PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1106100)

Clipboard (0)
None

Related Articles

1.  Clinical Utility of Vitamin D Testing 
Executive Summary
This report from the Medical Advisory Secretariat (MAS) was intended to evaluate the clinical utility of vitamin D testing in average risk Canadians and in those with kidney disease. As a separate analysis, this report also includes a systematic literature review of the prevalence of vitamin D deficiency in these two subgroups.
This evaluation did not set out to determine the serum vitamin D thresholds that might apply to non-bone health outcomes. For bone health outcomes, no high or moderate quality evidence could be found to support a target serum level above 50 nmol/L. Similarly, no high or moderate quality evidence could be found to support vitamin D’s effects in non-bone health outcomes, other than falls.
Vitamin D
Vitamin D is a lipid soluble vitamin that acts as a hormone. It stimulates intestinal calcium absorption and is important in maintaining adequate phosphate levels for bone mineralization, bone growth, and remodelling. It’s also believed to be involved in the regulation of cell growth proliferation and apoptosis (programmed cell death), as well as modulation of the immune system and other functions. Alone or in combination with calcium, Vitamin D has also been shown to reduce the risk of fractures in elderly men (≥ 65 years), postmenopausal women, and the risk of falls in community-dwelling seniors. However, in a comprehensive systematic review, inconsistent results were found concerning the effects of vitamin D in conditions such as cancer, all-cause mortality, and cardiovascular disease. In fact, no high or moderate quality evidence could be found concerning the effects of vitamin D in such non-bone health outcomes. Given the uncertainties surrounding the effects of vitamin D in non-bone health related outcomes, it was decided that this evaluation should focus on falls and the effects of vitamin D in bone health and exclusively within average-risk individuals and patients with kidney disease.
Synthesis of vitamin D occurs naturally in the skin through exposure to ultraviolet B (UVB) radiation from sunlight, but it can also be obtained from dietary sources including fortified foods, and supplements. Foods rich in vitamin D include fatty fish, egg yolks, fish liver oil, and some types of mushrooms. Since it is usually difficult to obtain sufficient vitamin D from non-fortified foods, either due to low content or infrequent use, most vitamin D is obtained from fortified foods, exposure to sunlight, and supplements.
Clinical Need: Condition and Target Population
Vitamin D deficiency may lead to rickets in infants and osteomalacia in adults. Factors believed to be associated with vitamin D deficiency include:
darker skin pigmentation,
winter season,
living at higher latitudes,
skin coverage,
kidney disease,
malabsorption syndromes such as Crohn’s disease, cystic fibrosis, and
genetic factors.
Patients with chronic kidney disease (CKD) are at a higher risk of vitamin D deficiency due to either renal losses or decreased synthesis of 1,25-dihydroxyvitamin D.
Health Canada currently recommends that, until the daily recommended intakes (DRI) for vitamin D are updated, Canada’s Food Guide (Eating Well with Canada’s Food Guide) should be followed with respect to vitamin D intake. Issued in 2007, the Guide recommends that Canadians consume two cups (500 ml) of fortified milk or fortified soy beverages daily in order to obtain a daily intake of 200 IU. In addition, men and women over the age of 50 should take 400 IU of vitamin D supplements daily. Additional recommendations were made for breastfed infants.
A Canadian survey evaluated the median vitamin D intake derived from diet alone (excluding supplements) among 35,000 Canadians, 10,900 of which were from Ontario. Among Ontarian males ages 9 and up, the median daily dietary vitamin D intake ranged between 196 IU and 272 IU per day. Among females, it varied from 152 IU to 196 IU per day. In boys and girls ages 1 to 3, the median daily dietary vitamin D intake was 248 IU, while among those 4 to 8 years it was 224 IU.
Vitamin D Testing
Two laboratory tests for vitamin D are available, 25-hydroxy vitamin D, referred to as 25(OH)D, and 1,25-dihydroxyvitamin D. Vitamin D status is assessed by measuring the serum 25(OH)D levels, which can be assayed using radioimmunoassays, competitive protein-binding assays (CPBA), high pressure liquid chromatography (HPLC), and liquid chromatography-tandem mass spectrometry (LC-MS/MS). These may yield different results with inter-assay variation reaching up to 25% (at lower serum levels) and intra-assay variation reaching 10%.
The optimal serum concentration of vitamin D has not been established and it may change across different stages of life. Similarly, there is currently no consensus on target serum vitamin D levels. There does, however, appear to be a consensus on the definition of vitamin D deficiency at 25(OH)D < 25 nmol/l, which is based on the risk of diseases such as rickets and osteomalacia. Higher target serum levels have also been proposed based on subclinical endpoints such as parathyroid hormone (PTH). Therefore, in this report, two conservative target serum levels have been adopted, 25 nmol/L (based on the risk of rickets and osteomalacia), and 40 to 50 nmol/L (based on vitamin D’s interaction with PTH).
Ontario Context
Volume & Cost
The volume of vitamin D tests done in Ontario has been increasing over the past 5 years with a steep increase of 169,000 tests in 2007 to more than 393,400 tests in 2008. The number of tests continues to rise with the projected number of tests for 2009 exceeding 731,000. According to the Ontario Schedule of Benefits, the billing cost of each test is $51.7 for 25(OH)D (L606, 100 LMS units, $0.517/unit) and $77.6 for 1,25-dihydroxyvitamin D (L605, 150 LMS units, $0.517/unit). Province wide, the total annual cost of vitamin D testing has increased from approximately $1.7M in 2004 to over $21.0M in 2008. The projected annual cost for 2009 is approximately $38.8M.
Evidence-Based Analysis
The objective of this report is to evaluate the clinical utility of vitamin D testing in the average risk population and in those with kidney disease. As a separate analysis, the report also sought to evaluate the prevalence of vitamin D deficiency in Canada. The specific research questions addressed were thus:
What is the clinical utility of vitamin D testing in the average risk population and in subjects with kidney disease?
What is the prevalence of vitamin D deficiency in the average risk population in Canada?
What is the prevalence of vitamin D deficiency in patients with kidney disease in Canada?
Clinical utility was defined as the ability to improve bone health outcomes with the focus on the average risk population (excluding those with osteoporosis) and patients with kidney disease.
Literature Search
A literature search was performed on July 17th, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 1998 until July 17th, 2009. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. Articles with unknown eligibility were reviewed with a second clinical epidemiologist, then a group of epidemiologists until consensus was established. The quality of evidence was assessed as high, moderate, low or very low according to GRADE methodology.
Observational studies that evaluated the prevalence of vitamin D deficiency in Canada in the population of interest were included based on the inclusion and exclusion criteria listed below. The baseline values were used in this report in the case of interventional studies that evaluated the effect of vitamin D intake on serum levels. Studies published in grey literature were included if no studies published in the peer-reviewed literature were identified for specific outcomes or subgroups.
Considering that vitamin D status may be affected by factors such as latitude, sun exposure, food fortification, among others, the search focused on prevalence studies published in Canada. In cases where no Canadian prevalence studies were identified, the decision was made to include studies from the United States, given the similar policies in vitamin D food fortification and recommended daily intake.
Inclusion Criteria
Studies published in English
Publications that reported the prevalence of vitamin D deficiency in Canada
Studies that included subjects from the general population or with kidney disease
Studies in children or adults
Studies published between January 1998 and July 17th 2009
Exclusion Criteria
Studies that included subjects defined according to a specific disease other than kidney disease
Letters, comments, and editorials
Studies that measured the serum vitamin D levels but did not report the percentage of subjects with serum levels below a given threshold
Outcomes of Interest
Prevalence of serum vitamin D less than 25 nmol/L
Prevalence of serum vitamin D less than 40 to 50 nmol/L
Serum 25-hydroxyvitamin D was the metabolite used to assess vitamin D status. Results from adult and children studies were reported separately. Subgroup analyses according to factors that affect serum vitamin D levels (e.g., seasonal effects, skin pigmentation, and vitamin D intake) were reported if enough information was provided in the studies
Quality of Evidence
The quality of the prevalence studies was based on the method of subject recruitment and sampling, possibility of selection bias, and generalizability to the source population. The overall quality of the trials was examined according to the GRADE Working Group criteria.
Summary of Findings
Fourteen prevalence studies examining Canadian adults and children met the eligibility criteria. With the exception of one longitudinal study, the studies had a cross-sectional design. Two studies were conducted among Canadian adults with renal disease but none studied Canadian children with renal disease (though three such US studies were included). No systematic reviews or health technology assessments that evaluated the prevalence of vitamin D deficiency in Canada were identified. Two studies were published in grey literature, consisting of a Canadian survey designed to measure serum vitamin D levels and a study in infants presented as an abstract at a conference. Also included were the results of vitamin D tests performed in community laboratories in Ontario between October 2008 and September 2009 (provided by the Ontario Association of Medical Laboratories).
Different threshold levels were used in the studies, thus we reported the percentage of subjects with serum levels of between 25 and 30 nmol/L and between 37.5 and 50 nmol/L. Some studies stratified the results according to factors affecting vitamin D status and two used multivariate models to investigate the effects of these characteristics (including age, season, BMI, vitamin D intake, skin pigmentation, and season) on serum 25(OH)D levels. It’s unclear, however, if these studies were adequately powered for these subgroup analyses.
Study participants generally consisted of healthy, community-dwelling subjects and most excluded individuals with conditions or medications that alter vitamin D or bone metabolism, such as kidney or liver disease. Although the studies were conducted in different parts of Canada, fewer were performed in Northern latitudes, i.e. above 53°N, which is equivalent to the city of Edmonton.
Adults
Serum vitamin D levels of < 25 to 30 nmol/L were observed in 0% to 25.5% of the subjects included in five studies; the weighted average was 3.8% (95% CI: 3.0, 4.6). The preliminary results of the Canadian survey showed that approximately 5% of the subjects had serum levels below 29.5 nmol/L. The results of over 600,000 vitamin D tests performed in Ontarian community laboratories between October 2008 and September 2009 showed that 2.6% of adults (> 18 years) had serum levels < 25 nmol/L.
The prevalence of serum vitamin D levels below 37.5-50 nmol/L reported among studies varied widely, ranging from 8% to 73.6% with a weighted average of 22.5%. The preliminary results of the CHMS survey showed that between 10% and 25% of subjects had serum levels below 37 to 48 nmol/L. The results of the vitamin D tests performed in community laboratories showed that 10% to 25% of the individuals had serum levels between 39 and 50 nmol/L.
In an attempt to explain this inter-study variation, the study results were stratified according to factors affecting serum vitamin D levels, as summarized below. These results should be interpreted with caution as none were adjusted for other potential confounders. Adequately powered multivariate analyses would be necessary to determine the contribution of risk factors to lower serum 25(OH)D levels.
Seasonal variation
Three adult studies evaluating serum vitamin D levels in different seasons observed a trend towards a higher prevalence of serum levels < 37.5 to 50 nmol/L during the winter and spring months, specifically 21% to 39%, compared to 8% to 14% in the summer. The weighted average was 23.6% over the winter/spring months and 9.6% over summer. The difference between the seasons was not statistically significant in one study and not reported in the other two studies.
