Search tips
Search criteria

Results 1-25 (1339396)

Clipboard (0)

Related Articles

1.  Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer 
BMC Genomics  2007;8:53.
Cervical carcinoma develops as a result of multiple genetic alterations. Different studies investigated genomic alterations in cervical cancer mainly by means of metaphase comparative genomic hybridization (mCGH) and microsatellite marker analysis for the detection of loss of heterozygosity (LOH). Currently, high throughput methods such as array comparative genomic hybridization (array CGH), single nucleotide polymorphism array (SNP array) and gene expression arrays are available to study genome-wide alterations. Integration of these 3 platforms allows detection of genomic alterations at high resolution and investigation of an association between copy number changes and expression.
Genome-wide copy number and genotype analysis of 10 cervical cancer cell lines by array CGH and SNP array showed highly complex large-scale alterations. A comparison between array CGH and SNP array revealed that the overall concordance in detection of the same areas with copy number alterations (CNA) was above 90%. The use of SNP arrays demonstrated that about 75% of LOH events would not have been found by methods which screen for copy number changes, such as array CGH, since these were LOH events without CNA. Regions frequently targeted by CNA, as determined by array CGH, such as amplification of 5p and 20q, and loss of 8p were confirmed by fluorescent in situ hybridization (FISH). Genome-wide, we did not find a correlation between copy-number and gene expression. At chromosome arm 5p however, 22% of the genes were significantly upregulated in cell lines with amplifications as compared to cell lines without amplifications, as measured by gene expression arrays. For 3 genes, SKP2, ANKH and TRIO, expression differences were confirmed by quantitative real-time PCR (qRT-PCR).
This study showed that copy number data retrieved from either array CGH or SNP array are comparable and that the integration of genome-wide LOH, copy number and gene expression is useful for the identification of gene specific targets that could be relevant for the development and progression in cervical cancer.
PMCID: PMC1805756  PMID: 17311676
2.  SeeGH – A software tool for visualization of whole genome array comparative genomic hybridization data 
BMC Bioinformatics  2004;5:13.
Array comparative genomic hybridization (CGH) is a technique which detects copy number differences in DNA segments. Complete sequencing of the human genome and the development of an array representing a tiling set of tens of thousands of DNA segments spanning the entire human genome has made high resolution copy number analysis throughout the genome possible. Since array CGH provides signal ratio for each DNA segment, visualization would require the reassembly of individual data points into chromosome profiles.
We have developed a visualization tool for displaying whole genome array CGH data in the context of chromosomal location. SeeGH is an application that translates spot signal ratio data from array CGH experiments to displays of high resolution chromosome profiles. Data is imported from a simple tab delimited text file obtained from standard microarray image analysis software. SeeGH processes the signal ratio data and graphically displays it in a conventional CGH karyotype diagram with the added features of magnification and DNA segment annotation. In this process, SeeGH imports the data into a database, calculates the average ratio and standard deviation for each replicate spot, and links them to chromosome regions for graphical display. Once the data is displayed, users have the option of hiding or flagging DNA segments based on user defined criteria, and retrieve annotation information such as clone name, NCBI sequence accession number, ratio, base pair position on the chromosome, and standard deviation.
SeeGH represents a novel software tool used to view and analyze array CGH data. The software gives users the ability to view the data in an overall genomic view as well as magnify specific chromosomal regions facilitating the precise localization of genetic alterations. SeeGH is easily installed and runs on Microsoft Windows 2000 or later environments.
PMCID: PMC373529  PMID: 15040819
Array comparitve genomic hybridization; aCGH
3.  CGI: Java Software for Mapping and Visualizing Data from Array-based Comparative Genomic Hybridization and Expression Profiling 
With the increasing application of various genomic technologies in biomedical research, there is a need to integrate these data to correlate candidate genes/regions that are identified by different genomic platforms. Although there are tools that can analyze data from individual platforms, essential software for integration of genomic data is still lacking. Here, we present a novel Java-based program called CGI (Cytogenetics-Genomics Integrator) that matches the BAC clones from array-based comparative genomic hybridization (aCGH) to genes from RNA expression profiling datasets. The matching is computed via a fast, backend MySQL database containing UCSC Genome Browser annotations. This program also provides an easy-to-use graphical user interface for visualizing and summarizing the correlation of DNA copy number changes and RNA expression patterns from a set of experiments. In addition, CGI uses a Java applet to display the copy number values of a specific BAC clone in aCGH experiments side by side with the expression levels of genes that are mapped back to that BAC clone from the microarray experiments. The CGI program is built on top of extensible, reusable graphic components specifically designed for biologists. It is cross-platform compatible and the source code is freely available under the General Public License.
PMCID: PMC2759124  PMID: 19936083
aCGH; expression profiling; visualization; correlation; and data integration
4.  Overlay Tool© for aCGHViewer©: An Analysis Module Built for aCGHViewer© used to Perform Comparisons of Data Derived from Different Microarray Platforms 
Cancer Informatics  2007;3:307-319.
