PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1520613)

Clipboard (0)
None

Related Articles

1.  A potential mechanism for the sexual dimorphism in the onset of puberty and incidence of idiopathic central precocious puberty in children: sex-specific kisspeptin as an integrator of puberty signals 
The major determinants of the variability in pubertal maturation are reported to be genetic and inherited. Nonetheless, nutritional status contributes significantly to this variability. Malnutrition delays puberty whereas obesity has been associated to a rise in Idiopathic Central Precocious Puberty (ICPP) in girls. However, epidemiology data indicate that contribution of obesity to early puberty varies significantly among ethnic groups, and that obesity-independent inheritable genetic factors are the strongest predictors of early puberty in any ethnic group. In fact, two human mutations with confirmed association to ICPP have been identified in children with no history of obesity. These mutations are in kisspeptin and kisspeptin receptor, a ligand/receptor pair with a major role on the onset of puberty and female cyclicity after puberty. Progressive increases in kisspeptin expression in hypothalamic nuclei known to regulate reproductive function has been associated to the onset of puberty, and hypothalamic expression of kisspeptin is reported to be sexually dimorphic in many species, which include humans. The hypothalamus of females is programmed to express significantly higher levels of kisspeptin than their male counterparts. Interestingly, incidence of ICPP and delayed puberty in children is markedly sexually dimorphic, such that ICPP is at least 10-fold more frequent in females, whereas prevalence of delayed puberty is about 5-fold higher in males. These observations are consistent with a possible involvement of sexually dimorphic kisspeptin signaling in the sexual dimorphism of normal puberty and of pubertal disorders in children of all ethnicities. This review discusses the likelihood of such associations, as well as a potential role of kisspeptin as the converging target of environmental, metabolic, and hormonal signals, which would be integrated in order to optimize reproductive function.
doi:10.3389/fendo.2012.00149
PMCID: PMC3521239  PMID: 23248615
central precocious puberty; kisspeptin receptor signaling; reproduction; LH surge; sexual differentiation of the brain
2.  Gonadal and Non-Gonadal Regulation of Sex Differences in Hypothalamic Kiss1 Neurons 
Journal of neuroendocrinology  2010;22(7):682-691.
The brains of males and females differ anatomically and physiologically, including sex differences in neuron size or number, synapse morphology, and specific patterns of gene expression. Brain sex differences may underlie critical sex differences in physiology or behavior, including several aspects of reproduction, such as the timing of sexual maturation (earlier in females than males) and the ability to generate a preovulatory gonadotropin surge (in females only). The reproductive axis is controlled by afferent pathways that converge upon forebrain gonadotropin-releasing hormone (GnRH) neurons, but GnRH neurons are not sexually dimorphic. Although most reproductive sex differences probably reflect sex differences in the upstream circuits and factors that regulate GnRH secretion, the key sexually-dimorphic factors that influence reproductive status have remained poorly defined. The recently-identified neuropeptide kisspeptin, encoded by the Kiss1 gene, is an important regulator of GnRH secretion, and Kiss1 neurons in rodents are sexually dimorphic in specific hypothalamic populations, including the anteroventral periventricular nucleus—periventricular nucleus continuum (AVPV/PeN) and the arcuate nucleus (ARC). In the adult AVPV/PeN, Kiss1 neurons are more abundant in females than males, a sex difference which is regulated by estradiol signaling during critical periods of postnatal and pubertal development. In contrast, Kiss1 neurons in the ARC are not sexually differentiated in adult rodents, but in mice, the regulation of ARC Kiss1 cells by gonadal hormone-independent factors is sexually dimorphic during prepubertal development. These various sex differences in hypothalamic Kiss1 neurons may relate to known sex differences in reproductive physiology, such as puberty onset and positive feedback.
doi:10.1111/j.1365-2826.2010.02030.x
PMCID: PMC3096441  PMID: 20492362
kisspeptin; Kiss1; GPR54; Kiss1r; sexual differentiation; sex differences; development; puberty; hypothalamus; hormone; estrogen
3.  A Pair of Mouse KRAB Zinc Finger Proteins Modulates Multiple Indicators of Female Reproduction1 
Biology of Reproduction  2009;82(4):662-668.
Krüppel-associated box-zinc finger proteins (KRAB-ZFPs) are the largest class of transcriptional regulators in mammals, yet few have been assigned biological roles. Cloning the genes underlying the regulator of sex-limitation (rsl) phenotype, in which the normally male-specific sex-limited protein (SLP) is expressed in female mice, identified two KRAB-ZFPs, Rsl1 and Rsl2, as influencing sexually dimorphic liver gene expression. Combined absence of both repressors in rsl mice leads to increased expression in female liver of major urinary proteins (MUPs) and certain enzymes of steroid metabolism, as well as SLP. We hypothesized that this altered gene expression might affect reproductive physiology in rsl females. Urinary MUP (uMUP) concentration varied with the estrous cycle in both wt and rsl females but was consistently higher in rsl urine. A behavioral odor test revealed that wild-type (wt) males preferred rsl to wt females, possibly due to elevated uMUPs providing greater pheromone presentation. To ascribe activity to Rsl1, Rsl2, or both, the genes were individually expressed as liver-specific transgenes. RSL2 overexpression accentuated uMUP fluctuations across the estrous cycle, whereas RSL1 overexpression did not. In addition, puberty onset, as indicated by vaginal opening (VO), occurred 2 days earlier in rsl females, and excess RSL2, but not RSL1, restored VO timing to wt. Hence, transcriptional repression by RSL in liver modifies female mouse reproduction via targets that likely impact both hormonal and pheromonal cues. The large and rapidly diversifying KRAB-ZFP family may modulate biological processes, including reproduction, to confer individual differences that may isolate populations and ultimately lead to speciation.
The KRAB-zinc finger transcriptional repressors, regulator of sex-limitation (RSL) 1 and RSL2, influence timing of female puberty and MUP levels through estrous by effects on liver gene expression.
doi:10.1095/biolreprod.109.080846
PMCID: PMC2842485  PMID: 20042539
gene regulation; major urinary protein; mechanisms of hormone action; pheromones; pubertal timing; puberty; regulator of sex-limitation; sexual dimorphism; sexually dimorphic gene expression
4.  Reproductive Hormone-Dependent and -Independent Contributions to Developmental Changes in Kisspeptin in GnRH-Deficient Hypogonadal Mice 
PLoS ONE  2010;5(7):e11911.
