PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1186081)

Clipboard (0)
None

Related Articles

1.  Carbon dioxide accumulation during analgosedated colonoscopy: Comparison of propofol and midazolam 
AIM: To characterize the profiles of alveolar hypoventilation during colonoscopies performed under sedoanalgesia with a combination of alfentanil and either midazolam or propofol.
METHODS: Consecutive patients undergoing routine colonoscopy were randomly assigned to sedation with either propofol or midazolam in an open-labeled design using a titration scheme. All patients received 4 μg/kg per body weight alfentanil for analgesia and 3 L of supplemental oxygen. Oxygen saturation (SpO2) was measured by pulse oximetry (POX), and capnography (PcCO2) was continuously measured using a combined dedicated sensor at the ear lobe. Instances of apnea resulting in measures such as stimulation of the patient, a chin lift, a mask maneuver, or withholding of sedation were recorded. PcCO2 values (as a parameter of sedation-induced hypoventilation) were compared between groups at the following distinct time points: baseline, maximal rise, termination of the procedure and 5 min after termination of the procedure. The number of patients in both study groups who regained baseline PcCO2 values (± 1.5 mmHg) five minutes after the procedure was determined.
RESULTS: A total of 97 patients entered this study. The data from 14 patients were subsequently excluded for clinical procedure-related reasons or for technical problems. Therefore, 83 patients (mean age 62 ± 13 years) were successfully randomized to receive propofol (n = 42) or midazolam (n = 41) for sedation. Most of the patients were classified as American Society of Anesthesiologists (ASA) II [16 (38%) in the midazolam group and 15 (32%) in the propofol group] and ASA III [14 (33%) and 13 (32%) in the midazolam and propofol groups, respectively]. A mean dose of 5 (4-7) mg of IV midazolam and 131 (70-260) mg of IV propofol was used during the procedure in the corresponding study arms. The mean SpO2 at baseline (%) was 99 ± 1 for the midazolam group and 99 ± 1 for the propofol group. No cases of hypoxemia (SpO2 < 85%) or apnea were recorded. However, an increase in PcCO2 that indicated alveolar hypoventilation occurred in both groups after administration of the first drug and was not detected with pulse oximetry alone. The mean interval between the initiation of sedation and the time when the PcCO2 value increased to more than 2 mmHg was 2.8 ± 1.3 min for midazolam and 2.8 ± 1.1 min for propofol. The mean maximal rise was similar for both drugs: 8.6 ± 3.7 mmHg for midazolam and 7.4 ± 3.2 mmHg for propofol. Five minutes after the end of the procedure, the mean difference from the baseline values was significantly lower for the propofol treatment compared with midazolam (0.9 ± 3.0 mmHg vs 4.3 ± 3.7 mmHg, P = 0.0000169), and significantly more patients in the propofol group had regained their baseline value ± 1.5 mmHg (32 of 41 vs 12 of 42, P = 0.0004).
CONCLUSION: A significantly higher number of patients sedated with propofol had normalized PcCO2 values five minutes after sedation when compared with patients sedated with midazolam.
doi:10.3748/wjg.v18.i38.5389
PMCID: PMC3471107  PMID: 23082055
Colonoscopy; Deep sedation; Propofol; Hypoventilation; Blood gas monitoring; Transcutaneous
2.  Comparison between Midazolam Used Alone and in Combination with Propofol for Sedation during Endoscopic Retrograde Cholangiopancreatography 
Clinical Endoscopy  2014;47(1):94-100.
Background/Aims
Endoscopic retrograde cholangiopancreatography (ERCP) is an uncomfortable procedure that requires adequate sedation for its successful conduction. We investigated the efficacy and safety of the combined use of intravenous midazolam and propofol for sedation during ERCP.
Methods
A retrospective review of patient records from a single tertiary care hospital was performed. Ninety-four patients undergoing ERCP received one of the two medication regimens, which was administered by a nurse under the supervision of a gastroenterologist. Patients in the midazolam (M) group (n=44) received only intravenous midazolam, which was titrated to achieve deep sedation. Patients in the midazolam pulse propofol (MP) group (n=50) initially received an intravenous combination of midazolam and propofol, and then propofol was titrated to achieve deep sedation.
Results
The time to the initial sedation was shorter in the MP group than in the M group (1.13 minutes vs. 1.84 minutes, respectively; p<0.001). The recovery time was faster in the MP group than in the M group (p=0.031). There were no significant differences between the two groups with respect to frequency of adverse events, pain experienced by the patient, patient discomfort, degree of amnesia, and gag reflex. Patient cooperation, rated by the endoscopist as excellent, was greater in the MP group than in the M group (p=0.046).
Conclusions
The combined use of intravenous midazolam and propofol for sedation during ERCP is more effective than midazolam alone. There is no difference in the safety of the procedure.
doi:10.5946/ce.2014.47.1.94
PMCID: PMC3928499  PMID: 24570889
Propofol; Midazolam; Cholangiopancreatography, endoscopic retrograde; Conscious sedation
3.  Sedative Efficacy of Propofol in Patients Intubated/Ventilated after Coronary Artery Bypass Graft Surgery 
Background:
Sedation after open heart surgery is important in preventing stress on the heart. The unique sedative features of propofol prompted us to evaluate its potential clinical role in the sedation of post-CABG patients.
Objectives:
To compare propofol-based sedation to midazolam-based sedation after coronary artery bypass graft (CABG) surgery in the intensive care unit (ICU).
Patients and Methods:
Fifty patients who were admitted to the ICU after CABG surgery was randomized into two groups to receive sedation with either midazolam or propofol infusions; and additional analgesia was administered if required. Inclusion criteria were as follows: patients 40-60 years old, hemodynamic stability, ejection fraction (EF) more than 40%; exclusion criteria included patients who required intra-aortic balloon pump or inotropic drugs post-bypass. The same protocol of anesthetic medications was used in both groups. Depth of sedation was monitored using the Ramsay sedation score (RSS). Invasive mean arterial pressure (MAP) and heart rate (HR), arterial blood gas (ABG) and ventilatory parameters were monitored continuously after the start of study drug and until the patients were extubated.