Skin Pigmentation
Four studies observed a trend toward a higher prevalence of serum vitamin D levels < 37.5 to 50 nmol/L in subjects with darker skin pigmentation compared to those with lighter skin pigmentation, with weighted averages of 46.8% among adults with darker skin colour and 15.9% among those with fairer skin.
Vitamin D intake and serum levels
Four adult studies evaluated serum vitamin D levels according to vitamin D intake and showed an overall trend toward a lower prevalence of serum levels < 37.5 to 50 nmol/L with higher levels of vitamin D intake. One study observed a dose-response relationship between higher vitamin D intake from supplements, diet (milk), and sun exposure (results not adjusted for other variables). It was observed that subjects taking 50 to 400 IU or > 400 IU of vitamin D per day had a 6% and 3% prevalence of serum vitamin D level < 40 nmol/L, respectively, versus 29% in subjects not on vitamin D supplementation. Similarly, among subjects drinking one or two glasses of milk per day, the prevalence of serum vitamin D levels < 40 nmol/L was found to be 15%, versus 6% in those who drink more than two glasses of milk per day and 21% among those who do not drink milk. On the other hand, one study observed little variation in serum vitamin D levels during winter according to milk intake, with the proportion of subjects exhibiting vitamin D levels of < 40 nmol/L being 21% among those drinking 0-2 glasses per day, 26% among those drinking > 2 glasses, and 20% among non-milk drinkers.
The overall quality of evidence for the studies conducted among adults was deemed to be low, although it was considered moderate for the subgroups of skin pigmentation and seasonal variation.
Newborn, Children and Adolescents
Five Canadian studies evaluated serum vitamin D levels in newborns, children, and adolescents. In four of these, it was found that between 0 and 36% of children exhibited deficiency across age groups with a weighted average of 6.4%. The results of over 28,000 vitamin D tests performed in children 0 to 18 years old in Ontario laboratories (Oct. 2008 to Sept. 2009) showed that 4.4% had serum levels of < 25 nmol/L.
According to two studies, 32% of infants 24 to 30 months old and 35.3% of newborns had serum vitamin D levels of < 50 nmol/L. Two studies of children 2 to 16 years old reported that 24.5% and 34% had serum vitamin D levels below 37.5 to 40 nmol/L. In both studies, older children exhibited a higher prevalence than younger children, with weighted averages 34.4% and 10.3%, respectively. The overall weighted average of the prevalence of serum vitamin D levels < 37.5 to 50 nmol/L among pediatric studies was 25.8%. The preliminary results of the Canadian survey showed that between 10% and 25% of subjects between 6 and 11 years (N= 435) had serum levels below 50 nmol/L, while for those 12 to 19 years, 25% to 50% exhibited serum vitamin D levels below 50 nmol/L.
The effects of season, skin pigmentation, and vitamin D intake were not explored in Canadian pediatric studies. A Canadian surveillance study did, however, report 104 confirmed cases1 (2.9 cases per 100,000 children) of vitamin D-deficient rickets among Canadian children age 1 to 18 between 2002 and 2004, 57 (55%) of which from Ontario. The highest incidence occurred among children living in the North, i.e., the Yukon, Northwest Territories, and Nunavut. In 92 (89%) cases, skin pigmentation was categorized as intermediate to dark, 98 (94%) had been breastfed, and 25 (24%) were offspring of immigrants to Canada. There were no cases of rickets in children receiving ≥ 400 IU VD supplementation/day.
Overall, the quality of evidence of the studies of children was considered very low.
Kidney Disease
Adults
Two studies evaluated serum vitamin D levels in Canadian adults with kidney disease. The first included 128 patients with chronic kidney disease stages 3 to 5, 38% of which had serum vitamin D levels of < 37.5 nmol/L (measured between April and July). This is higher than what was reported in Canadian studies of the general population during the summer months (i.e. between 8% and 14%). In the second, which examined 419 subjects who had received a renal transplantation (mean time since transplantation: 7.2 ± 6.4 years), the prevalence of serum vitamin D levels < 40 nmol/L was 27.3%. The authors concluded that the prevalence observed in the study population was similar to what is expected in the general population.
Children
No studies evaluating serum vitamin D levels in Canadian pediatric patients with kidney disease could be identified, although three such US studies among children with chronic kidney disease stages 1 to 5 were. The mean age varied between 10.7 and 12.5 years in two studies but was not reported in the third. Across all three studies, the prevalence of serum vitamin D levels below the range of 37.5 to 50 nmol/L varied between 21% and 39%, which is not considerably different from what was observed in studies of healthy Canadian children (24% to 35%).
Overall, the quality of evidence in adults and children with kidney disease was considered very low.
Clinical Utility of Vitamin D Testing
A high quality comprehensive systematic review published in August 2007 evaluated the association between serum vitamin D levels and different bone health outcomes in different age groups. A total of 72 studies were included. The authors observed that there was a trend towards improvement in some bone health outcomes with higher serum vitamin D levels. Nevertheless, precise thresholds for improved bone health outcomes could not be defined across age groups. Further, no new studies on the association were identified during an updated systematic review on vitamin D published in July 2009.
With regards to non-bone health outcomes, there is no high or even moderate quality evidence that supports the effectiveness of vitamin D in outcomes such as cancer, cardiovascular outcomes, and all-cause mortality. Even if there is any residual uncertainty, there is no evidence that testing vitamin D levels encourages adherence to Health Canada’s guidelines for vitamin D intake. A normal serum vitamin D threshold required to prevent non-bone health related conditions cannot be resolved until a causal effect or correlation has been demonstrated between vitamin D levels and these conditions. This is as an ongoing research issue around which there is currently too much uncertainty to base any conclusions that would support routine vitamin D testing.
For patients with chronic kidney disease (CKD), there is again no high or moderate quality evidence supporting improved outcomes through the use of calcitriol or vitamin D analogs. In the absence of such data, the authors of the guidelines for CKD patients consider it best practice to maintain serum calcium and phosphate at normal levels, while supplementation with active vitamin D should be considered if serum PTH levels are elevated. As previously stated, the authors of guidelines for CKD patients believe that there is not enough evidence to support routine vitamin D [25(OH)D] testing. According to what is stated in the guidelines, decisions regarding the commencement or discontinuation of treatment with calcitriol or vitamin D analogs should be based on serum PTH, calcium, and phosphate levels.
Limitations associated with the evidence of vitamin D testing include ambiguities in the definition of an ‘adequate threshold level’ and both inter- and intra- assay variability. The MAS considers both the lack of a consensus on the target serum vitamin D levels and assay limitations directly affect and undermine the clinical utility of testing. The evidence supporting the clinical utility of vitamin D testing is thus considered to be of very low quality.
Daily vitamin D intake, either through diet or supplementation, should follow Health Canada’s recommendations for healthy individuals of different age groups. For those with medical conditions such as renal disease, liver disease, and malabsorption syndromes, and for those taking medications that may affect vitamin D absorption/metabolism, physician guidance should be followed with respect to both vitamin D testing and supplementation.
Conclusions
Studies indicate that vitamin D, alone or in combination with calcium, may decrease the risk of fractures and falls among older adults.
There is no high or moderate quality evidence to support the effectiveness of vitamin D in other outcomes such as cancer, cardiovascular outcomes, and all-cause mortality.
Studies suggest that the prevalence of vitamin D deficiency in Canadian adults and children is relatively low (approximately 5%), and between 10% and 25% have serum levels below 40 to 50 nmol/L (based on very low to low grade evidence).
Given the limitations associated with serum vitamin D measurement, ambiguities in the definition of a ‘target serum level’, and the availability of clear guidelines on vitamin D supplementation from Health Canada, vitamin D testing is not warranted for the average risk population.
Health Canada has issued recommendations regarding the adequate daily intake of vitamin D, but current studies suggest that the mean dietary intake is below these recommendations. Accordingly, Health Canada’s guidelines and recommendations should be promoted.
Based on a moderate level of evidence, individuals with darker skin pigmentation appear to have a higher risk of low serum vitamin D levels than those with lighter skin pigmentation and therefore may need to be specially targeted with respect to optimum vitamin D intake. The cause-effect of this association is currently unclear.
Individuals with medical conditions such as renal and liver disease, osteoporosis, and malabsorption syndromes, as well as those taking medications that may affect vitamin D absorption/metabolism, should follow their physician’s guidance concerning both vitamin D testing and supplementation.
PMCID: PMC3377517  PMID: 23074397
2.  Effect of dietary phosphorus on circulating concentrations of 1,25-dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency. 
Journal of Clinical Investigation  1984;73(6):1580-1589.
The hyperparathyroidism characteristic of patients with moderate renal insufficiency could be caused by decreases in the plasma concentration of ionized calcium (Ca++) evoked by: (a) recurring increases in the plasma concentration of inorganic phosphorus that may be detectable only in the post-prandial period; (b) a reversible, phosphorus-mediated suppression of renal 25-hydroxyvitamin D-1 alpha-hydroxylase that decreases the plasma concentration of 1,25-dihydroxyvitamin D (1,25-(OH)2D) enough to decrease both gut absorption and bone resorption of Ca++; (c) both of these. In a group of eight children with moderate renal insufficiency, mean glomerular filtration rate (GFR) 45 +/- 4 (SE) ml/min per 1.73 M2, ages 6-17 yr, we tested these hypotheses by determining the effect of short term (5 d) restriction and supplementation of dietary intake of phosphorus on the plasma concentration of 1,25-(OH)2D, the serum concentrations of immunoreactive parathyroid hormone (iPTH) and phosphorus, and the fractional renal excretion of phosphorus ( FEPi ). When dietary phosphorus was normal, 1.2 g/d, the serum concentrations of phosphorus throughout the day were not greater than those of normal control children, and the serum concentrations of carboxyl-terminal iPTH (C-iPTH) were greater, 59 +/- 9 vs. 17 +/- 3 mu leq/ml, and unchanging; the serum concentration of intact-iPTH was also greater, 198 +/- 14 vs. 119 +/- 8 pg/ml. The plasma concentration of 1,25-(OH)2D was lower than that of age-matched controls, 27 +/- 3 vs. 36 +/- 2 pg/ml (P less than 0.01). When dietary phosphorus was restricted to 0.35 g/d, the plasma concentration of 1,25-(OH)2D increased by 60% to a mean value not different from that of normal controls, while serum concentrations of C-iPTH and intact-iPTH decreased by 25%, the latter concentration to a mean value not different from that of controls. FEPi decreased from 31 to 9%. When dietary phosphorus was supplemented to 2.4 g/d, the plasma concentration of 1,25-(OH)2D decreased 32%, while those of C-iPTH and intact-iPTH increased by 131 and 45%, respectively; FEPi increased from 27 to 53%. Plasma concentrations of 25-hydroxyvitamin D remained normal and unchanged, and GFR did not change when dietary phosphorus was manipulated. The data demonstrate that in children with moderate renal insufficiency: (a) A normal dietary intake of phosphorus in attended by a decreased circulating concentration of 1,25-(OH)2D and an increased concentration of iPTH, but not by recurring increases in the serum concentration of phosphorus at any time of the day; (b) Dietary phosphorus is, however, a major determinant of the circulating concentrations of both 1,25-(OH)2D and iPTH, which vary inversely and directly, respectively, with dietary intake of phosphorus, and increase and decrease, respectively, to normal values when phosphorus is restricted for 5 d; (c) Restriction and supplementation of dietary phosphorus induces changes in the serum concentration of iPTH that correlate strongly but inversely with those induced in the plasma concentration of 1,25-(OH)2D (r = -0.88, P < 0.001); and (d) The physiologic responsiveness of the renal tubule to changes in dietary phosphorus is to a substantial extent intact. The data provide support for the second hypothesis stated.
