Search tips
Search criteria

Results 1-25 (929966)

Clipboard (0)

Related Articles

1.  Impact of Anthelminthic Treatment in Pregnancy and Childhood on Immunisations, Infections and Eczema in Childhood: A Randomised Controlled Trial 
PLoS ONE  2012;7(12):e50325.
Helminth infections may modulate immune responses to unrelated pathogens and allergens; these effects may commence prenatally. We addressed the hypothesis that anthelminthic treatment in pregnancy and early childhood would improve responses to immunisation and modulate disease incidence in early childhood with both beneficial and detrimental effects.
Methods and Findings
A randomised, double-blind, placebo-controlled trial was conducted in Entebbe, Uganda [ISRCTN32849447]. In three independent randomisations, 2507 pregnant women were allocated to receive single-dose albendazole or placebo, and praziquantel or placebo; 2016 of their offspring were randomised to receive quarterly single-dose albendazole or placebo from age 15 months to 5 years. Primary outcomes were post-immunisation recall responses to BCG and tetanus antigens, and incidence of malaria, diarrhoea, and pneumonia; incidence of eczema was an important secondary outcome. Analysis was by intention-to-treat. Of 2345 live births, 1622 (69%) children remained in follow-up at age 5 years. 68% of mothers at enrolment, and 11% of five-year-olds, had helminth infections. Maternal hookworm and Schistosoma mansoni were effectively treated by albendazole and praziquantel, respectively; and childhood hookworm and Ascaris by quarterly albendazole. Incidence rates of malaria, diarrhoea, pneumonia, and eczema were 34, 65, 10 and 5 per 100 py, respectively. Albendazole during pregnancy caused an increased rate of eczema in the children (HR 1.58 (95% CI 1.15–2.17), p = 0.005). Quarterly albendazole during childhood was associated with reduced incidence of clinical malaria (HR 0.85 (95% CI 0.73–0.98), p = 0.03). There were no consistent effects of the interventions on any other outcome.
Routine use of albendazole in pregnancy may not always be beneficial, even in tropical developing countries. By contrast, regular albendazole treatment in preschool children may have an additional benefit for malaria control where helminths and malaria are co-endemic. Given the low helminth prevalence in our children, the effect of albendazole on malaria is likely to be direct.
Trial registration
Current Controlled Trials ISRCTN32849447
PMCID: PMC3517620  PMID: 23236367
2.  Effect of single-dose anthelmintic treatment during pregnancy on an infant's response to immunisation and on susceptibility to infectious diseases in infancy: a randomised, double-blind, placebo-controlled trial 
Lancet  2011;377(9759):52-62.
Helminth infections affect the human immune response. We investigated whether prenatal exposure to and treatment of maternal helminth infections affects development of an infant's immune response to immunisations and unrelated infections.
In this randomised, double-blind, placebo-controlled trial, we enrolled 2507 women in the second or third trimester of pregnancy who were planning to deliver in Entebbe General Hospital, Entebbe, Uganda. With a computer-generated random number sequence in blocks of 100, we assigned patients to 440 mg albendazole and 40 mg/kg praziquantel (n=628), 440 mg albendazole and a praziquantel-matching placebo (n=625), 40 mg/kg praziquantel and an albendazole-matching placebo (n=626), or an albendazole-matching placebo and praziquantel-matching placebo (n=628). All participants and hospital staff were masked to allocation. Primary outcomes were immune response at age 1 year to BCG, tetanus, and measles immunisation; incidence of infectious diseases during infancy; and vertical HIV transmission. Analysis was by intention-to-treat. This trial is registered, number ISRCTN32849447.
Data were available at delivery for 2356 women, with 2345 livebirths; 2115 (90%) of liveborn infants remained in follow-up at 1 year of age. Neither albendazole nor praziquantel treatments affected infant response to BCG, tetanus, or measles immunisation. However, in infants of mothers with hookworm infection, albendazole treatment reduced interleukin-5 (geometric mean ratio 0·50, 95% CI 0·30–0·81, interaction p=0·02) and interleukin-13 (0·52, 0·34–0·82, 0·0005) response to tetanus toxoid. The rate per 100 person-years of malaria was 40·9 (95% CI 38·3–43·7), of diarrhoea was 134·1 (129·2–139·2), and of pneumonia was 22·3 (20·4–24·4). We noted no effect on infectious disease incidence for albendazole treatment (malaria [hazard ratio 0·95, 95% CI 0·79–1.14], diarrhoea [1·06, 0·96–1·16], pneumonia [1·11, 0·90–1·38]) or praziquantel treatment (malaria [1·00, 0·84–1·20], diarrhoea [1·07, 0·98–1·18], pneumonia [1·00, 0·80–1·24]). In HIV-exposed infants, 39 (18%) were infected at 6 weeks; vertical transmission was not associated with albendazole (odds ratio 0·70, 95% CI 0·35–1·42) or praziquantel (0·60, 0·29–1·23) treatment.
These results do not accord with the recently advocated policy of routine antenatal anthelmintic treatment, and the value of such a policy may need to be reviewed.
Wellcome Trust.
PMCID: PMC3018567  PMID: 21176950
3.  The influence of BCG vaccine strain on mycobacteria-specific and non-specific immune responses in a prospective cohort of infants in Uganda 
Vaccine  2012;30(12):2083-2089.
► Largest study comparing BCG strains and first to assess strain effects on non-specific responses. ► Cytokine responses to both mycobacterial and non-mycobacterial stimuli are strain-dependent. ► BCG-Denmark causes higher cytokine levels and more scars and adverse events than two other strains. ► Sex may interact with the effect of strain; non-specific responses are not associated with scars. ► BCG strain choice may be important and should be evaluated in novel vaccine strategies using BCG.
Globally, BCG vaccination varies in efficacy and has some non-specific protective effects. Previous studies comparing BCG strains have been small-scale, with few or no immunological outcomes and have compared TB-specific responses only. We aimed to evaluate both specific and non-specific immune responses to different strains of BCG within a large infant cohort and to evaluate further the relationship between BCG strain, scarring and cytokine responses.
Infants from the Entebbe Mother and Baby Study (ISRCTN32849447) who received BCG-Russia, BCG-Bulgaria or BCG-Denmark at birth, were analysed by BCG strain group. At one year, interferon-gamma (IFN-γ), interleukin (IL)-5, IL-13 and IL-10 responses to mycobacteria-specific antigens (crude culture filtrate proteins and antigen 85) and non-mycobacterial stimuli (tetanus toxoid and phytohaemagglutinin) were measured using ELISA. Cytokine responses, scar frequency, BCG associated adverse event frequency and mortality rates were compared across groups, with adjustments for potential confounders.
Both specific and non-specific IFN-γ, IL-13 and IL-10 responses in 1341 infants differed between BCG strain groups including in response to stimulation with tetanus toxoid. BCG-Denmark immunised infants showed the highest cytokine responses. The proportion of infants who scarred differed significantly, with BCG scars occurring in 52.2%, 64.1% and 92.6% of infants immunised with BCG Russia, BCG-Bulgaria and BCG-Denmark, respectively (p < 0.001). Scarred infants had higher IFN-γ and IL-13 responses to mycobacterial antigens only than infants without a scar. The BCG-Denmark group had the highest frequency of adverse events (p = 0.025). Mortality differences were not significant.
