Search tips
Search criteria

Results 1-25 (871747)

Clipboard (0)

Related Articles

1.  Specificity of T cells in synovial fluid: high frequencies of CD8+ T cells that are specific for certain viral epitopes 
Arthritis Research  2000;2(2):154-164.
CD8+ T cells dominate the lymphocyte population in synovial fluid in chronic inflammatory arthritis. It is known that these CD8+ T cells are often clonally or oligoclonally expanded, but their specificity and their relevance to the pathogenesis of joint disease has remained unclear. We found that as many as 15.5% of synovial CD8+ T cells may be specific for a single epitope from an Epstein-Barr virus lytic cycle protein. The virus-specific T cells within the joint showed increased expression of markers of activation and differentiation compared with those in the periphery, and retained their functional capacity to secrete proinflammatory cytokines on stimulation. These activated, virus-specific CD8+ T cells could therefore interact with synoviocytes, either by cell-cell contact or by a cytokine network, and play a 'bystander' role in the maintenance of inflammation in patients with arthritis.
Epstein-Barr virus (EBV) is transmitted orally, replicates in the oropharynx and establishes life-long latency in human B lymphocytes. T-cell responses to latent and lytic/replicative cycle proteins are readily detectable in peripheral blood from healthy EBV-seropositive individuals. EBV has also been detected within synovial tissue, and T-cell responses to EBV lytic proteins have been reported in synovial fluid from a patient with rheumatoid arthritis (RA). This raises the question regarding whether T cells specific for certain viruses might be present at high frequencies within synovial fluid and whether such T cells might be activated or able to secrete cytokines. If so, they might play a 'bystander' role in the pathogenesis of inflammatory joint disease.
To quantify and characterize T cells that are specific for epitopes from EBV, cytomegalovirus (CMV) and influenza in peripheral blood and synovial fluid from patients with arthritis.
Peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) were obtained from patients with inflammatory arthritis (including those with RA, osteoarthritis, psoriatic arthritis and reactive arthritis). Samples from human leucocyte antigen (HLA)-A2-positive donors were stained with fluorescent-labelled tetramers of HLA-A2 complexed with the GLCTLVAML peptide epitope from the EBV lytic cycle protein BMLF1, the GILGFVFTL peptide epitope from the influenza A matrix protein, or the NLVPMVATV epitope from the CMV pp65 protein. Samples from HLA-B8-positive donors were stained with fluorescent-labelled tetramers of HLA-B8 complexed with the RAKFKQLL peptide epitope from the EBV lytic protein BZLF1 or the FLRGRAYGL peptide epitope from the EBV latent protein EBNA3A. All samples were costained with an antibody specific for CD8. CD4+ T cells were not analyzed. Selected samples were costained with antibodies specific for cell-surface glycoproteins, in order to determine the phenotype of the T cells within the joint and the periphery. Functional assays to detect release of IFN-γ or tumour necrosis factor (TNF)-α were also performed on some samples.
The first group of 15 patients included 10 patients with RA, one patient with reactive arthritis, one patient with psoriatic arthritis and three patients with osteoarthritis. Of these, 11 were HLA-A2 positive and five were HLA-B8 positive. We used HLA-peptide tetrameric complexes to analyze the frequency of EBV-specific T cells in PBMCs and SFMCs (Figs 1 and 2). Clear enrichment of CD8+ T cells specific for epitopes from the EBV lytic cycle proteins was seen within synovial fluid from almost all donors studied, including patients with psoriatic arthritis and osteoarthritis and those with RA. In donor RhA6, 9.5% of CD8+ SFMCs were specific for the HLA-A2 restricted GLCTLVAML epitope, compared with 0.5% of CD8+ PBMCs. Likewise in a donor with osteoarthritis (NR4), 15.5% of CD8+ SFMCs were specific for the HLA-B8-restricted RAKFKQLL epitope, compared with 0.4% of CD8+ PBMCs. In contrast, we did not find enrichment of T cells specific for the HLA-B8-restricted FLRGRAYGL epitope (from the latent protein EBNA3A) within SFMCs compared with PBMCs in any donors. In selected individuals we performed ELISpot assays to detect IFN-γ secreted by SFMCs and PBMCs after a short incubation in vitro with peptide epitopes from EBV lytic proteins. These assays confirmed enrichment of T cells specific for epitopes from EBV lytic proteins within synovial fluid and showed that subpopulations of these cells were able to secrete proinflammatory cytokines after short-term stimulation.
We used a HLA-A2/GILGFVFTL tetramer to stain PBMCs and SFMCs from six HLA-A2-positive patients. The proportion of T cells specific for this influenza epitope was low (<0.2%) in all donors studied, and we did not find any enrichment within SFMCs.
We had access to SFMCs only from a second group of four HLA-A2-positive patients with RA. A tetramer of HLA-A2 complexed to the NLVPMVATV epitope from the CMV pp65 protein reacted with subpopulations of CD8+ SFMCs in all four donors, with frequencies of 0.2, 0.5, 2.3 and 13.9%. SFMCs from all four donors secreted TNF after short-term incubation with COS cells transfected with HLA-A2 and pp65 complementary DNA. We analyzed the phenotype of virus-specific cells within PBMCs and SFMCs in three donors. The SFMC virus-specific T cells were more highly activated than those in PBMCs, as evidenced by expression of high levels of CD69 and HLA-DR. A greater proportion of SFMCs were CD38+, CD62L low, CD45RO bright, CD45RA dim, CD57+ and CD28- when compared with PBMCs.
This work shows that T cells specific for certain epitopes from viral proteins are present at very high frequencies (up to 15.5% of CD8+ T cells) within SFMCs taken from patients with inflammatory joint disease. This enrichment does not reflect a generalized enrichment for the 'memory pool' of T cells; we did not find enrichment of T cells specific for the GILGFVFTL epitope from influenza A or for the FLRGRAYGL epitope from the EBV latent protein EBNA3A, whereas we found clear enrichment of T cells specific for the GLCTLVAML epitope from the EBV lytic protein BMLF1 and for the RAKFKQLL epitope from the EBV lytic protein BZLF1.
The enrichment might reflect preferential recruitment of subpopulations of virus-specific T cells, perhaps based on expression of selectins, chemokine receptors or integrins. Alternatively, T cells specific for certain viral epitopes may be stimulated to proliferate within the joint, by viral antigens themselves or by cross-reactive self-antigens. Finally, it is theoretically possible that subpopulations of T cells within the joint are preferentially protected from apoptotic cell death. Whatever the explanation, the virus-specific T cells are present at high frequency, are activated and are able to secrete proinflammatory cytokines. They could potentially interact with synoviocytes and contribute to the maintenance of inflammation within joints in many different forms of inflammatory arthritis.
PMCID: PMC17809  PMID: 11062606
CD8+ T cell; Epstein-Barr virus lytic cycle; human leucocyte antigen peptide tetrameric complex; rheumatoid arthritis; viral immunity
2.  Different patterns of Epstein-Barr virus gene expression and of cytotoxic T-cell recognition in B-cell lines infected with transforming (B95.8) or nontransforming (P3HR1) virus strains. 
Journal of Virology  1988;62(3):894-901.