The Overlay Tool© has been developed to combine high throughput data derived from various microarray platforms. This tool analyzes high-resolution correlations between gene expression changes and either copy number abnormalities (CNAs) or loss of heterozygosity events detected using array comparative genomic hybridization (aCGH). Using an overlay analysis which is designed to be performed using data from multiple microarray platforms on a single biological sample, the Overlay Tool© identifies potentially important genes whose expression profiles are changed as a result of losses, gains and amplifications in the cancer genome. In addition, the Overlay Tool© will incorporate loss of heterozygosity (LOH) probability data into this overlay procedure. To facilitate this analysis, we developed an application which computationally combines two or more high throughput datasets (e.g. aCGH/expression) into a single categorized dataset for visualization and interrogation using a gene-centric approach. As such, data from virtually any microarray platform can be incorporated without the need to remap entire datasets individually. The resultant categorized (overlay) data set can be conveniently viewed using our in-house visualization tool, aCGHViewer© (Shankar et al. 2006), which serves as a conduit to public databases such as UCSC and NCBI, to rapidly investigate genes of interest.
PMCID: PMC2675835  PMID: 19455250
Overlay Analysis; Microarray; ACGH; expression profiling; CNAs; aCGHViewer
5.  Comprehensive copy number profiles of breast cancer cell model genomes 
Breast Cancer Research  2006;8(1):R9.
Breast cancer is the most commonly diagnosed cancer in women worldwide and consequently has been extensively investigated in terms of histopathology, immunochemistry and familial history. Advances in genome-wide approaches have contributed to molecular classification with respect to genomic changes and their subsequent effects on gene expression. Cell lines have provided a renewable resource that is readily used as model systems for breast cancer cell biology. A thorough characterization of their genomes to identify regions of segmental DNA loss (potential tumor-suppressor-containing loci) and gain (potential oncogenic loci) would greatly facilitate the interpretation of biological data derived from such cells. In this study we characterized the genomes of seven of the most commonly used breast cancer model cell lines at unprecedented resolution using a newly developed whole-genome tiling path genomic DNA array.
Breast cancer model cell lines MCF-7, BT-474, MDA-MB-231, T47D, SK-BR-3, UACC-893 and ZR-75-30 were investigated for genomic alterations with the submegabase-resolution tiling array (SMRT) array comparative genomic hybridization (CGH) platform. SMRT array CGH provides tiling coverage of the human genome permitting break-point detection at about 80 kilobases resolution. Two novel discrete alterations identified by array CGH were verified by fluorescence in situ hybridization.
Whole-genome tiling path array CGH analysis identified novel high-level alterations and fine-mapped previously reported regions yielding candidate genes. In brief, 75 high-level gains and 48 losses were observed and their respective boundaries were documented. Complex alterations involving multiple levels of change were observed on chromosome arms 1p, 8q, 9p, 11q, 15q, 17q and 20q. Furthermore, alignment of whole-genome profiles enabled simultaneous assessment of copy number status of multiple components of the same biological pathway. Investigation of about 60 loci containing genes associated with the epidermal growth factor family (epidermal growth factor receptor, HER2, HER3 and HER4) revealed that all seven cell lines harbor copy number changes to multiple genes in these pathways.
The intrinsic genetic differences between these cell lines will influence their biologic and pharmacologic response as an experimental model. Knowledge of segmental changes in these genomes deduced from our study will facilitate the interpretation of biological data derived from such cells.
PMCID: PMC1413994  PMID: 16417655
6.  aCGHViewer: A Generic Visualization Tool For aCGH data 
Cancer Informatics  2007;2:36-43.
Array-Comparative Genomic Hybridization (aCGH) is a powerful high throughput technology for detecting chromosomal copy number aberrations (CNAs) in cancer, aiming at identifying related critical genes from the affected genomic regions. However, advancing from a dataset with thousands of tabular lines to a few candidate genes can be an onerous and time-consuming process. To expedite the aCGH data analysis process, we have developed a user-friendly aCGH data viewer (aCGHViewer) as a conduit between the aCGH data tables and a genome browser. The data from a given aCGH analysis are displayed in a genomic view comprised of individual chromosome panels which can be rapidly scanned for interesting features. A chromosome panel containing a feature of interest can be selected to launch a detail window for that single chromosome. Selecting a data point of interest in the detail window launches a query to the UCSC or NCBI genome browser to allow the user to explore the gene content in the chromosomal region. Additionally, aCGHViewer can display aCGH and expression array data concurrently to visually correlate the two. aCGHViewer is a stand alone Java visualization application that should be used in conjunction with separate statistical programs. It operates on all major computer platforms and is freely available at
PMCID: PMC1847423  PMID: 17404607
array-CGH; CNA; gene expression; visualization
7.  aCGHViewer: A Generic Visualization Tool For aCGH data 
Cancer informatics  2006;2:36-43.