Both specific and non-specific immune responses to the BCG vaccine differ by strain. Scarring after BCG vaccination is also strain-dependent and is associated with higher IFN-γ and IL-13 responses to mycobacterial antigens. The choice of BCG strain may be an important factor and should be evaluated when testing novel vaccine strategies that employ BCG in prime–boost sequences, or as a vector for other vaccine antigens.
PMCID: PMC3314967  PMID: 22300718
BCG; Strain; Immune response; Non-specific effects; BCG scar
4.  Factors affecting the infant antibody response to measles immunisation in Entebbe-Uganda 
BMC Public Health  2013;13:619.
Vaccine failure is an important concern in the tropics with many contributing elements. Among them, it has been suggested that exposure to natural infections might contribute to vaccine failure and recurrent disease outbreaks. We tested this hypothesis by examining the influence of co-infections on maternal and infant measles-specific IgG levels.
We conducted an observational analysis using samples and data that had been collected during a larger randomised controlled trial, the Entebbe Mother and Baby Study (ISRCTN32849447). For the present study, 711 pregnant women and their offspring were considered. Helminth infections including hookworm, Schistosoma mansoni and Mansonella perstans, along with HIV, malaria, and other potential confounding factors were determined in mothers during pregnancy and in their infants at age one year. Infants received their measles immunisation at age nine months. Levels of total IgG against measles were measured in mothers during pregnancy and at delivery, as well as in cord blood and from infants at age one year.
Among the 711 pregnant women studied, 66% had at least one helminth infection at enrolment, 41% had hookworm, 20% M. perstans and 19% S. mansoni. Asymptomatic malaria and HIV prevalence was 8% and 10% respectively. At enrolment, 96% of the women had measles-specific IgG levels considered protective (median 4274 mIU/ml (IQR 1784, 7767)). IgG levels in cord blood were positively correlated to maternal measles-specific IgG levels at delivery (r = 0.81, p < 0.0001). Among the infants at one year of age, median measles-specific IgG levels were markedly lower than in maternal and cord blood (median 370 mIU/ml (IQR 198, 656) p < 0.0001). In addition, only 75% of the infants had measles-specific IgG levels considered to be protective. In a multivariate regression analysis, factors associated with reduced measles-specific antibody levels in infancy were maternal malaria infection, infant malaria parasitaemia, infant HIV and infant wasting. There was no association with maternal helminth infection.
Malaria and HIV infection in mothers during pregnancy, and in their infants, along with infant malnutrition, may result in reduction of the antibody response to measles immunisation in infancy. This re-emphasises the importance of malaria and HIV control, and support for infant nutrition, as these interventions may have benefits for vaccine efficacy in tropical settings.
PMCID: PMC3733798  PMID: 23816281
Infections; Co-infections; Measles; Helminth; Malaria; HIV; Maternal; Infants; Pregnancy; Immunisation
5.  Effects of maternal and infant co-infections, and of maternal immunisation, on the infant response to BCG and tetanus immunisation 
Vaccine  2010;29(2-2):247-255.
Some vaccines show poor efficacy in tropical countries. Within a birth cohort in Uganda, we investigated factors that might influence responses to BCG and tetanus immunisation. Whole blood assay responses to crude culture filtrate proteins of Mycobacterium tuberculosis (cCFP)) and tetanus toxoid (TT) were examined among 1506 and 1433 one-year-olds, respectively. Maternal Mansonella perstans infection was associated with higher interleukin (IL)-10 responses to both immunogens but no reduction in gamma interferon (IFN-γ), IL-5 and IL-13 responses; other maternal helminth infections showed little effect. Tetanus immunisation during pregnancy was associated with higher infant responses to TT; maternal BCG scar (from past immunisation) with lower infant IL-5 and IL-13 responses to cCFP. IFN-γ, IL-5 and IL-13 to TT were reduced in HIV-exposed-uninfected infants; infant malaria and HIV were associated with lower IFN-γ, IL-5 and IL-13 responses to both immunogens. We conclude that maternal helminth infections are unlikely to explain poor vaccine efficacy in the tropics. Effects of maternal immunisation on infant responses to vaccines should be explored. Prevention of infant malaria and HIV could contribute to effectiveness of immunisation programmes.
PMCID: PMC3021124  PMID: 21040693
BCG; Tetanus; Immunisation
6.  Human immunodeficiency virus (HIV) infection during pregnancy induces CD4 T-cell differentiation and modulates responses to Bacille Calmette-Guérin (BCG) vaccine in HIV-uninfected infants 
Immunology  2010;129(3):446-454.
Human immunodeficiency virus (HIV)-negative infants born to HIV-positive mothers frequently exhibit a range of immunological abnormalities. We tested the hypothesis that HIV during pregnancy affects the ability of CD4 T cells of HIV-negative infants to respond to vaccine challenge by recruiting HIV-negative infants born to HIV-negative and HIV-positive mothers and measuring their responses to Bacille Calmette-Guérin (BCG) vaccine given at birth. At 2 weeks, maternal HIV status did not influence CD4 T-cell counts or differentiation, but by 10 weeks CD4 counts of infants born to HIV-positive mothers fell to a level characteristic of HIV-positive infants. Among the CD4 T-cell populations, markers of differentiation (CCR7− CD45RA− CD27−) and senescence (CD57, PD-1) were more common among infants born to HIV-positive mothers than among infants born to HIV-negative mothers. At 2 weeks of age, we assessed the effector response to heat-killed BCG and tuberculin purified protein derivative (PPD) by overnight interferon (IFN)-γ enzyme-linked immunosorbent spot-forming cell assay (ELISpot), but found no measurable effect of maternal HIV status. At 10 weeks, we assessed CD4 T-cell memory by measuring proliferation in response to the same antigens. We observed a bimodal response that allowed infants to be classified as high or low responders and found that fewer infants born to HIV-positive mothers were able to mount a robust proliferative response, suggesting that their reduced CD4 counts and increased differentiation indicated a deficiency in their ability to develop immunological memory.
PMCID: PMC2826689  PMID: 20002789
Bacille Calmette-Guérin (BCG); CD4+ T lymphocytes; human immunodeficiency virus (HIV); immunological memory; infant
7.  Human immunodeficiency virus (HIV) infection during pregnancy induces CD4 T-cell differentiation and modulates responses to Bacille Calmette-Guérin (BCG) vaccine in HIV-uninfected infants 
Immunology  2010;129(3):446-454.
Human immunodeficiency virus (HIV)-negative infants born to HIV-positive mothers frequently exhibit a range of immunological abnormalities. We tested the hypothesis that HIV during pregnancy affects the ability of CD4 T cells of HIV-negative infants to respond to vaccine challenge by recruiting HIV-negative infants born to HIV-negative and HIV-positive mothers and measuring their responses to Bacille Calmette-Guérin (BCG) vaccine given at birth. At 2 weeks, maternal HIV status did not influence CD4 T-cell counts or differentiation, but by 10 weeks CD4 counts of infants born to HIV-positive mothers fell to a level characteristic of HIV-positive infants. Among the CD4 T-cell populations, markers of differentiation (CCR7− CD45RA− CD27−) and senescence (CD57, PD-1) were more common among infants born to HIV-positive mothers than among infants born to HIV-negative mothers. At 2 weeks of age, we assessed the effector response to heat-killed BCG and tuberculin purified protein derivative (PPD) by overnight interferon (IFN)-γ enzyme-linked immunosorbent spot-forming cell assay (ELISpot), but found no measurable effect of maternal HIV status. At 10 weeks, we assessed CD4 T-cell memory by measuring proliferation in response to the same antigens. We observed a bimodal response that allowed infants to be classified as high or low responders and found that fewer infants born to HIV-positive mothers were able to mount a robust proliferative response, suggesting that their reduced CD4 counts and increased differentiation indicated a deficiency in their ability to develop immunological memory.
