The maximum angular position of the joint (ANGmax), torque required to achieve ANGmax (Tmax), and mean joint stiffness (K) were measured. Comparisons were made between able-bodied and paretic and able-bodied and nonparetic limbs.
Contrary to our expectations, between-group differences in ANGmax were observed only during hip extension in which ANGmax was greater bilaterally in people post-stroke compared to control subjects (P ≤ 0.05; stroke = 13 degrees, able-bodied = −1 degree). Tmax, but not K, was also significantly higher during passive hip extension in paretic and nonparetic limbs compared to control limbs (P ≤ 0.05; stroke = 40 Nm, able-bodied = 29 Nm). Compared to the control group, Tmax was increased during hip flexion in the paretic and nonparetic limbs of post-stroke subjects (P ≤ 0.05, stroke = 25 Nm, able-bodied = 18 Nm). K in the nonparetic leg was also increased during hip flexion (P ≤ 0.05, nonparetic = 0.52 Nm/degree, able-bodied = 0.37 Nm/degree.)
This study demonstrates that community-ambulating stroke survivors with residual neuromuscular impairments do not have decreased lower extremity PROM caused by increased muscle stiffness or decreased muscle length. In fact, the population of stroke survivors examined here appears to have more hip extension PROM than age-matched able-bodied individuals. The clinical implications of these data are important and suggest that lower extremity PROM may not interfere with mobility in community-ambulating stroke survivors. Hence, physical therapists may choose to recommend activities other than stretching exercises for stroke survivors who are or will become independent community ambulators.
PMCID: PMC3963266  PMID: 18463552
cerebral vascular accident (CVA); hemiparesis; muscle; range of motion (ROM); spasticity
3.  Muscle torque preservation and physical activity in individuals with stroke 
A greater percent loss of concentric versus eccentric muscle torque (i.e., relative eccentric muscle torque preservation) has been reported in the paretic limb of individuals with stroke and has been attributed to hypertonia and/or co-contractions. Stroke provides a unique condition for examining mechanisms underlying eccentric muscle preservation because both limbs experience similar amounts of general physical activity, but the paretic side is impaired directly by the brain lesion.
The purpose of this study was to determine 1) whether eccentric preservation also exists in the nonparetic limb and 2) the relationship of eccentric or concentric torque preservation with physical activity in stroke. We hypothesized that the nonparetic muscles would demonstrate eccentric muscle preservation, which would suggest that non-neural mechanisms may also contribute to its relative preservation.
Eighteen stroke and 18 healthy control subjects (age and sex matched) completed a physical activity questionnaire. Maximum voluntary concentric and eccentric joint torques of the ankle, knee and hip flexors and extensors were measured using an isokinetic dynamometer at 30°/s for the paretic and nonparetic muscles. Relative concentric and eccentric peak torque preservation were expressed as a percentage of control subject torque.
Relative eccentric torque was higher (more preserved) than relative concentric torque for paretic, as well as nonparetic muscles. Physical activity correlated with paretic (r=0.640, p=0.001) and nonparetic concentric torque preservation (r=0.508, p=0.009), but not with eccentric torque preservation for either leg.
The relative preservation of eccentric torque in the nonparetic muscles suggest a role of non-neural mechanisms and could also explain the preservation observed in other chronic health conditions. Loss of concentric, but not eccentric muscle torque was related to physical inactivity in stroke.
PMCID: PMC3114014  PMID: 19516167 CAMSID: cams1776
strength; rehabilitation; force; CVA
4.  Biofeedback rehabilitation of posture and weight-bearing distribution in stroke: a center of foot pressure analysis 
Functional Neurology  2014;29(2):127-134.
Weight bearing on the paretic lower extremity and transfer of weight from one lower extremity to the other are important goals of stroke rehabilitation. Improvements in these limb loading and weight transfer abilities have been shown to relate to improved performance of many functional activities. Unfortunately, valid and practical clinical measures of paretic lower extremity loading and weight transfer have not been identified.
The purpose of this study was to quantitatively assess, through center of foot pressure (CoP) analysis of quiet upright stance control, recovery of paretic limb loading as a measure of weight transfer in early stroke subjects, testing the effectiveness of a targeted rehabilitation intervention based on audio-visual biofeedback.
Thirty-seven adults with lower extremity motor impairment following unilateral, non-cerebellar stroke, were tested twice, at an interval of at least one month post stroke and following rehabilitation intervention aimed at correcting their asymmetrical weight bearing. The intervention was performed with (Study Group, SG) or without (Control Group, CG) a postural audio-visual biofeedback approach. Indices of postural stability and of balance control asymmetry were estimated by acquiring the movements of the CoP during quiet upright stance condition with or without visual input (eyes open, EO and eyes closed, EC). Clinical scales were also administered. Both the CG and the SG subjects showed improved control in upright stance posture as documented by significant improvements in the scale scores and indices of stability during both the EO and the EC condition. Only the SG showed a significantly reduced CoP index of asymmetry.