Epstein-Barr virus (EBV)-negative Burkitt's lymphoma (BL) cell lines have been converted to EBV genome positivity by in vitro infection with the transforming EBV strain B95.8 and with the nontransforming mutant strain P3HR1, which has a deletion in the gene encoding the nuclear antigen EBNA2. These B95.8- and P3HR1-converted lines have been compared for their patterns of expression of EBV latent genes (i.e., those viral genes constitutively expressed in all EBV-transformed lines of normal B-cell origin) and for their recognition by EBV-specific cytotoxic T lymphocytes (CTLs), in an effort to identify which latent gene products provide target antigens for the T-cell response. B95.8-converted lines on several different EBV-negative BL-cell backgrounds all showed detectable expression of the nuclear antigens EBNA1, EBNA2, and EBNA3 and of the latent membrane protein (LMP); such converts were also clearly recognized by EBV-specific CTL preparations with restriction through selected human leukocyte antigen (HLA) class I antigens on the target cell surface. The corresponding P3HR1-converted lines (lacking an EBNA2 gene) expressed EBNA1 and EBNA3 but, surprisingly, showed no detectable LMP; furthermore, these converts were not recognized by EBV-specific CTLs. Such differences in T-cell recognition were not due to any differences in expression of the relevant HLA-restricting determinants between the two types of convert, as shown by binding of specific monoclonal antibodies and by the susceptibility of both B95.8 and P3HR1 converts to allospecific CTLs directed against these same HLA molecules. The results suggest that in the normal infectious cycle, EBNA2 may be required for subsequent expression of LMP and that both EBNA2 and LMP (but not EBNA1 or EBNA3) may provide target antigens for the EBV-specific T-cell response.
PMCID: PMC253648  PMID: 2828684
3.  Identification of multiple Epstein-Barr virus-induced nuclear antigens with sera from patients with rheumatoid arthritis. 
Journal of Virology  1984;52(1):88-93.
By means of the protein immunoblot technique, the Epstein-Barr virus (EBV) nuclear antigen (EBNA) could be identified in a variety of EBV-transformed cell lines with anti-EBNA-positive sera from normal donors. The molecular weight of EBNA expressed in each of the cell lines varied between 70,000 and 75,000 and was dependent upon the strain of infecting virus. In contrast, 15 of 21 sera from patients with rheumatoid arthritis identified antigens in addition to EBNA. The most prominent of these antigens had molecular weights of 110,000 to 115,000 and 92,000. All of the EBV genome-positive cell lines except for QIMR-GOR and cell lines containing the P3HR-1 virus expressed these antigens. The antigens were not present in the EBV genome-negative Ramos and BJAB cell lines, nor were they identified with EBV seronegative sera, indicating that they were EBV related. There was no direct correlation between the presence of antibodies in sera to EBNA, viral capsid antigen or early antigen, and reaction with the 92,000-molecular-weight antigen in immunoblots, indicating that this antigen was distinct from previously described EBV-related antigens.
PMCID: PMC254493  PMID: 6090712
4.  Epstein-Barr virus gene expression in malignant lymphomas induced by experimental virus infection of cottontop tamarins. 
Journal of Virology  1989;63(5):1967-1974.
Inoculation of cottontop tamarins with a large dose of Epstein-Barr virus (EBV) leads to the induction of multiple EBV genome-positive lymphomas. These tumors have been characterized as oligoclonal or monoclonal large-cell malignant lymphomas that closely resemble the EBV genome-positive B-cell lymphomas that arise in human allograft recipients. The expression of latent and lytic EBV-encoded proteins was investigated in these virus-induced tamarin lymphomas and in derived cell lines. The tamarin tumors were found to express EBV nuclear antigen 1 (EBNA 1), EBNA 2, EBNA leader protein, and the latent membrane protein (LMP) as determined both by immunohistochemical staining and by immunoblotting. However, within the limits of the immunoblotting assays, no expression of the EBNA 3a protein family could be detected. Assays for lytic-cycle proteins by using both polyclonal human sera and monoclonal antibodies against viral capsid antigen, early antigen, and membrane antigen (gp340/220) showed minimal, if any, expression of these antigens in the lymphoma biopsies. In contrast, the cell lines derived from these lymphomas, even in early passage, expressed abundant levels of the lytic-cycle antigens and also expressed the EBNA 3a protein as well as EBNA 1, EBNA 2, EBNA leader protein, and LMP. This finding suggests that the virus-lymphoma cell interaction, in particular the switch to lytic cycle, is subject to some form of host control in vivo. The expression of EBNA 2 and LMP in these tamarin lymphomas strengthens their resemblance to posttransplant lymphomas in humans, since these human tumors are also EBNA 2 and LMP positive (L. S. Young, C. Alfieri, K. Hennessy, H. Evans, C. O'Hara, K. Anderson, A. Rickinson, E. Kieff, and J. I. Cohen, submitted for publication). Since both proteins are known to be important effector molecules of virus-induced B-cell growth transformation in vitro, their expression in these lymphomas constitutes the best evidence for a direct oncogenic role for EBV in vivo.
PMCID: PMC250610  PMID: 2539497
5.  Identification and characterization of a cellular protein that cross-reacts with the Epstein-Barr virus nuclear antigen. 
Journal of Virology  1984;52(3):833-838.
A 62,000-dalton (62K) cell protein reacts with antisera to the 72K polypeptide of the Epstein-Barr virus nuclear antigen (EBNA) in immunoblots. This protein was initially detected in EBNA-negative as well as EBNA-positive cell lines with anti-EBNA-positive human sera. A monoclonal antibody raised against the 72K EBNA and an antiserum from a rabbit immunized with the glycine-alanine domain of EBNA also reacted with the cellular protein. The cellular protein was partially purified from Epstein-Barr virus genome-positive and -negative cell lines. Absorption experiments identified a shared antigenic determinant between the 72K EBNA and 62K cellular protein. A comparison of the 62K protein and EBNA by protease digestion did not reveal similar peptides.
PMCID: PMC254603  PMID: 6208381
6.  Distinction between Epstein-Barr virus type A (EBNA 2A) and type B (EBNA 2B) isolates extends to the EBNA 3 family of nuclear proteins. 
Journal of Virology  1989;63(3):1031-1039.
The Epstein-Barr virus (EBV) nuclear antigens EBNA 3a, 3b, and 3c have recently been mapped to adjacent reading frames in the BamHI L and E fragments of the B95.8 EBV genome. We studied by immunoblotting the expression of the family of EBNA 3 proteins in a panel of 20 EBV-transformed lymphoblastoid cell lines (LCLs) carrying either type A (EBNA 2A-encoding) or type B (EBNA 2B-encoding) virus isolates. Certain human sera from donors naturally infected with type A isolates detected the EBNA 3a, 3b, and 3c proteins in all type A virus-transformed LCLs (with a single exception in which EBNA 3b was not detected) but detected only EBNA 3a in LCLs carrying type B isolates. These results were confirmed with human and murine antibodies with specific reactivity against sequences of the type A EBNA 3a, 3b, or 3c expressed in bacterial fusion proteins. Conversely, selected human sera from donors naturally infected with type B strains of EBV identified the EBNA 3a encoded by both types of isolates plus two novel EBNAs present only in type B, and not in type A, virus-transformed LCLs; these novel proteins appear to be the type B homologs of EBNA 3b and 3c. The distinction between type A and type B EBV isolates therefore extends beyond the EBNA 2 gene to the EBNA 3 family of proteins. This has important implications with respect to the evolutionary origin of these two EBV types and also places in a new light recent studies which identified differences between type A and type B transformants in terms of growth phenotype (A. B. Rickinson, L. S. Young, and M. Rowe, J. Virol. 61:1310-1317, 1987) and of detection by EBV-specific cytotoxic T cells (D. J. Moss, I. S. Misko, S. R. Burrows, K. Burman, R. McCarthy, and T. B. Sculley, Nature [London] 331:719-721, 1988).