PMCID: PMC2826689  PMID: 20002789
Bacille Calmette-Guérin (BCG); CD4+ T lymphocytes; human immunodeficiency virus (HIV); immunological memory; infant
8.  The impact of HIV exposure and maternal Mycobacterium tuberculosis infection on infant immune responses to bacille Calmette-Guérin vaccination 
AIDS (London, England)  2015;29(2):155-165.
The objective of this study is to assess the effect of maternal HIV and Mycobacterium tuberculosis (Mtb) infection on cellular responses to bacille Calmette-Guérin (BCG) immunization.
A mother–infant cohort study.
Samples were collected from mother–infant pairs at delivery. Infants were BCG-vaccinated at 6 weeks of age and a repeat blood sample was collected from infants at 16 weeks of age. BCG-specific T-cell proliferation and intracellular cytokine expression were measured by flow cytometry. Secreted cytokines and chemokines in cell culture supernatants were analysed using a Multiplex assay.
One hundred and nine (47 HIV-exposed and 62 HIV-unexposed) mother–infants pairs were recruited after delivery and followed longitudinally. At birth, proportions of mycobacteria-specific proliferating T cells were not associated with either in-utero HIV exposure or maternal Mtb sensitization. However, in-utero HIV exposure affected infant-specific T-cell subsets [tumour necrosis factor-alpha (TNF-α) single positive proliferating CD4+ T cells and interferon-gamma (IFN-γ), TNF-α dual-positive CD4+ T cells]. Levels of TNF-α protein in cell culture supernatants were also significantly higher in HIV-exposed infants born to Mtb-sensitized mothers. In the presence of maternal Mtb sensitization, frequencies of maternal and newborn BCG-specific proliferating CD4+ T cells were positively correlated. Following BCG vaccination, there was no demonstrable effect of HIV exposure or maternal Mtb infection on infant BCG-specific T-cell proliferative responses or concentrations of secreted cytokines and chemokines.
Effects of maternal HIV and Mtb infection on infant immune profiles at birth are transient only, and HIV-exposed, noninfected infants have the same potential to respond to and be protected by BCG vaccination as HIV-unexposed infants.
PMCID: PMC4284011  PMID: 25535752
bacille Calmette-Guérin; HIV infection; HIV-exposed; immunogenicity; Mycobacterium tuberculosis infection; uninfected infants; vaccination
9.  Screening of Highly Expressed Mycobacterial Genes Identifies Rv3615c as a Useful Differential Diagnostic Antigen for the Mycobacterium tuberculosis Complex ▿ †  
Infection and Immunity  2008;76(9):3932-3939.
Tuberculous infections caused by mycobacteria, especially tuberculosis of humans and cattle, are important both clinically and economically. Human populations can be vaccinated with Mycobacterium bovis bacille Calmette-Guérin (BCG), and control measures for cattle involving vaccination are now being actively considered. However, diagnostic tests based on tuberculin cannot distinguish between genuine infection and vaccination with BCG. Therefore, identification of differential diagnostic antigens capable of making this distinction is required, and until now sequence-based approaches have been predominant. Here we explored the link between antigenicity and mRNA expression level, as well as the possibility that we may be able to detect differential antigens by analyzing quantified global transcriptional profiles. We generated a list of 14 candidate antigens that are highly expressed in Mycobacterium tuberculosis and M. bovis under a variety of growth conditions. These candidates were screened in M. bovis-infected and naïve cattle for the ability to stimulate a gamma interferon (IFN-γ) response. We identified one antigen, Rv3615c, which stimulated IFN-γ responses in a significant proportion of M. bovis-infected cattle (11 of 30 cattle [37%] [P < 0.01]) but not in naïve or BCG-vaccinated animals. Importantly, the same antigen stimulated IFN-γ responses in a significant proportion of infected cattle that did not respond to the well-characterized mycobacterial antigens ESAT-6 and CFP-10. Therefore, use of the Rv3615c epitope in combination with previously described differential tests based on ESAT-6 and CFP-10 has the potential to significantly increase diagnostic sensitivity without reducing specificity in BCG-vaccinated populations.
PMCID: PMC2519431  PMID: 18519559
10.  The Association of Parasitic Infections in Pregnancy and Maternal and Fetal Anemia: A Cohort Study in Coastal Kenya 
Relative contribution of these infections on anemia in pregnancy is not certain. While measures to protect pregnant women against malaria have been scaling up, interventions against helminthes have received much less attention. In this study, we determine the relative impact of helminthes and malaria on maternal anemia.
A prospective observational study was conducted in coastal Kenya among a cohort of pregnant women who were recruited at their first antenatal care (ANC) visit and tested for malaria, hookworm, and other parasitic infections and anemia at enrollment. All women enrolled in the study received presumptive treatment with sulfadoxine-pyrimethamine, iron and multi-vitamins and women diagnosed with helminthic infections were treated with albendazole. Women delivering a live, term birth, were also tested for maternal anemia, fetal anemia and presence of infection at delivery.
Principal Findings
Of the 706 women studied, at the first ANC visit, 27% had moderate/severe anemia and 71% of women were anemic overall. The infections with highest prevalence were hookworm (24%), urogenital schistosomiasis (17%), trichuria (10%), and malaria (9%). In adjusted and unadjusted analyses, moderate/severe anemia at first ANC visit was associated with the higher intensities of hookworm and P. falciparum microscopy-malaria infections. At delivery, 34% of women had moderate/severe anemia and 18% of infants' cord hemoglobin was consistent with fetal anemia. While none of the maternal infections were significantly associated with fetal anemia, moderate/severe maternal anemia was associated with fetal anemia.
More than one quarter of women receiving standard ANC with IPTp for malaria had moderate/severe anemia in pregnancy and high rates of parasitic infection. Thus, addressing the role of co-infections, such as hookworm, as well as under-nutrition, and their contribution to anemia is needed.
Author Summary
International guidelines recommend routine prevention and treatments which are safe and effective during pregnancy to reduce hookworm, malaria and other infections among pregnant women living in geographic areas where these infections are prevalent. Despite their effectiveness, programs to address common infections such as hookworm, schistosomiasis and malaria during pregnancy have not been widely adopted. Hookworm, malaria and other infections have been associated with anemia in children, but the studies on the impact of these infections on anemia in pregnancy have not been as clear. This study was undertaken to evaluate the prevalence of parasitic infections among women attending antenatal care which provided the nationally recommended malaria preventive treatment program in coastal Kenya. At the first ANC visit, more than 70% of women were anemic, nearly one-fourth had hookworm and about 10% had malaria. Women with high levels of hookworm or malaria infections were at risk of anemia.
PMCID: PMC3937317  PMID: 24587473
11.  Factors associated with tuberculosis infection, and with anti-mycobacterial immune responses, among five year olds BCG-immunised at birth in Entebbe, Uganda 
Vaccine  2015;33(6):796-804.
•Urban residence and history of TB contact/disease were associated with increased risk of latent TB infection at age five years.•BCG vaccine strain, LTBI, HIV and malaria infections, and anthropometry predict anti-mycobacterial immune responses.•Helminth infections do not influence response to BCG vaccination.•Cytokine responses at one year were not associated with LTBI at age five years.