The CoP index of asymmetry, correlating with clinical motor scales, is a valid measure of paretic limb loading during stroke recovery. Postural audio-visual biofeedback represented the more effective approach for reducing weight loading asymmetry of the lower limbs in stroke.
PMCID: PMC4198161  PMID: 25306123
asymmetry index; biofeedback; neurorehabilitation; posturography; stroke; weight bearing
5.  The characteristics of multi-directional step distance and the association between stepping laterality and walking ability of patients with stroke 
[Purpose] The purpose of this study was to determine the effect of stepping limb and step direction on step distance and the association of step distance and stepping laterality in step difference with walking ability and motor dysfunction. [Subjects and Methods] The subjects were thirty-nine patients with chronic hemiparesis as a result of stroke, who performed the MSL (Maximum Step Length) test along with tests of motor impairment, gait speed and Functional Ambulation Category. The MSL test is a clinical test of stepping distance in which participants step to the front, side, and back. The subjects were classified into three groups according to the stepping laterality in front step distance. [Results] Step distance did not differ across stepping limbs but did differ across step directions. Front step distance was significantly longer than side and back step distance. Participants with forward paretic step length shorter than forward non-paretic step length had significantly higher walking ability than participants with symmetric forward step length or forward paretic step length longer than forward non-paretic step length [Conclusion] Patients with stroke have characteristic step distances in each direction. Adequate weight shift toward the paretic limb when stepping with the non-paretic limb is associated with walking ability.
PMCID: PMC4395740  PMID: 25931756
Maximum step length; Stepping laterality; Stroke
6.  Interference Between Cognition, Double-Limb Support, and Swing During Gait in Community-Dwelling Individuals Poststroke 
Dual tasking can interfere with activity after stroke.
The authors examined the interactions between 3 different cognitive tasks and the swing and double-limb support (DLS) components of the gait cycle in community-dwelling individuals poststroke.
Acquisition of cognitive and gait data were synchronized to study the cognitive–motor interference effects during the different phases of the gait cycle. Participants performed 3 different cognitive tasks in isolation and in combination with walking as well as a single walking task. Tasks were performed continuously for 3 minutes, generating 131 ± 39 gait cycles per person for analysis for each walking trial. Data were analyzed for 8 participants 7.6 ± 4.2 months poststroke.
A significant increase was found in the proportion of the gait cycle spent in DLS in dual-task walking because of an increased duration of the DLS phase associated with paretic weight acceptance. There was a significant dual-task effect on nonparetic swing duration: participants reduced the amount of time in paretic single-limb stance in the 3 dual-task conditions. Temporal asymmetry of gait did not increase significantly under dual-task conditions. Reaction times were not affected by whether the stimuli were present during the swing or DLS phase of the gait cycle.
The findings from this pilot study provide evidence that cognitive–motor interference during gait may be influenced by the phase of the gait cycle, especially DLS involving paretic weight acceptance, which may affect community ambulators with hemiparetic stroke.
PMCID: PMC2923473  PMID: 20424190
dual task; gait; stroke
7.  Kinetic measurements of hand motor impairments after mild to moderate stroke using grip control tasks 
The aim of this study is to investigate quantitative outcome measurements of hand motor performance for subjects after mild to moderate stroke using grip control tasks and characterize abnormal flexion synergy of upper extremities after stroke.
A customized dynamometer with force sensors was used to measure grip force and calculate rotation torque during the sub-maximal grip control tasks. The paretic and nonpartic sides of eleven subjects after stroke and the dominant sides of ten healthy persons were tested. Their maximal voluntary grip force was measured and used to set sub-maximal grip control tasks at three different target force levels. Force control ability was characterized by the maximal grip force, mean force percentage, coefficient of variation (CV), target deviation ratio (TDR), and rotation torque ratio (RTR). The motor impairments of subjects after stroke were also evaluated using the Fugl-Meyer assessment for upper extremity (FMA-UE) and Wolf Motor Function Test (WMFT).
Maximal grip force of the paretic side was significantly reduced as compared to the nonparetic side and the healthy group, while the difference of maximal grip force between the nonparetic side and the healthy group was not significant. TDR and RTR increased for all three groups with increasing target force level. There were significant differences of CV, TDR and RTR between the paretic side and the healthy group at all the force levels. CV, TDR and RTR showed significant negative correlations with FMA-UE and WMFT at 50% of maximum grip force.
This study designed a customized dynamometer together with an innovative measurement, RTR, to investigate the hand motor performance of subjects after mild to moderate stroke during force control tasks. And stroke-induced abnormal flexion synergy of wrist and finger muscles could be characterized by RTR. This study also identified a set of kinetic parameters which can be applied to quantitatively assess the hand motor function of subjects after mild to moderate stroke.