PMCID: PMC437069  PMID: 6547151
3.  The high prevalence of chronic kidney disease-mineral bone disorders: A hospital-based cross-sectional study 
Indian Journal of Nephrology  2012;22(4):285-291.
Mineral bone disorder (MBD) is an important complication of chronic kidney disease (CKD). However, there are limited data on the pattern of MBD in Indian CKD population. The aim of this study was to describe spectrum of MBD in patients with CKD in our center. This was a hospital-based cross-sectional observational study. Patients with stage 4 and 5 CKD were included in this study. Those receiving calcium supplement, vitamin D or its analogues, and calcimimetic were excluded. Serum/plasma levels of creatinine, albumin, calcium, phosphate, total alkaline phosphatase (TAP), intact parathormone (iPTH), and 25-OH vitaminD (25-vitD) were measured. Radiological survey of bones was carried out in all cases, and echocardiography done in selected patients. Statistical analysis was done using Sigmaplot 10.0 software. A total of 150 patients (114 males, 36 females) were included in this study. Mean age was 45.67±16.96 years. CKD stage 4 and 5D were found in 26% (n=39) and 74% (n=111) of study population, respectively. The most common underlying native kidney diseases in patients of CKD 4 and 5D were diabetic nephropathy (41.03%) and CGN (41.44%), respectively. Median (first quartile, third quartile) values for serum levels of corrected calcium (cCa), phosphate, cCaXPO4 product, TAP, plasma iPTH, and 25-vitD in stage 4 CKD were 8.36 (7.79, 8.91) mg/dL, 4.9 (3.92, 6.4) mg/dL, 41.11 (34.01, 53.81) mg2/dL2, 97 (76.5, 184.25) IU/L, 231 (124.5, 430.75) pg/mL, and 12 (6.98, 23.55) ng/mL, respectively; and in stage 5D CKD were 8.36 (7.66, 8.95) mg/dL, 5.7 (4.23, 6.95) mg/dL, 46.5 (37.16, 54.47) mg2/dL2, 180 (114.5, 276.25) IU/L, 288 (169.75, 625.0) pg/mL, and 18.4 (10.0, 26.4) ng/mL, respectively. Prevalence of hypocalcemia (56.41% vs. 54.95%), hyperphosphatemia (64.10% vs. 70.27%), and hyperparathyroidism (84.62% vs. 88.29%) was not different between patients with CKD 4 and 5D. However, iPTH level outside the target range and increased TAP level were significantly (P<0.001) more common in CKD stage 5D. Multiple logistic regression analysis for hyperparathyroidism revealed significant inverse correlation with cCa in CKD 5D. There were no significant differences in vitamin D status and prevalence of valvular calcification between CKD stage 4 and 5D. X-ray revealed renal osteodystrophy in 8 (5.33%) patients, while it was normal in 118 (78.67%) patients. Secondary hyperparathyroidism, hyperphosphatemia, hypocalcemia, increased TAP, and 25-OH vitamin D deficiency and insufficiency were quite common in CKD 4 and 5 patients. The commonest type of MBD in CKD 4 and 5D was secondary hyperparathyroidism.
doi:10.4103/0971-4065.101249
PMCID: PMC3495351  PMID: 23162273
Chronic kidney disease; hyperparathyroidism; hyperphosphatemia; hypocalcemia; mineral bone disorder
4.  Efficacy and safety of oral doxercalciferol in the management of secondary hyperparathyroidism in chronic kidney disease stage 4 
Indian Journal of Nephrology  2013;23(4):271-275.
This study was carried out to evaluate the efficacy and safety of doxercalciferol as therapy for secondary hyperparathyroidism (SHPT) in patients with chronic kidney disease (CKD) stage 4 in a prospective clinical trial. A total of 35 CKD-4 patients who had a baseline parathyroid hormone (iPTH) >150 pg/mL and had not received any vitamin D analog in the preceding 8 weeks were followed up at intervals of 6 weeks for 18 weeks on oral therapy with doxercalciferol. The starting dose was 1.5 μg/day, and the dose was increased in steps of 1 μg/day if iPTH did not decrease by at least 30% on the subsequent visit. Doxercalciferol was stopped temporarily if low iPTH (<70 pg/mL), hypercalcemia (>10.7 mg/dL), or severe hyperphosphatemia (>8.0 mg/dL) occurred, and was restarted at a lower dose on reversal of these abnormalities. Calcium acetate was the only phosphate binder used. Mean iPTH decreased by 35.4 ± 4.4% from 381.7 ± 31.3 pg/mL to 237.9 ± 25.7 pg/mL (P < 0.001). The proportion of patients who achieved 30% and 50% suppression of iPTH levels was 83% and 72%, respectively. Mean serum calcium, phosphorus, and calcium-phosphorus product values did not differ significantly from the baseline values. Four, two, and nine patients developed hypercalcemia, severe hyperphosphatemia, and high CaxP (>55), respectively. Almost all patients recovered to an acceptable level within 2 weeks of stopping doxercalciferol and adjusting the phosphate binder dose. In all, 21 patients required temporary stoppage of therapy. Most of them were restarted on therapy at a reduced dose during the study. It can, therefore, be concluded that doxercalciferol is effective in controlling SHPT in CKD-4 patients with an acceptable risk of hyperphosphatemia and hypercalcemia.
doi:10.4103/0971-4065.114492
PMCID: PMC3741971  PMID: 23960343
Chronic kidney disease; doxercalciferol; parathyroid hormone; pre-dialysis; secondary hyperparathyroidism; vitamin D
5.  Effects of paricalcitol on calcium and phosphate metabolism and markers of bone health in patients with diabetic nephropathy: results of the VITAL study 
Nephrology Dialysis Transplantation  2013;28(9):2260-2268.
Background
Chronic kidney disease (CKD) is associated with elevations in serum phosphate, calcium–phosphorus product and bone-specific alkaline phosphatase (BAP), with attendant risks of cardiovascular and bone disorders. Active vitamin D can suppress parathyroid hormone (PTH), but may raise serum calcium and phosphate concentrations. Paricalcitol, a selective vitamin D activator, suppressed PTH in CKD patients (stages 3 and 4) with secondary hyperparathyroidism (SHPT) with minimal changes in calcium and phosphate metabolism.
Methods
The VITAL study enrolled patients with CKD stages 2–4. We examined the effect and relationship of paricalcitol to calcium and phosphate metabolism and bone markers in a post hoc analysis of VITAL. The study comprised patients with diabetic nephropathy enrolled in a double-blind, placebo-controlled, randomized trial of paricalcitol (1 or 2 μg/day). Urinary and serum calcium and phosphate, serum BAP, and intact PTH (iPTH) concentrations were measured throughout the study.
Results
Baseline demographics and calcium, phosphate, PTH (49% with iPTH <70 pg/mL), and BAP concentrations were similar between groups. A transient, modest yet significant increase in phosphate was observed for paricalcitol 2 μg/day (+0.29 mg/dL; P < 0.001). Dose-dependent increases in serum and urinary calcium were observed; however, there were few cases of hypercalcemia: one in the 1-μg/day group (1.1%) and three in the 2-μg/day group (3.2%). Significant reductions in BAP were observed that persisted for 60 days after paricalcitol discontinuation (P < 0.001 for combined paricalcitol groups versus placebo). Paricalcitol dose-dependent reductions in iPTH were observed. Paricalcitol in CKD patients (±SHPT) was associated with modest increases in calcium and phosphate.
Conclusion
Paricalcitol reduces BAP levels, which may be beneficial for reducing vascular calcification.
Trial registration
Trial is registered with ClinicalTrials.gov, number NCT00421733.
doi:10.1093/ndt/gft227
PMCID: PMC3769981  PMID: 23787544
bone-specific alkaline phosphatase; calcitriol; hypercalcemia; hyperphosphatemia; paricalcitol; vitamin D receptor activation
6.  The influence of BsmI and TaqI vitamin D receptor gene polymorphisms on the intensity of hyperparathyroidism in Iranian hemodialysis patients 
Background:
The influence of vitamin D receptor (VDR) gene polymorphisms on the regulation of the parathyroid hormone is important in end-stage renal disease (ESRD) patients. We analyzed rs1544410 (BsmI) and rs731236 (TaqI) polymorphisms of VDR gene in hemodialysis patients to determine their relationship with serum intact parathyroid hormone (iPTH).
Materials and Methods:
Ninety hemodialysis patients were included in this study. Patients were classified into four groups according to their serum iPTH level. Polymorphisms of VDR gene were surveyed using polymerase chain reaction-restriction fragment length polymorphism method with BsmI and TaqI enzymes in all the patients.
Results:
Patients age ranged between 30 and 60 years (mean ± SD: 36.0 ± 11.4) and period undergoing hemodialysis 80 ± 71 months. Patients were divided into four groups based on the serum concentration of iPTH. The distribution of VDR gene allelic variation for BsmI and TaqI polymorphisms was different between the four groups of uremic patients. Analysis of data revealed a significant correlation between the TaqI variants and serum iPTH level. There was also a correlation between the BsmI variants and serum iPTH level in that patients with the BB genotype were more likely to have a higher serum iPTH level. However, the latter was not statistically significant.
Conclusions:
Genotype of the TaqI and BsmI VDR gene polymorphisms is reported in Iranian patients with ESRD. Those with tt or BB genotypes may develop more severe secondary hyperparathyroidism.
doi:10.4103/2277-9175.143260
PMCID: PMC4219211  PMID: 25371870
End-stage renal disease; hyperparathyroidism; polymorphism; vitamin D receptor
7.  Noninvasive assessment of bone health in Indian patients with chronic kidney disease 
Indian Journal of Nephrology  2013;23(3):161-167.