Results:
The depth of sedation was almost the same in the two groups (RSS=4.5 in midazolam group vs 4.7 in propofol group; P = 0.259) but the total dose of fentanyl in the midazolam group was significantly more than the propofol group (12.5 mg/hr vs 4 mg/hr) (P = 0.0039). No significant differences were found in MAP (P = 0.51) and HR (P = 0.41) between the groups. The mean extubation time in patients sedated with propofol was shorter than those sedated with midazolam (102 ± 27 min vs 245 ± 42 min, respectively; P < 0.05) but the ICU discharge time was not shorter (47.5 hr vs 36.3 hr, respectively; P = 0.24).
Conclusions:
Propofol provided a safe and acceptable sedation for post-CABG surgical patients, significantly reduced the requirement for analgesics, and allowed for more rapid tracheal extubation than midazolam but did not result in earlier ICU discharge.
doi:10.5812/aapm.17109
PMCID: PMC3961039  PMID: 24660162
Propofol; Analgesics; Coronary Artery Bypass; Deep Sedation; Midazolam; Airway Extubation; Length of Stay
4.  A Comparison between Sedative Effect of Propofol-Fentanyl and Propofol-Midazolam Combinations in Microlaryngeal Surgeries 
Considering the growing trend of laryngeal surgeries and the need to protect the airway during and after surgery, among several therapeutic regimens to induce sedation, two regimens of propofol-fentanyl and propofol-midazolam were compared in microlaryngeal surgeries.
Forty ASA I-II class patients undergoing microlaryngeal surgeries and referring routinely for postoperative visits were randomly recruited into two groups. For all the patients, 0.5 mg/Kg of propofol was used as bolus and then, 50 mcg/Kg/min of the drug was infused intravenously. For one group, 0.03 mg/Kg bolus of midazolam and for the other group, 2 mcg/Kg bolus of fentanyl was administered in combination with propofol. Ramsay system was used in order to evaluate the effect of the two drugs in inducing sedation. The need for additional dose, blood pressure, heart rate, arterial blood oxygen saturation, and also recovery time and adverse effects such as nausea/vomiting and recalling intra-operative memories, were assessed.
The patients in the two groups were not statistically different regarding the number of patients, age, sex, preoperative vital signs, the need for additional doses of propofol, systolic blood pressure and mean systolic blood pressure during laryngoscopy. However, mean systolic blood pressure 1 min after removal of laryngoscope returned faster to the baseline in midazolam group (p < 0.01). Mean heart rate returned sooner to the baseline in fentanyl group following removal of stimulation. Besides, heart rate showed a more reduction following administration of fentanyl (p < 0.02). Mean arterial blood oxygen saturation during laryngoscopy significantly decreased in fentanyl group (p < 0.05) compared to the other group. The time it took to achieve a full consciousness was shorter in midazolam group (p < 0.01). Nausea/vomiting was significantly more prevalent in fentanyl group while the patients in midazolam group apparently experienced more of amnesia, comparatively (p < 0.01).
Inducing laryngeal block and local anesthesia using propofol-midazolam regimen is not only associated with a more rapid recovery and less recalling of unpleasant memories, but also better in preventing reduction of arterial oxygen saturation during laryngoscopy compared with propofol-fentanyl regimen.
PMCID: PMC3813093  PMID: 24250451
Sedation; Microlaryngeal surgery; Propofol; Midazolam; Fentanyl
5.  Dexmedetomidine use in the ICU: Are we there yet? 
Critical Care  2013;17(3):320.
Expanded abstract
Citation
Jakob SM, Ruokonen E, Grounds RM, Sarapohja T, Garratt C, Pocock SJ, Bratty JR, Takala J; Dexmedeto midine for Long-Term Sedation Investigators: Dexmedetomidine vesus midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA 2012, 307:1151-1160.
Background
Long-term sedation with midazolam or propofol in intensive care units (ICUs) has serious adverse effects. Dexmedetomidine, an alpha-2 agonist available for ICU sedation, may reduce the duration of mechanical ventilation and enhance patient comfort.
Methods
Objective
The objective was to determine the efficacy of dexmedetomidine versus midazolam or propofol (preferred usual care) in maintaining sedation, reducing duration of mechanical ventilation, and improving patients' interaction with nursing care.
Design
Two phase 3 multicenter, randomized, double-blind trials were conducted.
Setting
The MIDEX (Midazolam vs. Dexmedetomidine) trial compared midazolam with dexmedetomidine in ICUs of 44 centers in nine European countries. The PRODEX (Propofol vs. Dexmedetomidine) trial compared propofol with dexmedetomidine in 31 centers in six European countries and two centers in Russia.
Subjects
The subjects were adult ICU patients who were receiving mechanical ventilation and who needed light to moderate sedation for more than 24 hours.
Intervention
After enrollment, 251 and 249 subjects were randomly assigned midazolam and dexmedetomidine, respectively, in the MIDEX trial, and 247 and 251 subjects were randomly assigned propofol and dexmedetomidine, respectively, in the PRODEX trial. Sedation with dexmedetomidine, midazolam, or propofol; daily sedation stops; and spontaneous breathing trials were employed.
Outcomes
For each trial, investigators tested whether dexmedetomidine was noninferior to control with respect to proportion of time at target sedation level (measured by Richmond Agitation Sedation Scale) and superior to control with respect to duration of mechanical ventilation. Secondary end points were the ability of the patient to communicate pain (measured by using a visual analogue scale [VAS]) and length of ICU stay. Time at target sedation was analyzed in per-protocol (midazolam, n = 233, versus dexmedetomidine, n = 227; propofol, n = 214, versus dexmedetomidine, n = 223) population.