PMCID: PMC4038706  PMID: 24886085
Upper extremity; Movement disorders; Stroke; Rehabilitation
8.  Relationships Between Muscle Activity and Anteroposterior Ground Reaction Forces in Hemiparetic Walking 
To determine relationships between muscle activity and propulsive impulse in hemiparetic walking.
Gait analysis laboratory.
Forty-nine poststroke patients with chronic hemiparesis, stratified into hemiparetic severity subgroups based on Brunnstrom stages of motor recovery, walking at their self-selected speed.
Not applicable.
Main Outcome Measures
Percent of muscle activity in the paretic and nonparetic legs and net anteroposterior (AP) ground reaction force impulse (ie, the time integral of the AP ground reaction force) within 4 regions of the stance phase (first double support, first and second halves of single support, and second double support).
Medial gastrocnemius and soleus muscle activity correlated positively with paretic propulsion in the second half of single support and double support across all subjects and subjects grouped by hemiparetic severity. Tibialis anterior correlated negatively with paretic propulsion during preswing across all subjects and for subjects with moderate and severe hemiparesis. Rectus femoris activity also correlated negatively with preswing propulsion for the severe group. Uniarticular knee extensor activity correlated only with increased paretic braking in the first double-support phase for the severe hemiparesis group. Nonparetic leg muscle activity correlated with propulsive impulses across all subjects, but not within the severe group exclusively.
Paretic propulsion is strongly associated with increased plantarflexor activity and also negatively associated with increased leg flexor activity, especially in the severe hemiparesis group. These results suggest that exaggerated flexor muscle activity may counteract the effects of the plantarflexors by offloading the leg and interfering with the limb’s ability to generate appropriate AP ground reaction forces. There is also evidence for specific relationships between paretic braking and nonparetic propulsive forces and changes in timing of muscle activation.
PMCID: PMC2367107  PMID: 17826457
Electromyography; Hemiparesis; Rehabilitation; Walking
9.  Direction-Dependent Phasing of Locomotor Muscle Activity Is Altered Post-Stroke 
Journal of neurophysiology  2004;92(4):2207-2216.
A major contributor to impaired locomotion post-stroke is abnormal phasing of muscle activity. While inappropriate paretic muscle phasing adapts to changing body orientation, load, and speed, it remains unclear whether paretic muscle phasing adapts to reversal of locomotor direction. We examined muscle phasing in backward pedaling, a task that requires shifts in biarticular but not uniarticular muscle phasing relative to forward pedaling. We hypothesized that if paretic and neurologically intact muscle phasing adapt similarly, then paretic biarticular but not paretic uniarticular muscles would shift phasing in backward pedaling. Paretic and neurologically intact individuals pedaled forward and backward while recording electromyograms (EMGs) from vastus medialis (VM), soleus (SOL), rectus femoris (RF), semimembranosus (SM), and biceps femoris (BF). Changes in muscle phasing were assessed by comparing the probability of muscle activity in forward and backward pedaling throughout 18 pedaling cycles. Paretic uniarticular muscles (VM and SOL) showed phase-advanced activity in backward versus forward pedaling, whereas the corresponding neurologically intact muscles showed little to no phasing change. Paretic biarticular muscles were less likely than neurologically intact biarticular muscles to display phasing changes in backward pedaling. Paretic RF displayed no phase change during backward pedaling, and paretic BF displayed no consistent adaptation to backward pedaling. Paretic SM was the only muscle to display backward/forward phase changes that were similar to the neurologically intact group. We conclude that paretic uniarticular muscles are more susceptible and paretic biarticular muscles are less susceptible to direction-dependent phase shifts, consistent with altered sensory integration and impaired cortical control of locomotion.
PMCID: PMC3912995  PMID: 15175363
10.  Motor System Plasticity in Stroke Models: Intrinsically Use-dependent, Unreliably Useful 
Stroke; a journal of cerebral circulation  2013;44(6 0 1):S104-S106.
Background and Purpose
The natural response to disability in one limb is to learn new ways of using the other limb. This compensatory behavioral strategy after stroke has long been thought to contribute to persistent dysfunction in the paretic limb by encouraging its disuse. Our recent findings suggest that it goes beyond the encouragement of disuse to disrupt neural substrates of paretic limb functional improvements.
We overview recent findings from rodent models of chronic upper extremity impairments in which precise control and manipulation of forelimb experiences were used to understand bilateral and interhemispheric contributions to motor functional outcome.
Skill learning with the less-affected (nonparetic) forelimb promotes neural plasticity in the contralesional motor cortex that subserves its function. At the same time, it exacerbates dysfunction and limits the efficacy of rehabilitative training in the paretic limb. The maladaptive effects of skill learning with the nonparetic forelimb are dependent on callosal connections and contralesional motor cortex, and linked with reduced neural activation of peri-infarct motor cortex during rehabilitative training.