Abnormalities in mineral and bone disease are common in chronic kidney disease (CKD). Evaluation of bone health requires measurement of parameters of bone turnover, mineralization, and volume. There are no data on bone health in CKD patients from India. In this cross-sectional study, we evaluated serum biomarkers of bone turnover: Bone-specific alkaline phosphatase (BAP) and total deoxypyridinoline (tDPD) along with parathyroid hormone, 25(OH) vitamin D, and bone mineral density (BMD) using dual absorption X-ray absorptiometry in a cohort of 74 treatment-naive patients with newly diagnosed stage 4 and 5 CKD (age 42 ± 14.5 years, 54 men) and 52 non-CKD volunteers (age 40.2 ± 9.3 years, 40 men). Compared to the controls, CKD subjects showed elevated intact PTH (iPTH), BAP, and tDPD and lower BMD. There was a strong correlation between iPTH and BAP (r = 0.88, P < 0.0001), iPTH and tDPD (r = 0.51, P < 0.0001), and BAP and tDPD (r = 0.46, P = 0.0004). The iPTH elevation was greater than twice the upper range of normal in 73% cases, and BAP was >40 U/L in 66% cases. The combination of these markers suggests high turnover bone disease in over 60% cases. The prevalence of osteopenia and osteoporosis was 37% and 12%, respectively. Osteoporotic subjects had higher iPTH, BAP, and tDPD, suggesting a role of high turnover in genesis of osteoporosis. Vitamin D deficiency was seen in 80%, and another 13% had insufficient levels. Vitamin D correlated inversely with BAP (r = −0.3, P = 0.009), and levels were lower in those with iPTH >300 pg/ml (P = 0.0.04). In conclusion, over 60% of newly diagnosed Indian stage 4–5 CKD patients show biochemical parameters consistent with high turnover bone disease. High turnover could contribute to the development of osteoporosis in CKD subjects. Deficiency of 25 (OH) vitamin D is widespread and seems to have a role in the genesis of renal bone disease. Studies on the effect of supplementation of native vitamin D are needed.
doi:10.4103/0971-4065.111831
PMCID: PMC3692139  PMID: 23814412
Bone mineral density; bone-specific alkaline phosphatase; chronic kidney disease; deoxypyrinolidine; parathyroid hormone; renal osteodystrophy; vitamin D
8.  The prevalence of hypovitaminosis D and secondary hyperparathyroidism in obese Black Americans 
Clinical endocrinology  2006;64(5):523-529.
Summary
Context Both obesity (body mass index, BMI ≥ 30 kg/m2) and Black race are associated with a higher risk of vitamin D deficiency and secondary hyperparathyroidism. We hypothesized the risk of hypovitaminosis D would therefore be extraordinarily high in obese Black adults.
Objective
To study the effects of race and adiposity on 25-hydroxyvitamin D [25(OH)D] and parathyroid hormone (iPTH).
Design, Setting and Participants
Cross-sectional study of 379 Black and White adults from the Washington D.C. area. BMI ranged from 19.9 to 58.2 kg/m2.
Main Outcome Measures
Prevalence of hypovitaminosis D [25(OH)D < 37.5 nmol/l] and secondary hyperparathyroidism [25(OH)D < 37.5 nmol/l with iPTH > 4.2 pmol/l].
Results
Obese Black subjects had lower mean 25(OH)D, 40.3 (SD, 20.3) nmol/l, compared with obese Whites, 64.5 (29.7), P < 0.001, nonobese Blacks, 53.3 (26.0), P = 0.0025 and nonobese Whites, 78.0 (33.5), P < 0.001. The prevalence of hypovitaminosis D increased with increasing BMI, and was greater (P < 0.001) in Blacks than Whites within all BMI categories examined. Among subjects with BMI ≥ 35 kg/m2, 59% of Blacks vs 18% of Whites had hypovitaminosis D (odds ratio 6.5, 95% confidence interval 3.0–14.2). iPTH was negatively correlated with 25(OH)D (r = −0.31, P < 0.0001), suggesting those with hypovitaminosis D had clinically important vitamin D deficiency with secondary hyperparathyroidism. For secondary hyperparathyroidism 35.2% of Blacks met the criteria, compared to 9.7% of Whites (OR 3.6, CI 1.5–98.8).
Conclusions
Obese Black Americans are at particularly high risk for vitamin D deficiency and secondary hyperparathyroidism. Physicians should consider routinely supplementing such patients with vitamin D or screening them for hypovitaminosis D.
doi:10.1111/j.1365-2265.2006.02502.x
PMCID: PMC1863008  PMID: 16649971
9.  Immunoreactive Forms of Circulating Parathyroid Hormone in Primary and Ectopic Hyperparathyroidism 
Journal of Clinical Investigation  1974;54(1):175-181.
The immunoreactive forms of parathyroid hormone (iPTH) in the plasma of six patients with primary, adenomatous hyperparathyroidism and six patients with ectopic hyperparathyroidism due to non-parathyroid cancer were compared by using gel filtration on columns of Bio-Gel P-150 and radioimmunoassay of iPTH in eluted fractions after concentration. We found much less (p<0.001) small (mol wt<9,500) COOH-terminal fragments of iPTH in plasma samples from ectopic hyperparathyroid patients (0.52±0.13 ng eq/ml) than in samples from primary hyperparathyroid patients (3.70±1.15 ng eq/ml). The quantity of iPTH eluting with or before native bovine PTH [1-84] was the same in both syndromes (ectopic hyperparathyroidism, 0.82±0.22 ng eq/ml; primary hyperparathyroidism, 0.73±0.09 ng eq/ml), and these values correlated positively with plasma calcium concentration (ectopic hyperparathyroidism, r=0.908; primary hyperparathyroidism, r=0.919). In both syndromes, plasma samples had an iPTH component that eluted well before PTH [1-84] (mol wt 9,500), but this component was present in much larger quantities in three patients with ectopic hyperparathyroidism. We conclude that (a) the decreased quantity of biologically inactive COOH-terminal fragments of iPTH circulating in ectopic hyperparathyroidism accounts for the previously reported relatively lower total serum iPTH values in this syndrome as compared with primary hyperparathyroidism (Riggs et al. 1971. J. Clin. Invest. 50: 2079); (b) there appears to be sufficient iPTH with presumed biologic activity to account for the hypercalcemia in both syndromes; (c) a large PTH component, not previously recognized in plasma, is present in both ectopic and primary hyperparathyroidism and may exist as the predominant immunoreactive form of the hormone in some patients with ectopic hyperparathyroidism.
Images
PMCID: PMC301537  PMID: 4834887
10.  Rapid Decrease of Intact Parathyroid Hormone Could Be a Predictor of Better Response to Cinacalcet in Hemodialysis Patients 
Yonsei Medical Journal  2013;54(2):453-463.
Purpose
Cinacalcet is effective for treating refractory secondary hyperparathyroidism (SHPT), but little is known about the response rates and clinical factors influencing the response.
Materials and Methods
A prospective, single-arm, multi-center study was performed for 24 weeks. Cinacalcet was administered to patients with intact parathyroid hormone (iPTH) level greater than 300 pg/mL. Cinacalcet was started at a dose of 25 mg daily and titrated until 100 mg to achieve a serum iPTH level <300 pg/mL (primary end point). Early response to cinacalcet was defined as a decrease of iPTH more than 50% within one month.
Results
Fifty-seven patients were examined. Based on the magnitude of iPTH decrease, patients were divided into responder (n=47, 82.5%) and non-responder (n=10, 17.5%) groups. Among the responders, 38 achieved the primary end point, whereas 9 patients showed a reduction in serum iPTH of 30% or more, but did not reach the primary end point. Compared to non-responders, responders were significantly older (p=0.026), female (p=0.041), and diabetics (p<0.001). Additionally, early response was observed more frequently in the responders (30/47, 63.8%), of whom the majority (27/30, 90.0%) achieved the primary end point. Multivariate analysis showed that lower baseline iPTH levels [odds ratio (OR) 0.96, 95% confidence interval (CI) 0.93-0.99], the presence of diabetes (OR 46.45, CI 1.92-1125.6) and early response (OR 21.54, CI 2.94-157.7) were significant clinical factors affecting achievement of iPTH target.
Conclusion
Cinacalcet was effective in most hemodialysis patients with refractory SHPT. The presence of an early response was closely associated with the achievement of target levels of iPTH.
doi:10.3349/ymj.2013.54.2.453
PMCID: PMC3575968  PMID: 23364981
Cinacalcet; end-stage renal disease; hemodialysis; parathyroid hormone; secondary hyperparathyroidism
11.  Disturbances of parathyroid hormone–vitamin D axis in non-cholestatic chronic liver disease: a cross-sectional study 
Hepatology International  2010;4(3):634-640.
Purpose
Liver has an important role in metabolism of vitamin D. This study aimed to evaluate the patterns of vitamin D–parathyroid hormone (PTH) disturbance and correlate it in patients with non-cholestatic chronic liver disease (CLD).
Methods
A total of 40 healthy controls and 90 consecutive patients with evidence of non-cholestatic CLD due to hepatitis C (n = 28), hepatitis B (n = 26), autoimmune hepatitis (n = 19), and cryptogenic causes (n = 17) were enrolled. Cirrhosis was evident in 51 patients. Serum concentrations of 25-hydroxy vitamin D, PTH, calcium, phosphate, and liver enzymes were measured. Child–Pugh classification was determined in cirrhotic patients.
Results
Vitamin D deficiency (<50 nmol/l) was found in 46 (51.1%) patients and vitamin D insufficiency (50–80 nmol/l) in 15 (16.7%) patients. Secondary hyperparathyroidism (serum PTH > 6.8 pmol/l) was present in 6 (6.7%) patients. The prevalence of vitamin D deficiency was significantly higher in cirrhotic versus noncirrhotic patients (76.5 vs. 17.9%; P < 0.001), whereas there was no significant difference in serum calcium, phosphate, and PTH levels. Child–Pugh class B and C patients had significantly lower vitamin D level compared with class A patients (P < 0.001), whereas there was no significant difference in serum calcium, phosphate, and PTH levels. No significant correlation was seen between vitamin D and PTH, calcium or phosphate levels. Lower serum level of vitamin D was associated with coagulopathy, hyperbilirubinemia, hypoalbuminemia, anemia, and thrombocytopenia.
Conclusions
Vitamin D inadequacy and the severity of liver dysfunction move in parallel in patients with non-cholestatic CLD. Vitamin D assessment and replacement should be considered in the management of patients with non-cholestatic CLD.
doi:10.1007/s12072-010-9194-2
PMCID: PMC2940008  PMID: 21063488
Vitamin D; Liver; Cirrhosis; Parathyroid hormone; Child–Pugh score; MELD
12.  Hypertension and hyperparathyroidism are associated with left ventricular hypertrophy in patients on hemodialysis 
Indian Journal of Nephrology  2009;19(4):153-157.