BCG is used widely as the sole licensed vaccine against tuberculosis, but it has variable efficacy and the reasons for this are still unclear. No reliable biomarkers to predict future protection against, or acquisition of, TB infection following immunisation have been identified. Lessons from BCG could be valuable in the development of effective tuberculosis vaccines.
Within the Entebbe Mother and Baby Study birth cohort in Uganda, infants received BCG at birth. We investigated factors associated with latent tuberculosis infection (LTBI) and with cytokine response to mycobacterial antigen at age five years. We also investigated whether cytokine responses at one year were associated with LTBI at five years of age.
Blood samples from age one and five years were stimulated using crude culture filtrates of Mycobacterium tuberculosis in a six-day whole blood assay. IFN-γ, IL-5, IL-13 and IL-10 production was measured. LTBI at five years was determined using T-SPOT.TB® assay. Associations with LTBI at five years were assessed using multivariable logistic regression. Multiple linear regression with bootstrapping was used to determine factors associated with cytokine responses at age five years.
LTBI prevalence was 9% at age five years. Only urban residence and history of TB contact/disease were positively associated with LTBI. BCG vaccine strain, LTBI, HIV infection, asymptomatic malaria, growth z-scores, childhood anthelminthic treatment and maternal BCG scar were associated with cytokine responses at age five. Cytokine responses at one year were not associated with acquisition of LTBI by five years of age.
Although multiple factors influenced anti-myocbacterial immune responses at age five, factors likely to be associated with exposure to infectious cases (history of household contact, and urban residence) dominated the risk of LTBI.
PMCID: PMC4317190  PMID: 25529292
Tuberculosis; HIV; Helminth; Pregnancy; Bacille Calmette–Guerin; Crude culture filtrate protein
12.  IFN-γ Mediates the Rejection of Haematopoietic Stem Cells in IFN-γR1-Deficient Hosts 
PLoS Medicine  2008;5(1):e26.
Interferon-γ receptor 1 (IFN-γR1) deficiency is a life-threatening inherited disorder, conferring predisposition to mycobacterial diseases. Haematopoietic stem cell transplantation (HSCT) is the only curative treatment available, but is hampered by a very high rate of graft rejection, even with intra-familial HLA-identical transplants. This high rejection rate is not seen in any other congenital disorders and remains unexplained. We studied the underlying mechanism in a mouse model of HSCT for IFN-γR1 deficiency.
Methods and Findings
We demonstrated that HSCT with cells from a syngenic C57BL/6 Ifngr1+/+ donor engrafted well and restored anti-mycobacterial immunity in naive, non-infected C57BL/6 Ifngr1−/− recipients. However, Ifngr1−/− mice previously infected with Mycobacterium bovis bacillus Calmette-Guérin (BCG) rejected HSCT. Like infected IFN-γR1-deficient humans, infected Ifngr1−/− mice displayed very high serum IFN-γ levels before HSCT. The administration of a recombinant IFN-γ-expressing AAV vector to Ifngr1−/− naive recipients also resulted in HSCT graft rejection. Transplantation was successful in Ifngr1−/− × Ifng−/− double-mutant mice, even after BCG infection. Finally, efficient antibody-mediated IFN-γ depletion in infected Ifngr1−/− mice in vivo allowed subsequent engraftment.
High serum IFN-γ concentration is both necessary and sufficient for graft rejection in IFN-γR1-deficient mice, inhibiting the development of heterologous, IFN-γR1-expressing, haematopoietic cell lineages. These results confirm that IFN-γ is an anti-haematopoietic cytokine in vivo. They also pave the way for HSCT management in IFN-γR1-deficient patients through IFN-γ depletion from the blood. They further raise the possibility that depleting IFN-γ may improve engraftment in other settings, such as HSCT from a haplo-identical or unrelated donor.
Claire Soudais and colleagues investigated the mechanism of rejection of hematopoietic stem cell transplants in patients with interferon-gamma receptor 1 (IFN-γR1) deficiency and show that IFN-γ is an anti-hematopoietic cytokine in vivo.
Editors' Summary
Normally, the body's immune system efficiently recognizes and kills bacteria and viruses, but in some rare inherited disorders (“primary immunodeficiencies”) part of the immune system works poorly or is missing. This leaves affected individuals susceptible to infections. People with one of these disorders—interferon-gamma receptor 1 (IFN- γR1) deficiency—are very susceptible to infections with mycobacteria. Except for Mycobacterium tuberculosis and M. leprae (which cause tuberculosis and leprosy, respectively), mycobacteria rarely cause human disease. However, most people with IFN-γR1 deficiency die during childhood from multiple, widespread mycobacterial infections, because IFN-γR1 deficiency disables a specific part of their immune system. When most bacteria enter the body, immune system cells called macrophages engulf and kill them, but mycobacteria actually multiply inside macrophages. This infection stimulates lymphocytes and other immune system cells to release IFN-γ, which binds to IFN-γR1 on uninfected macrophages, activates them, and recruits them to the infection site. Here, they form a “granuloma,” a mass of macrophages and activated lymphocytes that “walls off” the infection. Granuloma formation does not occur in patients with IFN-γR1 deficiency, so mycobacteria (including the usually benign tuberculosis vaccination strain M. bovis BCG) spread throughout the body with disastrous consequences.
Why Was This Study Done?
The only effective treatment for patients with IFN-γR1 deficiency is hematopoietic stem cell transplantation (HSCT). HSCs are the source of all the immune system cells, so transplantation of HSCs from a donor with a normal IFNGR1 gene can provide a patient who has IFN-γR1 deficiency with a new immune system that can combat mycobacterial infections. Unfortunately, in this particular immune deficiency, the new HSCs cannot engraft, even when the patient's own immune system is disabled before HSCT by intensive chemotherapy, and when the donor cells come from a close relative and are a good immunological match. In this study, the researchers have investigated why rejection is so common in IFN-γR1 deficiency using a mouse strain called C57BL/6 Ifngr1−/−—C57BL/6 denotes the genetic background of these mice and Ifngr1−/− indicates that, like human patients, these mice make no IFN-γR1.
What Did the Researchers Do and Find?
Ifngr1−/− mice, the researchers report, cannot control M. bovis BCG infections and do not form mature granulomas just like human patients with IFN-γR1 deficiency. Wild-type C57BL/6 (Ifngr1+/+) mice, however, rapidly control M. bovis BCG infections and form mature granulomas. Ifngr1+/+ HSC transplanted into mycobacteria-free Ifngr1−/− mice survived well and protected the mice against later mycobacterial challenge but Ifngr1−/− mice infected with M. bovis BCG before HSCT rejected the transplanted HSCs. Mycobacteria-infected Ifngr1−/− mice and human patients with IFN-γR1 deficiency have blood high levels of IFN-γ. Could this be responsible for HSCT rejection? To find out, the researchers expressed IFN-γ in uninfected Ifngr1−/− mice before HSCT. As in infected mice, these grafts failed. Conversely, transplanted HSCs survived when transplanted into Ifngr1−/− mice that had been genetically altered to express no IFN-γ, even when these mice were infected with M. bovis BCG before transplantation. Finally, when the researchers used antibodies (proteins made by the immune system that recognize specific molecules) to remove circulating IFN-γ from infected Ifngr1−/− mice, HSCT worked well in the animals with the lowest IFN-γ levels.
What Do These Findings Mean?