These findings suggest that learning to rely on the nonparetic body side has the capacity to disrupt functionality in a region of the injured hemisphere that contributes to outcome of the paretic limb. Whether this effect generalizes across injury loci and functional modalities remains to be tested.
PMCID: PMC3727618  PMID: 23709698
learned nonuse; motor cortex; manual skill; motor rehabilitative training; experience-expectant plasticity
11.  Stepping before standing: hip muscle function in stepping and standing balance after stroke 
OBJECTIVE—To compare the pattern of pelvic girdle muscle activation in normal subjects and hemiparetic patients while stepping and maintaining standing balance.
DESIGN—Group comparison.
METHOD—Seventeen patients who had regained the ability to walk after a single hemiparetic stroke were studied together with 16 normal controls. Median interval between stroke and testing was 17 months. Amplitude and onset latency of surface EMG activity in hip abductors and adductors were recorded in response to sideways pushes in either direction while standing. Similar recordings were made in the same subjects during gait initiation and a single stride.
RESULTS—In the standing balance task, normal subjects resisted a sideways push to the left with the left gluteus medius (74 ms) and with the right adductor (111 ms), and vice versa. In hemiparetic patients, the amplitude of activity was reduced in the hemiparetic muscles, the onset latencies of which were delayed (gluteus medius 96 ms, adductor 144 ms). Contralateral, non-paretic, adductor activity was increased after a push towards the hemiparetic side of patients with stroke and the latency was normal (110 ms). During self initiated sideways weight shifts at gait initiation, hemiplegic muscle activation was impaired. By contrast, the pattern and peak amplitude of hip muscle activation in stepping was normal in both hemiparetic and non-hemiparetic muscles of the subjects with stroke.
CONCLUSIONS—In ambulant patients with stroke, a normal pattern of activation of hemiparetic muscles is seen in stepping whereas the response of these muscles to a perturbation while standing remains grossly impaired and is compensated by increased activity of the contralateral muscles. This suggests that hemiparetic patients should be able to step before regaining standing balance.

PMCID: PMC1736885  PMID: 10727481
12.  Sensory electrical stimulation improves foot placement during targeted stepping post-stroke 
Experimental brain research  2014;232(4):1137-1143.
Proper foot placement is vital for maintaining balance during walking, requiring the integration of multiple sensory signals with motor commands. Disruption of brain structures post-stroke likely alters the processing of sensory information by motor centers, interfering with precision control of foot placement and walking function for stroke survivors. In this study, we examined whether somatosensory stimulation, which improves functional movements of the paretic hand, could be used to improve foot placement of the paretic limb. Foot placement was evaluated before, during, and after application of somatosensory electrical stimulation to the paretic foot during a targeted stepping task. Starting from standing, twelve chronic stroke participants initiated movement with the non-paretic limb and stepped to one of five target locations projected onto the floor with distances normalized to the paretic stride length. Targeting error and lower extremity kinematics were used to assess changes in foot placement and limb control due to somatosensory stimulation. Significant reductions in placement error in the medial–lateral direction (p = 0.008) were observed during the stimulation and post-stimulation blocks. Seven participants, presenting with a hip circumduction walking pattern, had reductions (p = 0.008) in the magnitude and duration of hip abduction during swing with somatosensory stimulation. Reductions in circumduction correlated with both functional and clinical measures, with larger improvements observed in participants with greater impairment. The results of this study suggest that somatosensory stimulation of the paretic foot applied during movement can improve the precision control of foot placement.
PMCID: PMC4448948  PMID: 24449007
Stroke; Stepping; Electrical stimulation; Foot; Hip circumduction; Balance; Motor control
13.  Human genome comparison of paretic and nonparetic vastus lateralis muscle in patients with hemiparetic stroke 
Hemiparetic stroke leads to major skeletal muscle abnormalities, as illustrated by paretic leg atrophy, weakness, and spasticity. Furthermore, the hemiparetic limb muscle shifts to a fast-twitch muscle fiber phenotype with anaerobic metabolism. This study investigated whether skeletal muscle genes were altered in chronic hemiparetic stroke. The nonparetic leg muscle served as an internal control. We used Affymetrix microarray analysis to survey gene expression differences between paretic and nonparetic vastus lateralis muscle punch biopsies from 10 subjects with chronic hemiparetic stroke. Stroke latency was greater than 6 months. We found that 116 genes were significantly altered between the paretic and nonparetic vastus lateralis muscles. These gene differences were consistent with reported differences after stroke in areas such as injury and inflammation markers, the myosin heavy chain profile, and high prevalence of impaired glucose tolerance and type 2 diabetes. Furthermore, while many other families of genes were altered, the gene families with the most genes altered included inflammation, cell cycle regulation, signal transduction, metabolism, and muscle contractile protein genes. This study is an early step toward identification of specific gene regulatory pathways that might lead to these differences, propagate disability, and increase vascular disease risk.