Conflicting data for association between left ventricular hypertrophy (LVH) and secondary hyperparathyroidism has been reported previously among dialysis patients. The present study was conducted to evaluate the association of hyperparathyroidism and hypertension with LVH. Charts of 130 patients on hemodialysis for at least six months were reviewed. All were subjected to M-mode echocardiography. Left ventricular mass (LVM) was calculated by Devereux's formula. LVM Index (LVMI) was calculated by dividing LVM by body surface area. Sera were analyzed for intact parathyroid hormone (iPTH). iPTH of > 32 pmol/l and a mean blood pressure (MAP) of > 107 mmHg were considered high. Patients were stratified into groups according to their MAP and iPTH. A total of (47.7%) patients were males and 68 (52.3%) were females. Their median age was 57 years. The median duration on dialysis was 26 months. Forty eight (36.9%) patients had high BP and 54 (41.5%) had high iPTH. Both high BP and high iPTH were present in 38 (29.2%) patients. Analysis of the relationship between LVM, LVMI, MAP and iPTH showed that LVM and LVMI were significantly (P < 0.001) higher in patients with concomitant high BP and high iPTH. LVMI was significantly higher in patients with high iPTH alone. Concomitant high iPTH and high MAP increase the risk of LVH in hemodialysis patients. High iPTH alone might contribute in escalating LVH. Adequate control of hypertension and hyperparathyroidism might reduce the risk of developing LVH.
doi:10.4103/0971-4065.59337
PMCID: PMC2875705  PMID: 20535251
Hemodialysis; hypertension; hyperparathyroidism; left ventricular hypertrophy
13.  Pakistanis living in Oslo have lower serum 1,25-dihydroxyvitamin D levels but higher serum ionized calcium levels compared with ethnic Norwegians. The Oslo Health Study 
Background
Persons of Pakistani origin living in Oslo have a much higher prevalence of vitamin D deficiency and secondary hyperparathyroidism but similar bone mineral density compared with ethnic Norwegians. Our objective was to investigate whether Pakistani immigrants living in Oslo have an altered vitamin D metabolism by means of compensatory higher serum levels of 1,25-dihydroxyvitamin D (s-1,25(OH)2D) compared with ethnic Norwegians; and whether serum levels of ionized calcium (s-Ca2+) differ between Pakistanis and Norwegians.
Methods
In a cross-sectional, population-based study venous serum samples were drawn from 94 Pakistani men and 67 Pakistani women aged 30–60 years, and 290 Norwegian men and 270 Norwegian women aged 45–60 years; in total 721 subjects.
Results
Pakistanis had lower s-1,25(OH)2D compared with Norwegians (p < 0.001). Age- and gender adjusted mean (95% CI) levels were 93 (86, 99) pmol/l in Pakistanis and 123 (120, 126) pmol/l in Norwegians, p < 0.001. The difference persisted after controlling for body mass index. There was a positive relation between serum 25-hydroxyvitamin D (s-25(OH)D) and s-1,25(OH)2D in both groups. S-Ca2+ was higher in Pakistanis; age-adjusted mean (95% CI) levels were 1.28 (1.27, 1.28) mmol/l in Pakistanis and 1.26 (1.26, 1.26) mmol/l in Norwegians, p < 0.001. In both groups, s-Ca2+ was inversely correlated to serum intact parathyroid hormone levels (s-iPTH). For any s-iPTH, s-Ca2+ was higher in Pakistanis, also when controlling for age.
Conclusion
Community-dwelling Pakistanis in Oslo with low vitamin D status and secondary hyperparathyroidism have lower s-1,25(OH)2D compared with ethnic Norwegians. However, the Pakistanis have higher s-Ca2+. The cause of the higher s-Ca2+ in Pakistanis in spite of their higher iPTH remains unclear.
doi:10.1186/1472-6823-7-9
PMCID: PMC2235861  PMID: 17945003
14.  Cost Effectiveness of Paricalcitol Versus Cinacalcet with Low-Dose Vitamin D for Management of Secondary Hyperparathyroidism in Haemodialysis Patients in the USA 
Clinical Drug Investigation  2013;34(2):107-115.
Background
The IMPACT SHPT [Improved Management of Intact Parathyroid Hormone (iPTH) with Paricalcitol-Centered Therapy Versus Cinacalcet Therapy with Low-Dose Vitamin D in Hemodialysis Patients with Secondary Hyperparathyroidism] study compared the effectiveness of paricalcitol and cinacalcet in the management of secondary hyperparathyroidism in haemodialysis patients but did not report the costs or cost effectiveness of these treatments.
Aim
The aim of this study was to compare the cost effectiveness of a paricalcitol-based regimen versus cinacalcet with low-dose vitamin D for management of secondary hyperparathyroidism in haemodialysis patients from a US payer perspective, using a 1-year time horizon.
Methods
This was a post hoc cost-effectiveness analysis of data collected for US patients enrolled in the IMPACT SHPT study—a 28-week, randomized, open-label, phase 4, multinational study (ClinicalTrials.gov identifier: NCT00977080). Patients eligible for the IMPACT SHPT study were aged ≥18 years with stage 5 chronic kidney disease, had been receiving maintenance haemodialysis three times weekly for at least 3 months before screening and were to continue haemodialysis during the study. Only US patients who reached the evaluation period (weeks 21–28) were included in this secondary analysis. US subjects in the IMPACT SHPT study were randomly assigned to receive intravenous paricalcitol, or oral cinacalcet plus fixed-dose intravenous doxercalciferol, for 28 weeks. Patients in the paricalcitol group could also receive supplemental cinacalcet for hypercalcaemia. The primary effectiveness endpoint in the IMPACT SHPT study was the proportion of subjects who achieved a mean intact parathyroid hormone (iPTH) level of 150–300 pg/mL during the evaluation period. In this secondary analysis, we estimated the incremental cost-effectiveness ratio (ICER), comparing paricalcitol-treated patients with cinacalcet-treated patients on the basis of this primary endpoint and several secondary endpoints. Costs were estimated by examining the dosage of the study drug (paricalcitol or cinacalcet) and phosphate binders used by each participant during the trial. Nonparametric bootstrap analysis was used to examine the accuracy of the ICER point estimates.
Results
The percentages of patients achieving the treatment goal of a mean iPTH level between 150–300 pg/mL during weeks 21–28 of therapy were 56.9 % in the paricalcitol group and 34.0 % in the cinacalcet group (a difference of 23 %, p = 0.0235). Paricalcitol was also more effective for each of the secondary endpoints. When annualized, the total drug costs were US$10,153 in the paricalcitol group and US$15,967 in the cinacalcet group, a difference of US$5,814 (57.3 %, p = 0.0053). Because the paricalcitol-based treatment was less expensive and more effective, it was ‘dominant’, compared with cinacalcet, in this cost-effectiveness analyses. In our bootstrap analysis, 99.1 % of bootstrap replicates for the ICER of the primary endpoint fell within the lower right quadrant of the cost-effectiveness plane—where paricalcitol is considered dominant. For all of the other endpoints, paricalcitol was dominant in 100 % of replicates.
Conclusion
On the basis of dosing and effectiveness data from US patients in the IMPACT SHPT study, we found that a regimen of intravenous paricalcitol was more cost effective than cinacalcet plus low-dose vitamin D in the management of iPTH in patients with SHPT requiring haemodialysis.
doi:10.1007/s40261-013-0151-4
PMCID: PMC3899451  PMID: 24214232
15.  Hypovitaminosis D: Are Medical Students at Risk? 
Background:
Vitamin D deficiency is a pandemic problem mostly diagnosed in elderly. Few studies are available exclusively done on the topic among young adults. Specific professions such as medical students may have higher risk for developing hypovitaminosis D. We aimed to assess the vitamin D status in medical students of Iran University of Medical Sciences; and to define a cut-off point for 25-hydroxyvitamin-D (25(OH)D) level based on secondary hyperparathyroidism.
Methods:
This was a cross-sectional study on 100 medical students conducted during October 2012. Serum 25(OH)D, intact parathyroid hormone (iPTH), and calcium were measured. Age, sex, body mass index, daily dietary fish and egg consumption, sun exposure, and sunscreen usage were recorded. The association between serum 25(OH)D and iPTH was assessed. Receiver operating characteristics curve analysis was performed.
Results:
25-hydroxyvitamin-D level was <30 ng/ml in 99% of all participants, and <20 ng/ml in 77%. Mean serum 25(OH)D level was 16.8 ± 4.7 ng/ml. iPTH level in the group with 25(OH)D level of <10 ng/ml was significantly higher than in those with serum 25(OH)D level of 10 to <20 ng/ml and 20 to <30 ng/ml (109 ± 47 pg/ml, 47 ± 27 pg/ml and 46 ± 19 pg/ml, respectively; P = 0.0001). There was a significant linear inverse correlation between serum iPTH and 25(OH)D (r = -0.36, P = 0.0001). 25(OH)D level of 15.4 ng/ml was determined as the optimal cut-off point in detecting possible secondary hyperparathyroidism.
Conclusions:
To improve the community vitamin D status, in addition to population-based food fortification programs, educational programs seem essential; not only for general population, but also for the more educated groups.
PMCID: PMC4192779  PMID: 25317300
Cut-off; hypovitaminosis D; medical students; parathyroid hormone; vitamin D deficiency
16.  Low serum levels of 1.25-dihydroxyvitamin D and histomorphometric evidence of osteomalacia after jejunoileal bypass for obesity. 
Gut  1980;21(7):624-631.
Twenty-seven unselected patients were investigated three to eight years after jejunoileal bypass for morbid obesity. The serum levels of calcium, magnesium, and phosphorus, and the renal excretions of calcium and magnesium were reduced. The serum alkaline phosphatase levels were increased. The serum levels of the two vitamin D metabolites 25-hydroxyvitamin D (25-OHD) and 1.25-dihydroxyvitamin D (1.25-(OHD)2D) were reduced and inversely related to the increased serum levels of immunoreactive parathyroid hormones (iPTH). Serum 1.25-(OH)2D correlated positively and serum iPTH inversely with serum concentrations and renal excretion rates of calcium. Iliac crest bone biopsies after in vivo tetracycline double-labelling showed a reduced bone turnover with an increased amount of osteoid due to an increase in both surface extent and mean width of osteoid seams. The increased volume of osteoid was caused by a decreased osteoblastic function with a longer life-span of bone-forming sites and a prolongation of the mineralisation lag time. The amount of trabecular bone was normal. The results indicate an impaired vitamin D metabolism with osteomalacia and secondary hyperparathyroidism.
Images
PMCID: PMC1419901  PMID: 7429327
17.  Is serum phosphorus control related to parathyroid hormone control in dialysis patients with secondary hyperparathyroidism? 
BMC Nephrology  2012;13:76.
Background
Elevated serum phosphorus (P) levels have been linked to increased morbidity and mortality in dialysis patients with secondary hyperparathyroidism (SHPT) but may be difficult to control if parathyroid hormone (PTH) is persistently elevated. We conducted a post hoc analysis of data from an earlier interventional study (OPTIMA) to explore the relationship between PTH control and serum P.