Results
Dexmedetomidine/midazolam ratio in time at target sedation was 1.07 (95% confidence interval (CI) 0.97 to 1.18), and dexmedetomidine/propofol ratio in time at target sedation was 1.00 (95% CI 0.92 to 1.08). Median duration of mechanical ventilation appeared shorter with dexmedetomidine (123 hours, interquartile range (IQR) 67 to 337) versus midazolam (164 hours, IQR 92 to 380; P = 0.03) but not with dexmedetomidine (97 hours, IQR 45 to 257) versus propofol (118 hours, IQR 48 to 327; P = 0.24). Patient interaction (measured by using VAS) was improved with dexmedetomidine (estimated score difference versus midazolam 19.7, 95% CI 15.2 to 24.2; P <0.001; and versus propofol 11.2, 95% CI 6.4 to 15.9; P <0.001). Lengths of ICU and hospital stays and mortality rates were similar. Dexmedetomidine versus midazolam patients had more hypotension (51/247 [20.6%] versus 29/250 [11.6%]; P = 0.007) and bradycardia (35/247 [14.2%] versus 13/250 [5.2%]; P <0.001).
Conclusions
Among ICU patients receiving prolonged mechanical ventilation, dexmedetomidine was not inferior to midazolam and propofol in maintaining light to moderate sedation. Dexmedetomidine reduced duration of mechanical ventilation compared with midazolam and improved the ability of patients to communicate pain compared with midazolam and propofol. Greater numbers of adverse effects were associated with dexmedetomidine.
doi:10.1186/cc12707
PMCID: PMC3706806  PMID: 23731973
6.  Comparison of Midazolam Alone versus Midazolam Plus Propofol during Endoscopic Submucosal Dissection 
Clinical Endoscopy  2011;44(1):22-26.
Background/Aims
For proper sedation during endoscopic submucosal dissection (ESD), propofol has been widely used. This study aimed to compare the levels of sedation and tolerance of patients treated with midazolam (M group) and a combination of midazolam and propofol (MP group) during ESD.
Methods
A total of 44 consecutive patients undergoing ESD were randomly assigned to the two groups. In the M group, 2 mg of midazolam was given repeatedly to maintain after a loading dose of 5 mg. The MP group initially received 5 mg of midazolam and 20 mg of propofol. Then, we increased the dosage of propofol by 20 mg gradually.
Results
The average amount of midazolam was 12 mg in the M group. In the M group, 10 patients were given propofol additionally, since they failed to achieve proper sedation. The average amount of propofol was 181 mg in the MP group. Procedure time, vital signs and rates of complications were not significantly different between two groups. Movement of patients and discomfort were lower in the MP group.
Conclusions
During ESD, treatment with propofol and a low dose of midazolam for sedation provides greater satisfaction for endoscopists compared to midazolam alone.
doi:10.5946/ce.2011.44.1.22
PMCID: PMC3363047  PMID: 22741108
Endoscopic submucosal dissection; Sedation; Midazolam; Propofol
7.  Efficiency and safety of inhalative sedation with sevoflurane in comparison to an intravenous sedation concept with propofol in intensive care patients: study protocol for a randomized controlled trial 
Trials  2012;13:135.
Background
State of the art sedation concepts on intensive care units (ICU) favor propofol for a time period of up to 72 h and midazolam for long-term sedation. However, intravenous sedation is associated with complications such as development of tolerance, insufficient sedation quality, gastrointestinal paralysis, and withdrawal symptoms including cognitive deficits. Therefore, we aimed to investigate whether sevoflurane as a volatile anesthetic technically implemented by the anesthetic-conserving device (ACD) may provide advantages regarding ‘weaning time’, efficiency, and patient’s safety when compared to standard intravenous sedation employing propofol.
Method/Design
This currently ongoing trial is designed as a two-armed, monocentric, randomized prospective phase II study including intubated intensive care patients with an expected necessity for sedation exceeding 48 h. Patients are randomly assigned to either receive intravenous sedation with propofol or sevoflurane employing the ACD. Primary endpoint is the comparison of the ‘weaning time’ defined as the time required from discontinuation of the sedating agent until sufficient spontaneous breathing occurs. Moreover, sedation depth evaluated by Richmond Agitation Sedation Scale and parameters of patient’s safety (that is, vital signs, laboratory monitoring of organ function) as well as the duration of mechanical ventilation and overall stay on the ICU are analyzed and compared. An intention-to-treat analysis will be carried out with all patients for whom it will be possible to define a wake-up time. In addition, a per-protocol analysis is envisaged. Completion of patient recruitment is expected by the end of 2012.
Discussion
This clinical study is designed to evaluate the impact of sevoflurane during long-term sedation of critically ill patients on ‘weaning time’, efficiency, and patient’s safety compared to the standard intravenous sedation concept employing propofol.
Trial registration
EudraCT2007-006087-30; ISCRTN90609144
doi:10.1186/1745-6215-13-135
PMCID: PMC3502585  PMID: 22883020
Inhalative sedation; Intravenous sedation; Intensive care; Sevoflurane
8.  Deep sedation during gastrointestinal endoscopy: Propofol-fentanyl and midazolam-fentanyl regimens 
AIM: To compare deep sedation with propofol-fentanyl and midazolam-fentanyl regimens during upper gastrointestinal endoscopy.
METHODS: After obtaining approval of the research ethics committee and informed consent, 200 patients were evaluated and referred for upper gastrointestinal endoscopy. Patients were randomized to receive propofol-fentanyl or midazolam-fentanyl (n = 100/group). We assessed the level of sedation using the observer’s assessment of alertness/sedation (OAA/S) score and bispectral index (BIS). We evaluated patient and physician satisfaction, as well as the recovery time and complication rates. The statistical analysis was performed using SPSS statistical software and included the Mann-Whitney test, χ2 test, measurement of analysis of variance, and the κ statistic.
RESULTS: The times to induction of sedation, recovery, and discharge were shorter in the propofol-fentanyl group than the midazolam-fentanyl group. According to the OAA/S score, deep sedation events occurred in 25% of the propofol-fentanyl group and 11% of the midazolam-fentanyl group (P = 0.014). Additionally, deep sedation events occurred in 19% of the propofol-fentanyl group and 7% of the midazolam-fentanyl group according to the BIS scale (P = 0.039). There was good concordance between the OAA/S score and BIS for both groups (κ = 0.71 and κ = 0.63, respectively). Oxygen supplementation was required in 42% of the propofol-fentanyl group and 26% of the midazolam-fentanyl group (P = 0.025). The mean time to recovery was 28.82 and 44.13 min in the propofol-fentanyl and midazolam-fentanyl groups, respectively (P < 0.001). There were no severe complications in either group. Although patients were equally satisfied with both drug combinations, physicians were more satisfied with the propofol-fentanyl combination.