These findings indicate that in a mouse model of IFN-γR1 deficiency, high circulating IFN-γ concentrations drive the rejection of transplanted HSCs and prevent the development of antimycobacterial immunity, probably by directly killing the transplanted cells and/or stopping them multiplying. They also suggest how HSCT could be improved in patients with IFN-γR1 deficiency although, as with all animal studies, the situation in people might turn out to be very different. Importantly, antibodies that reduce circulating IFN-γ are already being used to treat other human immune diseases, so the clinical use of these antibodies in patients with IFN-γ deficiency before HSCT is feasible. Finally, the researchers speculate that the use of IFN-γ–depleting antibodies might be beneficial in other situations where HSCT often fails such as when a close relative is not available as a donor. However, this possibility will need to be thoroughly tested in mice before human clinical trials can be started.
Additional Information.
Please access these Web sites via the online version of this summary at
General information about primary immunodeficiencies is available from the US National Institute of Child Health and Human Development
Online Mendelian Inheritance in Man (OMIM) provides information about familial predisposition to mycobacterial disease
Wikipedia has pages on hematopoietic stem cell transplantation and on interferon-γ (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The Human Genetics of Infectious Diseases Lab focuses on the genetic basis of predicposition or resistance to infectious diseases in humans
PMCID: PMC2214797  PMID: 18232731
13.  The effect of anthelminthic treatment during pregnancy on HIV plasma viral load; results from a randomised, double blinded, placebo-controlled trial in Uganda 
To investigate the effect of helminth infections and their treatment during pregnancy on HIV load, we conducted a 2×2 factorial randomised controlled trial of albendazole versus placebo and praziquantel versus placebo in pregnant women in Entebbe, Uganda
Two hundred and sixty-four HIV-infected women from the Entebbe Mother and Baby Study (ISRCTN32849447) were included in this analysis. Women were tested for helminth infections at enrolment and mean HIV load was compared between infected and uninfected groups. The effect of anthelminthic treatment on HIV load was evaluated at six weeks post-treatment and at delivery using linear regression and adjusting for enrolment viral load.
Hookworm and Trichuris infections were associated with higher mean viral load at enrolment (adjusted mean difference 0.24log10 copies/ml, 95% confidence interval (CI): 0.01 to 0.47, p=0.03 and 0.37log10 copies/ml, 95%CI: 0.00 to 0.74, p=0.05, respectively). There were no associations between viral load and other helminth species. There was some evidence that albendazole reduced viral load at six weeks post-treatment (adjusted mean difference −0.17, 95% CI: −0.36 to 0.01, p=0.07), however this effect did not differ according to mother’s hookworm infection status and had diminished at delivery (adjusted mean difference −0.11, 95% CI: −0.28 to 0.07, p=0.23). There was no effect of praziquantel treatment on HIV load at any time point.
Infection with some soil-transmitted helminth species is associated with increased HIV load in pregnancy. Treatment with albendazole causes a small decrease in HIV load, however this may not represent a direct effect of worm removal.
PMCID: PMC3383620  PMID: 22728750
HIV; viral load; helminths; anthelminthic treatment; clinical trial
14.  Treatment with anthelminthics during pregnancy: what gains and what risks for the mother and child? 
Parasitology  2011;138(12):1499-1507.
In 1994 and 2002, respectively, the World Health Organisation proposed that treatment for hookworm and schistosomiasis could be provided during pregnancy. It was hoped that this might have benefits for maternal anaemia, fetal growth and perinatal mortality; a beneficial effect on the infant response to immunisation was also hypothesised. Three trials have now been conducted. Two have examined the effects of benzimidazoles; one (the Entebbe Mother and Baby Study) the effects of albendazole and praziquantel. All three were conducted in settings of high prevalence but low intensity helminth infection. Results suggest that, in such settings and given adequate provision of haematinics, the benefit of routine anthelminthics during pregnancy for maternal anaemia may be small; none of the other expected benefits has yet been demonstrated. The Entebbe Mother and Baby Study found a significant adverse effect of albendazole on the incidence of infantile eczema in the whole study population, and of praziquantel on the incidence of eczema among infants of mothers with Schistosoma mansoni. Further studies are required in settings that differ in helminth species and infection intensities. Further research is required to determine whether increased rates of infantile eczema translate to long-term susceptibility to allergy, and to explore the underlying mechanisms of these effects. The risks and benefits of routine anthelminthic treatment in antenatal clinics may need to be reconsidered.
PMCID: PMC3178871  PMID: 21810307
Anthelminthic; pregnancy; albendazole; praziquantel; hookworm; Schistosoma mansoni; atopic eczema; anaemia
15.  Effects of Deworming during Pregnancy on Maternal and Perinatal Outcomes in Entebbe, Uganda: A Randomized Controlled Trial 
Helminth infections during pregnancy may be associated with adverse outcomes, including maternal anemia, low birth weight, and perinatal mortality. Deworming during pregnancy has therefore been strongly advocated, but its benefits have not been rigorously evaluated.
In Entebbe, Uganda, 2507 pregnant women were recruited to a randomized, double-blind, placebo-controlled trial investigating albendazole and praziquantel in a 2 × 2 factorial design [ISRCTN32849447]. Hematinics and sulphadoxine-pyrimethamine for presumptive treatment of malaria were provided routinely. Maternal and perinatal outcomes were recorded. Analyses were by intention to treat.
At enrollment, 68% of women had helminths, 45% had hookworm, 18% had Schistosoma mansoni infection; 40% were anemic (hemoglobin level, <11.2 g/dL). At delivery, 35% were anaemic; there was no overall effect of albendazole (odds ratio [OR], 0.95; 95% confidence interval [CI], 0.79–1.15) or praziquantel (OR, 1.00; 95% CI, 0.83–1.21) on maternal anemia, but there was a suggestion of benefit of albendazole among women with moderate to heavy hookworm (OR, 0.45; 95% CI, 0.21–0.98; P = .15 for interaction). There was no effect of either anthelminthic treatment on mean birth weight (difference in mean associated with albendazole: −0.00 kg; 95% CI, −0.05 to 0.04 kg; difference in mean associated with praziquantel: −0.01 kg; 95% CI, −0.05 to 0.04 kg) or on proportion of low birth weight. Anthelminthic use during pregnancy showed no effect on perinatal mortality or congenital anomalies.
In our study area, where helminth prevalence was high but infection intensity was low, there was no overall effect of anthelminthic use during pregnancy on maternal anemia, birth weight, perinatal mortality, or congenital anomalies. The possible benefit of albendazole against anemia in pregnant women with heavy hookworm infection warrants further investigation.
PMCID: PMC2857962  PMID: 20067426
16.  Influence of Maternal Gestational Treatment with Mycobacterial Antigens on Postnatal Immunity in an Experimental Murine Model 
PLoS ONE  2010;5(3):e9699.
It has been proposed that the immune system could be primed as early as during the fetal life and this might have an impact on postnatal vaccination. Therefore, we addressed in murine models whether gestational treatment with mycobacterial antigens could induce better immune responses in the postnatal life.