PMCID: PMC3024241  PMID: 18566945
cell cycle; gene expression; hemiparetic stroke; inflammation; metabolism; microarray; muscle contraction; rehabilitation; skeletal muscle; transcription factors; vastus lateralis
14.  Changes in Bone Density and Geometry of the Upper Extremities after Stroke: A Case Report 
Physiotherapy Canada  2012;64(1):88-97.
Purpose: The purpose of this study was to examine changes in bone density and geometry of the forearm region and motor function of the paretic upper extremity in a person with subacute stroke. Client Description: The participant was a 48-year-old man with right hemiparesis. Intervention: Not applicable. Measures and Outcomes: The assessment of upper-extremity (UE) function and bone imaging took place at 3 months and 12 months after stroke. The participant had moderate motor impairment and severe disuse of the paretic UE 3 months after stroke. During the follow-up period, no substantial change in paretic UE function was observed. At the 12 month follow-up, the areal bone mineral density (aBMD) of the ultradistal and mid-regions of the paretic forearm, as measured by dual-energy X-ray absorptiometry, sustained a significant reduction of 7.9% and 5.9%, respectively. The non-paretic side, in contrast, had a significant 4.0% increase in aBMD of the mid-forearm and a 2.8% increase in aBMD of the total forearm. Significant findings from peripheral quantitative computed tomography were a reduction in total volumetric bone mineral density (−12.1%) and bone strength index (−20.6%) in the radius distal epiphysis on the paretic side and an increase in cortical bone mineral content (2.0%) and bone strength index (7.6%) in the radius diaphysis on the non-paretic side. Implications: After a stroke that resulted in moderate to severe UE impairment, a significant decline in bone mineral density was identified in various skeletal sites in the forearm region as the participant entered the subacute and chronic stages of recovery. The results point to the potential importance of early rehabilitative intervention in preventing unfavourable bone changes in the paretic upper limb among individuals with stroke.
PMCID: PMC3280714  PMID: 23277690
bone and bones; osteoporosis; muscles; rehabilitation; stroke; accident vasculaire cérébral; réadaptation; os; muscles; fracture; AVC
15.  Modulation of Ankle Muscle Postural Reflexes in Stroke: Influence of Weight-bearing Load 
Given the known sensorimotor deficits and asymmetric weight-bearing posture in stroke, the aim of this study was to determine whether stroke affects the modulation of standing postural reflexes with varying weight-bearing load.
Ten individuals with chronic stroke and 10 healthy older adult controls were exposed to unexpected forward and backward platform translations while standing. Three different stance conditions were imposed: increased weight-bearing load, decreased weight-bearing load, and self-selected stance. Surface EMG from bilateral ankle dorsiflexors (tibialis anterior) and extensors (gastrocnemius) were recorded and the magnitude of background muscle activity (prior to the platform translation) and postural reflex onset latency and magnitude (75 ms following reflex onset) were determined.
Load modulation of ankle extensors was found in controls and individuals with stroke. Although controls demonstrated modulation of ankle dorsiflexors to different loads, individuals with stroke did not show this modulation. Further, load did not change the onset latency of postural reflexes of the individuals with stroke.
The delayed paretic muscle onset latencies in conjunction with impaired modulation of ankle dorsiflexor postural reflexes may contribute to the instability and frequent falls observed among individuals with stroke.
The results provide some insight into standing postural reflexes following stroke.
PMCID: PMC3226800  PMID: 15546787 CAMSID: cams2000
postural control; reflex; weight-bearing; cerebrovascular accident
16.  Differences in Plantar Flexor Fascicle Length and Pennation Angle between Healthy and Poststroke Individuals and Implications for Poststroke Plantar Flexor Force Contributions 
Stroke Research and Treatment  2014;2014:919486.
Poststroke plantar flexor muscle weakness has been attributed to muscle atrophy and impaired activation, which cannot collectively explain the limitations in force-generating capability of the entire muscle group. It is of interest whether changes in poststroke plantar flexor muscle fascicle length and pennation angle influence the individual force-generating capability and whether plantar flexor weakness is due to uniform changes in individual muscle force contributions. Fascicle lengths and pennation angles for the soleus, medial, and lateral gastrocnemius were measured using ultrasound and compared between ten hemiparetic poststroke subjects and ten healthy controls. Physiological cross-sectional areas and force contributions to poststroke plantar flexor torque were estimated for each muscle. No statistical differences were observed for any muscle fascicle lengths or for the lateral gastrocnemius and soleus pennation angles between paretic, nonparetic, and healthy limbs. There was a significant decrease (P < 0.05) in the paretic medial gastrocnemius pennation angle compared to both nonparetic and healthy limbs. Physiological cross-sectional areas and force contributions were smaller on the paretic side. Additionally, bilateral muscle contributions to plantar flexor torque remained the same. While the architecture of each individual plantar flexor muscle is affected differently after stroke, the relative contribution of each muscle remains the same.