CONCLUSION: Deep sedation occurred with propofol-fentanyl and midazolam-fentanyl, but was more frequent in the former. Recovery was faster in the propofol-fentanyl group.
doi:10.3748/wjg.v19.i22.3439
PMCID: PMC3683682  PMID: 23801836
Endoscopy; Deep sedation; Anesthetic administration; Anesthetic dose; Adverse effects
9.  Sedation in gastrointestinal endoscopy: Current issues 
Diagnostic and therapeutic endoscopy can successfully be performed by applying moderate (conscious) sedation. Moderate sedation, using midazolam and an opioid, is the standard method of sedation, although propofol is increasingly being used in many countries because the satisfaction of endoscopists with propofol sedation is greater compared with their satisfaction with conventional sedation. Moreover, the use of propofol is currently preferred for the endoscopic sedation of patients with advanced liver disease due to its short biologic half-life and, consequently, its low risk of inducing hepatic encephalopathy. In the future, propofol could become the preferred sedation agent, especially for routine colonoscopy. Midazolam is the benzodiazepine of choice because of its shorter duration of action and better pharmacokinetic profile compared with diazepam. Among opioids, pethidine and fentanyl are the most popular. A number of other substances have been tested in several clinical trials with promising results. Among them, newer opioids, such as remifentanil, enable a faster recovery. The controversy regarding the administration of sedation by an endoscopist or an experienced nurse, as well as the optimal staffing of endoscopy units, continues to be a matter of discussion. Safe sedation in special clinical circumstances, such as in the cases of obese, pregnant, and elderly individuals, as well as patients with chronic lung, renal or liver disease, requires modification of the dose of the drugs used for sedation. In the great majority of patients, sedation under the supervision of a properly trained endoscopist remains the standard practice worldwide. In this review, an overview of the current knowledge concerning sedation during digestive endoscopy will be provided based on the data in the current literature.
doi:10.3748/wjg.v19.i4.463
PMCID: PMC3558570  PMID: 23382625
Gastrointestinal endoscopy; Endoscopy; Sedation; Analgesia; Digestive system
10.  Clinical recovery time from conscious sedation for dental outpatients. 
Anesthesia Progress  2002;49(4):124-127.
For dental outpatients undergoing conscious sedation, recovery from sedation must be sufficient to allow safe discharge home, and many researchers have defined "recovery time" as the time until the patient was permitted to return home after the end of dental treatment. But it is frequently observed that patients remain in the clinic after receiving permission to go home. The present study investigated "clinical recovery time," which is defined as the time until discharge from the clinic after a dental procedure. We analyzed data from 61 outpatients who had received dental treatment under conscious sedation at the Hiroshima University Dental Hospital between January 1998 and December 2000 (nitrous oxide-oxygen inhalation sedation [n = 35], intravenous sedation with midazolam [n = 10], intravenous sedation with propofol [n = 16]). We found that the median clinical recovery time was 40 minutes after nitrous oxide-oxygen sedation, 80 minutes after midazolam sedation, and 52 minutes after propofol sedation. The clinical recovery time was about twice as long as the recovery time described in previous studies. In a comparison of the sedation methods, clinical recovery time differed (P = .0008), being longer in the midazolam sedation group than in the nitrous oxide-oxygen sedation group (P = .018). These results suggest the need for changes in treatment planning for dental outpatients undergoing conscious sedation.
PMCID: PMC2007416  PMID: 12779113
11.  Propofol versus Midazolam for Sedation during Esophagogastroduodenoscopy in Children 
Clinical Endoscopy  2013;46(4):368-372.
Background/Aims
To evaluate the efficacy and safety of propofol and midazolam for sedation during esophagogastroduodenoscopy (EGD) in children.
Methods
We retrospectively reviewed the hospital records of 62 children who underwent ambulatory diagnostic EGD during 1-year period. Data were collected from 34 consecutive patients receiving propofol alone. Twenty-eight consecutive patients who received sedation with midazolam served as a comparison group. Outcome variables were length of procedure, time to recovery and need for additional supportive measures.
Results
There were no statistically significant differences between the two groups in age, weight, sex, and the length of endoscopic procedure. The recovery time from sedation was markedly shorter in propofol group (30±16.41 minutes) compared with midazolam group (58.89±17.32 minutes; p<0.0001). During and after the procedure the mean heart rate was increased in midazolam group (133.04±19.92 and 97.82±16.7) compared with propofol group (110.26±20.14 and 83.26±12.33; p<0.0001). There was no localized pain during sedative administration in midazolam group, though six patients had localized pain during administration of propofol (p<0.028). There was no serious major complication associated with any of the 62 procedures.
Conclusions
Intravenous administered propofol provides faster recovery time and similarly safe sedation compared with midazolam in pediatric patients undergoing upper gastrointestinal endoscopy.
doi:10.5946/ce.2013.46.4.368
PMCID: PMC3746141  PMID: 23964333
Propofol; Midazolam; Endoscopy, digestive system; Child
12.  Propofol and midazolam inhibit conscious memory processes very soon after encoding: An event related potential study of familiarity and recollection in volunteers 
Anesthesiology  2009;110(2):295-312.
Background
Intravenous drugs active via gamma-aminobutyric acid receptors produce memory impairment during conscious sedation. Memory function was assessed using event related potentials (ERPs) while drug was present.