Kisspeptin is a potent activator of GnRH-induced gonadotropin secretion and is a proposed central regulator of pubertal onset. In mice, there is a neuroanatomical separation of two discrete kisspeptin neuronal populations, which are sexually dimorphic and are believed to make distinct contributions to reproductive physiology. Within these kisspeptin neuron populations, Kiss1 expression is directly regulated by sex hormones, thereby confounding the roles of sex differences and early activational events that drive the establishment of kisspeptin neurons. In order to better understand sex steroid hormone-dependent and -independent effects on the maturation of kisspeptin neurons, hypogonadal (hpg) mice deficient in GnRH and its downstream effectors were used to determine changes in the developmental kisspeptin expression. In hpg mice, sex differences in Kiss1 mRNA levels and kisspeptin immunoreactivity, typically present at 30 days of age, were absent in the anteroventral periventricular nucleus (AVPV). Although immunoreactive kisspeptin increased from 10 to 30 days of age to levels intermediate between wild type (WT) females and males, corresponding increases in Kiss1 mRNA were not detected. In contrast, the hpg arcuate nucleus (ARC) demonstrated a 10-fold increase in Kiss1 mRNA between 10 and 30 days in both females and males, suggesting that the ARC is a significant center for sex steroid-independent pubertal kisspeptin expression. Interestingly, the normal positive feedback response of AVPV kisspeptin neurons to estrogen observed in WT mice was lost in hpg females, suggesting that exposure to reproductive hormones during development may contribute to the establishment of the ovulatory gonadotropin surge mechanism. Overall, these studies suggest that the onset of pubertal kisspeptin expression is not dependent on reproductive hormones, but that gonadal sex steroids critically shape the hypothalamic kisspeptin neuronal subpopulations to make distinct contributions to the activation and control of the reproductive hormone cascade at the time of puberty.
doi:10.1371/journal.pone.0011911
PMCID: PMC2912854  PMID: 20689830
5.  Anti-Müllerian hormone may regulate the number of calbindin-positive neurons in the sexually dimorphic nucleus of the preoptic area of male mice 
Background
The male brain is putatively organised early in development by testosterone, with the sexually dimorphic nucleus of the medial preoptic area (SDN) a main exemplifier of this. However, pubescent neurogenesis occurs in the rat SDN, and the immature testes secrete anti-Müllerian hormone (AMH) as well as testosterone. We have therefore re-examined the development of the murine SDN to determine whether it is influenced by AMH and/or whether the number of calbindin-positive (calbindin+ve) neurons in it changes after pre-pubescent development.
Methods
In mice, the SDN nucleus is defined by calbindin+ve neurons (CALB-SDN). The number and size of the neurons in the CALB-SDN of male and female AMH null mutant (Amh-/-) mice and their wild-type littermates (Amh+/+) were studied using stereological techniques. Groups of mice were examined immediately before the onset of puberty (20 days postnatal) and at adulthood (129–147 days old).
Results
The wild-type pre-pubertal male mice had 47% more calbindin+ve neurons in the CALB-SDN than their female wild-type littermates. This sex difference was entirely absent in Amh-/- mice. In adults, the extent of sexual dimorphism almost doubled due to a net reduction in the number and size of calbindin+ve neurons in females and a net increase in neuron number in males. These changes occurred to a similar extent in the Amh-/- and Amh+/+ mice. Consequently, the number of calbindin+ve neurons in Amh-/- adult male mice was intermediate between Amh+/+ males and Amh+/+ females. The sex difference in the size of the neurons was predominantly generated by a female-specific atrophy after 20 days, independent of AMH.
Conclusions
The establishment of dimorphic cell number in the CALB-SDN of mice is biphasic, with each phase being subject to different regulation. The second phase of dimorphism is not dependent on the first phase having occurred as it was present in the Amh-/- male mice that have female-like numbers of calbindin+ve neurons at 20 days. These observations extend emerging evidence that the organisation of highly dimorphic neuronal networks changes during puberty or afterwards. They also raise the possibility that cellular events attributed to the imprinting effects of testosterone are mediated by AMH.
doi:10.1186/2042-6410-4-18
PMCID: PMC3852321  PMID: 24119315
Sexual dimorphic nucleus; Anti-Müllerian hormone; Puberty; Development; Childhood; Calbindin; Medial preoptic area; Imprinting
6.  Abnormal anthropometric measurements and growth pattern in male adolescent idiopathic scoliosis 
European Spine Journal  2011;21(1):77-83.
Purpose
The progression of adolescent idiopathic scoliosis is closely correlated with longitudinal growth during puberty. A decreased incidence of curve progression has been found in male patients with adolescent idiopathic scoliosis compared with female patients with the condition. This finding implies that there might be a sexual dimorphism in the pubertal growth patterns of adolescent idiopathic scoliosis patients. Abnormal pubertal growth in female adolescent idiopathic scoliosis patients has been well characterized; however, the pubertal growth patterns of male adolescent idiopathic scoliosis patients have not been reported. We conducted a cross-sectional study of anthropometric measurements to compare the growth patterns of male patients with adolescent idiopathic scoliosis with those of healthy boys during puberty and explore the difference in the pubertal growth patterns of female and male patients with adolescent idiopathic scoliosis.
Methods
A total of 688 subjects were involved in the study, including 332 male adolescent idiopathic scoliosis patients and 356 age-matched healthy boys. The subjects were categorized according to their chronological ages. Their body weights, heights and arm spans were obtained using standard methods; the corrected body heights of the adolescent idiopathic scoliosis boys were determined using Bjour’s equation. The inter-group differences in the anthropometric parameters were analyzed. Multivariate regression analysis was carried out in the adolescent idiopathic scoliosis patients to identify the anthropometric parameters that influence curve severity.
Results
The corrected standing heights and arm spans of male adolescent idiopathic scoliosis patients were similar to those of the matched controls during puberty. However, the body weights of the adolescent idiopathic scoliosis patients who were more than 14 years old were significantly less than those of the control group. The body mass index of the adolescent idiopathic scoliosis patients between the ages of 15 and 17 were also significantly less than those of the control subjects. Moreover, a significantly higher incidence of underweight was found in adolescent idiopathic scoliosis patients (8.6%) than in the controls (3.4%). Upon multivariate regression analysis, body weight and chronological age were identified as independent predictors of curve magnitude in male adolescent idiopathic scoliosis patients. The male adolescent idiopathic scoliosis patients with variable curve patterns exhibited no significant differences in their anthropometric parameters.
Conclusions
The results showed abnormal pubertal growth in the male adolescent idiopathic scoliosis patients compared with their age- and gender-matched normal controls. Despite similar longitudinal growth, the male patients with adolescent idiopathic scoliosis exhibited significantly lower body weights and a higher incidence of underweight during the later stage of puberty compared with their normal controls. These abnormalities in the pubertal growth of male patients were different from those observed in female patients with adolescent idiopathic scoliosis. Body weight could be an important parameter for further longitudinal studies on the prognostication of curve progression in adolescent idiopathic scoliosis.
doi:10.1007/s00586-011-1960-x
PMCID: PMC3252435  PMID: 21826498
Adolescent idiopathic scoliosis; Male; Anthropometric measurement; Underweight; Pubertal growth
7.  Peri-pubertal exposure to testicular hormones organizes response to novel environments and social behaviour in adult male rats 
Hormones and Behavior  2015;73:135-141.