BALB/c mice were treated subcutaneously (s.c.) at the second week of gestation with antigen (Ag)85A or heparin-binding hemagglutinin (HBHA) in the absence of adjuvant. Following birth, offspring mice were immunized intranasally (i.n.) with the same antigens formulated with the adjuvant cholera toxin (CT) at week 1 and week 4. One week after the last immunization, we assessed antigen-specific recall interferon gamma (IFN-γ) responses by in vitro restimulation of lung-derived lymphocytes. Protection against infection was assessed by challenge with high dose Mycobacterium bovis Bacille Calmette-Guérin (BCG) given i.n. We found that recall IFN-γ responses were higher in the offspring born to the treated mother compared to the untreated-mother. More importantly, we observed that the offspring born to the treated mother controlled infection better than the offspring born to the untreated mother. Since the gestational treatment was done in absence of adjuvant, essentially there was no antibody production observed in the pregnant mice and therefore no influence of maternal antibodies was expected. We hypothesized that the effect of maternal treatment with antigen on the offspring occurred due to antigen transportation through placenta. To trace the antigens, we conjugated fluorescent nanocrystals with Ag85A (Qdot-ITK-Ag85A). After inoculation in the pregnant mice, Qdot-ITK-Ag85A conjugates were detected in the liver, spleen of pregnant females and in all the fetuses and placentas examined.
The fetal immune system could be primed in utero by mycobacterial antigens transported through the placenta.
PMCID: PMC2837747  PMID: 20300629
17.  Pattern and determinants of BCG immunisation delays in a sub-Saharan African community 
Childhood immunisation is recognised worldwide as an essential component of health systems and an indispensable indicator of quality of care for vaccine-preventable diseases. While performance of immunisation programmes is more commonly measured by coverage, ensuring that every child is immunised at the earliest/appropriate age is an important public health goal. This study therefore set out to determine the pattern and predictors of Bacille de Calmette-Guérin (BCG) immunisation delays in the first three months of life in a Sub-Saharan African community where BCG is scheduled at birth in order to facilitate necessary changes in current policy and practices for improved services.
A cross-sectional study in which immunisation delays among infants aged 0-3 months attending community-based BCG clinics in Lagos, Nigeria over a 2-year period from July 2005 to June 2007 were assessed by survival analysis and associated factors determined by multivariable logistic regression. Population attributable risk (PAR) was computed for the predictors of delays.
BCG was delayed beyond three months in 31.6% of all eligible infants. Of 5171 infants enrolled, 3380 (65.4%) were immunised within two weeks and a further 1265 (24.5%) by six weeks. A significantly higher proportion of infants born in hospitals were vaccinated in the first six weeks compared to those born outside hospitals. Undernourishment was predictive of delays beyond 2 and 6 weeks while treated hyperbilirubinaemia was associated with decreased odds for any delays. Lack of antenatal care and multiple gestations were also predictive of delays beyond 6 weeks. Undernourishment was associated with the highest PAR for delays beyond 2 weeks (18.7%) and 6 weeks (20.8%).
BCG immunisation is associated with significant delays in this setting and infants at increased risk of delays can be identified and supported early possibly through improved maternal uptake of antenatal care. Combining BCG with subsequent immunisation(s) at 6 weeks for infants who missed the BCG may be considered.
PMCID: PMC2821326  PMID: 20157426
18.  Neonatal BCG vaccination is associated with enhanced T-helper 1 immune responses to heterologous infant vaccines 
Trials in vaccinology  2014;3:1-5.
Neonatal Bacille Calmette Guérin (BCG) vaccination has been reported to have beneficial effects beyond preventing infantile tuberculous meningitis and miliary disease. We hypothesized that BCG vaccine given at birth would enhance T-helper 1 (Th1) immune responses to the first vaccines given later in infancy. We conducted a nested case-control study of neonatal BCG vaccination and its heterologous Th1 immune effects in 2–3 months old infants. BCG vaccination at birth was associated with an increased frequency of interferon-γ (IFN-γ) producing spot-forming cells (SFC) to tetanus toxoid 2–3 months later. The frequency of IFN-γ producing SFC to polioviruses 1–3 also trended higher among infants who received BCG vaccination at birth. The frequency of IFN-γ+/tumor necrosis factor-α (TNF-α)+CD45RO+CD4+ T-cells upon stimulation with phorbol myristate acetate (PMA)/Ionomycin was higher in 2–3 months old infants who received BCG vaccination at birth compared to those who did not. The circulating frequency of forkhead box P3 (FoxP3)+ CD45RO+ regulatory CD4+ T-cells also trended lower in these infants. Neonatal BCG vaccination is associated with heterologous Th1 immune effects 2–3 months later.
PMCID: PMC3943168  PMID: 24611083
BCG; Vaccines; T-cell; Th1; Neonate; Infant
19.  Maternal Infection with Trypanosoma cruzi and Congenital Chagas Disease Induce a Trend to a Type 1 Polarization of Infant Immune Responses to Vaccines 
We previously showed that newborns congenitally infected with Trypanosoma cruzi (M+B+) display a strong type 1 parasite-specific T cell immune response, whereas uninfected newborns from T. cruzi-infected mothers (M+B−) are prone to produce higher levels of proinflammatory cytokines than control neonates (M−B−). The purpose of the present study was to determine if such fetal/neonatal immunological environments could alter the response to standard vaccines administered in early life.
Infants (6–7 months old) living in Bolivia, an area highly endemic for T. cruzi infection, and having received Bacillus Calmette Guerin (BCG), hepatitis B virus (HBV), diphtheria and tetanus vaccines, were enrolled into the M+B+, M+B−, M−B− groups mentioned above. The production of IFN-γ and IL-13, as markers of Th1 and Th2 responses respectively, by peripherical blood mononuclear cells stimulated with tuberculin purified protein derivative of Mycobacterium tuberculosis (PPD) or the vaccinal antigens HBs, diphtheria toxoid (DT) or tetanus toxoid (TT), as well as circulating levels of IgG antibodies against HBsAg, DT and TT were analyzed in infants. Cellular responses to the superantigen SEB were also monitored in M+B+, M+B−, M−B−infants and newborns.
Principal Findings
M+B+ infants developed a stronger IFN-γ response to hepatitis B, diphtheria and tetanus vaccines than did M+B− and M−B− groups. They also displayed an enhanced antibody production to HBsAg. This was associated with a type 1-biased immune environment at birth, since cells of M+B+ newborns produced higher IFN-γ levels in response to SEB. M+B− infants produced more IFN-γ in response to PPD than the other groups. IL-13 production remained low and similar in all the three groups, whatever the subject's ages or vaccine status.
These results show that: i) both maternal infection with T. cruzi and congenital Chagas disease do not interfere with responses to BCG, hepatitis B, diphtheria and tetanus vaccines in the neonatal period, and ii) the overcoming of immunological immaturity by T. cruzi infection in early life is not limited to the development of parasite-specific immune responses, but also tends to favour type 1 immune responses to vaccinal antigens.
Author Summary
Vaccines are of crucial importance to prevent morbidity and mortality due to infectious diseases in childhood. A modulation of the fetal/neonatal immune system (considered immature) toward Th1 or Th2 dominance could modify responses to vaccines administered in early life. T. cruzi is the agent of Chagas' disease, in Latin America currently infecting about 2 million women at fertile ages who are susceptible to transmitting the parasite to their fetus. In previous studies we showed that T. cruzi-infected mothers can induce a pro-inflammatory environment in their uninfected neonates (M+B−), whereas congenitally infected newborns (M+B+) are able to develop a pro-Th1 parasite-specific T cell response. In the present study, we analysed the cellular and/or antibody responses to Bacillus Calmette Guerin (BCG), hepatitis B birus (HBV), diphtheria and tetanus vaccines in 6- to 7-month-old infants living in Bolivia. M+B− infants produced more IFN-γ in response to BCG, whereas M+B+ infants developed a stronger IFN-γ response to hepatitis B, diphtheria and tetanus vaccines and enhanced antibody production to HBs antigen. These results show that both maternal infection with T. cruzi and congenital Chagas disease do not interfere with responses to BCG, hepatitis B, diphtheria and tetanus vaccines in the neonatal period and that T. cruzi infection in early life tends to favour type 1 immune responses to vaccinal antigens.