Methods
The continuous recognition task measured recognition of photographs from working (6 seconds) and long term (27 seconds) memory while ERPs were recorded from Cz (familiarity recognition) and Pz electrodes (recollection recognition). Volunteer participants received sequential doses of one of placebo (n=11), propofol 0.45 and 0.9 ug/ml (n=10), midazolam 20 and 40 ng/ml (n=12), thiopental 1.5 and 3 ug/ml (n=11), or dexmedetomidine 0.25 and 0.4 ng/ml (n=11). End of day yes/no recognition 225 minutes after the end of drug infusion tested memory retention of pictures encoded on the continuous recognition tasks.
Results
Active drugs increased reaction times and impaired memory on the continuous recognition task equally, except for a greater effect of midazolam (p<0.04). Forgetting from continuous recognition tasks to end of day was similar for all drugs (p=0.40), greater than placebo (p<0.001). Propofol and midazolam decreased the area between first presentation (new) and recognized (old, 27 seconds later) ERP waveforms from long term memory for familiarity (p=0.03) and possibly for recollection processes (p=0.12). Propofol shifted ERP amplitudes to smaller voltages (p<0.002). Dexmedetomidine may have impaired familiarity more than recollection processes (p=0.10). Thiopental had no effect on ERPs.
Conclusion
Propofol and midazolam impaired recognition ERPs from long term, but not working memory. ERP measures of memory revealed different pathways to end of day memory loss as early as 27 seconds after encoding.
doi:10.1097/ALN.0b013e3181942ef0
PMCID: PMC2735240  PMID: 19194157
13.  Sedation Depth During Spinal Anesthesia and the Development of Postoperative Delirium in Elderly Patients Undergoing Hip Fracture Repair 
Mayo Clinic Proceedings  2010;85(1):18-26.
OBJECTIVE: To determine whether limiting intraoperative sedation depth during spinal anesthesia for hip fracture repair in elderly patients can decrease the prevalence of postoperative delirium.
PATIENTS AND METHODS: We performed a double-blind, randomized controlled trial at an academic medical center of elderly patients (≥65 years) without preoperative delirium or severe dementia who underwent hip fracture repair under spinal anesthesia with propofol sedation. Sedation depth was titrated using processed electroencephalography with the bispectral index (BIS), and patients were randomized to receive either deep (BIS, approximately 50) or light (BIS, ≥80) sedation. Postoperative delirium was assessed as defined by Diagnostic and Statistical Manual of Mental Disorders (Third Edition Revised) criteria using the Confusion Assessment Method beginning at any time from the second day after surgery.
RESULTS: From April 2, 2005, through October 30, 2008, a total of 114 patients were randomized. The prevalence of postoperative delirium was significantly lower in the light sedation group (11/57 [19%] vs 23/57 [40%] in the deep sedation group; P=.02), indicating that 1 incident of delirium will be prevented for every 4.7 patients treated with light sedation. The mean ± SD number of days of delirium during hospitalization was lower in the light sedation group than in the deep sedation group (0.5±1.5 days vs 1.4±4.0 days; P=.01).
CONCLUSION: The use of light propofol sedation decreased the prevalence of postoperative delirium by 50% compared with deep sedation. Limiting depth of sedation during spinal anesthesia is a simple, safe, and cost-effective intervention for preventing postoperative delirium in elderly patients that could be widely and readily adopted.
Trial Registration: clinicaltrials.gov Identifier: NCT00590707
Use of light propofol sedation decreased the prevalence of postoperative delirium by 50% compared with deep sedation. Limiting depth of sedation during spinal anesthesia is a simple, safe, and cost-effective intervention for preventing postoperative delirium in elderly patients that could be widely and readily adopted.
doi:10.4065/mcp.2009.0469
PMCID: PMC2800291  PMID: 20042557
14.  Pain following intravenous administration of sedative agents: a comparison of propofol with three benzodiazepines. 
Anesthesia Progress  1998;45(1):18-21.
The purpose of the present study is to compare the injection pain of propofol with that of benzodiazepines when used for intravenous sedation. In addition, we evaluated the efficacy of coadministering a small dose of 1% lidocaine (20 mg) to reduce the pain accompanying propofol injection. Intravenous propofol, diazepam, midazolam, or flunitrazepam were administered on separate occasions to volunteers and outpatients. The degree of injection pain was evaluated by the Visual Analog Scale (VAS) ruler. The efficacy of premixed lidocaine with propofol was also compared among the patients. The venous pain of propofol was significantly more intense than that of the three other drugs (P < 0.05). The injection pain of diazepam was more intense than that of midazolam (P < 0.05). Many patients reported no pain when propofol was coadministered with lidocaine. The addition of a small dose (20 mg) of lidocaine reduced the VAS pain score to comparable levels observed for benzodiazepines. Because injection pain might affect the patients' comfort during sedation, the addition of lidocaine to the propofol injection is deemed useful for intravenous sedation.
PMCID: PMC2148944  PMID: 9790005
15.  Bispectral index score and observer's assessment of awareness/sedation score may manifest divergence during onset of sedation: Study with midazolam and propofol 
Indian Journal of Anaesthesia  2013;57(4):351-357.
Background:
Correlation between the clinical and electroencephalogram-based monitoring has been documented sporadically during the onset of sedation. Propofol and midazolam have been studied individually using the observer's assessment of awareness/sedation (OAA/S) score and Bispectral index score (BIS). The present study was designed to compare the time to onset of sedation for propofol and midazolam using both BIS and OAA/S scores, and to find out any correlation.
Methods:
A total of 46 patients (18-60 years, either sex, American Society of Anesthesiologists (ASA) I/II) posted for infraumbilical surgeries under spinal anaesthesia were randomly allocated to receive either injection propofol 1 mg/kg bolus followed by infusion 3 mg/kg/h (Group P, n=23) or injection midazolam 0.05 mg/kg bolus followed by infusion 0.06 mg/kg/h (Group M, n=23). Spinal anaesthesia was given with 2.5 ml to 3.0 ml of 0.5% bupivacaine heavy. When sensory block reached T6 level, sedation was initiated. The time to reach BIS score 70 and time to achieve OAA/S score 3 from the start of study drug were noted. OAA/S score at BIS score 70 was noted. Data from 43 patients were analyzed using SPSS 12 for Windows.