Previous research has shown that exposure to testicular hormones during the peri-pubertal period of life has long-term, organizational effects on adult sexual behaviour and underlying neural mechanisms in laboratory rodents. However, the organizational effects of peri-pubertal testicular hormones on other aspects of behaviour and brain function are less well understood. Here, we investigated the effects of manipulating peri-pubertal testicular hormone exposure on later behavioural responses to novel environments and on hormone receptors in various brain regions that are involved in response to novelty. Male rodents generally spend less time in the exposed areas of novel environments than females, and this sex difference emerges during the peri-pubertal period. Male Lister-hooded rats (Rattus norvegicus) were castrated either before puberty or after puberty, then tested in three novel environments (elevated plus-maze, light–dark box, open field) and in an object/social novelty task in adulthood. Androgen receptor (AR), oestrogen receptor (ER1) and corticotropin-releasing factor receptor (CRF-R2) mRNA expression were quantified in the hypothalamus, hippocampus and medial amygdala. The results showed that pre-pubertally castrated males spent more time in the exposed areas of the elevated-plus maze and light–dark box than post-pubertally castrated males, and also confirmed that peri-pubertal hormone exposure influences later response to an opposite-sex conspecific. Hormone receptor gene expression levels did not differ between pre-pubertally and post-pubertally castrated males in any of the brain regions examined. This study therefore demonstrates that testicular hormone exposure during the peri-pubertal period masculinizes later response to novel environments, although the neural mechanisms remain to be fully elucidated.
Highlights
•Pre- and post-pubertally castrated male rats were tested in novel environments and with novel opposite-sex conspecifics.•Males that were castrated before puberty spent more time in the exposed areas of novel environments.•Males that were castrated after puberty spent more time investigating opposite-sex conspecifics.•No differences were found in hormone receptor gene expression levels in the brain between treatment groups.•Exposure to testicular hormones during the peri-pubertal period organizes later behaviour.
doi:10.1016/j.yhbeh.2015.07.003
PMCID: PMC4550464  PMID: 26159287
Adolescence; Testosterone; Sex differences; Exploration; Sexual behaviour; Castration
8.  Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases 
The Journal of Clinical Investigation  null;126(4):1525-1537.
Autoimmune diseases affect 5% to 8% of the population, and females are more susceptible to these diseases than males. Here, we analyzed human thymic transcriptome and revealed sex-associated differences in the expression of tissue-specific antigens that are controlled by the autoimmune regulator (AIRE), a key factor in central tolerance. We hypothesized that the level of AIRE is linked to sexual dimorphism susceptibility to autoimmune diseases. In human and mouse thymus, females expressed less AIRE (mRNA and protein) than males after puberty. These results were confirmed in purified murine thymic epithelial cells (TECs). We also demonstrated that AIRE expression is related to sexual hormones, as male castration decreased AIRE thymic expression and estrogen receptor α–deficient mice did not show a sex disparity for AIRE expression. Moreover, estrogen treatment resulted in downregulation of AIRE expression in cultured human TECs, human thymic tissue grafted to immunodeficient mice, and murine fetal thymus organ cultures. AIRE levels in human thymus grafted in immunodeficient mice depended upon the sex of the recipient. Estrogen also upregulated the number of methylated CpG sites in the AIRE promoter. Together, our results indicate that in females, estrogen induces epigenetic changes in the AIRE gene, leading to reduced AIRE expression under a threshold that increases female susceptibility to autoimmune diseases.
doi:10.1172/JCI81894
PMCID: PMC4811157  PMID: 26999605
9.  Sex-specific processing of social cues in the medial amygdala 
eLife  2014;3:e02743.
Animal–animal recognition within, and across species, is essential for predator avoidance and social interactions. Despite its essential role in orchestrating responses to animal cues, basic principles of information processing by the vomeronasal system are still unknown. The medial amygdala (MeA) occupies a central position in the vomeronasal pathway, upstream of hypothalamic centers dedicated to defensive and social responses. We have characterized sensory responses in the mouse MeA and uncovered emergent properties that shed new light onto the transformation of vomeronasal information into sex- and species-specific responses. In particular, we show that the MeA displays a degree of stimulus selectivity and a striking sexually dimorphic sensory representation that are not observed in the upstream relay of the accessory olfactory bulb (AOB). Furthermore, our results demonstrate that the development of sexually dimorphic circuits in the MeA requires steroid signaling near the time of puberty to organize the functional representation of sensory stimuli.
DOI: http://dx.doi.org/10.7554/eLife.02743.001
eLife digest
Many animals emit and detect chemicals known as pheromones to communicate with other members of their own species. Animals also rely on chemical signals from other species to warn them, for example, that a predator is nearby. Many of these chemical signals—which are present in sweat, tears, urine, and saliva—are detected by a structure called the vomeronasal organ, which is located at the base of the nasal cavity.
When this organ detects a particular chemical signal, it broadcasts this information to a network of brain regions that generates an appropriate behavioral response. Two structures within this network, the accessory olfactory bulb and the medial amygdala, play an important role in modifying this signal before it reaches its final destination—a region of the brain called the hypothalamus. Activation of the hypothalamus by the signal triggers changes in the animal's behavior. Although the anatomical details of this pathway have been widely studied, it is not clear how information is actually transmitted along it.
Now, Bergan et al. have provided insights into this process by recording signals in the brains of anesthetized mice exposed to specific stimuli. Whereas neurons in the accessory olfactory bulb responded similarly in male and female mice, those in the medial amygdala showed a preference for female urine in male mice, and a preference for male urine in the case of females. This is the first direct demonstration of differences in sensory processing in the brains of male and female mammals.
These differences are thought to result from the actions of sex hormones, particularly estrogen, on brain circuits during development. Consistent with this, neurons in the medial amygdala of male mice with reduced levels of estrogen showed a reduced preference for female urine compared to control males. Similarly, female mice that had been previously exposed to high levels of estrogen as pups showed a reduced preference for male urine compared to controls.
In addition to increasing understanding of how chemical signals—including pheromones—influence the responses of rodents to other animals, the work of Bergan et al. has provided clues to the neural mechanisms that underlie sex-specific differences in behaviors.
DOI: http://dx.doi.org/10.7554/eLife.02743.002
doi:10.7554/eLife.02743
PMCID: PMC4038839  PMID: 24894465
medial amygdala; sensory representation; sexual dimorphism; vomeronasal system; pheromones; behavior; mouse
10.  Environmental and social influences on neuroendocrine puberty and behavior in macaques and other nonhuman primates 
Hormones and behavior  2013;64(2):226-239.