PMCID: PMC247795  PMID: 2536817
7.  Messenger RNA Sequence Rather than Protein Sequence Determines the Level of Self-synthesis and Antigen Presentation of the EBV-encoded Antigen, EBNA1 
PLoS Pathogens  2012;8(12):e1003112.
Unique purine-rich mRNA sequences embedded in the coding sequences of a distinct group of gammaherpesvirus maintenance proteins underlie the ability of the latently infected cell to minimize immune recognition. The Epstein-Barr virus nuclear antigen, EBNA1, a well characterized lymphocryptovirus maintenance protein has been shown to inhibit in cis antigen presentation, due in part to a large internal repeat domain encoding glycine and alanine residues (GAr) encoded by a purine-rich mRNA sequence. Recent studies have suggested that it is the purine-rich mRNA sequence of this repeat region rather than the encoded GAr polypeptide that directly inhibits EBNA1 self-synthesis and contributes to immune evasion. To test this hypothesis, we generated a series of EBNA1 internal repeat frameshift constructs and assessed their effects on cis-translation and endogenous antigen presentation. Diverse peptide sequences resulting from alternative repeat reading frames did not alleviate the translational inhibition characteristic of EBNA1 self-synthesis or the ensuing reduced surface presentation of EBNA1-specific peptide-MHC class I complexes. Human cells expressing the EBNA1 frameshift variants were also poorly recognized by antigen-specific T-cells. Furthermore, a comparative analysis of the mRNA sequences of the corresponding repeat regions of different viral maintenance homologues highlights the high degree of identity between the nucleotide sequences despite very little homology in the encoded amino acid sequences. Based on these combined observations, we propose that the cis-translational inhibitory effect of the EBNA1 internal repeat sequence operates mechanistically at the nucleotide level, potentially through RNA secondary structural elements, and is unlikely to be mediated through the GAr polypeptide. The demonstration that the EBNA1 repeat mRNA sequence and not the encoded protein sequence underlies immune evasion in this class of virus suggests a novel approach to therapeutic development through the use of anti-sense strategies or small molecules targeting EBNA1 mRNA structure.
Author Summary
Viruses establishing persistent latent infections have evolved various mechanisms to avoid immune surveillance. The Epstein-Barr virus-encoded nuclear antigen, EBNA1, expressed in all EBV-associated malignancies, modulates its own protein levels at quantities sufficient to maintain viral infection but low enough so as to minimize an immune response by the infected host cell. This evasion mechanism is regulated through an internal purine-rich mRNA repeat sequence encoding glycine and alanine residues. In this study we assess the impact of the repeat's nucleotide versus peptide sequence on inhibiting EBNA1 self-synthesis and antigen presentation. We demonstrate that altered peptide sequences resulting from frameshift mutations within the repeat do not alleviate the immune-evasive function of EBNA1, suggesting that the repetitive purine-rich mRNA sequence itself is responsible for inhibiting EBNA1 synthesis and subsequent poor immunogenicity. Our comparative analysis of the mRNA sequences of the corresponding repeat regions of different gammaherpesvirus maintenance homologues to EBNA1 highlights the high degree of identity between the nucleotide sequences despite very little homology in the encoded amino acid sequences. These studies demonstrate the importance of gammaherpesvirus purine-rich mRNA repeat sequences on antigenic epitope generation and evasion from T-cell mediated immune control, suggesting novel approaches to prevention and treatment of latent infection by this class of virus.
PMCID: PMC3531512  PMID: 23300450
8.  Binding of the Heterogeneous Ribonucleoprotein K (hnRNP K) to the Epstein-Barr Virus Nuclear Antigen 2 (EBNA2) Enhances Viral LMP2A Expression 
PLoS ONE  2012;7(8):e42106.
The Epstein-Barr Virus (EBV) -encoded EBNA2 protein, which is essential for the in vitro transformation of B-lymphocytes, interferes with cellular processes by binding to proteins via conserved sequence motifs. Its Arginine-Glycine (RG) repeat element contains either symmetrically or asymmetrically di-methylated arginine residues (SDMA and ADMA, respectively). EBNA2 binds via its SDMA-modified RG-repeat to the survival motor neurons protein (SMN) and via the ADMA-RG-repeat to the NP9 protein of the human endogenous retrovirus K (HERV-K (HML-2) Type 1). The hypothesis of this work was that the methylated RG-repeat mimics an epitope shared with cellular proteins that is used for interaction with target structures. With monoclonal antibodies against the modified RG-repeat, we indeed identified cellular homologues that apparently have the same surface structure as methylated EBNA2. With the SDMA-specific antibodies, we precipitated the Sm protein D3 (SmD3) which, like EBNA2, binds via its SDMA-modified RG-repeat to SMN. With the ADMA-specific antibodies, we precipitated the heterogeneous ribonucleoprotein K (hnRNP K). Specific binding of the ADMA- antibody to hnRNP K was demonstrated using E. coli expressed/ADMA-methylated hnRNP K. In addition, we show that EBNA2 and hnRNP K form a complex in EBV- infected B-cells. Finally, hnRNP K, when co-expressed with EBNA2, strongly enhances viral latent membrane protein 2A (LMP2A) expression by an unknown mechanism as we did not detect a direct association of hnRNP K with DNA-bound EBNA2 in gel shift experiments. Our data support the notion that the methylated surface of EBNA2 mimics the surface structure of cellular proteins to interfere with or co-opt their functional properties.
PMCID: PMC3411732  PMID: 22879910
9.  Differential Gene Expression Patterns of EBV Infected EBNA-3A Positive and Negative Human B Lymphocytes 
PLoS Pathogens  2009;5(7):e1000506.
The genome of Epstein-Barr virus (EBV) encodes 86 proteins, but only a limited set is expressed in EBV–growth transformed B cells, termed lymphoblastoid cell lines (LCLs). These cells proliferate via the concerted action of EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), some of which are rate limiting to establish a stable homeostasis of growth promoting and anti-apoptotic activities. We show here that EBV mutants, which lack the EBNA-3A gene, are impaired but can still initiate cell cycle entry and proliferation of primary human B cells in contrast to an EBNA-2 deficient mutant virus. Surprisingly, and in contrast to previous reports, these viral mutants are attenuated in growth transformation assays but give rise to permanently growing EBNA-3A negative B cell lines which exhibit reduced proliferation rates and elevated levels of apoptosis. Expression profiles of EBNA-3A deficient LCLs are characterized by 129 down-regulated and 167 up-regulated genes, which are significantly enriched for genes involved in apoptotic processes or cell cycle progression like the tumor suppressor gene p16/INK4A, or might contribute to essential steps of the viral life cycle in the infected host. In addition, EBNA-3A cellular target genes remarkably overlap with previously identified targets of EBNA-2. This study comprises the first genome wide expression profiles of EBNA-3A target genes generated within the complex network of viral proteins of the growth transformed B cell and permits a more detailed understanding of EBNA-3A's function and contribution to viral pathogenesis.
Author Summary
Epstein-Barr virus (EBV) infects primary human B cells and establishes a latent infection, which leads to permanently growing B cell cultures. These growth transformed B cells express a well defined set of latent viral genes, which are also expressed in post-transplant lymphomas of immunosuppressed patients. In a concerted action these latent viral proteins drive cellular proliferation and prevent apoptosis. For this study, recombinant Epstein-Barr virus mutants that lack the gene for the Epstein-Barr virus nuclear antigen-3A (EBNA-3A) were generated. EBNA-3A is a transcriptional modulator of gene expression. We show here that EBNA-3A deficient growth transformed B cells can be established in vitro. Our results suggest that EBNA-3A supports viability but is not absolutely essential for proliferation of the infected B cell. By virtue of the established EBNA-3A deficient cell lines, we could for the first time identify a broad array of cellular target genes controlled by EBNA-3A in EBV infected B cells. These EBNA-3A target genes will permit a more detailed understanding of EBNA-3A's function and contribution to viral pathogenesis.