Array-Comparative Genomic Hybridization (aCGH) is a powerful high throughput technology for detecting chromosomal copy number aberrations (CNAs) in cancer, aiming at identifying related critical genes from the affected genomic regions. However, advancing from a dataset with thousands of tabular lines to a few candidate genes can be an onerous and time-consuming process. To expedite the aCGH data analysis process, we have developed a user-friendly aCGH data viewer (aCGHViewer) as a conduit between the aCGH data tables and a genome browser. The data from a given aCGH analysis are displayed in a genomic view comprised of individual chromosome panels which can be rapidly scanned for interesting features. A chromosome panel containing a feature of interest can be selected to launch a detail window for that single chromosome. Selecting a data point of interest in the detail window launches a query to the UCSC or NCBI genome browser to allow the user to explore the gene content in the chromosomal region. Additionally, aCGHViewer can display aCGH and expression array data concurrently to visually correlate the two. aCGHViewer is a stand alone Java visualization application that should be used in conjunction with separate statistical programs. It operates on all major computer platforms and is freely available at
PMCID: PMC1847423  PMID: 17404607
array-CGH; CNA; gene expression; visualization
8.  The pitfalls of platform comparison: DNA copy number array technologies assessed 
BMC Genomics  2009;10:588.
The accurate and high resolution mapping of DNA copy number aberrations has become an important tool by which to gain insight into the mechanisms of tumourigenesis. There are various commercially available platforms for such studies, but there remains no general consensus as to the optimal platform. There have been several previous platform comparison studies, but they have either described older technologies, used less-complex samples, or have not addressed the issue of the inherent biases in such comparisons. Here we describe a systematic comparison of data from four leading microarray technologies (the Affymetrix Genome-wide SNP 5.0 array, Agilent High-Density CGH Human 244A array, Illumina HumanCNV370-Duo DNA Analysis BeadChip, and the Nimblegen 385 K oligonucleotide array). We compare samples derived from primary breast tumours and their corresponding matched normals, well-established cancer cell lines, and HapMap individuals. By careful consideration and avoidance of potential sources of bias, we aim to provide a fair assessment of platform performance.
By performing a theoretical assessment of the reproducibility, noise, and sensitivity of each platform, notable differences were revealed. Nimblegen exhibited between-replicate array variances an order of magnitude greater than the other three platforms, with Agilent slightly outperforming the others, and a comparison of self-self hybridizations revealed similar patterns. An assessment of the single probe power revealed that Agilent exhibits the highest sensitivity. Additionally, we performed an in-depth visual assessment of the ability of each platform to detect aberrations of varying sizes. As expected, all platforms were able to identify large aberrations in a robust manner. However, some focal amplifications and deletions were only detected in a subset of the platforms.
Although there are substantial differences in the design, density, and number of replicate probes, the comparison indicates a generally high level of concordance between platforms, despite differences in the reproducibility, noise, and sensitivity. In general, Agilent tended to be the best aCGH platform and Affymetrix, the superior SNP-CGH platform, but for specific decisions the results described herein provide a guide for platform selection and study design, and the dataset a resource for more tailored comparisons.
PMCID: PMC2797821  PMID: 19995423
9.  Evaluation of high-resolution microarray platforms for genomic profiling of bone tumours 
BMC Research Notes  2010;3:223.
Several high-density oligonucleotide microarray platforms are available for genome-wide single nucleotide polymorphism (SNP) detection and microarray-based comparative genomic hybridisation (array CGH), which may be used to detect copy number aberrations in human tumours. As part of the EuroBoNeT network of excellence for research on bone tumours (, we have evaluated four different commercial high-resolution microarray platforms in order to identify the most appropriate technology for mapping DNA copy number aberrations in such tumours.
DNA from two different cytogenetically well-characterized bone sarcoma cell lines, representing a simple and a complex karyotype, respectively, was tested in duplicate on four high-resolution microarray platforms; Affymetrix Genome-Wide Human SNP Array 6.0, Agilent Human Genome CGH 244A, Illumina HumanExon510s-duo and Nimblegen HG18 CGH 385 k WG tiling v1.0. The data was analysed using the platform-specific analysis software, as well as a platform-independent analysis algorithm. DNA copy number was measured at six specific chromosomes or chromosomal regions, and compared with the expected ratio based on available cytogenetic information. All platforms performed well in terms of reproducibility and were able to delimit and score small amplifications and deletions at similar resolution, but Agilent microarrays showed better linearity and dynamic range. The platform-specific analysis software provided with each platform identified in general correct copy numbers, whereas using a platform-independent analysis algorithm, correct copy numbers were determined mainly for Agilent and Affymetrix microarrays.