Puberty is the developmental period when the hypothalamic-pituitary-gonadal (HPG) axis is activated, following a juvenile quiescent period, and reproductive capacity matures. Although pubertal events occur in a consistent sequence, there is considerable variation between individuals in the onset and timing of pubertal events, with puberty onset occurring earlier in girls than in boys. Evidence in humans demonstrates that social and environmental context influences the timing of puberty onset and may account for some of the observed variation. This review analyzes the nonhuman primate literature, focusing primarily on rhesus macaques (Macaca mulatta), to examine the social and environmental influences on puberty onset, how these factors influence puberty in males and females, and to review the relationship between puberty onset of adult neuroendocrine function and sexual behavior. Social and environmental factors influence the timing of puberty onset and pubertal events in nonhuman primates, as in humans, and the influences of these factors differ for males and females. In nonhuman primates, gonadal hormones are not required for sexual behavior, but modulate the frequency of occurrence of behavior, with social context influencing the relationship between gonadal hormones and sexual behavior. Thus, the onset of sexual behavior is independent of neuroendocrine changes at puberty; however, there are distinct behavioral changes that occur at puberty, which are modulated by social context. Puberty is possibly the developmental period when hormonal modulation of sexual behavior is organized, and thus, when social context interacts with hormonal state to strongly influence the expression of sexual behavior.
doi:10.1016/j.yhbeh.2013.05.003
PMCID: PMC3762264  PMID: 23998667
Puberty onset; Social influence; Environmental influence; Sex differences; Nonhuman primate; Sexual behavior
11.  Lactation undernutrition leads to multigenerational molecular programming of hypothalamic gene networks controlling reproduction 
BMC Genomics  2016;17:333.
Background
Reproductive success is dependent on development of hypothalamic circuits involving many hormonal systems working in concert to regulate gonadal function and sexual behavior. The timing of pubertal initiation and progression in mammals is likely influenced by the nutritional and metabolic state, leading us to the hypothesis that transient malnutrition experienced at critical times during development may perturb pubertal progression through successive generations. To test this hypothesis we have utilized a mouse model of undernutrition during suckling by exposing lactating mothers to undernutrition.
Results
Using a combination of transcriptomic and biological approaches, we demonstrate that molecular programming of hypothalamus may perturb gender specific phenotypes across generations that are dependent on the nutritional environment of the lactation period. Lactation undernutrition in first (F1) generation offspring affected body composition, reproductive performance parameters and influenced the expression of genes responsible for hypothalamic neural circuits controlling reproductive function of both sexes. Strikingly, F2 offspring showed phenotypes similar to F1 progeny; however, they were sex and parental nutritional history specific. Here, we showed that deregulated expression of genes involved in kisspeptin signaling within the hypothalamus is strongly associated with a delay in the attainment of puberty in F1 and F2 male and female offspring.
Conclusion
The early developmental plasticity of hypothalamus when challenged with undernutrition during postnatal development not only leads to altered expression of genes controlling hypothalamic neural circuits, altered body composition, delayed puberty and disturbed reproductive performance in F1 progeny, but also affects F2 offspring, depending on parental malnutrition history and in sexually dimorphic manner.
Electronic supplementary material
The online version of this article (doi:10.1186/s12864-016-2615-4) contains supplementary material, which is available to authorized users.
doi:10.1186/s12864-016-2615-4
PMCID: PMC4857247  PMID: 27146259
Hypothalamus; Kisspeptin; Leptin; Reproductive performance; Multigenerational programming
12.  Fungal Infection Induces Sex-Specific Transcriptional Changes and Alters Sexual Dimorphism in the Dioecious Plant Silene latifolia  
PLoS Genetics  2015;11(10):e1005536.
Sexual dimorphism, including differences in morphology, behavior and physiology between females and males, is widespread in animals and plants and is shaped by gene expression differences between the sexes. Such expression differences may also underlie sex-specific responses of hosts to pathogen infections, most notably when pathogens induce partial sex reversal in infected hosts. The genetic changes associated with sex-specific responses to pathogen infections on the one hand, and sexual dimorphism on the other hand, remain poorly understood. The dioecious White Campion (Silene latifolia) displays sexual dimorphism in floral traits and infection with the smut fungus Micobrotryum lychnidis-dioicae induces a partial sex reversal in females. We find strong sex-specific responses to pathogen infection and reduced sexual dimorphism in infected S. latifolia. This provides a direct link between pathogen-mediated changes in sex-biased gene expression and altered sexual dimorphism in the host. Expression changes following infection affected mainly genes with male-biased expression in healthy plants. In females, these genes were up-regulated, leading to a masculinization of the transcriptome. In contrast, infection in males was associated with down-regulation of these genes, leading to a demasculinization of the transcriptome. To a lesser extent, genes with female-biased expression in healthy plants were also affected in opposite directions in the two sexes. These genes were overall down-regulated in females and up-regulated in males, causing, respectively, a defeminization in infected females and a feminization of the transcriptome in infected males. Our results reveal strong sex-specific responses to pathogen infection in a dioecious plant and provide a link between pathogen-induced changes in sex-biased gene expression and sexual dimorphism.
Author Summary
Females and males differ from each other in many traits, including morphology, behavior and physiology. Differences in gene expression between the sexes, known as sex-biased gene expression, contribute to such sexual dimorphism. Here we characterize the responses of females and males of the dioecious plant Silene latifolia to infection with the anther smut fungus Micobrotryum lychnidis-dioicae. This fungus sterilizes the plant and induces a partial sex reversal in female hosts that form rudimentary stamens, thus allowing the fungus to transmit its spores via pollinators. Our comparisons of gene expression in healthy and infected plants reveal strong sex-specific responses to anther smut infection. Expression changes in females and males are in opposite directions and are associated with reduced sexual dimorphism between infected females and males. Our study reveals that infection with the anther smut fungus alters the extent of sex-biased gene expression in S. latifolia in a sex-specific manner and highlights how transcriptomic changes in females and males shape sexual dimorphism.
doi:10.1371/journal.pgen.1005536
PMCID: PMC4598173  PMID: 26448481
13.  Involvement of Gonadal Steroids and Gamma Interferon in Sex Differences in Response to Blood-Stage Malaria Infection†  
Infection and Immunity  2006;74(6):3190-3203.