PMCID: PMC2796860  PMID: 20041029
20.  BCG-Mediated Protection against Mycobacterium ulcerans Infection in the Mouse 
Vaccination with Mycobacterium bovis bacille Calmette-Guérin (BCG) is widely used to reduce the risk of childhood tuberculosis and has been reported to have efficacy against two other mycobacterial diseases, leprosy and Buruli ulcer caused by M. ulcerans (Mu). Studies in experimental models have also shown some efficacy against infection caused by Mu. In mice, most studies use the C57BL/6 strain that is known to develop good cell-mediated protective immunity. We hypothesized that there may be differences in vaccination efficacy between C57BL/6 and the less resistant BALB/c strain.
We evaluated BCG vaccine efficacy against challenge with ∼3×105 M. ulcerans in the right hind footpad using three strains: initially, the Australian type strain, designated Mu1617, then, a Malaysian strain, Mu1615, and a recent Ghanaian isolate, Mu1059. The latter two strains both produce mycolactone while the Australian strain has lost that capacity. CFU of both BCG and Mu and splenocyte cytokine production were determined at intervals after infection. Time to footpad swelling was assessed weekly.
Principal Findings
BCG injection induced visible scars in 95.5% of BALB/c mice but only 43.4% of C57BL/6 mice. BCG persisted at higher levels in spleens of BALB/c than C57BL/6 mice. Vaccination delayed swelling and reduced Mu CFU in BALB/c mice, regardless of challenge strain. However, vaccination was only protective against Mu1615 and Mu1617 in C57BL/6 mice. Possible correlates of the better protection of BALB/c mice included 1) the near universal development of BCG scars in these mice compared to less frequent and smaller scars observed in C57BL/6 mice and 2) the induction of sustained cytokine, e.g., IL17, production as detected in the spleens of BALB/c mice whereas cytokine production was significantly reduced, e.g., IL17, or transient, e.g., Ifnγ, in the spleens of C57BL/6 mice.
The efficacy of BCG against M. ulcerans, in particular, and possibly mycobacteria in general, may vary due to differences in both host and pathogen.
Author Summary
Vaccination with Mycobacterium bovis bacille Calmette-Guérin (BCG) is used to reduce the risk of childhood tuberculosis and is reported to have efficacy against two other diseases also caused by mycobacteria, leprosy and Buruli ulcer caused by M. ulcerans. We hypothesized that there may be differences in the effectiveness of BCG vaccination in different mouse strains. We vaccinated two mouse strains with BCG eight weeks before infection with three different strains of M. ulcerans. Two of the bacterial strains make a toxin that is critical for Buruli ulcer disease and the third does not. We observed the progression of disease in vaccinated and mock-vaccinated mice and also evaluated the immune response of the mice. We found that the BALB/c mice respond to BCG vaccination with prominent scars, a vigorous immune response, and delayed or no manifestations of M. ulcerans infection. C57BL/6 mice, on the other hand, usually do not have vaccination scars, make a relatively short-lived and/or weaker immune response, and all show disease at the site of M. ulcerans infection. We conclude that the efficacy of BCG against M. ulcerans, and possibly other diseases, depends on the nature of the host and of the infecting strain of the bacteria.
PMCID: PMC3057947  PMID: 21423646
21.  Inhibition of anti-tuberculosis T-lymphocyte function with tumour necrosis factor antagonists 
Reactivation of latent Mycobacterium tuberculosis (Mtb) infection is a major complication of anti-tumour necrosis factor (TNF)-α treatment, but its mechanism is not fully understood. We evaluated the effect of the TNF antagonists infliximab (Ifx), adalimumab (Ada) and etanercept (Eta) on anti-mycobacterial immune responses in two conditions: with ex vivo studies from patients treated with TNF antagonists and with the in vitro addition of TNF antagonists to cells stimulated with mycobacterial antigens. In both cases, we analysed the response of CD4+ T lymphocytes to purified protein derivative (PPD) and to culture filtrate protein (CFP)-10, an antigen restricted to Mtb. The tests performed were lymphoproliferation and immediate production of interferon (IFN)-γ. In the 68 patients with inflammatory diseases (rheumatoid arthritis, spondylarthropathy or Crohn's disease), including 31 patients with a previous or latent tuberculosis (TB), 14 weeks of anti-TNF-α treatment had no effect on the proliferation of CD4+ T lymphocytes. In contrast, the number of IFN-γ-releasing CD4+ T lymphocytes decreased for PPD (p < 0.005) and CFP-10 (p < 0.01) in patients with previous TB and for PPD (p < 0.05) in other patients (all vaccinated with Bacille Calmette-Guérin). Treatments with Ifx and with Eta affected IFN-γ release to a similar extent. In vitro addition of TNF antagonists to CD4+ T lymphocytes stimulated with mycobacterial antigens inhibited their proliferation and their expression of membrane-bound TNF (mTNF). These effects occurred late in cultures, suggesting a direct effect of TNF antagonists on activated mTNF+ CD4+ T lymphocytes, and Ifx and Ada were more efficient than Eta. Therefore, TNF antagonists have a dual action on anti-mycobacterial CD4+ T lymphocytes. Administered in vivo, they decrease the frequency of the subpopulation of memory CD4+ T lymphocytes rapidly releasing IFN-γ upon challenge with mycobacterial antigens. Added in vitro, they inhibit the activation of CD4+ T lymphocytes by mycobacterial antigens. Such a dual effect may explain the increased incidence of TB in patients treated with TNF antagonists as well as possible differences between TNF antagonists for the incidence and the clinical presentation of TB reactivation.
PMCID: PMC1779425  PMID: 16859506
22.  Strain-Specific Differences in the Genetic Control of Two Closely Related Mycobacteria 
PLoS Pathogens  2010;6(10):e1001169.
The host response to mycobacterial infection depends on host and pathogen genetic factors. Recent studies in human populations suggest a strain specific genetic control of tuberculosis. To test for mycobacterial-strain specific genetic control of susceptibility to infection under highly controlled experimental conditions, we performed a comparative genetic analysis using the A/J- and C57BL/6J-derived recombinant congenic (RC) mouse panel infected with the Russia and Pasteur strains of Mycobacterium bovis Bacille Calmette Guérin (BCG). Bacillary counts in the lung and spleen at weeks 1 and 6 post infection were used as a measure of susceptibility. By performing genome-wide linkage analyses of loci that impact on tissue-specific bacillary burden, we were able to show the importance of correcting for strain background effects in the RC panel. When linkage analysis was adjusted on strain background, we detected a single locus on chromosome 11 that impacted on pulmonary counts of BCG Russia but not Pasteur. The same locus also controlled the splenic counts of BCG Russia but not Pasteur. By contrast, a locus on chromosome 1 which was indistinguishable from Nramp1 impacted on splenic bacillary counts of both BCG Russia and Pasteur. Additionally, dependent upon BCG strain, tissue and time post infection, we detected 9 distinct loci associated with bacillary counts. Hence, the ensemble of genetic loci impacting on BCG infection revealed a highly dynamic picture of genetic control that reflected both the course of infection and the infecting strain. This high degree of adaptation of host genetics to strain-specific pathogenesis is expected to provide a suitable framework for the selection of specific host-mycobacteria combinations during co-evolution of mycobacteria with humans.