PMCID: PMC2700271  PMID: 19578441
10.  Expression of epstein-barr virus encoded nuclear antigen 1 in benign and malignant tissues harbouring EBV. 
Journal of Clinical Pathology  1996;49(11):897-902.
AIMS: To determine levels of expression of Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) in benign and malignant tissues harbouring EBV in relation to EBNA1 promoter usage. METHODS: Expression of EBNA1 was investigated by means of immunohistochemistry using a mixture of two EBNA1 specific monoclonal antibodies, 1H4-1 and 2B4-1. The presence of EBV was detected by EBER1/2 RNA in situ hybridisation. Detection of promoter specific EBNA1 transcripts was by RT-PCR analysis. RESULTS: EBNA1 positive cells were detected in all 20 EBV associated B cell lymphomas, 18 of which had arisen in immunocompromised patients; in eight of nine EBV associated T cell lymphomas; in 11 of 27 EBV positive cases of Hodgkin's disease; and in reactive lymphoid tissue harbouring EBV, including four cases of infectious mononucleosis. A diffuse EBNA1 staining pattern was observed in most of the EBV associated B cell lymphomas and was comparable with the EBER1/2 staining pattern. In the T cell lymphomas the number of EBNA1 positive cells was usually considerably less than the number of EBER1/2 positive ones. RT-PCR analysis revealed that in tumours with restricted EBNA1 expression-that is, T cell lymphomas and Hodgkin's disease lesions, EBNA1 transcripts were usually generated only by the F/Q promoter, whereas in B cell lymphomas EBNA1 transcripts were usually generated by both the C/W and F/Q promoters. CONCLUSIONS: EBNA1 is expressed in all types of tissue harbouring EBV, but the level of expression varies greatly. This may be the result of differential promoter usage.
PMCID: PMC500828  PMID: 8944608
11.  Monoclonal and polyclonal antibodies against Epstein-Barr virus nuclear antigen 5 (EBNA-5) detect multiple protein species in Burkitt's lymphoma and lymphoblastoid cell lines. 
Journal of Virology  1987;61(12):3870-3878.
The Epstein-Barr virus nuclear antigen 5 (EBNA-5) is encoded by highly spliced mRNA from the major IR1 (BamHI-W) repeat region of the virus genome. A mouse monoclonal antibody, JF186, has been raised against a synthetic 18-amino-acid peptide deduced from the EBNA-5 message of B95-8 and Raji cells. The antibody showed characteristic coarse nuclear granules by indirect immunofluorescence and revealed multiple EBNA-5 species by immunoblotting and immunoprecipitation. The B95-8 line itself and all B95-8 virus-carrying cells, whether lymphoblastoid cell lines or in vitro-converted sublines of Epstein-Barr virus (EBV)-negative Burkitt's lymphoma (BL) lines, were EBNA-5 positive. Among 36 cell lines carrying different EBV strains, only 10 expressed the B95-8-Raji-prototype EBNA-5 recognized by JF186; this was probably due to genetic variation in the epitope recognized by JF186, as shown for P3HR-1. Human antibodies, affinity purified against EBNA-5-JF186 immunoprecipitates, detected EBNA-5 in the majority of EBV-positive BL lines and in all lymphoblastoid cell lines containing the BL-derived viruses. Thus, EBNA-5 can be expressed by all virus isolates examined, but is down-regulated, together with other latent gene products, in a minority of BL lines which have a particular cellular phenotype. EBNA-5 was detected as a ladder of protein species of 20 to 130 kilodaltons (kDa), with a regular spacing of 6 to 8 kDa, consistent with the coding capacity of the combined BamHI-W 66- and 132-base-pair exons, together with shifts of 2 to 4 kDa, consistent with the size of the separate 66- and 132-base-pair exons. Multiple EBNA-5 proteins can be expressed by the single cell as shown by cloning of newly infected cells.
PMCID: PMC256005  PMID: 2824821
12.  Down-regulation of Epstein-Barr virus nuclear antigen 1 in Reed-Sternberg cells of Hodgkin's disease. 
Journal of Clinical Pathology  1995;48(9):845-848.
AIMS--To demonstrate Epstein-Barr virus (EBV) encoded nuclear antigen 1 (EBNA-1) gene expression in EBV associated disorders using a new monoclonal antibody (1H4-1) on routinely processed tissues. METHODS--The pressure cooker antigen retrieval method was used for the immunohistochemical demonstration of EBNA-1 gene expression in formalin fixed, EBV positive tissues from Hodgkin's disease, infectious mononucleosis, HIV associated non-Hodgkin's lymphomas, post-transplant lymphomas, and undifferentiated nasopharyngeal carcinoma (NPC). EBV encoded EBNA-2, latent membrane protein 1 (LMP-1) and BZLF-1 gene expression was also examined using commercially available monoclonal antibodies. RESULTS--Of the 34 EBER in situ hybridisation positive cases of Hodgkin's disease examined, none expressed EBNA-1 in the Reed-Sternberg cells. These cells were nevertheless strongly LMP-1 positive in all cases. Strong EBNA-1 staining was seen in all cases of EBER positive HIV associated non-Hodgkin's lymphoma (five of five), nasopharyngeal carcinoma (five of five), infectious mononucleosis (three of three), and post-transplant lymphoma (one of one). These cases also expressed LMP-1, EBNA-2 and BZLF-1, but at differing levels. CONCLUSION--The pressure cooker antigen retrieval procedure is a sensitive and reliable adjunct to immunohistochemistry, especially with antibodies which are otherwise ineffective on routinely processed tissues. The EBNA-1 gene is not expressed at detectable levels in the malignant cells of Hodgkin's disease, but is consistently expressed in other EBV associated disorders. This finding has important implications for the role of EBNA-1 in the biology of EBV.
PMCID: PMC502874  PMID: 7490319
13.  EBNA3C Augments Pim-1 Mediated Phosphorylation and Degradation of p21 to Promote B-Cell Proliferation 
PLoS Pathogens  2014;10(8):e1004304.
Epstein–Barr virus (EBV), a ubiquitous human herpesvirus, can latently infect the human population. EBV is associated with several types of malignancies originating from lymphoid and epithelial cell types. EBV latent antigen 3C (EBNA3C) is essential for EBV-induced immortalization of B-cells. The Moloney murine leukemia provirus integration site (PIM-1), which encodes an oncogenic serine/threonine kinase, is linked to several cellular functions involving cell survival, proliferation, differentiation, and apoptosis. Notably, enhanced expression of Pim-1 kinase is associated with numerous hematological and non-hematological malignancies. A higher expression level of Pim-1 kinase is associated with EBV infection, suggesting a crucial role for Pim-1 in EBV-induced tumorigenesis. We now demonstrate a molecular mechanism which reveals a direct role for EBNA3C in enhancing Pim-1 expression in EBV-infected primary B-cells. We also showed that EBNA3C is physically associated with Pim-1 through its amino-terminal domain, and also forms a molecular complex in B-cells. EBNA3C can stabilize Pim-1 through abrogation of the proteasome/Ubiquitin pathway. Our results demonstrate that EBNA3C enhances Pim-1 mediated phosphorylation of p21 at the Thr145 residue. EBNA3C also facilitated the nuclear localization of Pim-1, and promoted EBV transformed cell proliferation by altering Pim-1 mediated regulation of the activity of the cell-cycle inhibitor p21/WAF1. Our study demonstrated that EBNA3C significantly induces Pim-1 mediated proteosomal degradation of p21. A significant reduction in cell proliferation of EBV-transformed LCLs was observed upon stable knockdown of Pim-1. This study describes a critical role for the oncoprotein Pim-1 in EBV-mediated oncogenesis, as well as provides novel insights into oncogenic kinase-targeted therapeutic intervention of EBV-associated cancers.