All platforms performed reasonably well, but Agilent microarrays showed better dynamic range, and like Affymetrix microarrays performed well with the platform-independent analysis software, implying more robust data. Bone tumours like osteosarcomas are heterogeneous tumours with complex karyotypes that may be difficult to interpret, and it is of importance to be able to well separate the copy number levels and detect copy number changes in subpopulations. Taking all this into consideration, the Agilent and Affymetrix microarray platforms were found to be a better choice for mapping DNA copy numbers in bone tumours, the latter having the advantage of also providing heterozygosity information.
PMCID: PMC2929238  PMID: 20691109
10.  Gene-resolution analysis of DNA copy number variation using oligonucleotide expression microarrays 
BMC Genomics  2007;8:111.
Array-based comparative genomic hybridization (aCGH) is a high-throughput method for measuring genome-wide DNA copy number changes. Current aCGH methods have limited resolution, sensitivity and reproducibility. Microarrays for aCGH are available only for a few organisms and combination of aCGH data with expression data is cumbersome.
We present a novel method of using commercial oligonucleotide expression microarrays for aCGH, enabling DNA copy number measurements and expression profiles to be combined using the same platform. This method yields aCGH data from genomic DNA without complexity reduction at a median resolution of approximately 17,500 base pairs. Due to the well-defined nature of oligonucleotide probes, DNA amplification and deletion can be defined at the level of individual genes and can easily be combined with gene expression data.
A novel method of gene resolution analysis of copy number variation (graCNV) yields high-resolution maps of DNA copy number changes and is applicable to a broad range of organisms for which commercial oligonucleotide expression microarrays are available. Due to the standardization of oligonucleotide microarrays, graCNV results can reliably be compared between laboratories and can easily be combined with gene expression data using the same platform.
PMCID: PMC1868757  PMID: 17470268
11.  Integrated analysis of copy number alteration and RNA expression profiles of cancer using a high-resolution whole-genome oligonucleotide array 
Experimental & Molecular Medicine  2009;41(7):462-470.
Recently, microarray-based comparative genomic hybridization (array-CGH) has emerged as a very efficient technology with higher resolution for the genome-wide identification of copy number alterations (CNA). Although CNAs are thought to affect gene expression, there is no platform currently available for the integrated CNA-expression analysis. To achieve high-resolution copy number analysis integrated with expression profiles, we established human 30k oligoarray-based genome-wide copy number analysis system and explored the applicability of this system for integrated genome and transcriptome analysis using MDA-MB-231 cell line. We compared the CNAs detected by the oligoarray with those detected by the 3k BAC array for validation. The oligoarray identified the single copy difference more accurately and sensitively than the BAC array. Seventeen CNAs detected by both platforms in MDA-MB-231 such as gains of 5p15.33-13.1, 8q11.22-8q21.13, 17p11.2, and losses of 1p32.3, 8p23.3-8p11.21, and 9p21 were consistently identified in previous studies on breast cancer. There were 122 other small CNAs (mean size 1.79 mb) that were detected by oligoarray only, not by BAC-array. We performed genomic qPCR targeting 7 CNA regions, detected by oligoarray only, and one non-CNA region to validate the oligoarray CNA detection. All qPCR results were consistent with the oligoarray-CGH results. When we explored the possibility of combined interpretation of both DNA copy number and RNA expression profiles, mean DNA copy number and RNA expression levels showed a significant correlation. In conclusion, this 30k oligoarray-CGH system can be a reasonable choice for analyzing whole genome CNAs and RNA expression profiles at a lower cost.
PMCID: PMC2721143  PMID: 19322034
cell line, tumor; gene dosage; gene expression profiling; oligonucleotide array sequence analysis
12.  A stepwise framework for the normalization of array CGH data 
BMC Bioinformatics  2005;6:274.
In two-channel competitive genomic hybridization microarray experiments, the ratio of the two fluorescent signal intensities at each spot on the microarray is commonly used to infer the relative amounts of the test and reference sample DNA levels. This ratio may be influenced by systematic measurement effects from non-biological sources that can introduce biases in the estimated ratios. These biases should be removed before drawing conclusions about the relative levels of DNA. The performance of existing gene expression microarray normalization strategies has not been evaluated for removing systematic biases encountered in array-based comparative genomic hybridization (CGH), which aims to detect single copy gains and losses typically in samples with heterogeneous cell populations resulting in only slight shifts in signal ratios. The purpose of this work is to establish a framework for correcting the systematic sources of variation in high density CGH array images, while maintaining the true biological variations.
After an investigation of the systematic variations in the data from two array CGH platforms, SMRT (Sub Mega base Resolution Tiling) BAC arrays and cDNA arrays of Pollack et al., we have developed a stepwise normalization framework integrating novel and existing normalization methods in order to reduce intensity, spatial, plate and background biases. We used stringent measures to quantify the performance of this stepwise normalization using data derived from 5 sets of experiments representing self-self hybridizations, replicated experiments, detection of single copy changes, array CGH experiments which mimic cell population heterogeneity, and array CGH experiments simulating different levels of gene amplifications and deletions. Our results demonstrate that the three-step normalization procedure provides significant improvement in the sensitivity of detection of single copy changes compared to conventional single step normalization approaches in both SMRT BAC array and cDNA array platforms.