Methods
The OPTIMA study randomized dialysis patients with intact PTH (iPTH) 300–799 pg/mL to receive conventional care alone (vitamin D and/or phosphate binders [PB]; n = 184) or a cinacalcet-based regimen (n = 368). For patients randomized to conventional care, investigators were allowed flexibility in using a non-cinacalcet regimen (with no specific criteria for vitamin D analogue dosage) to attain KDOQI™ targets for iPTH, P, Ca and Ca x P. For those assigned to the cinacalcet-based regimen, dosages of cinacalcet, vitamin D sterols, and PB were optimized over the first 16 weeks of the study, using a predefined treatment algorithm. The present analysis examined achievement of serum P targets (≤4.5 and ≤5.5 mg/dL) in relation to achievement of iPTH ≤300 pg/mL during the efficacy assessment phase (EAP; weeks 17–23).
Results
Patients who achieved iPTH ≤ 300 pg/mL (or a reduction of ≥30% from baseline) were more likely to achieve serum P targets than those who did not, regardless of treatment group. Of those who did achieve iPTH ≤ 300 pg/mL, 43% achieved P ≤4.5 mg/dL and 70% achieved P ≤5.5 mg/dL, versus 21% and 46% of those who did not achieve iPTH ≤ 300 pg/mL. Doses of PB tended to be higher in patients not achieving serum P targets. Patients receiving cinacalcet were more likely to achieve iPTH ≤300 pg/mL than those receiving conventional care (73% vs 23% of patients). Logistic regression analysis identified lower baseline P, no PB use at baseline and cinacalcet treatment to be predictors of achieving P ≤4.5 mg/dL during EAP in patients above this threshold at baseline.
Conclusions
This post hoc analysis found that control of serum P in dialysis patients was better when serum PTH levels were lowered effectively, regardless of treatment received.
Trial registration
Clinicaltrials.gov identifier NCT00110890
doi:10.1186/1471-2369-13-76
PMCID: PMC3473247  PMID: 22863242
18.  Response of bone metabolism related hormones to a single session of strenuous exercise in active elderly subjects 
Objective: To evaluate the effect of strenuous exercise on bone metabolism and related hormones in elderly subjects.
Methods: Twenty one active elderly subjects (11 men and 10 women; mean age 73.3 years) showing a mean theoretical Vo2max of 151.4% participated. Concentrations of plasma ionised calcium (iCa), serum intact parathyroid hormone (iPTH), 25-hydroxyvitamin D (25(OH)D), and 1.25-dihydroxy-vitamin D3 (1.25(OH)2D3), as well as the bone biochemical markers type I collagen C-telopeptide for bone resorption and osteocalcin and bone alkaline phosphatase for bone formation, were analysed before and after a maximal incremental exercise test.
Results: At basal level, iPTH was positively correlated with age (r = 0.56, p<0.01) and negatively correlated with 25(OH)D (r = –0.50; p<0.01) and 1.25(OH)2D3 (r = –0.47; p<0.05). Moreover, 25(OH)D and 1.25(OH)2D3 levels were negatively correlated with age (r = –0.50, p<0.01 and r = –0.53, p<0.01, respectively). After exercise, iCa and 25(OH)D decreased (p<0.001 and p = 0.01, respectively) while iPTH increased (p<0.001). The levels of 1.25(OH)2D3, bone biochemical markers, haematocrit, and haemoglobin were unchanged. The variations in iCa and 25(OH)D were not related to age and/or sex. The iPTH variation was directly related to basal iPTH levels (p<0.01) and indirectly related to age.
Conclusions: In active elderly subjects, strenuous exercise disturbed calcium homeostasis and bone related hormones without immediate measurable effect on bone turnover. Although an increase in iPTH could have an anabolic action on bone tissue, our findings from our short term study did not allow us to conclude that such action occurred.
doi:10.1136/bjsm.2004.013151
PMCID: PMC1725278  PMID: 16046330
19.  Changes of serum bone markers in CAPD and hemodialysis patients 
Hippokratia  2007;11(4):199-201.
Background: A non-invasive method for evaluation of high-turnover and low-turnover bone diseases is the measurement of certain important serum bone markers such as osteocalcin, procolagen-I-propeptide, dioxypiridinoline, hydroxyproline and alkaline phosphatase. Renal osteodystrophy (ROD) in pre-dialysis and dialysis patients, is manifested in 3 forms: high-turnover ROD, related to secondary hyperparathyroidism; low-turnover ROD and mixed ROD.
Material and methods: Serum levels of intact parathyroid hormone (iPTH), osteocalcin (OC), procolagen-I-propeptide (PIPC) and dioxypiridinoline (DYP) were measured in 20 patients on hemodialysis (HD) and 20 patients on continuous ambulatory peritoneal dialysis (CAPD) to assess the prevalence of ROD type in the HD and CAPD groups.
Results: We found lower mean levels of all bone markers in CAPD patients, (iPTH: 219±235 vs. 428±285 pg/ml; p<0.01; OC 10.2±7.5 vs. 21.3±7.2 ng/ml; p<0.01; PIPC 111±57.3 vs. 218±62.4 ng/ml; p<0.01; DYP 7.3±6.4 vs. 55.2±23.3nm/l; p<0.001; AP 164±66 vs. 325±188 U/l; p<0.01) and lower than normal in 11 of them and higher than normal PTH, AP and some of the other serum markers (PICP; DYP) in 14 HD patients.
Conclusions: The lower levels of the investigated serum bone markers in CAPD patients suggest that low-turnover ROD prevails in these patients than in HD pts.
PMCID: PMC2552984  PMID: 19582194
serum bone markers; osteocalcin; procolagen-I-propeptide; dioxipyridinoline; hydroxyproline; alkaline phosphatase; intact parathyroid hormone; high-turnover ROD; low-turnover ROD
20.  Effect of Intermittent PTH(1–34) on Human Periodontal Ligament Cells Transplanted into Immunocompromised Mice 
Tissue Engineering. Part A  2012;18(17-18):1849-1856.
Residual periodontal ligament (PDL) cells in the damaged tissue are considered a prerequisite for a successful regeneration of the periodontal architecture with all its components, including gingiva, PDL, cementum, and bone. Among other approaches, current concepts in tissue engineering aim at a hormonal support of the regenerative capacity of PDL cells as well as at a supplementation of lost cells for regeneration. Here, we investigated how far an anabolic, intermittent parathyroid hormone (iPTH) administration would enhance the osteoblastic differentiation of PDL cells and the cellular ability to mineralize the extracellular matrix in an in vivo transplantation model. PDL cells were predifferentiated in a standard osteogenic medium for 3 weeks before subcutaneous transplantation into CD-1 nude mice using gelatin sponges as carrier. Daily injections of 40 μg/kg body weight PTH(1–34) or an equivalent dose of vehicle for 4 weeks were followed by explantation of the specimens and an immunohistochemical analysis of the osteoblastic marker proteins alkaline phosphatase (ALP), osteopontin, and osteocalcin. Signs of biomineralization were visualized by means of alizarin red staining. For verification of the systemic effect of iPTH application, blood serum levels of osteocalcin were determined. The osteogenic medium stimulated the expression of ALP and PTH1-receptor mRNA in the cultures. After transplantation, iPTH resulted in an increased cytoplasmic and extracellular immunoreactivity for all markers investigated. In contrast to only sporadic areas of mineralization under control conditions, several foci of mineralization were observed in the iPTH group. Blood serum levels of osteocalcin were elevated significantly with iPTH. These data indicate that the osteoblastic differentiation of human PDL cells and their ability for biomineralization can be positively influenced by iPTH in vivo. These findings hold out a promising prospect for the support of periodontal regeneration.
doi:10.1089/ten.tea.2011.0626
PMCID: PMC3432899  PMID: 22497226
21.  Correlates of parathyroid hormone concentration in hemodialysis patients 
Nephrology Dialysis Transplantation  2013;28(6):1516-1525.
Background
The implications of chemical hyperparathyroidism on bone and mineral metabolism measures in maintenance hemodialysis (MHD) are not well known. We hypothesized that a higher serum intact parathyroid hormone (iPTH) level is associated with the higher likelihood of hyperphosphatemia, hyperphosphatasemia [high serum alkaline phosphatase (ALP) levels] and hypercalcemia.
Methods
Over an 8-year period (July 2001–June 2009), we identified 106 760 MHD patients with iPTH and calcium (Ca), phosphorous (P) and ALP data from a large dialysis clinic. Logistic regression models were examined to assess the association between serum iPTH increments and the likelihood of hyperphosphatemia (P ≥5.5 mg/dL), hypercalcemia (Ca ≥10.2 mg/dL) and hyperphosphatasemia (ALP ≥120 U/L).
Results
Patients were 61 ± 16 years old and included 45% women, 59% diabetics and 33% Blacks. Compared with an iPTH level of 100 to <200 pg/mL, patients with an iPTH level of 600–700, 700 to <800 and ≥800 pg/mL had 122% (OR: 2.22, 95% CI: 2.04–2.41), 153% (OR: 2.53, 95% CI: 2.29–2.80) and 243% (OR: 3.43, 95% CI: 3.22–3.66) higher risk of hyperphosphatemia, respectively, and had 109% (OR: 2.09, 95% CI: 1.93–2.26), 130% (OR: 2.30, 95% CI: 2.10–2.52) and 376% (OR: 4.76, 95% CI: 4.50–5.04) higher risk of hyperphosphatasemia, respectively. Compared with an iPTH level of 100 to <200 pg/mL, both the low iPTH (<100 pg/mL, OR: 2.45, 95% CI: 2.27–2.64) and the high iPTH (≥800 pg/mL: OR: 2.13, 95% CI: 1.95–2.33) levels were associated with hypercalcemia.
Conclusions
Higher levels of iPTH are incremental correlates of hyperphosphatemia and hyperphosphatasemia, whereas both very low and high PTH levels are linked to hypercalcemia. If these associations are causal, correction of hyperparathyroidism may have overarching implications on bone and mineral disorders in MHD patients.
doi:10.1093/ndt/gfs598
PMCID: PMC3685307  PMID: 23348879
hemodialysis; serum alkaline phosphatase; serum calcium; serum intact parathyroid hormone; serum phosphorous
22.  The Causal Effect of Vitamin D Binding Protein (DBP) Levels on Calcemic and Cardiometabolic Diseases: A Mendelian Randomization Study 
PLoS Medicine  2014;11(10):e1001751.
In this study, Richards and colleagues undertook a Mendelian randomization study to determine whether vitamin D binding protein (DBP) levels have a causal effect on common calcemic and cardiometabolic diseases. They concluded that DBP has no demonstrable causal effect on any of the diseases or traits investigated here, except Vit D levels.
Please see later in the article for the Editors' Summary
Background
Observational studies have shown that vitamin D binding protein (DBP) levels, a key determinant of 25-hydroxy-vitamin D (25OHD) levels, and 25OHD levels themselves both associate with risk of disease. If 25OHD levels have a causal influence on disease, and DBP lies in this causal pathway, then DBP levels should likewise be causally associated with disease. We undertook a Mendelian randomization study to determine whether DBP levels have causal effects on common calcemic and cardiometabolic disease.