PMCID: PMC4134812  PMID: 25147753
17.  Step Length Asymmetry is Representative of Compensatory Mechanisms Used in Post-Stroke Hemiparetic Walking 
Gait & posture  2011;33(4):538-543.
Post-stroke hemiparetic subjects walk with asymmetrical step lengths that are highly variable between subjects and may be indicative of the underlying impairments and compensatory mechanisms used. The goal of this study was to determine if post-stroke hemiparetic subjects grouped by step length asymmetry have similar abnormal walking biomechanics compared to non-impaired walkers. Kinematic and ground reaction force data were recorded from 55 hemiparetic subjects walking at their self-selected speed and 21 age and speed-matched non-impaired control subjects. Hemiparetic subjects were grouped by paretic step ratio, which was calculated as the paretic step-length divided by the sum of paretic and nonparetic step-lengths, into high (>0.535), symmetric (0.535–0.465) and low (<0.465) groups. Non-parametric Wilcoxin signed-rank tests were used to test for differences in joint kinetic measures between hemiparetic groups and speed-matched control subjects during late single-leg stance and pre-swing. The paretic leg ankle moment impulse was reduced in all hemiparetic subjects regardless of their paretic step ratio. The high group had increased nonparetic leg ankle plantarflexor and knee extensor moment impulses, the symmetric group had increased hip flexor moment impulses on both the paretic and nonparetic leg and the low group had no additional significant differences in joint moment impulses. These results suggest that the direction of asymmetry can be used to identify both the degree of paretic plantarflexor impairment and the compensatory mechanisms used by post-stroke hemiparetic subjects.
PMCID: PMC3085662  PMID: 21316240
Biomechanics; Post-stroke; Gait Kinetics; Rehabilitation; Symmetry
18.  Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke 
Hemiparesis after stroke often leads to impaired ankle motor control that impacts gait function. In recent studies, robotic devices have been developed to address this impairment. While capable of imparting forces to assist during training and gait, these devices add mass to the paretic leg which might encumber patients' gait pattern. The purpose of this study was to assess the effects of the added mass of one of these robots, the MIT's Anklebot, while unpowered, on gait of chronic stroke survivors during overground and treadmill walking.
Nine chronic stroke survivors walked overground and on a treadmill with and without the anklebot mounted on the paretic leg. Gait parameters, interlimb symmetry, and joint kinematics were collected for the four conditions. Repeated-measures analysis of variance (ANOVA) tests were conducted to examine for possible differences across four conditions for the paretic and nonparetic leg.
The added inertia and friction of the unpowered anklebot had no statistically significant effect on spatio-temporal parameters of gait, including paretic and nonparetic step time and stance percentage, in both overground and treadmill conditions. Noteworthy, interlimb symmetry as characterized by relative stance duration was greater on the treadmill than overground regardless of loading conditions. The presence of the unpowered robot loading reduced the nonparetic knee peak flexion on the treadmill and paretic peak dorsiflexion overground (p < 0.05).
Our results suggest that for these subjects the added inertia and friction of this backdriveable robot did not significantly alter their gait pattern.
PMCID: PMC2887457  PMID: 20492698
19.  Sit-to-Stand in People with Stroke: Effect of Lower Limb Constraint-Induced Movement Strategies 
Stroke Research and Treatment  2014;2014:683681.
Background. Weight-bearing asymmetry and impaired balance may contribute to the increased fall risk in people with stroke when rising to stand from sitting. Objective. This study investigated the effect of constraint-induced movement (CIM) strategies on weight-bearing symmetry and balance during sit-to-stand in people with stroke. Methods. A nonrandom convenience sample of fifteen people with stroke performed the sit-to-stand task using three CIM strategies including a solid or compliant (foam) block strategy, with the unaffected limb placed on the block, and an asymmetrical foot position strategy, with the unaffected limb placed ahead of the affected limb. Duration of the task, affected limb weight-bearing, and centre of pressure and centre of mass displacement were measured in the frontal and sagittal plane. Results. Affected limb weight-bearing was increased and frontal plane centre of pressure and centre of mass moved toward the affected limb compared to baseline with all CIM strategies. Centre of mass displacement in the sagittal plane was greater with the compliant block and asymmetrical foot strategies. Conclusions. The CIM strategies demonstrated greater loading of the affected limb and movement of the centre of pressure and centre of mass toward the affected limb. The compliant block and asymmetrical foot conditions may challenge sagittal plane balance during sit-to-stand in people with stroke.
PMCID: PMC3976795  PMID: 24757576
20.  The visual amplification of goal-oriented movements counteracts acquired non-use in hemiparetic stroke patients 
Stroke-induced impairments result from both primary and secondary causes, i.e. damage to the brain and the acquired non-use of the impaired limbs. Indeed, stroke patients often under-utilize their paretic limb despite sufficient residual motor function. We hypothesize that acquired non-use can be overcome by reinforcement-based training strategies.