The proposed stepwise normalization framework preserves the minute copy number changes while removing the observed systematic biases.
PMCID: PMC1310623  PMID: 16297240
13.  arrayMap: A Reference Resource for Genomic Copy Number Imbalances in Human Malignancies 
PLoS ONE  2012;7(5):e36944.
The delineation of genomic copy number abnormalities (CNAs) from cancer samples has been instrumental for identification of tumor suppressor genes and oncogenes and proven useful for clinical marker detection. An increasing number of projects have mapped CNAs using high-resolution microarray based techniques. So far, no single resource does provide a global collection of readily accessible oncogenomic array data.
Methodology/Principal Findings
We here present arrayMap, a curated reference database and bioinformatics resource targeting copy number profiling data in human cancer. The arrayMap database provides a platform for meta-analysis and systems level data integration of high-resolution oncogenomic CNA data. To date, the resource incorporates more than 40,000 arrays in 224 cancer types extracted from several resources, including the NCBI’s Gene Expression Omnibus (GEO), EBI’s ArrayExpress (AE), The Cancer Genome Atlas (TCGA), publication supplements and direct submissions. For the majority of the included datasets, probe level and integrated visualization facilitate gene level and genome wide data review. Results from multi-case selections can be connected to downstream data analysis and visualization tools.
To our knowledge, currently no data source provides an extensive collection of high resolution oncogenomic CNA data which readily could be used for genomic feature mining, across a representative range of cancer entities. arrayMap represents our effort for providing a long term platform for oncogenomic CNA data independent of specific platform considerations or specific project dependence. The online database can be accessed at http//
PMCID: PMC3356349  PMID: 22629346
14.  TIARA: a database for accurate analysis of multiple personal genomes based on cross-technology 
Nucleic Acids Research  2010;39(Database issue):D883-D888.
High-throughput genomic technologies have been used to explore personal human genomes for the past few years. Although the integration of technologies is important for high-accuracy detection of personal genomic variations, no databases have been prepared to systematically archive genomes and to facilitate the comparison of personal genomic data sets prepared using a variety of experimental platforms. We describe here the Total Integrated Archive of Short-Read and Array (TIARA; database, which contains personal genomic information obtained from next generation sequencing (NGS) techniques and ultra-high-resolution comparative genomic hybridization (CGH) arrays. This database improves the accuracy of detecting personal genomic variations, such as SNPs, short indels and structural variants (SVs). At present, 36 individual genomes have been archived and may be displayed in the database. TIARA supports a user-friendly genome browser, which retrieves read-depths (RDs) and log2 ratios from NGS and CGH arrays, respectively. In addition, this database provides information on all genomic variants and the raw data, including short reads and feature-level CGH data, through anonymous file transfer protocol. More personal genomes will be archived as more individuals are analyzed by NGS or CGH array. TIARA provides a new approach to the accurate interpretation of personal genomes for genome research.
PMCID: PMC3013693  PMID: 21051338
15.  CanGEM: mining gene copy number changes in cancer 
Nucleic Acids Research  2007;36(Database issue):D830-D835.
The use of genome-wide and high-throughput screening methods on large sample sizes is a well-grounded approach when studying a process as complex and heterogeneous as tumorigenesis. Gene copy number changes are one of the main mechanisms causing cancerous alterations in gene expression and can be detected using array comparative genomic hybridization (aCGH). Microarrays are well suited for the integrative systems biology approach, but none of the existing microarray databases is focusing on copy number changes. We present here CanGEM (Cancer GEnome Mine), which is a public, web-based database for storing quantitative microarray data and relevant metadata about the measurements and samples. CanGEM supports the MIAME standard and in addition, stores clinical information using standardized controlled vocabularies whenever possible. Microarray probes are re-annotated with their physical coordinates in the human genome and aCGH data is analyzed to yield gene-specific copy numbers. Users can build custom datasets by querying for specific clinical sample characteristics or copy number changes of individual genes. Aberration frequencies can be calculated for these datasets, and the data can be visualized on the human genome map with gene annotations. Furthermore, the original data files are available for more detailed analysis. The CanGEM database can be accessed at
PMCID: PMC2238975  PMID: 17932056
16.  Micro-Scale Genomic DNA Copy Number Aberrations as Another Means of Mutagenesis in Breast Cancer 
PLoS ONE  2012;7(12):e51719.
In breast cancer, the basal-like subtype has high levels of genomic instability relative to other breast cancer subtypes with many basal-like-specific regions of aberration. There is evidence that this genomic instability extends to smaller scale genomic aberrations, as shown by a previously described micro-deletion event in the PTEN gene in the Basal-like SUM149 breast cancer cell line.