Methods and Findings
We measured DBP and 25OHD levels in 2,254 individuals, followed for up to 10 y, in the Canadian Multicentre Osteoporosis Study (CaMos). Using the single nucleotide polymorphism rs2282679 as an instrumental variable, we applied Mendelian randomization methods to determine the causal effect of DBP on calcemic (osteoporosis and hyperparathyroidism) and cardiometabolic diseases (hypertension, type 2 diabetes, coronary artery disease, and stroke) and related traits, first in CaMos and then in large-scale genome-wide association study consortia. The effect allele was associated with an age- and sex-adjusted decrease in DBP level of 27.4 mg/l (95% CI 24.7, 30.0; n = 2,254). DBP had a strong observational and causal association with 25OHD levels (p = 3.2×10−19). While DBP levels were observationally associated with calcium and body mass index (BMI), these associations were not supported by causal analyses. Despite well-powered sample sizes from consortia, there were no associations of rs2282679 with any other traits and diseases: fasting glucose (0.00 mmol/l [95% CI −0.01, 0.01]; p = 1.00; n = 46,186); fasting insulin (0.01 pmol/l [95% CI −0.00, 0.01,]; p = 0.22; n = 46,186); BMI (0.00 kg/m2 [95% CI −0.01, 0.01]; p = 0.80; n = 127,587); bone mineral density (0.01 g/cm2 [95% CI −0.01, 0.03]; p = 0.36; n = 32,961); mean arterial pressure (−0.06 mm Hg [95% CI −0.19, 0.07]); p = 0.36; n = 28,775); ischemic stroke (odds ratio [OR] = 1.00 [95% CI 0.97, 1.04]; p = 0.92; n = 12,389/62,004 cases/controls); coronary artery disease (OR = 1.02 [95% CI 0.99, 1.05]; p = 0.31; n = 22,233/64,762); or type 2 diabetes (OR = 1.01 [95% CI 0.97, 1.05]; p = 0.76; n = 9,580/53,810).
Conclusions
DBP has no demonstrable causal effect on any of the diseases or traits investigated here, except 25OHD levels. It remains to be determined whether 25OHD has a causal effect on these outcomes independent of DBP.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Vitamin D deficiency is an increasingly common public health concern. According to some estimates, more than a billion people worldwide may be vitamin D deficient. Indeed, many people living in the US and Europe (in particular, elderly people, breastfed infants, people with dark skin, and obese individuals) have serum (circulating) 25-hydroxy-vitamin D (25OHD) levels below 50 nmol/l, the threshold for vitamin D deficiency. Vitamin D helps the body absorb calcium, a mineral that is essential for healthy bones. Consequently, vitamin D deficiency can lead to calcemic diseases such as rickets (a condition that affects bone development in children), osteomalacia (soft bones in adults), and osteoporosis (a condition in which the bones weaken and become susceptible to fracture). We get most of our vitamin D needs from our skin, which makes vitamin D after exposure to sunlight. Vitamin D is also found naturally in oily fish and eggs, and is added to some other foods, including cereals and milk, but some people need to take vitamin D supplements to avoid vitamin D deficiency.
Why Was This Study Done?
Observational studies have reported that the low levels of serum 25OHD and serum vitamin D binding protein (DBP, a key determinant of serum 25OHD level) are both associated with the risk of several common diseases and traits. Such studies have implicated vitamin D deficiency in cardiometabolic disease (cardiovascular diseases that affect the heart and/or blood vessels and metabolic diseases that affect the cellular chemical reactions needed to sustain life), in some cancers, and in Alzheimer disease. But observational studies cannot prove that vitamin D deficiency or DBP levels actually cause any of these diseases. So, for example, an observational study might report an association between vitamin D deficiency and type 2 diabetes (a metabolic disease), but the individuals who develop type 2 diabetes might share another unknown characteristic that is actually responsible for disease development (a confounding factor). Alternatively, type 2 diabetes might reduce circulating vitamin D levels (reverse causation). Here, the researchers undertake a Mendelian randomization study to determine whether circulating DBP levels have causal effects on calcemic and cardiometabolic diseases. In Mendelian randomization, causality is inferred from associations between genetic variants that mimic the influence of a modifiable environmental exposure and the outcome of interest. Because gene variants are inherited randomly, they are not prone to confounding and are free from reverse causation. So, if low DBP levels lead to low serum 25OHD levels, and vitamin D levels have a causal effect on common diseases, genetic variants associated with low DBP levels should be associated with the development of common diseases.
What Did the Researchers Do and Find?
The researchers analyzed the association between a genetic variant called single nucleotide polymorphism (SNP) rs2282679, which is known to alter DBP levels, and calcemic and cardiometabolic diseases and related traits in 2,254 participants in the Canadian Multicentre Osteoporosis Study (CaMos). The researchers report that there was a strong association between SNP rs2282679 and both serum DBP and 25OHD levels among the CaMos participants. However, there were no significant associations (associations unlikely to have occurred by chance) between SNP rs2282679 and calcium level, osteoporosis, or several cardiometabolic diseases, including heart attacks and diabetes. Moreover, when the researchers examined publically available genome-wide association study data collected by several international consortia investigating genetic influences on disease, they found no significant associations between rs2282679 and a wide range of calcemic and cardiometabolic diseases.
What Do These Findings Mean?
In this Mendelian randomization study, DBP level had no demonstrable causal effect on any of the calcemic or cardiometabolic diseases or traits investigated, except 25OHD level. Because most of the participants in CaMos and the international consortia were of European descent, these findings are applicable only to people of European ancestry. Moreover, like all Mendelian randomization studies, the reliability of these findings depends on several assumptions made by the researchers. Notably, although this study strongly suggests that DBP level does not have a causal influence on several common diseases, it remains to be determined whether 25OHD has a causal effect on any calcemic or cardiometabolic outcomes independent of DBP level.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001751.
The UK National Health Service Choices website provides information about vitamin D and about how to get vitamin D from sunshine; “Behind the Headlines” articles describe a recent observational study that reported an association between vitamin D deficiency and Alzheimer disease and the media coverage of this study, other health claims made for vitamin D, and a randomized control trial that questioned the role of vitamin D in disease
The US National Institutes of Health Office of Dietary Supplements provides information about vitamin D (in English and Spanish)
The US Centers for Disease Control and Prevention provides information about the vitamin D status of the US population
MedlinePlus has links to further information about vitamin D (in English and Spanish)
Information about the Canadian Multicentre Osteoporosis Study is available
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.1001751
PMCID: PMC4211663  PMID: 25350643
23.  Immunologic differentiation of primary hyperparathyroidism from hyperparathyroidism due to nonparathyroid cancer 
Journal of Clinical Investigation  1971;50(10):2079-2083.
Serum immunoreactive parathyroid hormone (IPTH) was measured by radioimmunoassay in 54 patients with primary hyperparathyroidism and in 18 consecutive patients with ectopic hyperparathyroidism due to nonparathyroid cancer without apparent skeletal metastasis. Although serum calcium concentration was higher in the group with ectopic hyperparathyroidism, serum IPTH was lower (rank sum test, P < 0.001) and was undetectable in eight. A second anti-PTH antiserum also differentiated between IPTH in the two groups, although IPTH was undetectable in only 1 of 14 sera. When IPTH values in serial dilutions were plotted, slopes for the two patients with ectopic hyperparathyroidism who had relatively high IPTH were less (P < 0.001) than slopes for standard hyperparathyroid sera. By using differences in either IPTH rank or slope of the dilutional curve of sera, primary hyperparathyroidism could be excluded as a cause of the hypercalcemia in 16 of the 18 patients with ectopic hyperparathyroidism. The data are interpreted as indicating that PTH-like material in the serum of these patients with ectopic hyperparathyroidism is immunologically different from the PTH in the serum of patients with primary hyperparathyroidism.
PMCID: PMC292141  PMID: 4330004
24.  Stenting for Peripheral Artery Disease of the Lower Extremities 
Executive Summary
Background
Objective
In January 2010, the Medical Advisory Secretariat received an application from University Health Network to provide an evidentiary platform on stenting as a treatment management for peripheral artery disease. The purpose of this health technology assessment is to examine the effectiveness of primary stenting as a treatment management for peripheral artery disease of the lower extremities.
Clinical Need: Condition and Target Population
Peripheral artery disease (PAD) is a progressive disease occurring as a result of plaque accumulation (atherosclerosis) in the arterial system that carries blood to the extremities (arms and legs) as well as vital organs. The vessels that are most affected by PAD are the arteries of the lower extremities, the aorta, the visceral arterial branches, the carotid arteries and the arteries of the upper limbs. In the lower extremities, PAD affects three major arterial segments i) aortic-iliac, ii) femoro-popliteal (FP) and iii) infra-popliteal (primarily tibial) arteries. The disease is commonly classified clinically as asymptomatic claudication, rest pain and critical ischemia.
Although the prevalence of PAD in Canada is not known, it is estimated that 800,000 Canadians have PAD. The 2007 Trans Atlantic Intersociety Consensus (TASC) II Working Group for the Management of Peripheral Disease estimated that the prevalence of PAD in Europe and North America to be 27 million, of whom 88,000 are hospitalizations involving lower extremities. A higher prevalence of PAD among elderly individuals has been reported to range from 12% to 29%. The National Health and Nutrition Examination Survey (NHANES) estimated that the prevalence of PAD is 14.5% among individuals 70 years of age and over.
Modifiable and non-modifiable risk factors associated with PAD include advanced age, male gender, family history, smoking, diabetes, hypertension and hyperlipidemia. PAD is a strong predictor of myocardial infarction (MI), stroke and cardiovascular death. Annually, approximately 10% of ischemic cardiovascular and cerebrovascular events can be attributed to the progression of PAD. Compared with patients without PAD, the 10-year risk of all-cause mortality is 3-fold higher in patients with PAD with 4-5 times greater risk of dying from cardiovascular event. The risk of coronary heart disease is 6 times greater and increases 15-fold in patients with advanced or severe PAD. Among subjects with diabetes, the risk of PAD is often severe and associated with extensive arterial calcification. In these patients the risk of PAD increases two to four fold. The results of the Canadian public survey of knowledge of PAD demonstrated that Canadians are unaware of the morbidity and mortality associated with PAD. Despite its prevalence and cardiovascular risk implications, only 25% of PAD patients are undergoing treatment.
The diagnosis of PAD is difficult as most patients remain asymptomatic for many years. Symptoms do not present until there is at least 50% narrowing of an artery. In the general population, only 10% of persons with PAD have classic symptoms of claudication, 40% do not complain of leg pain, while the remaining 50% have a variety of leg symptoms different from classic claudication. The severity of symptoms depends on the degree of stenosis. The need to intervene is more urgent in patients with limb threatening ischemia as manifested by night pain, rest pain, ischemic ulcers or gangrene. Without successful revascularization those with critical ischemia have a limb loss (amputation) rate of 80-90% in one year.