To examine the hormonal and immunological mechanisms that mediate sex differences in susceptibility to malaria infection, intact and gonadectomized (gdx) C57BL/6 mice were inoculated with Plasmodium chabaudi AS-infected erythrocytes, and the responses to infection were monitored. In addition to reduced mortality, intact females recovered from infection-induced weigh loss and anemia faster than intact males. Expression microarrays and real-time reverse transcription-PCR revealed that gonadally intact females exhibited higher expression of interleukin-10 (IL-10), IL-15Rα, IL-12Rβ, Gadd45γ, gamma interferon (IFN-γ), CCL3, CXCL10, CCR5, and several IFN-inducible genes in white blood cells and produced more IFN-γ than did intact males and gdx females, with these differences being most pronounced during peak parasitemia. Intact females also had higher anti-P. chabaudi immunoglobulin G (IgG) and IgG1 responses than either intact males or gdx females. To further examine the effector mechanisms mediating sex differences in response to P. chabaudi infection, responses to infection were compared among male and female wild-type (WT), T-cell-deficient (TCRβδ−/−), B-cell-deficient (μMT), combined T- and B-cell-deficient (RAG1), and IFN-γ knockout (IFN-γ−/−) mice. Males were 3.5 times more likely to die from malaria infection than females, with these differences being most pronounced among TCRβδ−/−, μMT, and RAG1 mice. Male mice also exhibited more severe weight loss, anemia, and hypothermia, and higher peak parasitemia than females during infection, with WT, RAG1, TCRβδ−/−, and μMT mice exhibiting the most pronounced sexual dimorphism. The absence of IFN-γ reduced the sex difference in mortality and was more detrimental to females than males. These data suggest that differential transcription and translation of IFN-γ, that is influenced by estrogens, may mediate sex differences in response to malaria.
doi:10.1128/IAI.00008-06
PMCID: PMC1479253  PMID: 16714546
14.  Long-term effects of pubertal stressors on female sexual receptivity and estrogen receptor-α expression in CD-1 female mice 
Hormones and behavior  2011;59(4):565-571.
Exposure to stress during puberty can lead to long-term behavioral alterations. Female mice of the inbred C57BL/6 strain have been shown to display lower levels of sexual receptivity in adulthood when exposed to shipping stress or to an immune challenge during puberty. The present study investigated whether this effect can be extended to CD1 outbred mice and examined a possible mechanism through which exposure to stressors could suppress sexual receptivity. The results revealed that CD1 mice injected with lipopolysaccharide (LPS) or exposed to shipping stress at six weeks old display lower levels of sexual receptivity in response to estradiol and progesterone in adulthood than control mice. Moreover, mice exposed to shipping stress at eight weeks old also displayed reduced sexual receptivity, but those injected with LPS at that time showed slightly reduced effects, suggesting that the sensitive pubertal period extends to eight weeks of age in this strain of mice. The examination of estrogen receptor-α (ER-α) expression revealed that mice exposed to shipping stress during the sensitive period (six weeks) display lower levels of ER-α expression in the medial preoptic area and the ventromedial nucleus and the arcuate nucleus of the hypothalamus than mice shipped at a younger age. These findings support the prediction that exposure to shipping stress or LPS during puberty decreases behavioral responsiveness to estradiol and progesterone in adulthood in an outbred strain of mice through enduring suppression of ER-α expression in some brain areas involved in the regulation of female sexual behavior.
doi:10.1016/j.yhbeh.2011.02.010
PMCID: PMC3085923  PMID: 21376052
Puberty; Stress; Female sexual behavior; Estrogen receptor-α; CD1 mice
15.  Lack of sexual dimorphism in femora of the eusocial and hypogonadic naked mole-rat; a novel animal model for the study of delayed puberty on the skeletal system 
Bone  2009;46(1):112-120.
Sex steroid hormones are major determinants of bone morphology and quality and are responsible for sexually dimorphic skeletal traits. Hypogonadism results in suboptimal skeletal development and may lead to an increased risk of bone fracture later in life. The etiology of delayed puberty and/or hypothalamic amenorrhea is poorly understood, and experimental animal models addressing this issue are predominantly based upon short-term experimental induction of hormonal suppression via gonadotropin releasing hormone antagonists (GnRH-a). This acute change in hormone profile does not necessarily emulate the natural progression of hypogonadic bone disorders. We propose a novel animal model with which to explore the effects of chronic hypogonadism on bone quality, the naked mole-rat (NMR; Heterocephalus glaber). This mouse-size rodent may remain reproductively suppressed throughout its life, if it remains as a subordinate within the eusocial mole-rat colony. NMRs live in large colonies with a single dominant breeding female. She, primarily by using aggressive social contact, naturally suppresses the hypothalamic gonadotropic axis of subordinate NMRs and thereby their reproductive expression. However should an NMR be separated from the dominant breeder, within less than a week reproductive hormones may become elevated and the animal attains breeding status. We questioned if sexual suppression of subordinates impact upon the development and maintenance of the femora, and lead to a sexually indistinct monomorphic skeleton. Femora were obtained from male and female NMRs that were either non-breeders (subordinate) or breeders at the time of sacrifice. Diaphyseal cross-sectional morphology, metaphyseal trabecular micro-architecture and tissue mineral density of the femur was measured using MicroComputed tomography and diaphyseal mechanical properties were assessed by four-point bending tests to failure.
Subordinates were sexually monomorphic and showed no significant differences in body weight or femoral bone structure and quality between male and females. Femora of subordinate females differed significantly from that of breeding animals, whereas in males, the divergent trend among breeders and non-breeders did not reach statistical significance. Subordinate NMRs, naturally suppressed from entering puberty, may prove to be a useful model to tease apart the relationship between bone morphology and hypogonadism and evaluate skeletal development during pubertal maturation.
doi:10.1016/j.bone.2009.08.060
PMCID: PMC4783644  PMID: 19761882
Naked mole-rats; bone strength; bone quality; aging; hypogonadic; delayed puberty
16.  Y-linked variation for autosomal immune gene regulation has the potential to shape sexually dimorphic immunity 
Sexually dimorphic phenotypes arise from the differential expression of male and female shared genes throughout the genome. Unfortunately, the underlying molecular mechanisms by which dimorphic regulation manifests and evolves are unclear. Recent work suggests that Y-chromosomes may play an important role, given that Drosophila melanogaster Ys were shown to influence the regulation of hundreds of X and autosomal genes. For Y-linked regulatory variation (YRV) to facilitate sexually dimorphic evolution, however, it must exist within populations (where selection operates) and influence male fitness. These criteria have seldom been investigated, leaving the potential for dimorphic evolution via YRV unclear. Interestingly, male and female D. melanogaster differ in immune gene regulation. Furthermore, immune gene regulation appears to be influenced by the Y-chromosome, suggesting it may contribute to dimorphic immune evolution. We address this possibility by introgressing Y-chromosomes from a single wild population into an isogenic background (to create Y-lines) and assessing immune gene regulation and bacterial defence. We found that Y-line males differed in their immune gene regulation and their ability to defend against Serratia marcescens. Moreover, gene expression and bacterial defence were positively genetically correlated. These data indicate that the Y-chromosome has the potential to shape the evolution of sexually dimorphic immunity in this system.
doi:10.1098/rspb.2015.1301
PMCID: PMC4685771  PMID: 26631557
Y-linked regulatory variation; gene expression; fitness; sexual dimorphism; Serratia marcescens
17.  An Evolutionarily Conserved Sexual Signature in the Primate Brain 
PLoS Genetics  2008;4(6):e1000100.