Hemiparetic stroke patients (n = 20, 11 males, 9 right-sided hemiparesis) were asked to reach targets appearing in either the real world or in a virtual environment. Sessions were divided into 3 phases: baseline, intervention and washout. During the intervention the movement of the virtual representation of the patients’ paretic limb was amplified towards the target.
We found that the probability of using the paretic limb during washout was significantly higher in comparison to baseline. Patients showed generalization of these results by displaying a more substantial workspace in real world task. These gains correlated with changes in effector selection patterns.
The amplification of the movement of the paretic limb in a virtual environment promotes the use of the paretic limb in stroke patients. Our findings indicate that reinforcement-based therapies may be an effective approach for counteracting learned non-use and may modulate motor performance in the real world.
Electronic supplementary material
The online version of this article (doi:10.1186/s12984-015-0039-z) contains supplementary material, which is available to authorized users.
PMCID: PMC4460841  PMID: 26055406
Stroke rehabilitation; Hemiparesis; Upper extremity; Physical therapy; Learned non-use; Reinforcement-based motor therapy
21.  Abnormal coactivation of knee and ankle extensors is related to changes in heteronymous spinal pathways after stroke 
Abnormal coactivation of leg extensors is often observed on the paretic side of stroke patients while they attempt to move. The mechanisms underlying this coactivation are not well understood. This study (1) compares the coactivation of leg extensors during static contractions in stroke and healthy individuals, and (2) assesses whether this coactivation is related to changes in intersegmental pathways between quadriceps and soleus (Sol) muscles after stroke.
Thirteen stroke patients and ten healthy individuals participated in the study. Levels of coactivation of knee extensors and ankle extensors were measured in sitting position, during two tasks: maximal isometric voluntary contractions in knee extension and in plantarflexion. The early facilitation and later inhibition of soleus voluntary EMG evoked by femoral nerve stimulation were assessed in the paretic leg of stroke participants and in one leg of healthy participants.
Coactivation levels of ankle extensors (mean ± SEM: 56 ± 7% of Sol EMG max) and of knee extensors (52 ± 10% of vastus lateralis (VL) EMG max) during the knee extension and the ankle extension tasks respectively were significantly higher in the paretic leg of stroke participants than in healthy participants (26 ± 5% of Sol EMG max and 10 ± 3% of VL EMG max, respectively). Early heteronymous facilitation of Sol voluntary EMG in stroke participants (340 ± 62% of Sol unconditioned EMG) was significantly higher than in healthy participants (98 ± 34%). The later inhibition observed in all control participants was decreased in the paretic leg. Levels of coactivation of ankle extensors during the knee extension task were significantly correlated with both the increased facilitation (Pearson r = 0.59) and the reduced inhibition (r = 0.56) in the paretic leg. Measures of motor impairment were more consistently correlated with the levels of coactivation of biarticular muscles than those of monoarticular muscles.
These results suggest that the heteronymous pathways linking quadriceps to soleus may participate in the abnormal coactivation of knee and ankle extensors on the paretic side of stroke patients. The motor impairment of the paretic leg is strongly associated with the abnormal coactivation of biarticular muscles.
PMCID: PMC3159134  PMID: 21806839
Hemiparesis; Extension synergy; Sensory afferents; Isometric strength; Spinal Circuits; Propriospinal
22.  Atrophy and Intramuscular Fat in Specific Muscles of the Thigh: Associated Weakness and Hyperinsulinemia in Stroke Survivors 
Sarcopenia and increased fat infiltration in muscle may play a role in the functional impairment and high risk for diabetes in stroke. Our purpose was to compare muscle volume and muscle attenuation across 6 muscles of the paretic and nonparetic thigh and examine the relationships between intramuscular fat and insulin resistance and between muscle volume and strength in stroke patients.
Stroke participants (70; 39 men, 31 women) aged 40 to 84 years, BMI = 16 to 45 kg/m2 underwent multiple thigh CT scans, total body scan by DXA (dual-energy X-ray absorptiometry), peak oxygen intake (VO2peak) graded treadmill test, 6-minute walk, fasting blood draws, and isokinetic strength testing.
Muscle volume is 24% lower and subcutaneous fat volume is 5% higher in the paretic versus nonparetic thigh. Muscle attenuation (index of amount of fat infiltration in muscle) is 17% higher in the nonparetic midthigh than the paretic. The semitendinosis/semimembranosis, biceps femoris, sartorius, vastus (medialis/lateralis), and rectus femoris have lower (between 9% and 19%) muscle areas on the paretic than the nonparetic thigh. Muscle attenuation is 15% to 25% higher on the nonparetic than the paretic side for 5 of 6 muscles. The nonparetic midthigh muscle attenuation is negatively associated with insulin. Eccentric peak torque of the nonparetic leg and paretic leg are associated with the corresponding muscle volume.