We sought to identify if small regions of genomic DNA copy number changes exist by using a high density, gene-centric Comparative Genomic Hybridizations (CGH) array on cell lines and primary tumors. A custom tiling array for CGH (244,000 probes, 200 bp tiling resolution) was created to identify small regions of genomic change, which was focused on previously identified basal-like-specific, and general cancer genes. Tumor genomic DNA from 94 patients and 2 breast cancer cell lines was labeled and hybridized to these arrays. Aberrations were called using SWITCHdna and the smallest 25% of SWITCHdna-defined genomic segments were called micro-aberrations (<64 contiguous probes, ∼ 15 kb).
Our data showed that primary tumor breast cancer genomes frequently contained many small-scale copy number gains and losses, termed micro-aberrations, most of which are undetectable using typical-density genome-wide aCGH arrays. The basal-like subtype exhibited the highest incidence of these events. These micro-aberrations sometimes altered expression of the involved gene. We confirmed the presence of the PTEN micro-amplification in SUM149 and by mRNA-seq showed that this resulted in loss of expression of all exons downstream of this event. Micro-aberrations disproportionately affected the 5′ regions of the affected genes, including the promoter region, and high frequency of micro-aberrations was associated with poor survival.
Using a high-probe-density, gene-centric aCGH microarray, we present evidence of small-scale genomic aberrations that can contribute to gene inactivation. These events may contribute to tumor formation through mechanisms not detected using conventional DNA copy number analyses.
PMCID: PMC3524128  PMID: 23284754
17.  The BCM Microarray Core Facility: Closing the Next- Generation Gap 
The Microarray Core Facility (MCF) at Baylor College of Medicine provides investigators with access to a variety of state-of-the-art technologies and approaches that will enhance discovery for their genomic research. We house instrumentation supporting Affymetrix, Agilent, NimbleGen, Luminex, and Illumina platforms. The MCF provides expertise in the following applications: gene expression, array comparative genomic hybridization (aCGH), SNP genotyping, and next-generation sequencing. In addition, our lab offer services for sample quality check and a cDNA clone repository, for those that are interested in verifying results from gene expression experiments or any other application requiring cDNA clones. The MCF specializes in RNA applications that enable researchers to monitor genome-wide expression profiles through Affymetrix, Agilent and NimbleGen expression arrays.Agilent's aCGH and Affymetrix SNP Arrays are also offered, providing detection of copy number variations across the genome.Other related services include: tiling arrays, ChIP-on-chip arrays, SuperArray, Promoter Arrays, and Panomics. Due to the increased demand for rapid DNA sequencing, the facility now provides massively parallel “next generation” sequencing on the Illumina Genome Analyzer II.Our core lab has established a workflow involving: project consultation, sample quality check, sample preparation and data generation for each sequencing project.Illumina's sequencing platform provides high-quality data in the following applications: gene expression and alternative splicing (mRNA-Seq), protein-nucleic acid association profiling and epigenetics (ChIP-Seq), sequencing targeted genomic regions, small RNA discovery (small RNA-Seq) and de novo sequencing.The MCF offers investigators access to an array of emerging technologies while assisting in experimental design and data analysis.
PMCID: PMC2918027
18.  FISH Oracle: a web server for flexible visualization of DNA copy number data in a genomic context 
The rapidly growing amount of array CGH data requires improved visualization software supporting the process of identifying candidate cancer genes. Optimally, such software should work across multiple microarray platforms, should be able to cope with data from different sources and should be easy to operate.
We have developed a web-based software FISH Oracle to visualize data from multiple array CGH experiments in a genomic context. Its fast visualization engine and advanced web and database technology supports highly interactive use. FISH Oracle comes with a convenient data import mechanism, powerful search options for genomic elements (e.g. gene names or karyobands), quick navigation and zooming into interesting regions, and mechanisms to export the visualization into different high quality formats. These features make the software especially suitable for the needs of life scientists.
FISH Oracle offers a fast and easy to use visualization tool for array CGH and SNP array data. It allows for the identification of genomic regions representing minimal common changes based on data from one or more experiments. FISH Oracle will be instrumental to identify candidate onco and tumor suppressor genes based on the frequency and genomic position of DNA copy number changes. The FISH Oracle application and an installed demo web server are available at
PMCID: PMC3164613  PMID: 21884636
19.  Stability-Based Comparison of Class Discovery Methods for DNA Copy Number Profiles 
PLoS ONE  2013;8(12):e81458.
Array-CGH can be used to determine DNA copy number, imbalances in which are a fundamental factor in the genesis and progression of tumors. The discovery of classes with similar patterns of array-CGH profiles therefore adds to our understanding of cancer and the treatment of patients. Various input data representations for array-CGH, dissimilarity measures between tumor samples and clustering algorithms may be used for this purpose. The choice between procedures is often difficult. An evaluation procedure is therefore required to select the best class discovery method (combination of one input data representation, one dissimilarity measure and one clustering algorithm) for array-CGH. Robustness of the resulting classes is a common requirement, but no stability-based comparison of class discovery methods for array-CGH profiles has ever been reported.