Author Summary
The oncogenic serine/threonine kinase Pim-1 is upregulated in a number of human cancers including lymphomas, gastric, colorectal and prostate carcinomas. EBV nuclear antigen 3C (EBNA3C) is essential for EBV-induced transformation of human primary B-lymphocytes. Our current study revealed that EBNA3C significantly enhances Pim-1 kinase expression at both the transcript and protein levels. EBNA3C also interacts with Pim-1 and can form a complex in EBV-transformed cells. Moreover, EBNA3C increases nuclear localization of Pim-1 and stabilizes Pim-1 protein levels by inhibiting its poly-ubiquitination. Additionally, EBNA3C augments Pim-1 mediated phosphorylation of p21 and its proteosomal degradation. Stable knockdown of Pim-1 using si-RNA showed a significant decrease in proliferation of EBV transformed lymphoblastoid cell lines and subsequent induction of apoptosis by triggering the intrinsic apoptotic pathway. Therefore, our study demonstrated a new mechanism by which the oncogenic Pim-1 kinase targeted by EBV latent antigen 3C can inhibit p21 function, and is therefore a potential therapeutic target for the treatment of EBV-associated malignancies.
PMCID: PMC4133388  PMID: 25121590
14.  Soluble Rhesus Lymphocryptovirus gp350 Protects against Infection and Reduces Viral Loads in Animals that Become Infected with Virus after Challenge 
PLoS Pathogens  2011;7(10):e1002308.
Epstein-Barr virus (EBV) is a human lymphocryptovirus that is associated with several malignancies. Elevated EBV DNA in the blood is observed in transplant recipients prior to, and at the time of post-transplant lymphoproliferative disease; thus, a vaccine that either prevents EBV infection or lowers the viral load might reduce certain EBV malignancies. Two major approaches have been suggested for an EBV vaccine- immunization with either EBV glycoprotein 350 (gp350) or EBV latency proteins (e.g. EBV nuclear antigens [EBNAs]). No comparative trials, however, have been performed. Rhesus lymphocryptovirus (LCV) encodes a homolog for each gene in EBV and infection of monkeys reproduces the clinical, immunologic, and virologic features of both acute and latent EBV infection. We vaccinated rhesus monkeys at 0, 4 and 12 weeks with (a) soluble rhesus LCV gp350, (b) virus-like replicon particles (VRPs) expressing rhesus LCV gp350, (c) VRPs expressing rhesus LCV gp350, EBNA-3A, and EBNA-3B, or (d) PBS. Animals vaccinated with soluble gp350 produced higher levels of antibody to the glycoprotein than those vaccinated with VRPs expressing gp350. Animals vaccinated with VRPs expressing EBNA-3A and EBNA-3B developed LCV-specific CD4 and CD8 T cell immunity to these proteins, while VRPs expressing gp350 did not induce detectable T cell immunity to gp350. After challenge with rhesus LCV, animals vaccinated with soluble rhesus LCV gp350 had the best level of protection against infection based on seroconversion, viral DNA, and viral RNA in the blood after challenge. Surprisingly, animals vaccinated with gp350 that became infected had the lowest LCV DNA loads in the blood at 23 months after challenge. These studies indicate that gp350 is critical for both protection against infection with rhesus LCV and for reducing the viral load in animals that become infected after challenge. Our results suggest that additional trials with soluble EBV gp350 alone, or in combination with other EBV proteins, should be considered to reduce EBV infection or virus-associated malignancies in humans.
Author Summary
Epstein-Barr virus (EBV) is the primary cause of infectious mononucleosis and is associated with several cancers. Presently there is no licensed vaccine to prevent EBV diseases. Two types of candidate vaccines are under development; one involves immunization with the major glycoprotein (gp350) on the outside of the virus, while the other involves vaccination with EBV proteins expressed during latency. We compared these two types of candidate vaccines in a rhesus monkey model of EBV and found that the gp350 vaccine induced better protection from infection. In addition, animals that received the rhesus EBV glycoprotein and became infected had a lower level of rhesus EBV DNA in the blood at 23 months after challenge than animals that received the rhesus EBV latency protein vaccine that subsequently were infected. Since levels of EBV DNA in the blood have been predictive for EBV lymphomas in transplant patients, the ability of rhesus EBV gp350 to reduce levels of rhesus EBV in the blood after infection suggests the EBV gp350 could have a role in reducing certain EBV-associated cancers. This is the first test of candidate vaccines in the rhesus monkey model of EBV and shows that this model should be useful in further evaluation of EBV vaccines.
PMCID: PMC3197588  PMID: 22028652
15.  Adenovirus-Based Vaccines against Rhesus Lymphocryptovirus EBNA-1 Induce Expansion of Specific CD8+ and CD4+ T Cells in Persistently Infected Rhesus Macaques 
Journal of Virology  2014;88(9):4721-4735.
The impact of Epstein-Barr virus (EBV) on human health is substantial, but vaccines that prevent primary EBV infections or treat EBV-associated diseases are not yet available. The Epstein-Barr nuclear antigen 1 (EBNA-1) is an important target for vaccination because it is the only protein expressed in all EBV-associated malignancies. We have designed and tested two therapeutic EBV vaccines that target the rhesus (rh) lymphocryptovirus (LCV) EBNA-1 to determine if ongoing T cell responses during persistent rhLCV infection in rhesus macaques can be expanded upon vaccination. Vaccines were based on two serotypes of E1-deleted simian adenovirus and were administered in a prime-boost regimen. To further modulate the response, rhEBNA-1 was fused to herpes simplex virus glycoprotein D (HSV-gD), which acts to block an inhibitory signaling pathway during T cell activation. We found that vaccines expressing rhEBNA-1 with or without functional HSV-gD led to expansion of rhEBNA-1-specific CD8+ and CD4+ T cells in 33% and 83% of the vaccinated animals, respectively. Additional animals developed significant changes within T cell subsets without changes in total numbers. Vaccination did not increase T cell responses to rhBZLF-1, an immediate early lytic phase antigen of rhLCV, thus indicating that increases of rhEBNA-1-specific responses were a direct result of vaccination. Vaccine-induced rhEBNA-1-specific T cells were highly functional and produced various combinations of cytokines as well as the cytolytic molecule granzyme B. These results serve as an important proof of principle that functional EBNA-1-specific T cells can be expanded by vaccination.
IMPORTANCE EBV is a common human pathogen that establishes a persistent infection through latency in B cells, where it occasionally reactivates. EBV infection is typically benign and is well controlled by the host adaptive immune system; however, it is considered carcinogenic due to its strong association with lymphoid and epithelial cell malignancies. Latent EBNA-1 is a promising target for a therapeutic vaccine, as it is the only antigen expressed in all EBV-associated malignancies. The goal was to determine if rhEBNA-1-specific T cells could be expanded upon vaccination of infected animals. Results were obtained with vaccines that target EBNA-1 of rhLCV, a virus closely related to EBV. We found that vaccination led to expansion of rhEBNA-1 immune cells that exhibited functions fit for controlling viral infection. This confirms that rhEBNA-1 is a suitable target for therapeutic vaccines. Future work should aim to generate more-robust T cell responses through modified vaccines.