Results:
Time to reach BIS score 70 using propofol was significantly lower than using the midazolam (P<0.05). Time to achieve OAA/S score 3 using propofol was comparable with midazolam (P=0.358).
Conclusion:
A divergence exists between the time to reach BIS score 70 and time to achieve OAA/S score 3 using midazolam, compared with propofol, during the onset of sedation.
doi:10.4103/0019-5049.118557
PMCID: PMC3800326  PMID: 24163448
Bispectral index score; midazolam; observer's assessment of awareness/sedation score; propofol; sedation
16.  Comparison of the Changes in Blood Glucose Level During Sedation with Midazolam and Propofol in Implant Surgery: A Prospective Randomized Clinical Trial 
Journal of Dentistry  2014;15(3):135-139.
Statement of the Problem: Reducing the patients' stress can prevent, or at least, limit the increase in blood glucose level.
Purpose: The study compares the effect of propofol and midazolam on blood glucose level in the patients undergoing dental implant surgery. The effect of pre-operational stress on blood glucose level during the surgery is also evaluated.
Materials and Method: This prospective randomized clinical trial recruited 33 patients undergoing dental implant surgery and divided into two groups. Conscious sedation was performed by midazolam in one group and with propofol in another group. The pre-operational stress was scored and the blood glucose level was measured in 4 different stages; before the operation, two minutes after the local anesthetic injection; thirty minutes after the onset of operation and at the end of the operation. The results were analyzed by employing ANOVA and Pearson test. The p Value was adopted 0.05 and the confidence coefficient was assumed 95%.
Results: The average levels of the blood glucose in midazolam and propofol group were 93.82 mg/dl and 94 mg/dl before the operation which displayed a meaningful increase of blood glucose level in both groups as the operation went on. The values were 103.76 mg/dl for midazolam and 108.56 mg/dl for the propofol group (p< 0.05) at the end of the operation.
No statistically significant difference was found in the average blood glucose level between two groups in the different stages of the operation (p= 0.466). The Pearson correlation coefficient test revealed a higher increase in the blood glucose level in the patients with a higher pre-operational stress score (r= 0.756, p< 0.001).
Conclusion: Based on the results yielded by this study, patients who receive venous sedation, either by midazolam or propofol, experience increase in the blood glucose level while undergoing an operation. No statistically significant difference was detected between midazolam and propofol.
PMCID: PMC4149896  PMID: 25191663
Sedation; Midazolam; Propofol; Blood glucose; Dental implant
17.  Comparison of Propofol-Remifentanil Versus Propofol-Ketamine Deep Sedation for Third Molar Surgery 
Anesthesia Progress  2012;59(3):107-117.
This study aimed to compare continuous intravenous infusion combinations of propofol-remifentanil and propofol-ketamine for deep sedation for surgical extraction of all 4 third molars. In a prospective, randomized, double-blinded controlled study, participants received 1 of 2 sedative combinations for deep sedation for the surgery. Both groups initially received midazolam 0.03 mg/kg for baseline sedation. The control group then received a combination of propofol-remifentanil in a ratio of 10 mg propofol to 5 μg of remifentanil per milliliter, and the experimental group received a combination of propofol-ketamine in a ratio of 10 mg of propofol to 2.5 mg of ketamine per milliliter; both were given at an initial propofol infusion rate of 100 μg/kg/min. Each group received an induction loading bolus of 500 μg/kg of the assigned propofol combination along with the appropriate continuous infusion combination . Measured outcomes included emergence and recovery times, various sedation parameters, hemodynamic and respiratory stability, patient and surgeon satisfaction, postoperative course, and associated drug costs. Thirty-seven participants were enrolled in the study. Both groups demonstrated similar sedation parameters and hemodynamic and respiratory stability; however, the ketamine group had prolonged emergence (13.6 ± 6.6 versus 7.1 ± 3.7 minutes, P = .0009) and recovery (42.9 ± 18.7 versus 24.7 ± 7.6 minutes, P = .0004) times. The prolonged recovery profile of continuously infused propofol-ketamine may limit its effectiveness as an alternative to propofol-remifentanil for deep sedation for third molar extraction and perhaps other short oral surgical procedures, especially in the ambulatory dental setting.
doi:10.2344/12-00001.1
PMCID: PMC3468288  PMID: 23050750
Propofol; Ketamine; Remifentanil; Deep sedation; TIVA
18.  Propofol versus Midazolam for Upper Gastrointestinal Endoscopy in Cirrhotic Patients: A Meta-Analysis of Randomized Controlled Trials 
PLoS ONE  2015;10(2):e0117585.
Background
Sedation during gastrointestinal endoscopy is often achieved using propofol or midazolam in general population. However, impaired protein synthesis, altered drug metabolism, and compromised hepatic blood flow in patients with liver cirrhosis might affect the pharmacokinetics of sedatives, placing cirrhotic patients undergoing endoscopy at a greater risk of adverse events. The objective of this study was to assess comparative efficacies and safety of propofol and midazolam in cirrhotic patients undergoing endoscopy.
Methods
Randomized, controlled trials comparing propofol with midazolam in cirrhotic patients undergoing gastrointestinal endoscopy were selected. We performed the meta-analysis, using a random-effect model, the Review Manager, Version 5.2, statistical software package (Cochrane Collaboration, Oxford, UK) according to the PRISMA guidelines.
Results
Five studies between 2003 and 2012, including 433 patients, were included. Propofol provided a shorter time to sedation (weight mean difference: -2.76 min, 95% confidence interval: -3.00 to -2.51) and a shorter recovery time (weight mean difference -6.17 min, 95% confidence interval: -6.81 to -5.54) than midazolam did. No intergroup difference in the incidence of hypotension, bradycardia, or hypoxemia was observed. Midazolam was associated with the deterioration of psychometric scores for a longer period than propofol.