We applied several class discovery methods and evaluated the stability of their solutions, with a modified version of Bertoni's -based test [1]. Our version relaxes the assumption of independency required by original Bertoni's -based test. We conclude that Minimal Regions of alteration (a concept introduced by [2]) for input data representation, sim [3] or agree [4] for dissimilarity measure and the use of average group distance in the clustering algorithm produce the most robust classes of array-CGH profiles.
The software is available from It has also been partly integrated into "Visualization and analysis of array-CGH"(VAMP)[5]. The data sets used are publicly available from ACTuDB [6].
PMCID: PMC3855312  PMID: 24339933
20.  Development of a novel ozone- and photo-stable HyPer5 red fluorescent dye for array CGH and microarray gene expression analysis with consistent performance irrespective of environmental conditions 
BMC Biotechnology  2008;8:86.
Array-based comparative genomic hybridization (CGH) and gene expression profiling have become vital techniques for identifying molecular defects underlying genetic diseases. Regardless of the microarray platform, cyanine dyes (Cy3 and Cy5) are one of the most widely used fluorescent dye pairs for microarray analysis owing to their brightness and ease of incorporation, enabling high level of assay sensitivity. However, combining both dyes on arrays can become problematic during summer months when ozone levels rise to near 25 parts per billion (ppb). Under such conditions, Cy5 is known to rapidly degrade leading to loss of signal from either "homebrew" or commercial arrays. Cy5 can also suffer disproportionately from dye photobleaching resulting in distortion of (Cy5/Cy3) ratios used in copy number analysis. Our laboratory has been active in fluorescent dye research to find a suitable alternative to Cy5 that is stable to ozone and resistant to photo-bleaching. Here, we report on the development of such a dye, called HyPer5, and describe its' exceptional ozone and photostable properties on microarrays.
Our results show HyPer5 signal to be stable to high ozone levels. Repeated exposure of mouse arrays hybridized with HyPer5-labeled cDNA to 300 ppb ozone at 5, 10 and 15 minute intervals resulted in no signal loss from the dye. In comparison, Cy5 arrays showed a dramatic 80% decrease in total signal during the same interval. Photobleaching experiments show HyPer5 to be resistant to light induced damage with 3- fold improvement in dye stability over Cy5. In high resolution array CGH experiments, HyPer5 is demonstrated to detect chromosomal aberrations at loci 2p21-16.3 and 15q26.3-26.2 from three patient sample using bacterial artificial chromosome (BAC) arrays. The photostability of HyPer5 is further documented by repeat array scanning without loss of detection. Additionally, HyPer5 arrays are shown to preserve sensitivity and data quality from gene expression experiments.
HyPer5 is a red fluorescent dye that behaves functionally similar to Cy5 except in stability to ozone and light. HyPer5 is demonstrated to be resistant to ozone at up to 300 ppb, levels significantly higher than commonly observed during summer months. Consequently, HyPer5 dye can be used in parallel with Cy3 under any environmental conditions in array experiments.
PMCID: PMC2613886  PMID: 19014508
21.  arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays 
BMC Bioinformatics  2005;6:124.
The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH). One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment.
We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment) supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser.
ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at .
PMCID: PMC1173083  PMID: 15910681
22.  EIF2C Is Overexpressed and Amplified in Head and Neck Squamous Cell Carcinoma 
To discover putative oncogenes in head and neck squamous cell carcinoma (HNSCC) by integrating data from whole-genome comparison of array-based comparative genomic hybridization (CGH) and expression microarray analysis of HNSCC.
We integrated published data defining regions of loss/gain identified from the profiling of 21 HNSCC using high-resolution (<1 Mb) CGH arrays and data from an mRNA expression microarray (approx. 12,000 genes) comparing 6 normal tissues and 8 HNSCC tumor tissues. Eukaryotic translation initiation factor 2C subunit 2 (EIF2C2) was found to be the most significantly overexpressed gene by mRNA expression array, and corresponded to the most common region of amplification found by the CGH array described by Sparano et al. We validated EIF2C2 overexpression in primary tissue, overexpression and amplification in HNSCC lines (JHU-011, JHU-012, FADU) relative to a minimally transformed oral keratinocyte cell line (OKF6) and performed knockdown experiments.
The tumor tissues had an average mRNA expression level of 123 (SD = 49) compared to the normal tissues (18.6, SD = 10) (p = 0.0005) by expression array. Quantitative RT-PCR validation of our expression arrays found that normal tissues had an average expression of 0.76 (SE = 0.08) and tumor tissues of 2.1 (SE = 0.35) (p = 0.0008). EIF2C2 was found to be amplified and overexpressed in 3 HNSCC cell lines. Knockdown of EIF2C2 in cell lines (JHU-012 and JHU-011) inhibited proliferation.