The question of a potential biological sexual signature in the human brain is a heavily disputed subject. In order to provide further insight into this issue, we used an evolutionary approach to identify genes with sex differences in brain expression level among primates. We reasoned that expression patterns important to uphold key male and female characteristics may be conserved during evolution. We selected cortex for our studies because this specific brain region is responsible for many higher behavioral functions. We compared gene expression profiles in the occipital cortex of male and female humans (Homo sapiens, a great ape) and cynomolgus macaques (Macaca fascicularis, an old world monkey), two catarrhine species that show abundant morphological sexual dimorphism, as well as in common marmosets (Callithrix Jacchus, a new world monkey) which are relatively sexually monomorphic. We identified hundreds of genes with sex-biased expression patterns in humans and macaques, while fewer than ten were differentially expressed between the sexes in marmosets. In primates, a general rule is that many of the morphological and behavioral sexual dimorphisms seen in polygamous species, such as macaques, are typically less pronounced in monogamous species such as the marmosets. Our observations suggest that this correlation may also be reflected in the extent of sex-biased gene expression in the brain. We identified 85 genes with common sex-biased expression, in both human and macaque and 2 genes, X inactivation-specific transcript (XIST) and Heat shock factor binding protein 1 (HSBP1), that were consistently sex-biased in the female direction in human, macaque, and marmoset. These observations imply a conserved signature of sexual gene expression dimorphism in cortex of primates. Further, we found that the coding region of female-biased genes is more evolutionarily constrained compared to the coding region of both male-biased and non sex-biased brain expressed genes. We found genes with conserved sexual gene expression dimorphism in the occipital cortex of humans, cynomolgus macaques, and common marmosets. Genes within sexual expression profiles may underlie important functional differences between the sexes, with possible importance during primate evolution.
Author Summary
The contribution of genetics versus environment to behavioral differences between the sexes is a fundamental question in neuroscience. We hypothesized that some differences between the sexes might be partially explained by sexually dependent gene expression differences in the brain. We further speculated that if differences in gene expression between males and females are functionally important, they may be conserved in the evolution of primates. To test these hypotheses, we measured gene expression in the brains of male and female primates from three species: humans (Homo sapiens), macaques (Macaca fascicularis), and marmosets (Callithrix jacchus). Our results point to a conserved signature of sexual gene expression dimorphism in the brains of primates. Interestingly, we found that genes with conserved sexual gene expression dimorphism in the brain also evolve under more evolutionary constraint, compared with other genes, suggesting that they may have important roles during evolution of sex in primates. Moreover, we found higher evolutionary constrains in the coding regions of female-biased genes as compared to both male-biased and non sex-biased brain expressed genes. The study of sex dimorphic genes may in the future shed light on the basis of psychiatric diseases with differences in prevalence between the sexes.
doi:10.1371/journal.pgen.1000100
PMCID: PMC2413013  PMID: 18566661
18.  Differential Expression of Inflammatory Cytokines and Stress Genes in Male and Female Mice in Response to a Lipopolysaccharide Challenge 
PLoS ONE  2016;11(4):e0152289.
Background
Sex plays a key role in an individual’s immune response against pathogenic challenges such that females fare better when infected with certain pathogens. It is thought that sex hormones impact gene expression in immune cells and lead to sexually dimorphic responses to pathogens. We predicted that, in the presence of E. coli gram-negative lipopolysaccharide (LPS), there would be a sexually dimorphic response in proinflammatory cytokine production and acute phase stress gene expression and that these responses might vary among different mouse strains and times in a pattern opposite to that of body temperature associated with LPS-induced shock.
Materials and Methods
Interleukin-6 (IL-6), macrophage inflammatory protein-Iβ (MIP-1β), tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) as well as beta-fibrinogen (Fgb) and metallothionein-1 (Mt-1) mRNA expression were measured at four time points (0, 2, 4 and 7 hours) after injection of E. coli LPS in mice from three inbred strains.
Results
Statistical analysis using analyses of variance (ANOVAs) showed that the levels of the all six traits changed over time, generally peaking at 2 hours after LPS injection. Mt-1, Fgb, and IL-6 showed differences among strains, although these were time-specific. Sexual dimorphism was seen for Fgb and IL6, and was most pronounced at the latest time period (7 hours) where male levels exceeded those for females. Trends for all six cytokine/gene expression traits were negatively correlated with those for body temperatures.
Discussion
The higher levels of expression of Fgb and IL6 in males compared with females are consistent with the greater vulnerability of males to infection and subsequent inflammation. Temperature appears to be a useful proxy for mortality in endotoxic shock, but sexual dimorphism in cytokine and stress gene expression levels may persist after an LPS challenge even if temperatures in the two sexes are similar and have begun to stabilize.
doi:10.1371/journal.pone.0152289
PMCID: PMC4847773  PMID: 27120355
19.  Molecular Profiling of Postnatal Development of the Hypothalamus in Female and Male Rats1 
Biology of Reproduction  2012;87(6):129.
ABSTRACT
Reproductive function is highly dynamic during postnatal developmental. Here, we performed molecular profiling of gene expression patterns in the hypothalamus of developing male and female rats to identify which genes are sexually dimorphic, to gain insight into a more complex network of hypothalamic genes, and to ascertain dynamic changes in their relationships with one another and with sex steroid hormones during development. Using a low-density PCR platform, we quantified mRNA levels in the preoptic area (POA) and medial basal hypothalamus (MBH), and assayed circulating estradiol, testosterone, and progesterone at six ages from birth through adulthood. Numerous genes underwent developmental change, particularly postnatal increases, decreases, or peaks/plateaus at puberty. Surprisingly, there were few sex differences; only Esr1, Kiss1, and Tac2 were dimorphic (higher in females). Cluster analysis of gene expression revealed sexually dimorphic correlations in the POA but not the MBH from P30 (Postnatal Day 30) to P60. Hormone measurements showed few sex differences in developmental profiles of estradiol; higher levels of progesterone in females only after P30; and a developmental pattern of testosterone with a nadir at P30 followed by a dramatic increase through P60 (males). Furthermore, bionetwork analysis revealed that hypothalamic gene expression profiles and their relationships to hormones undergo dynamic developmental changes that differ considerably from adults. These data underscore the importance of developmental stage in considering the effects of hormones on the regulation of neuroendocrine genes in the hypothalamus. Moreover, the finding that few neuroendocrine genes are sexually dimorphic highlights the need to consider postnatal development from a network approach that allows assessment of interactions and patterns of expression.