Conclusion
This meta-analysis suggests that Propofol sedation for endoscopy provides more rapid sedation and recovery than midazolam does. The risk of sedation-related side effects for propofol does not differ significantly from that of midazolam. The efficacy of propofol in cirrhotic patients undergoing endoscopy is superior to those of midazolam.
doi:10.1371/journal.pone.0117585
PMCID: PMC4315567  PMID: 25646815
19.  Analysis of Oxygen Saturations Recorded During Dental Intravenous Sedations: A Retrospective Quality Assurance of 3500 Cases 
Anesthesia Progress  2011;58(3):113-120.
The death of a patient under sedation in New South Wales, Australia, in 2002 has again raised the question of the safety of dental sedation. This study sought answers to 2 questions: Can safe oxygen saturation levels (≥94%) be consistently maintained by a single operator/sedationist? Does the additional use of propofol, in subanesthetic doses, increase the risk of exposure to hypoxemia? Three thousand five hundred cases generated between 1996 and 2006 were randomly examined and divided into 2 subcohorts: 1750 patients were sedated with midazolam and fentanyl, and 1750 patients received propofol, in subanesthetic increments, in addition to midazolam and fentanyl. Initial sedation was established using midazolam and fentanyl in both subcohorts. The second subcohort received propofol during times of noxious stimulation. Patient exposure to 2 or more oxygen desaturations below 94% was uncommon. The variables that were significantly associated with low saturations were age, gender, and weight. Neither the dose of midazolam nor the additional use of propofol was a significant risk factor. ASA classification (I or II) was not a determinant of risk. The data, within the limitations of the study, showed that a single operator/sedationist, supported by a well-trained team of nurses, can consistently maintain safe oxygen saturation levels. The additional use of propofol did not increase exposure to hypoxemia.
doi:10.2344/09-00001.1
PMCID: PMC3167154  PMID: 21882986
Dental sedation; Safe oxygen saturation levels; Propofol
20.  Enteral vs. intravenous ICU sedation management: study protocol for a randomized controlled trial 
Trials  2013;14:92.
Background
A relevant innovation about sedation of long-term Intensive Care Unit (ICU) patients is the ‘conscious target’: patients should be awake even during the critical phases of illness. Enteral sedative administration is nowadays unusual, even though the gastrointestinal tract works soon after ICU admission. The enteral approach cannot produce deep sedation; however, it is as adequate as the intravenous one, if the target is to keep patients awake and adapted to the environment, and has fewer side effects and lower costs.
Methods/Design
A randomized, controlled, multicenter, single-blind trial comparing enteral and intravenous sedative treatments has been done in 12 Italian ICUs. The main objective was to achieve and maintain the desired sedation level: observed RASS = target RASS ± 1. Three hundred high-risk patients were planned to be randomly assigned to receive either intravenous propofol/midazolam or enteral melatonin/hydroxyzine/lorazepam. Group assignment occurred through online minimization process, in order to balance variables potentially influencing the outcomes (age, sex, SAPS II, type of admission, kidney failure, chronic obstructive pulmonary disease, sepsis) between groups. Once per shift, the staff recorded neurological monitoring using validated tools. Three flowcharts for pain, sedation, and delirium have been proposed; they have been designed to treat potentially correctable factors first, and, only once excluded, to administer neuroactive drugs. The study lasted from January 24 to December 31, 2012. A total of 348 patients have been randomized, through a centralized website, using a specific software expressly designed for this study. The created network of ICUs included a mix of both university and non-university hospitals, with different experience in managing enteral sedation. A dedicated free-access website was also created, in both Italian and English, for continuous education of ICU staff through CME courses.
Discussion
This ‘educational research’ project aims both to compare two sedative strategies and to highlight the need for a profound cultural change, improving outcomes by keeping critically-ill patients awake.
Trial registration number
Clinicaltrials.gov #NCT01360346
doi:10.1186/1745-6215-14-92
PMCID: PMC3651718  PMID: 23551983
Sedation; Hydroxyzine; Melatonin; Enteral approach; High-risk critically ill; Educational research
21.  Intravenous sedation for ocular surgery under local anaesthesia. 
Anterior segment ophthalmic surgery is commonly performed under local anaesthesia. In order to improve patient comfort, a variety of sedation techniques has been employed in the past. The object of this study was, firstly, to determine whether continuous intravenous sedation during surgery offered any advantages in patients premedicated with temazepam and metoclopramide, and, secondly, to compare midazolam to propofol for this purpose. Forty nine patients were randomly allocated to receive no intravenous sedation (n = 15), continuous propofol infusion (n = 17), or continuous intravenous midazolam infusion (n = 17) after peribulbar anaesthesia. Each technique provided cardiovascular and respiratory stability and allowed early recovery with minimal postoperative sequelae. Unexpected ocular field movement occurred more commonly in the patients receiving intravenous sedation, although statistical significance was not shown (p = 0.06). Significantly more patients in the intravenous sedation groups reported amnesia (p = 0.03). Patient acceptability was good irrespective of the technique used. This study suggests that continuous sedation using propofol or midazolam is not beneficial and should be avoided in ophthalmic patients who have received a simple premedication.
PMCID: PMC505230  PMID: 1420042
22.  Effect of Sub hypnotic Doses of Propofol and Midazolam for Nausea and Vomiting During Spinal Anesthesia for Cesarean Section 
Background:
Spinal anesthesia has been associated with intraoperative nausea and vomiting (IONV), especially during cesarean section, which is attributed to several mechanisms.
Objectives:
In the present study, therapeutic and preventive properties of sub hypnotic dose midazolam and propofol and their effects on the occurrence and severity of intraoperative nausea and vomiting during elective cesarean section under spinal anesthesia were evaluated.
Patients and Methods:
In a randomized, double-blind, and placebo-controlled clinical trial, 90 parturients, ASA class I and II, aged 20-30 years, who undergone spinal anesthesia for cesarean section were randomly allocated to one of three groups receiving midazolam (1 mg bolus and 0.1 mg/kg/hr, n=30), propofol (20 mg bolus and 0.1 mg/kg/hr, n = 30), and placebo (saline, n=30) intravenously (IV) immediately after umbilical cord clamping. Bupivacaine hydrochloride (10 mg) was used for induction of the anesthesia. Patients’ hemodynamics was monitored at 3-minute intervals. Furthermore, intraoperative and post-delivery emetic episodes, severity of emesis, scores of sedation and ephedrine consumption were recorded.