Author Summary
Susceptibility to mycobacterial infection results from a complex interaction between host and bacterial genetic factors. To examine the effect of host and pathogen genetic variability on the control of mycobacterial infection, we infected a panel of genetically related recombinant congenic (RC) mouse strains with two closely related strains of Mycobacterium bovis BCG. Bacterial counts of BCG Russia and BCG Pasteur were determined in the lung and spleen at 1 and 6 weeks following infection and used for genetic analysis. A novel analytical approach was developed to perform genome-wide linkage analyses using the RC strains. Comparative linkage analysis using this model identified a strong genetic effect on chromosome 1 controlling counts of BCG Pasteur at 1 week and of BCG Russia at 1 week and 6 weeks in the spleen. A locus impacting on late BCG Russia counts in the lung and spleen was identified on chromosome 11. Nine additional loci were shown to control bacterial counts in a tissue-, time-, and BCG strain-specific manner. Our findings suggest that the host genetic control of mycobacterial infection is highly dynamic and adapted to the stage of pathogenesis and to the infecting strain. Such a high degree of genetic plasticity in the host-pathogen interplay is expected to favour evolutionary co-adaptation in mycobacterial disease.
PMCID: PMC2965770  PMID: 21060820
23.  Natural Variation in Immune Responses to Neonatal Mycobacterium bovis Bacillus Calmette-Guerin (BCG) Vaccination in a Cohort of Gambian Infants 
PLoS ONE  2008;3(10):e3485.
There is a need for new vaccines for tuberculosis (TB) that protect against adult pulmonary disease in regions where BCG is not effective. However, BCG could remain integral to TB control programmes because neonatal BCG protects against disseminated forms of childhood TB and many new vaccines rely on BCG to prime immunity or are recombinant strains of BCG. Interferon-gamma (IFN-γ) is required for immunity to mycobacteria and used as a marker of immunity when new vaccines are tested. Although BCG is widely given to neonates IFN-γ responses to BCG in this age group are poorly described. Characterisation of IFN-γ responses to BCG is required for interpretation of vaccine immunogenicity study data where BCG is part of the vaccination strategy.
Methodology/Principal Findings
236 healthy Gambian babies were vaccinated with M. bovis BCG at birth. IFN-γ, interleukin (IL)-5 and IL-13 responses to purified protein derivative (PPD), killed Mycobacterium tuberculosis (KMTB), M. tuberculosis short term culture filtrate (STCF) and M. bovis BCG antigen 85 complex (Ag85) were measured in a whole blood assay two months after vaccination. Cytokine responses varied up to 10 log-fold within this population. The majority of infants (89–98% depending on the antigen) made IFN-γ responses and there was significant correlation between IFN-γ responses to the different mycobacterial antigens (Spearman's coefficient ranged from 0.340 to 0.675, p = 10−6–10−22). IL-13 and IL-5 responses were generally low and there were more non-responders (33–75%) for these cytokines. Nonetheless, significant correlations were observed for IL-13 and IL-5 responses to different mycobacterial antigens
Cytokine responses to mycobacterial antigens in BCG-vaccinated infants are heterogeneous and there is significant inter-individual variation. Further studies in large populations of infants are required to identify the factors that determine variation in IFN-γ responses.
PMCID: PMC2567029  PMID: 18941532
24.  Effect of Maternal Immune Status on Responsiveness of Bacillus Calmette-Gurin Vaccination in Mouse Neonates 
Bacillus Calmette-Guérin (BCG) vaccination has proven to be efficient in immunologically naïve infants; however, it has not been investigated that maternal natural exposure to Mycobacterium and/or BCG vaccine could influence the characteristics of immune responses to BCG in newborns. In this study, we analyzed whether the maternal immune status to M tuberculosis (M tb) can affect neonatal immunity to BCG using a mouse model.
Neonates were obtained from mice that were previously exposed to live BCG, to live M avium, or to heat-killed M tb H37Rv, and from naïve control mothers. One week after birth, the neonates were divided into two subgroups: one group immunized with live BCG via the subcutaneous route and the other group of neonates sham-treated. Interferon-gamma (IFNγ) secretion in response to in vitro stimulation with heat-killed BCG or purified protein derivative (PPD) was examined. Protection against M tb infection was evaluated by challenging mice nasally with live M tb H37Rv followed by counting colonies from spleen and lung homogenates.
BCG-immunized neonates showed increased IFNγ secretion in response to heat-killed BCG or PPD. All mice in BCG-immunized neonates subgroups showed reduced bacterial burden (colony forming unit) in the lungs when compared with control naive neonate mice. However, no statistically significant difference was observed when comparing BCG-immunized mice born from mothers previously exposed to M avium or immunized with either heat-killed H37Rv or live BCG and mice born from naïve mothers.
The maternal immune status to M tb does not appear to impact on the immunogenicity of BCG vaccine in their progeny in our experimental conditions
PMCID: PMC3747646  PMID: 24159493
BCG; maternal effect; Mycobacterium tuberculosis; neonates; tuberculosis
25.  Persistence of the immune response induced by BCG vaccination 
Although BCG vaccination is recommended in most countries of the world, little is known of the persistence of BCG-induced immune responses. As novel TB vaccines may be given to boost the immunity induced by neonatal BCG vaccination, evidence concerning the persistence of the BCG vaccine-induced response would help inform decisions about when such boosting would be most effective.
A randomised control study of UK adolescents was carried out to investigate persistence of BCG immune responses. Adolescents were tested for interferon-gamma (IFN-γ) response to Mycobacterium tuberculosis purified protein derivative (M.tb PPD) in a whole blood assay before, 3 months, 12 months (n = 148) and 3 years (n = 19) after receiving teenage BCG vaccination or 14 years after receiving infant BCG vaccination (n = 16).
A gradual reduction in magnitude of response was evident from 3 months to 1 year and from 1 year to 3 years following teenage vaccination, but responses 3 years after vaccination were still on average 6 times higher than before vaccination among vaccinees. Some individuals (11/86; 13%) failed to make a detectable antigen-specific response three months after vaccination, or lost the response after 1 (11/86; 13%) or 3 (3/19; 16%) years. IFN-γ response to Ag85 was measured in a subgroup of adolescents and appeared to be better maintained with no decline from 3 to 12 months. A smaller group of adolescents were tested 14 years after receiving infant BCG vaccination and 13/16 (81%) made a detectable IFN-γ response to M.tb PPD 14 years after infant vaccination as compared to 6/16 (38%) matched unvaccinated controls (p = 0.012); teenagers vaccinated in infancy were 19 times more likely to make an IFN-γ response of > 500 pg/ml than unvaccinated teenagers.
BCG vaccination in infancy and adolescence induces immunological memory to mycobacterial antigens that is still present and measurable for at least 14 years in the majority of vaccinees, although the magnitude of the peripheral blood response wanes from 3 months to 12 months and from 12 months to 3 years post vaccination. The data presented here suggest that because of such waning in the response there may be scope for boosting anti-tuberculous immunity in BCG vaccinated children anytime from 3 months post-vaccination. This supports the prime boost strategies being employed for some new TB vaccines currently under development.
PMCID: PMC2263052  PMID: 18221509

Results 1-25 (929966)