PMCID: PMC3993789  PMID: 24522914
16.  Epstein-Barr virus nuclear protein 2 (EBNA2) binds to a component of the human SNF-SWI complex, hSNF5/Ini1. 
Journal of Virology  1996;70(9):6020-6028.
Epstein-Barr nuclear antigen 2 (EBNA2), one of the six viral nuclear proteins expressed in latently infected B lymphocytes, is essential to the immortalization of B cells by Epstein-Barr virus (EBV). EBNA2 promotes transcriptional transactivation of viral and cellular genes by acting as an adapter molecule that binds to cellular sequence-specific DNA-binding proteins, JK recombination signal-binding protein (RBP-JK), and PU.1 and engages multiple members of the RNA polymerase II transcription complex. In the present study, we show that EBNA2 also interacts with hSNF5/Ini1, the human homolog of the yeast transcription factor SNF5. Gel filtration fractionation of partially purified EBV-positive lymphocyte nuclear extracts shows that a fraction of EBNA2 coelutes with both hSNF5/Ini1 and BRG1, a human homolog of SWI/SNF2, in the high-molecular-mass region (1.5 to 2.0 MDa) of a Superose 6 chromatogram. An affinity-purified rabbit antibody directed against hSNF5/Ini1 coimmunoprecipitates EBNA2 from this high-molecular-mass nuclear protein fraction, demonstrating that EBNA2 and hSNF5/Ini1 interact in vivo. This interaction is restricted to a subpopulation of phosphorylated viral EBNA2. Deletion mutation analysis of EBNA2 shows that the proline-rich aminoterminal end and a domain within the divergent region of EBNA2 mediate EBNA2-hSNF5/Ini1 interaction. Since the SNF-SWI complex participates in gene regulation through the alteration of nucleosome configuration and may be a component of the RNA polymerase II holoenzyme, the EBNA2-hSNF5/Ini1 interaction supports the hypothesis that EBNA2 facilitates transcriptional transactivation by acting as a transcription adapter molecule. We postulate that EBNA2 engages the hSNF-SWI complex to generate an open chromatin conformation at the EBNA2-responsive target genes, thereby potentiating the function of the RBP-JK-EBNA2-polymerase II transcription complex.
PMCID: PMC190622  PMID: 8709224
17.  Evidence for two classes of chromatin-associated Epstein-Barr virus-determined nuclear antigen. 
Journal of Virology  1982;43(2):555-565.
A new class of Epstein-Barr virus nuclear antigen (EBNA) was identified by the complement fixation assay. This new species of EBNA is more tightly bound to chromatin and was termed class II EBNA, as opposed to the more weakly associated species, class I EBNA. Preparations of this new antigen(s) specifically reduced absorption with the titer of anti-EBNA antibodies as determined by the anticomplement immunofluorescence assay. Therefore, the complement fixation antigens (class II EBNA) appear to be related to the classical EBNA (class I EBNA). The class I EBNA was found to focus at the same pH (4.6) as the soluble antigen found in the cytosol. The class II EBNA differed from the class I EBNA with regard to its overall charge, molecular size, antigenicity, and affinity for chromatin. The class II EBNA appeared to be a basic protein, based on its apparent pI of 9.2 and its binding to cation-exchange resins. It differed from histones with regard to its molecular size (molecular weight between 60,000 and 70,000) and its elution from hydroxylapatite chromatography. Steps were taken to prevent proteolysis and artifacts in the immunological assays and in the overall charge estimation of the new antigen by nonspecific basic histone protein-acidic protein interactions. Both class I and class II EBNA were identified by radioimmunoelectrophoresis on two-dimensional polyacrylamide gels with pI values of 5.0 and 8.5, respectively, and a molecular weight range of 60,000 to 70,000 for both. A lower-molecular-weight antigen identified by molecular sieve chromatography appeared to be due to interference by histones in the immunoassays since it was not observed by the two-dimensional gel electrophoresis. Further characterization of this class II EBNA is in progress.
PMCID: PMC256159  PMID: 6180183
18.  Characteristics of viral protein expression by Epstein-Barr virus-infected B cells in peripheral blood of patients with infectious mononucleosis. 
The frequency of Epstein-Barr virus (EBV) antigen-positive B cells in the peripheral blood of patients with infectious mononucleosis compared with that for latently EBV-infected individuals was examined by immunocytochemistry. B cells positive for Epstein-Barr nuclear antigen (EBNA) 1, EBNA2, and latent membrane protein were frequently found in all peripheral B lymphocyte preparations from 25 patients suffering for 3 to 28 days from infectious mononucleosis by using monoclonal antibodies and the alkaline phosphatase anti-alkaline technique. There was a significant decrease in the number of positive B cells during the course of disease. EBNA1-positive B cells were detected in 0.01 to 2.5% of total B cells (median, 0.8%), EBNA2-positive B cells were detected in 0.01 to 4.5% of total B cells (median, 0.9%), and latent membrane protein-positive B cells were detected in 0.01 to 1.8% of total B cells (median, 0.5%), depending on the duration of clinical signs. In contrast, we did not find any EBNA1- or EBNA2-positive B cells in 2 x 10(6) peripheral blood B lymphocytes of 10 latently EBV-infected individuals, whereas aliquots of the same cell preparations were EBV DNA positive by a PCR assay. Therefore, it appears to be possible to detect infectious mononucleosis by immunocytochemical determination of latent EBV products, which might be of relevance for the diagnosis of EBV reactivations in immunosuppressed patients.
PMCID: PMC170223  PMID: 8574832
19.  5-Azacytidine up regulates the expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) through EBNA-6 and latent membrane protein in the Burkitt's lymphoma line rael. 
Journal of Virology  1989;63(7):3135-3141.
Nonproductive infection of B lymphocytes by Epstein-Barr virus (EBV) is associated with a highly restricted expression of viral genes. In growth-transformed lymphoblastoid cell lines, the products of these genes include a complex of at least six EBV nuclear antigens (EBNAs) (EBNA-1 through EBNA-6) and one membrane protein (latent membrane protein [LMP]). EBV-carrying Burkitt's lymphoma (BL) biopsies and derived cell lines that have retained a representative phenotype (group I BL lines) express only EBNA-1 (M. Rowe, D. T. Rowe, C. D. Gregory, L. S. Young, P. J. Farrell, H. Rupani, and A. B. Rickinson, EMBO J. 6:2743-2751, 1987). We have found that EBNA-2 through EBNA-6 and LMP can be up regulated by treating the group I BL line Rael with the DNA-demethylating agent 5-azacytidine (5-AzaC). The drug acted in a time- and dose-dependent manner. EBNA-2-positive cells were detected by anti-complement immunofluorescence staining just 12 h after addition of 4 microM 5-AzaC and reached a maximum number at 72 h, when up to 75% of the population was positive. EBNA-2, EBNA-3, EBNA-4, EBNA-4, EBNA-6, and LMP were demonstrated immunoblots starting at 48 h. The EBV-encoded early antigens and viral capsid antigens were also induced but at a lower level. EBNA-2 and the lytic cycle-associated antigens appeared with a different time course and in largely nonoverlapping cell subpopulations, as demonstrated by double fluorescence staining. Thus, EBNA-2 expression was not restricted to lytically infected cells, nor was EBNA-2 required for entry into the lytic cycle. The coding and regulatory sequences of EBNA-2 and LMP were found to be highly methylated in Rael cells and were, as expected, demethylated after 5-AzaC treatment. These findings suggest that DNA methylation may participate in the regulation of growth transformation-associated viral genes in BL cells.