EIF2C2 is amplified and overexpressed in HNSCC cell lines and primary tumors and functionally significant in cell lines.
PMCID: PMC2975733  PMID: 20924207
Head and neck squamous cell carcinoma; EIF2C2
23.  In Vitro Analysis of Integrated Global High-Resolution DNA Methylation Profiling with Genomic Imbalance and Gene Expression in Osteosarcoma 
PLoS ONE  2008;3(7):e2834.
Genetic and epigenetic changes contribute to deregulation of gene expression and development of human cancer. Changes in DNA methylation are key epigenetic factors regulating gene expression and genomic stability. Recent progress in microarray technologies resulted in developments of high resolution platforms for profiling of genetic, epigenetic and gene expression changes. OS is a pediatric bone tumor with characteristically high level of numerical and structural chromosomal changes. Furthermore, little is known about DNA methylation changes in OS. Our objective was to develop an integrative approach for analysis of high-resolution epigenomic, genomic, and gene expression profiles in order to identify functional epi/genomic differences between OS cell lines and normal human osteoblasts. A combination of Affymetrix Promoter Tilling Arrays for DNA methylation, Agilent array-CGH platform for genomic imbalance and Affymetrix Gene 1.0 platform for gene expression analysis was used. As a result, an integrative high-resolution approach for interrogation of genome-wide tumour-specific changes in DNA methylation was developed. This approach was used to provide the first genomic DNA methylation maps, and to identify and validate genes with aberrant DNA methylation in OS cell lines. This first integrative analysis of global cancer-related changes in DNA methylation, genomic imbalance, and gene expression has provided comprehensive evidence of the cumulative roles of epigenetic and genetic mechanisms in deregulation of gene expression networks.
PMCID: PMC2515339  PMID: 18698372
24.  Concurrent Gene Signatures for Han Chinese Breast Cancers 
PLoS ONE  2013;8(10):e76421.
The interplay between copy number variation (CNV) and differential gene expression may be able to shed light on molecular process underlying breast cancer and lead to the discovery of cancer-related genes. In the current study, genes concurrently identified in array comparative genomic hybridization (CGH) and gene expression microarrays were used to derive gene signatures for Han Chinese breast cancers.
We performed 23 array CGHs and 81 gene expression microarrays in breast cancer samples from Taiwanese women. Genes with coherent patterns of both CNV and differential gene expression were identified from the 21 samples assayed using both platforms. We used these genes to derive signatures associated with clinical ER and HER2 status and disease-free survival.
Distributions of signature genes were strongly associated with chromosomal location: chromosome 16 for ER and 17 for HER2. A breast cancer risk predictive model was built based on the first supervised principal component from 16 genes (RCAN3, MCOLN2, DENND2D, RWDD3, ZMYM6, CAPZA1, GPR18, WARS2, TRIM45, SCRN1, CSNK1E, HBXIP, CSDE1, MRPL20, IKZF1, and COL20A1), and distinct survival patterns were observed between the high- and low-risk groups from the combined dataset of 408 microarrays. The risk score was significantly higher in breast cancer patients with recurrence, metastasis, or mortality than in relapse-free individuals (0.241 versus 0, P<0.001). The concurrent gene risk predictive model remained discriminative across distinct clinical ER and HER2 statuses in subgroup analysis. Prognostic comparisons with published gene expression signatures showed a better discerning ability of concurrent genes, many of which were rarely identifiable if expression data were pre-selected by phenotype correlations or variability of individual genes.
We conclude that parallel analysis of CGH and microarray data, in conjunction with known gene expression patterns, can be used to identify biomarkers with prognostic values in breast cancer.
PMCID: PMC3789693  PMID: 24098497
25.  Reference-unbiased copy number variant analysis using CGH microarrays 
Nucleic Acids Research  2010;38(20):e190.
Comparative genomic hybridization (CGH) microarrays have been used to determine copy number variations (CNVs) and their effects on complex diseases. Detection of absolute CNVs independent of genomic variants of an arbitrary reference sample has been a critical issue in CGH array experiments. Whole genome analysis using massively parallel sequencing with multiple ultra-high resolution CGH arrays provides an opportunity to catalog highly accurate genomic variants of the reference DNA (NA10851). Using information on variants, we developed a new method, the CGH array reference-free algorithm (CARA), which can determine reference-unbiased absolute CNVs from any CGH array platform. The algorithm enables the removal and rescue of false positive and false negative CNVs, respectively, which appear due to the effects of genomic variants of the reference sample in raw CGH array experiments. We found that the CARA remarkably enhanced the accuracy of CGH array in determining absolute CNVs. Our method thus provides a new approach to interpret CGH array data for personalized medicine.
PMCID: PMC2978381  PMID: 20802225

Results 1-25 (1339396)