The skeletal muscle atrophy, increased fat around and within muscle, and ensuing muscular weakness observed in chronic stroke patients relates to diabetes risk and may impair functional mobility and independence.
PMCID: PMC3546168  PMID: 21734070
muscle atrophy; intramuscular fat; strength; muscle quality; hyperinsulinemia; stroke rehabilitation
23.  Relationship between the weight-bearing ratio on the affected lower extremity and gait ability using a portable electronic foot sensor shoe (Step Aid®) in hemiplegic stroke patients 
[Purpose] This study investigated the association between the weight-bearing ratio (WBR) and gait ability of a paretic lower limb while walking using a shoe-type load-measuring apparatus. [Subjects] The Subjects comprised 17 stroke patients who were classified into the following two groups: the independent walking group, and the non-independent walking group. [Methods] The 10-m walking time (inside and outside parallel bars) and the Berg Balance Scale (BBS) were measured. The WBR of the paretic lower limb was measured during static standing and while walking inside and outside parallel bars, and the coefficient of variation (CV) was calculated. WBR was evaluated using the Step Aid. [Results] The BBS and WBR were significantly decreased in the non-independent walking group, while the 10-m walking time and the CV were significantly increased in the non-independent walking group. [Conclusion] The CV and WBR of a paretic lower limb while walking appear to be important indices of achievement of independent gait in hemiplegic stroke patients, and they may be used in gait rehabilitation for diseases requiring weight-bearing training to follow the course of training using a shoe-type load-measuring apparatus.
PMCID: PMC4339130  PMID: 25729160
Stroke; Weight-bearing ratio; Shoe-type load-measuring apparatus
24.  Forward propulsion asymmetry is indicative of changes in plantarflexor coordination during walking in individuals with post-stroke hemiparesis 
A common measure of rehabilitation effectiveness post-stroke is self-selected walking speed, yet individuals may achieve the same speed using different coordination strategies. Asymmetry in the propulsion generated by each leg can provide insight into paretic leg coordination due to its relatively strong correlation with hemiparetic severity. Subjects walking at the same speed can exhibit different propulsion asymmetry, with some subjects relying more on the paretic leg and others on the nonparetic leg. The goal of this study was to assess whether analyzing propulsion asymmetry can help distinguish between improved paretic leg coordination versus nonparetic leg compensation.
Three-dimensional forward dynamics simulations were developed for two post-stroke hemiparetic subjects walking at identical speeds before/after rehabilitation with opposite changes in propulsion asymmetry. Changes in the individual muscle contributions to forward propulsion were examined.
The major source of increased forward propulsion in both subjects was from the ankle plantarflexors. How they were utilized differed and appears related to changes in propulsion asymmetry. Subject A increased propulsion generated from the paretic plantarflexors, while Subject B increased propulsion generated from the nonparetic plantarflexors. Each subject’s strategy to increase speed also included differences in other muscle groups (e.g. hamstrings) that did not appear related to propulsion asymmetry.
The results of this study highlight how speed cannot be used to elucidate underlying muscle coordination changes following rehabilitation. In contrast, propulsion asymmetry appears to provide insight into changes in plantarflexor output affecting propulsion generation and may be useful in monitoring rehabilitation outcomes.
PMCID: PMC4157942  PMID: 24973825
Forward dynamics simulations; Gait; Post-stroke hemiparesis; Rehabilitation
25.  Involuntary paretic wrist/finger flexion forces and EMG increase with shoulder abduction load in individuals with chronic stroke 
Clinical observations of the flexion synergy in individuals with chronic hemiparetic stroke describe coupling of shoulder, elbow, wrist, and finger joints. Yet, experimental quantification of the synergy within a shoulder abduction (SABD) loading paradigm has focused only on shoulder and elbow joints. The paretic wrist and fingers have typically been studied in isolation. Therefore, this study quantified involuntary behavior of paretic wrist and fingers during concurrent activation of shoulder and elbow.
Eight individuals with chronic moderate-to-severe hemiparesis and four controls participated. Isometric wrist/finger and thumb flexion forces and wrist/finger flexor and extensor electromyograms (EMG) were measured at two positions when lifting the arm: in front of the torso and at maximal reaching distance. The task was completed in the ACT3D robotic device with six SABD loads by paretic, non-paretic, and control limbs.
Considerable forces and EMG were generated during lifting of the paretic arm only, and they progressively increased with SABD load. Additionally, the forces were greater at the maximal reach position than at the position front of the torso.
Flexion of paretic wrist and fingers is involuntarily coupled with certain shoulder and elbow movements.
Activation of the proximal upper limb must be considered when seeking to understand, rehabilitate, or develop devices to assist the paretic hand.
PMCID: PMC3729226  PMID: 22364723

Results 1-25 (1054834)