PMCID: PMC250871  PMID: 2470924
20.  Transcription of the Epstein-Barr virus nuclear antigen 1 (EBNA1) gene occurs before induction of the BCR2 (Cp) EBNA gene promoter during the initial stages of infection in B cells. 
Journal of Virology  1996;70(6):3561-3570.
The purpose of this study was to gain insights into the regulation of Epstein-Barr virus (EBV) gene transcription during the establishment of viral latency in B cells. During the early stages of EBV infection in B lymphocytes, transcription of six viral nuclear antigens (EBNAs) is initiated from an early promoter (Wp). This is followed by a switch of promoter usage to an upstream promoter, Cp, whose activity is autoregulated by both EBNA1 and EBNA2. Previously it was demonstrated that infection of primary B cells with EBNA2-negative (EBNA2-) EBNA4-mutant (EBNA4mut) virus resulted only in the expression of mutant EBNA4 protein and failure to express the other EBNA gene products (C. Rooney H. G. Howe, S. H. Speck, and G. Miller, J. Virol. 63:1531-1539, 1989). We extended this research to demonstrate that Wp-to-Cp switching did not occur upon infection of primary B cells with an EBNA2- EBNA4mut virus (M. Woisetschlaeger, X. W. Jin, C. N. Yandara, L. A. Furmanski, J. L. Strominger, and S. H. Speck, Proc. Natl. Acad. Sci. USA 88:3942-3946, 1991). Further characterization of this phenomenon led to the identification of an EBNA2-dependent enhancer upstream of Cp. On the basis of these data, a model was proposed in which initial transcription from Wp gives rise to the expression of EBNA2 and EBNA4, and then transcription is upregulated from Cp via the EBNA2- dependent enhancer (Woisetschlaeger et al., as noted above). Implicit in this model is that transcription of the EBNA1 and EBNA3a to -3c genes is dependent on the switch from Wp to Cp, since primary cells infected with EBNA2- EBNA4mut virus fail to switch and also fail to express these viral antigens. Here we critically evaluate this model and demonstrate, in contrast to the predictions of the model, that transcription of both the EBNA1 and EBNA2 genes precedes activation of Cp. Furthermore, the level of EBNA1 gene transcription was strongly reduced in primary B cells infected with EBNA2- EBNA4mut virus compared with that of cells infected with wild-type virus. Switching to Cp, as well as EBNA1 gene transcription, was observed upon infection of EBV-negative Burkitt's lymphoma (BL) cell lines with EBNA2- EBNA4mut virus, thus establishing a correlation between early EBNA1 gene transcription and upregulation of transcription initiation from Cp. However, in EBV-negative BL cell lines infected with EBNA2- EBNA4mut virus, transcription of the EBNA1 gene at early time points postinfection initiated from Qp, the EBNA1 gene promoter active in group I BL cells (B. C. Schaefer, J. L. Strominger, and S. H. Speck, Proc. Natl. Acad. Sci. USA 92:10565-10569, 1995), rather than from Wp. The data support a model in which EBNA1 plays an important role in the cascade of events leading to successful switching from Wp to Cp and subsequent immortalization of the infected B cell.
PMCID: PMC190231  PMID: 8648690
21.  Zinc Coordination Is Required for and Regulates Transcription Activation by Epstein-Barr Nuclear Antigen 1 
PLoS Pathogens  2009;5(6):e1000469.
Epstein-Barr Nuclear Antigen 1 (EBNA1) is essential for Epstein-Barr virus to immortalize naïve B-cells. Upon binding a cluster of 20 cognate binding-sites termed the family of repeats, EBNA1 transactivates promoters for EBV genes that are required for immortalization. A small domain, termed UR1, that is 25 amino-acids in length, has been identified previously as essential for EBNA1 to activate transcription. In this study, we have elucidated how UR1 contributes to EBNA1's ability to transactivate. We show that zinc is necessary for EBNA1 to activate transcription, and that UR1 coordinates zinc through a pair of essential cysteines contained within it. UR1 dimerizes upon coordinating zinc, indicating that EBNA1 contains a second dimerization interface in its amino-terminus. There is a strong correlation between UR1-mediated dimerization and EBNA1's ability to transactivate cooperatively. Point mutants of EBNA1 that disrupt zinc coordination also prevent self-association, and do not activate transcription cooperatively. Further, we demonstrate that UR1 acts as a molecular sensor that regulates the ability of EBNA1 to activate transcription in response to changes in redox and oxygen partial pressure (pO2). Mild oxidative stress mimicking such environmental changes decreases EBNA1-dependent transcription in a lymphoblastoid cell-line. Coincident with a reduction in EBNA1-dependent transcription, reductions are observed in EBNA2 and LMP1 protein levels. Although these changes do not affect LCL survival, treated cells accumulate in G0/G1. These findings are discussed in the context of EBV latency in body compartments that differ strikingly in their pO2 and redox potential.
Author Summary
Epstein-Barr virus (EBV) infects human B-cells and immortalizes them. Immortalization results in diseases that range from infectious mononucleosis to malignancies such as lymphomas. During immortalization, EBV expresses a small number of viral genes that modulate cellular proliferation and differentiation. One of the genes expressed by EBV, Epstein-Barr nuclear antigen 1 (EBNA1), activates the expression of the other viral genes required for immortalization. In this report, we have explored the mechanism by which EBNA1 activates gene expression. We have determined that EBNA1 uses the micronutrient zinc to self-associate, and that self-association is necessary for it to activate gene expression. Further, we have determined that environmental conditions such as oxygen tension and oxidative stress modulate EBNA1's capacity to self-associate, and therefore to activate gene expression. The gene expression profile and proliferative phenotype of EBV-infected cells is known to vary in differing environmental niches in the human body, such as lymph nodes and in peripheral circulation. We interpret our results to postulate that these differences arise as a consequence of varying oxygen tension in these microenvironments on EBNA1's capacity to activate viral gene expression. Our findings can be exploited to devise novel therapeutics against EBV-associated diseases that target EBNA1 through oxidative stress.
PMCID: PMC2690687  PMID: 19521517
22.  Development of a recombinant enzyme-linked immunosorbent assay for detection of antibodies against Epstein-Barr virus nuclear antigens 2A and 2B. 
Journal of Clinical Microbiology  1994;32(1):112-120.
The baculovirus expression system was used to produce full-length Epstein-Barr virus nuclear antigens (EBNAs) 2A and 2B. Recombinant baculoviruses that contained the EBNA-2A- and EBNA-2B-encoding sequences were constructed. The proteins were expressed in Spodoptera frugiperda SF-9 cells infected with the recombinant viruses and were characterized by using monoclonal and human polyclonal antibodies by immunoblotting and immunofluorescence techniques. Partially purified extracts of the EBNA-2A- and EBNA-2B-infected insect cells were used to establish a new enzyme-linked immunosorbent assay for the detection of antibodies against EBNA-2A and EBNA-2B. Preferential reactivity toward the type A or type B EBNA-2 protein was observed in 36% of serum specimens from Swiss patients with acute infectious mononucleosis and in 81% of Swiss patients with latent Epstein-Barr virus infection. Of the patients in the latter group, sera from 76% reacted preferentially with EBNA-2A, sera from 5% reacted preferentially with EBNA-2B, sera from 12% showed similar reactivities against both antigens, and sera from 7% were nonreactive.