Diagnosis of PAD is generally non-invasive and can be performed in the physician offices or on an outpatient basis in a hospital. Most common diagnostic procedure include: 1) Ankle Brachial Index (ABI), a ratio of the blood pressure readings between the highest ankle pressure and the highest brachial (arm) pressure; and 2) Doppler ultrasonography, a diagnostic imaging procedure that uses a combination of ultrasound and wave form recordings to evaluate arterial flow in blood vessels. The value of the ABI can provide an assessment of the severity of the disease. Other non invasive imaging techniques include: Computed Tomography (CT) and Magnetic Resonance Angiography (MRA). Definitive diagnosis of PAD can be made by an invasive catheter based angiography procedure which shows the roadmap of the arteries, depicting the exact location and length of the stenosis / occlusion. Angiography is the standard method against which all other imaging procedures are compared for accuracy.
More than 70% of the patients diagnosed with PAD remain stable or improve with conservative management of pharmacologic agents and life style modifications. Significant PAD symptoms are well known to negatively influence an individual quality of life. For those who do not improve, revascularization methods either invasive or non-invasive can be used to restore peripheral circulation.
Technology Under Review
A Stent is a wire mesh “scaffold” that is permanently implanted in the artery to keep the artery open and can be combined with angioplasty to treat PAD. There are two types of stents: i) balloon-expandable and ii) self expandable stents and are available in varying length. The former uses an angioplasty balloon to expand and set the stent within the arterial segment. Recently, drug-eluting stents have been developed and these types of stents release small amounts of medication intended to reduce neointimal hyperplasia, which can cause re-stenosis at the stent site. Endovascular stenting avoids the problem of early elastic recoil, residual stenosis and flow limiting dissection after balloon angioplasty.
Research Questions
In individuals with PAD of the lower extremities (superficial femoral artery, infra-popliteal, crural and iliac artery stenosis or occlusion), is primary stenting more effective than percutaneous transluminal angioplasty (PTA) in improving patency?
In individuals with PAD of the lower extremities (superficial femoral artery, infra-popliteal, crural and iliac artery stenosis or occlusion), does primary stenting provide immediate success compared to PTA?
In individuals with PAD of the lower extremities (superficial femoral artery, infra-popliteal, crural and iliac artery stenosis or occlusion), is primary stenting associated with less complications compared to PTA?
In individuals with PAD of the lower extremities (superficial femoral artery, infra-popliteal, crural and iliac artery stenosis or occlusion), does primary stenting compared to PTA reduce the rate of re-intervention?
In individuals with PAD of the lower extremities (superficial femoral artery, infra-popliteal, crural and iliac artery stenosis or occlusion) is primary stenting more effective than PTA in improving clinical and hemodynamic success?
Are drug eluting stents more effective than bare stents in improving patency, reducing rates of re-interventions or complications?
Research Methods
Literature Search
A literature search was performed on February 2, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA). Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. The quality of evidence was assessed as high, moderate, low or very low according to GRADE methodology.
Inclusion Criteria
English language full-reports from 1950 to January Week 3, 2010
Comparative randomized controlled trials (RCTs), systematic reviews and meta-analyses of RCTs
Proven diagnosis of PAD of the lower extremities in all patients.
Adult patients at least 18 years of age.
Stent as at least one treatment arm.
Patency, re-stenosis, re-intervention, technical success, hemodynamic (ABI) and clinical improvement and complications as at least an outcome.
Exclusion Criteria
Non-randomized studies
Observational studies (cohort or retrospective studies) and case report
Feasibility studies
Studies that have evaluated stent but not as a primary intervention
Outcomes of Interest
The primary outcome measure was patency. Secondary measures included technical success, re-intervention, complications, hemodynamic (ankle brachial pressure index, treadmill walking distance) and clinical success or improvement according to Rutherford scale. It was anticipated, a priori, that there would be substantial differences among trials regarding the method of examination and definitions of patency or re-stenosis. Where studies reported only re-stenosis rates, patency rates were calculated as 1 minus re-stenosis rates.
Statistical Analysis
Odds ratios (for binary outcomes) or mean difference (for continuous outcomes) with 95% confidence intervals (CI) were calculated for each endpoint. An intention to treat principle (ITT) was used, with the total number of patients randomized to each study arm as the denominator for each proportion. Sensitivity analysis was performed using per protocol approach. A pooled odds ratio (POR) or mean difference for each endpoint was then calculated for all trials reporting that endpoint using a fixed effects model. PORs were calculated for comparisons of primary stenting versus PTA or other alternative procedures. Level of significance was set at alpha=0.05. Homogeneity was assessed using the chi-square test, I2 and by visual inspection of forest plots. If heterogeneity was encountered within groups (P < 0.10), a random effects model was used. All statistical analyses were performed using RevMan 5. Where sufficient data were available, these analyses were repeated within subgroups of patients defined by time of outcome assessment to evaluate sustainability of treatment benefit. Results were pooled based on the diseased artery and stent type.
Summary of Findings
Balloon-expandable stents vs PTA in superficial femoral artery disease
Based on a moderate quality of evidence, there is no significant difference in patency between primary stenting using balloon-expandable bare metal stents and PTA at 6, 12 and 24 months in patients with superficial femoral artery disease. The pooled OR for patency and their corresponding 95% CI are: 6 months 1.26 (0.74, 2.13); 12 months 0.95 (0.66, 1.38); and 24 months 0.72 (0.34. 1.55).
There is no significant difference in clinical improvement, re-interventions, peri and post operative complications, mortality and amputations between primary stenting using balloon-expandable bare stents and PTA in patients with superficial femoral artery. The pooled OR and their corresponding 95% CI are clinical improvement 0.85 (0.50, 1.42); ankle brachial index 0.01 (-0.02, 0.04) re-intervention 0.83 (0.26, 2.65); complications 0.73 (0.43, 1.22); all cause mortality 1.08 (0.59, 1.97) and amputation rates 0.41 (0.14, 1.18).
Self-expandable stents vs PTA in superficial femoral artery disease
Based on a moderate quality of evidence, primary stenting using self-expandable bare metal stents is associated with significant improvement in patency at 6, 12 and 24 months in patients with superficial femoral artery disease. The pooled OR for patency and their corresponding 95% CI are: 6 months 2.35 (1.06, 5.23); 12 months 1.54 (1.01, 2.35); and 24 months 2.18 (1.00. 4.78). However, the benefit of primary stenting is not observed for clinical improvement, re-interventions, peri and post operative complications, mortality and amputation in patients with superficial femoral artery disease. The pooled OR and their corresponding 95% CI are clinical improvement 0.61 (0.37, 1.01); ankle brachial index 0.01 (-0.06, 0.08) re-intervention 0.60 (0.36, 1.02); complications 1.60 (0.53, 4.85); all cause mortality 3.84 (0.74, 19.22) and amputation rates 1.96 (0.20, 18.86).
Balloon expandable stents vs PTA in iliac artery occlusive disease
Based on moderate quality of evidence, despite immediate technical success, 12.23 (7.17, 20.88), primary stenting is not associated with significant improvement in patency, clinical status, treadmill walking distance and reduction in re-intervention, complications, cardiovascular events, all cause mortality, QoL and amputation rates in patients with intermittent claudication caused by iliac artery occlusive disease. The pooled OR and their corresponding 95% CI are: patency 1.03 (0.56, 1.87); clinical improvement 1.08 (0.60, 1.94); walking distance 3.00 (12.96, 18.96); re-intervention 1.16 (0.71, 1.90); complications 0.56 (0.20, 1.53); all cause mortality 0.89 (0.47, 1.71); QoL 0.40 (-4.42, 5.52); cardiovascular event 1.16 (0.56, 2.40) and amputation rates 0.37 (0.11, 1.23). To date no RCTs are available evaluating self-expandable stents in the common or external iliac artery stenosis or occlusion.
Drug-eluting stent vs balloon-expandable bare metal stents in crural arteries
Based on a very low quality of evidence, at 6 months of follow-up, sirolimus drug-eluting stents are associated with a reduction in target vessel revascularization and re-stenosis rates in patients with atherosclerotic lesions of crural (tibial) arteries compared with balloon-expandable bare metal stent. The OR and their corresponding 95% CI are: re-stenosis 0.09 (0.03, 0.28) and TVR 0.15 (0.05, 0.47) in patients with atherosclerotic lesions of the crural arteries at 6 months follow-up. Both types of stents offer similar immediate success. Limitations of this study include: short follow-up period, small sample and no assessment of mortality as an outcome. Further research is needed to confirm its effect and safety.
PMCID: PMC3377569  PMID: 23074395
25.  Standard multivitamin supplementation does not improve vitamin D insufficiency after burns 
Journal of bone and mineral metabolism  2009;27(4):10.1007/s00774-009-0065-7.
Children suffering severe burns develop progressive vitamin D deficiency because of inability of burned skin to produce normal quantities of vitamin D3 and lack of vitamin D supplementation on discharge. Our study was designed to determine whether a daily supplement of a standard multivitamin tablet containing vitamin D2 400 IU (10 μg) for 6 months would raise serum levels of 25-hydroxyvitamin D [25(OH)D] to normal. We recruited eight burned children, ages 5–18, whose families were deemed reliable by the research staff. These children were given a daily multivitamin tablet in the hospital for 3 months in the presence of a member of the research staff and then given the remainder at home. At 6 months, the subjects returned for measurements of serum levels of 25(OH)D,1,25-dihydroxyvitamin D [1,25(OH)2D], intact parathyroid hormone (iPTH), Ca, P, albumin, and total protein as well as bone mass by dual energy X-ray absorptiometry. Serum 25(OH)D levels were compared to a group of seven age-matched burned children studied at an earlier date without the vitamin supplement but with the same method of determination of 25(OH)D at 6 months post-burn. In addition, the chewable vitamins were analyzed for vitamin D2 content by high performance liquid chromatography. Serum concentration of 25(OH)D was 21 ± 11(SD) ng/ml (sufficient range 30–100) with only one of the eight children having a value in the sufficient range. In comparison, the unsupplemented burn patients had mean serum 25(OH)D level of 16 ± 7, P = 0.33 versus supplemented. Serum levels of 1,25(OH)2D, iPTH, Ca, P, albumin, and total protein were all normal in the supplemented group. Vitamin D2 content of the chewable tablets after being saponified and extracted was 460 ± 20 IU. Bone mineral content of the total body and lumbar spine, as well as lumbar spine bone density, failed to increase as expected in the supplemented group. No correlations were found between serum 25(OH)D levels and age, length of stay, percent body surface area burn or third-degree burn. Supplementation of burned children with a standard multivitamin tablet stated to contain 400 IU of vitamin D2 failed to correct the vitamin D insufficiency.
doi:10.1007/s00774-009-0065-7
PMCID: PMC3857303  PMID: 19291356
Vitamin D insufficiency; Burns; Children; 25-hydroxyvitamin D

Results 1-25 (1106100)