Neuroendocrine gene networks undergo profound postnatal developmental changes, but only a few individual genes (Esr1, Kiss1, Tac2) are sexually dimorphic, and hormone-gene relationships undergo dynamic postnatal change.
doi:10.1095/biolreprod.112.102798
PMCID: PMC4435423  PMID: 23034157
gene expression; hypothalamus; puberty; sexual differentiation; steroid hormones
20.  Immunological Basis for the Gender Differences in Murine Paracoccidioides brasiliensis Infection 
PLoS ONE  2010;5(5):e10757.
This study aimed to investigate the immunological mechanisms involved in the gender distinct incidence of paracoccidioidomycosis (pcm), an endemic systemic mycosis in Latin America, which is at least 10 times more frequent in men than in women. Then, we compared the immune response of male and female mice to Paracoccidioides brasiliensis infection, as well as the influence in the gender differences exerted by paracoccin, a P. brasiliensis component with carbohydrate recognition property. High production of Th1 cytokines and T-bet expression have been detected in the paracoccin stimulated cultures of spleen cells from infected female mice. In contrast, in similar experimental conditions, cells from infected males produced higher levels of the Th2 cytokines and expressed GATA-3. Macrophages from male and female mice when stimulated with paracoccin displayed similar phagocytic capability, while fungicidal activity was two times more efficiently performed by macrophages from female mice, a fact that was associated with 50% higher levels of nitric oxide production. In order to evaluate the role of sexual hormones in the observed gender distinction, we have utilized mice that have been submitted to gonadectomy followed by inverse hormonal reconstitution. Spleen cells derived from castrated males reconstituted with estradiol have produced higher levels of IFN-γ (1291±15 pg/mL) and lower levels of IL-10 (494±38 pg/mL), than normal male in response to paracoccin stimulus. In contrast, spleen cells from castrated female mice that had been treated with testosterone produced more IL-10 (1284±36 pg/mL) and less IFN-γ (587±14 pg/mL) than cells from normal female. In conclusion, our results reveal that the sexual hormones had a profound effect on the biology of immune cells, and estradiol favours protective responses to P. brasiliensis infection. In addition, fungal components, such as paracoccin, may provide additional support to the gender dimorphic immunity that marks P. brasiliensis infection.
doi:10.1371/journal.pone.0010757
PMCID: PMC2873977  PMID: 20505765
21.  Social and emotional predictors of the tempo of puberty in female rhesus monkeys 
Psychoneuroendocrinology  2012;38(1):67-83.
A cascade of neuroendocrine events regulates the initiation and progression of female puberty. However, the factors that determine the timing of these events across individuals are still uncertain. While the consequences of puberty on subsequent emotional development and adult behavior have received significant attention, what is less understood are the social and environmental factors that actually alter the initiation and progression of puberty. In order to more fully understand what factors influence pubertal timing in females, the present study quantified social and emotional behavior; stress physiology; and growth and activity measures in juvenile female rhesus monkeys to determine what best predicts eventual puberty. Based on previous reports, we hypothesized that increased agonistic behavior resulting from subordinate status in their natal group, in combination with slowed growth, reduced prosocial behavior, and increased emotional reactivity would predict delayed puberty. The analyses were restricted to behavioral and physiological measures obtained prior to the onset of puberty, defined as menarche. Together, our findings indicate that higher rates of aggression but lower rates of submission received from group mates; slower weight gain; and greater emotional reactivity, evidenced by higher anxiety, distress and appeasing behaviors, and lower cortisol responsivity in response to a potentially threatening situation, predicts delayed puberty. Together the combination of these variables accounted for 58% of the variance in the age of menarche, 71% in age at first ovulation, and 45% in the duration of adolescent sterility. While early puberty may be more advantageous for the individual from a fertility standpoint, it presents significant health risks, including increased risk for a number of estrogen dependent cancers and as well as the emergence of mood disorders during adulthood. On the other hand, it is possible that increased emotional reactivity associated with delayed puberty could persist, increasing the risk for emotional dysregulation to socially challenging situations. The data argue for prospective studies that will determine how emotional reactivity shown to be important for pubertal timing is affected by early social experience and temperament, and how these stress-related variables contribute to body weight accumulation, affecting the neuroendocrine regulation of puberty.
doi:10.1016/j.psyneuen.2012.04.021
PMCID: PMC3442129  PMID: 22658962
menarche; first ovulation; puberty; emotionality; and social stress
22.  Sexually dimorphic outcomes and inflammatory responses in hypoxic-ischemic encephalopathy 
Background
Neonatal hypoxic-ischemic encephalopathy (HIE) is an important cause of motor and cognitive impairment in children. Clinically, male infants are more vulnerable to ischemic insults and suffer more long-term deficits than females; however, the mechanisms underlying this sex difference remain elusive. Inflammatory processes initiated by microglial activation are fundamental in the pathophysiology of ischemia. Recent studies report a sexual dimorphism in microglia numbers and expression of activation markers in the neonatal brain under normal conditions. How these basal sex differences in microglia affect HIE remains largely unexplored. This study investigated sex differences in ischemic outcomes and inflammation triggered by HIE. We hypothesize that ischemia induces sex-specific brain injury in male and female neonates and that microglial activation and inflammatory responses play an important role in this sexual dimorphism.
Methods
Male and female C57BL6 mice were subjected to 60-min Rice-Vanucci modeling (RVM) at post-natal day 10 (P10) to induce HIE. Stroke outcomes were measured 1, 3, 7, and 30 days after stroke. Microglial activation and inflammatory responses were evaluated by flow cytometry and cytokine analysis.
Results
On day 1 of HIE, no difference in infarct volumes or seizure scores was seen between male and female neonates. However, female neonates exhibited significantly smaller infarct size and fewer seizures compared to males 3 days after HIE. Females also had less brain tissue loss and behavioral deficits compared to males at the chronic stage of HIE. Male animals demonstrated increased microglial activation and up-regulated inflammatory response compared to females at day 3.
Conclusions
HIE leads to an equivalent primary brain injury in male and female neonates at the acute stage that develops into sexually dimorphic outcomes at later time points. An innate immune response secondary to the primary injury may contribute to sexual dimorphism in HIE.
doi:10.1186/s12974-015-0251-6
PMCID: PMC4359482  PMID: 25889641
Hypoxic-ischemic encephalopathy; Neonate; Inflammation; Infarct; Microglia
23.  Sex-dimorphism in Cardiac Nutrigenomics: effect of Trans fat and/or Monosodium Glutamate consumption 
BMC Genomics  2011;12:555.