Results:
The incidence of nausea, retching, and vomiting was significantly higher in the control group compared to propofol and midazolam groups. Overall, PONV (postoperative nausea and vomiting) in midazolam group was as low as propofol group without any significant hemodynamic changes as seen in placebo group or even with propofol group.
Conclusions:
Subhypnotic doses of midazolam or propofol are effective in the prevention of nausea and vomiting during and after cesarean section with spinal anesthesia and does not significantly influence hemodynamic of the patients.
doi:10.5812/aapm.19384
PMCID: PMC4205801  PMID: 25346896
Propofol; Midazolam; Nausea; Vomiting; Cesarean section
23.  A Comparison of Equisedative Infusions of Propofol and Midazolam for Conscious Sedation During Spinal Anesthesia - A Prospective Randomized Study 
Background:
Supplemental sedation with an intravenous agent is often required to allay fear and anxiety in patients subjected to spinal anesthesia .We studied and compared the properties of propofol and midazolam as equisedative continuous infusions.
Patients & Methods:
100, ASA grade 1 and 2 patients, 18 to 60 years of age, undergoing spinal anesthesia, were randomly allocated to receive either propofol 1mg/ml or midazolam 0.1mg/ml in 50ml syringes through syringe pump. The infusion rates were titrated in order to maintain a desired sedation score of 4 on the Observer's assessment of alertness/ sedation scale. Anxiety score was assessed at regular intervals by a single observer in all cases, using a 100mm visual analog scale.Intraoperative and postoperative amnesia was assessed using visual task of recall of pictures and verbal task of recall of words.
Results:
Propofol infusion was found to be superior to that of midazolam as it showed a statistically significant faster onset in achieving the desired sedation score, significantly lower mean anxiety scores, a clear headed, rapid recovery and significantly lesser postoperative impairment of recall, but midazolam infusion was seen to be associated with deeper intraoperative amnesia over the former which was beneficial.
Conclusion:
Equisedatine infusion of propofol & midazolam as an adjunct & spinal anesthesia offer good anxiolysis and cardio respiratory stability. Propofol her faster onset & recovery while midazolam provides better intraoperative annesia.
PMCID: PMC3146158  PMID: 21804706
Conscious sedation; Propofol; Midazolam; Spinal anesthesia; Amnesia; Anxiolysis; Recall
24.  Butorphanol-midazolam combination therapy for the treatment of intracranial hypertension in a patient with tuberculous meningitis: a case study 
SpringerPlus  2013;2:442.
Introduction
Intracranial hypertension, which often occurs in patients with tuberculous meningitis, is associated with high morbidity and mortality. We describe a patient with tuberculous meningitis who had intracranial hypertension -induced fulminant headache that responded to intravenous butorphanol-midazolam combination therapy.
Case presentation
A 50-year-old woman with a fever and headache for 24 days was given a diagnosis of tuberculous meningitis on the basis of the results of polymerase chain reaction amplification and Ziehl-Neelsen staining. Headache with vomiting developed despite administration of steroids, osmotic, and antituberculosis treatments. The patient was admitted in a confusional state. The initial pressure (420 mmHg) in cerebrospinal fluid was increased. She was given intravenous mannitol, dexamethasone, pentazocine and diazepam, or she was sedated with propofol, with no response. Next, a combination of butorphanol and midazolam was infused intravenously and finally resolved the confusional state. The initial pressure decreased, and she no longer complained of headache requiring medication.
Discussion and evaluation
The butorphanol-midazolam combination therapy may have reduced intracranial pressure, leading to down-regulation of headache. Sedation induced by such combination of drugs was not accompanied by amnesia or impaired psychomotor function.
Conclusions
The butorphanol-midazolam combination therapy might be an option for the management of intracranial hypertension in central nervous system infections.
doi:10.1186/2193-1801-2-442
PMCID: PMC3773105  PMID: 24046813
Tuberculous meningitis; Intracranial hypertension; Headache; Midazolam; Butorphanol
25.  Assessment of role of perioperative melatonin in prevention and treatment of postoperative delirium after hip arthroplasty under spinal anesthesia in the elderly 
Saudi Journal of Anaesthesia  2010;4(3):169-173.
Context:
Little is known about the relationship between sedative drugs used preoperatively and postoperative delirium. Melatonin is a drug used to sedate patients preoperatively and is hypothesized by recent works to have a curative effect on postoperative delirium.
Aims:
The incidence of postoperative delirium will be tested if affected by three different sedative drugs including melatonin.
Settings and Design:
Controlled randomized doubleblind study.
Patients and Methods:
Three-hundred patients aged>65 years scheduled for hip arthroplasty under spinal anesthesia were randomly distributed to one of the four groups. Group 1 (control) received nothing for sedation. Group 2 (melatonin) received 5 mg melatonin. Group 3 (midazolam) received 7.5 mg midazolam. Group 4 (clonidine) received 100 μg clonidine. These medications were given orally at sleep time at night of operation and another dose 90 min before operative time. Patients who developed postoperative delirium received 5 mg of melatonin 9 pm for three successive days in a trial to treat delirium.
Statistical Analysis Used:
Statistical analysis was done using the SPSS Software (version 13).
Results:
Total of 222 patients completed the study. Percentage of postoperative delirium in the control group was 32.65% (16/49 patients). The melatonin group showed a statistically significant decrease in the percentage of postoperative delirium to 9.43% (5/53 patients). Melatonin was successful in treating 58.06% of patients suffered postoperative delirium (36/62 patients) with no difference between different groups.
Conclusions:
Postoperative delirium is affected with the drug used for preoperative sedation. Melatonin was successful in decreasing postoperative delirium when used preoperatively and in treating more than half of patients developed postoperative delirium when used for three postoperative nights.
doi:10.4103/1658-354X.71132
PMCID: PMC2980663  PMID: 21189854
Postoperative delirium; melatonin; hip arthroplasty; spinal anesthesia

Results 1-25 (1186081)