Background
A paucity of information on biological sex-specific differences in cardiac gene expression in response to diet has prompted this present nutrigenomics investigation.
Sexual dimorphism exists in the physiological and transcriptional response to diet, particularly in response to high-fat feeding. Consumption of Trans-fatty acids (TFA) has been linked to substantially increased risk of heart disease, in which sexual dimorphism is apparent, with males suffering a higher disease rate. Impairment of the cardiovascular system has been noted in animals exposed to Monosodium Glutamate (MSG) during the neonatal period, and sexual dimorphism in the growth axis of MSG-treated animals has previously been noted. Processed foods may contain both TFA and MSG.
Methods
We examined physiological differences and changes in gene expression in response to TFA and/or MSG consumption compared to a control diet, in male and female C57BL/6J mice.
Results
Heart and % body weight increases were greater in TFA-fed mice, who also exhibited dyslipidemia (P < 0.05). Hearts from MSG-fed females weighed less than males (P < 0.05). 2-factor ANOVA indicated that the TFA diet induced over twice as many cardiac differentially expressed genes (DEGs) in males compared to females (P < 0.001); and 4 times as many male DEGs were downregulated including Gata4, Mef2d and Srebf2. Enrichment of functional Gene Ontology (GO) categories were related to transcription, phosphorylation and anatomic structure (P < 0.01). A number of genes were upregulated in males and downregulated in females, including pro-apoptotic histone deacetylase-2 (HDAC2). Sexual dimorphism was also observed in cardiac transcription from MSG-fed animals, with both sexes upregulating approximately 100 DEGs exhibiting sex-specific differences in GO categories. A comparison of cardiac gene expression between all diet combinations together identified a subset of 111 DEGs significant only in males, 64 DEGs significant in females only, and 74 transcripts identified as differentially expressed in response to dietary manipulation in both sexes.
Conclusion
Our model identified major changes in the cardiac transcriptional profile of TFA and/or MSG-fed mice compared to controls, which was reflected by significant differences in the physiological profile within the 4 diet groups. Identification of sexual dimorphism in cardiac transcription may provide the basis for sex-specific medicine in the future.
doi:10.1186/1471-2164-12-555
PMCID: PMC3238303  PMID: 22078008
24.  Characterization of growth hormone-responsive transcription factors preferentially expressed in adult female liver* 
Endocrinology  2007;148(7):3327-3337.
Plasma growth hormone (GH) profiles regulate the sexually dimorphic expression of cytochromes P450 and many other genes in rat and mouse liver, however, the proximal transcriptional regulators of these genes are unknown. Presently, we characterize three liver transcription factors that are expressed in adult female rat and mouse liver at levels up to 16-fold (Tox), 73-fold (Trim24/TIF1α), and 125-fold (Cutl2/Cux2) higher than in adult males, depending on the strain and species, with Tox expression only detected in mice. In rats, these sex differences first emerged at puberty, when the high prepubertal expression of Cutl2 and Trim24 was extinguished in males but was further increased in females. Rat hepatic expression of Cutl2 and Trim24 was abolished by hypophysectomy and, in the case of Cutl2, was restored to near-female levels by continuous GH replacement. Cutl2 and Trim24 were increased to female-like levels in livers of intact male rats and mice treated with GH continuously (female GH pattern), while Tox expression reached only about 40% of adult female levels. Expression of all three genes was also elevated to normal female levels or higher in male mice whose plasma GH profile was feminized secondary to somatostatin gene disruption. Cutl2 and Trim24 both responded to GH infusion in mice within 10–24 h and Tox within 4 d, as compared to at least 4–7 d required for the induced expression of several continuous GH-regulated cytochromes P450 and other female-specific hepatic genes. Cutl2, Trim24 and Tox were substantially up-regulated in livers of male mice deficient in either of two transcription factors implicated in GH regulation of liver sex specificity, namely, signal transducer and activator of transcription 5b (STAT5b) and hepatocyte nuclear factor 4α (HNF4α), with sex-specific expression being substantially reduced or lost in mice deficient in either nuclear factor. Cutl2 and Trim24 both display transcriptional repressor activity and could thus contribute to the loss of GH-regulated, male-specific liver gene expression seen in male mice deficient in STAT5b or HNF4α. Binding sites for Cutl1, whose DNA-binding specificity is very close to that of Cutl2, were statistically over-represented in STAT5b-dependent male-specific mouse genes, lending support to this hypothesis.
doi:10.1210/en.2006-1192
PMCID: PMC2585771  PMID: 17412818
growth hormone; STAT5b; HNF4α; liver gene expression; sex-specificity
25.  Pubertal immune challenge blocks the ability of estradiol to enhance performance on cognitive tasks in adult female mice 
Psychoneuroendocrinology  2012;38(7):1170-1177.
Summary
Puberty is a period characterized by brain reorganization that contributes to the development of neural and behavioral responses to gonadal steroids. Previously, we have shown that a single injection of the bacterial endotoxin, lipopolysaccharide (LPS; 1.5mg/kg IP), during the pubertal period (around 6 weeks old) in mice decreases sexual receptivity in response to estradiol and progesterone in adulthood. These findings suggest that pubertal immune challenge has an enduring effect of decreasing the behavioral responsiveness to gonadal steroid hormones. Since estradiol improves cognitive function in certain tasks in mice, we investigated the effect of pubertal immune challenge on the ability of estradiol to enhance cognitive function. We hypothesized that estradiol would be less effective at enhancing performance on particular cognitive tasks in female mice treated with LPS during puberty. Six-week old (pubertal) and ten-week old (adult) female CD1 mice were injected with either saline or LPS. Five weeks later, they were ovariectomized and implanted subcutaneously with either an estradiol- or oil-filled Silastic© capsule followed one week later with testing for cognitive function. The duration of juvenile investigation during social discrimination and recognition tests was used as a measure of social memory, and the duration of object investigation during object recognition and placement tests was used as a measure of object memory. Chronic estradiol treatment enhanced social and object memory in saline-treated females and in females treated with LPS in adulthood. In contrast, in females treated with LPS at 6 weeks old, estradiol failed to improve social and object memories. These results support the hypothesis that exposure to an immune challenge during puberty reduces at least some of the cognitive effects of estradiol. Moreover, these results support the idea that pubertal immune challenge compromises a wide variety of behavioral influences of ovarian hormones.
doi:10.1016/j.psyneuen.2012.11.003
PMCID: PMC3604046  PMID: 23218519
Estradiol; hippocampus-dependent tasks; immune challenge; puberty

Results 1-25 (1520613)