PMCID: PMC262979  PMID: 8126164
23.  Inactivation of Intergenic Enhancers by EBNA3A Initiates and Maintains Polycomb Signatures across a Chromatin Domain Encoding CXCL10 and CXCL9 
PLoS Pathogens  2013;9(9):e1003638.
Epstein-Barr virus (EBV) causes a persistent infection in human B cells by establishing specific transcription programs to control B cell activation and differentiation. Transcriptional reprogramming of EBV infected B cells is predominantly driven by the action of EBV nuclear antigens, among them the transcriptional repressor EBNA3A. By comparing gene expression profiles of wt and EBNA3A negative EBV infected B cells, we have previously identified a broad array of cellular genes controlled by EBNA3A. We now find that genes repressed by EBNA3A in these cells are significantly enriched for the repressive histone mark H3K27me3, which is installed by Polycomb group (PcG) proteins. This PcG-controlled subset of genes also carries H3K27me3 marks in a variety of other tissues, suggesting that the commitment to PcG silencing is an intrinsic feature of these gene loci that can be used by EBNA3A. In addition, EBNA3A targets frequently reside in co-regulated gene clusters. To study the mechanism of gene repression by EBNA3A and to evaluate the relative contribution of PcG proteins during this process, we have selected the genomic neighbors CXCL10 and CXCL9 as a model for co-repressed and PcG-controlled genes. We show that EBNA3A binds to CBF1 occupied intergenic enhancers located between CXCL10 and CXCL9 and displaces the transactivator EBNA2. This impairs enhancer activity, resulting in a rapid transcriptional shut-down of both genes in a CBF1-dependent manner and initiation of a delayed gain of H3K27me3 marks covering an extended chromatin domain. H3K27me3 marks increase gradually and are maintained by EBNA3A. Our study provides direct evidence that repression by EBNA3A requires CBF1 and that EBNA3A and EBNA2 compete for access to CBF1 at identical genomic sites. Most importantly, our results demonstrate that transcriptional silencing by EBNA3A precedes the appearance of repressive PcG marks and indicate that both events are triggered by loss of enhancer activity.
Author Summary
Epstein-Barr virus (EBV) is a γ-herpesvirus which establishes a latent infection in human B cells and is associated with the pathogenesis of several types of cancer. Here, we report that cellular genes repressed by the EBV nuclear antigen 3A (EBNA3A) in EBV infected B cells frequently form contiguous clusters in the human genome and are committed to epigenetic silencing by Polycomb group (PcG) proteins. The chemokine genes CXCL10 and CXCL9 and their receptors on NK and T cells are critical weapons of the infected host to control herpesvirus infections. CXCL10 and CXCL9 are close neighbors within an extended PcG-controlled domain. We show that EBNA3A binds to intergenic enhancers located between CXCL10 and CXCL9 and displaces the transactivator EBNA2. This process impairs enhancer activity, resulting in a rapid transcriptional shut-down of both genes followed by a delayed gain of PcG histone marks. These PcG marks increase within the following weeks and are maintained by EBNA3A. Our results show that rapid transcriptional shut-down of distal genes and domain-wide PcG silencing is triggered by loss of enhancer activity and suggest that EBNA3A can reprogram the cellular genome in order to escape the immune surveillance of the host.
PMCID: PMC3777872  PMID: 24068939
24.  The Nuclear Chaperone Nucleophosmin Escorts an Epstein-Barr Virus Nuclear Antigen to Establish Transcriptional Cascades for Latent Infection in Human B Cells 
PLoS Pathogens  2012;8(12):e1003084.
Epstein-Barr Virus (EBV) is an oncogenic γ-herpesvirus that capably establishes both latent and lytic modes of infection in host cells and causes malignant diseases in humans. Nuclear antigen 2 (EBNA2)-mediated transcription of both cellular and viral genes is essential for the establishment and maintenance of the EBV latency program in B lymphocytes. Here, we employed a protein affinity pull-down and LC-MS/MS analysis to identify nucleophosmin (NPM1) as one of the cellular proteins bound to EBNA2. Additionally, the specific domains that are responsible for protein-protein interactions were characterized as EBNA2 residues 300 to 360 and the oligomerization domain (OD) of NPM1. As in c-MYC, dramatic NPM1 expression was induced in EBV positively infected B cells after three days of viral infection, and both EBNA2 and EBNALP were implicated in the transactivation of the NPM1 promoter. Depletion of NPM1 with the lentivirus-expressed short-hairpin RNAs (shRNAs) effectively abrogated EBNA2-dependent transcription and transformation outgrowth of lymphoblastoid cells. Notably, the ATP-bound state of NPM1 was required to induce assembly of a protein complex containing EBNA2, RBP-Jκ, and NPM1 by stabilizing the interaction of EBNA2 with RBP-Jκ. In a NPM1-knockdown cell line, we demonstrated that an EBNA2-mediated transcription defect was fully restored by the ectopic expression of NPM1. Our findings highlight the essential role of NPM1 in chaperoning EBNA2 onto the latency-associated membrane protein 1 (LMP1) promoters, which is coordinated with the subsequent activation of transcriptional cascades through RBP-Jκ during EBV infection. These data advance our understanding of EBV pathology and further imply that NPM1 can be exploited as a therapeutic target for EBV-associated diseases.
Author Summary
Epstein-Barr Virus (EBV) infects human B cells to establish a permanent infection in hosts, which can cause diseases ranging from infectious mononucleosis to a broad spectrum of human malignancies. The conversion of human primary B cells into indefinitely proliferating lymphoblastoid cell lines (LCLs) by in vitro EBV infection provides a suitable model for virus-mediated cellular transformation. Epstein-Barr nuclear antigen (EBNA) 2-mediated transcription is essential for the establishment and maintenance of EBV latent infection. In this report, we have extensively explored the mechanism by which EBNA2 activates the latency-specific LMP1 promoter to establish a permanent infection in B cells. We have identified and characterized the protein-protein interaction of EBNA2 with the nuclear shuttle protein nucleophosmin (NPM1) in vivo and in vitro. In particular, we have determined that the expression of NPM1 is promptly induced upon EBV infection and that EBNA2 has a role in activating NPM1 gene expression. Furthermore, we have shown that oligomerized NPM1 is charged by ATP and binds to EBNA2, which is crucial for its ability to stabilize its interaction with the DNA binding protein RBP-Jκ, which is in turn essential for supporting the transcriptional cascades of EBV latent infection. Our findings provide striking evidence to illustrate a new model for understanding EBV pathology.
PMCID: PMC3521654  PMID: 23271972
25.  Maintenance of Serum Immunoglobulin G Antibodies to Epstein-Barr Virus (EBV) Nuclear Antigen 2 in Healthy Individuals from Different Age Groups in a Japanese Population with a High Childhood Incidence of Asymptomatic Primary EBV Infection 
Immunoglobulin G (IgG) antibodies to Epstein-Barr virus (EBV) nuclear antigens 2 and 1 (EBNA-2 and EBNA-1, respectively) were studied using sera from healthy individuals of a population with a high incidence of asymptomatic primary EBV infections during infancy or childhood in Japan. Two CHO-K1 cell lines expressing EBNA-2 and EBNA-1 were used for anticomplement and indirect immunofluorescence assays. The positivity rate for EBNA-2 IgG rose in the 1- to 2-year age group, increased and remained at a plateau (∼45%) between 3 and 29 years of age (3- to 4-, 5- to 9-, 10- to 14-, and 15- to 29-year age groups), and then reached 98% by age 40 (≥40-year age group). Both seropositivity for EBNA-1 and seropositivity for EBNAs in Raji cells (EBNA/Raji) were detected in the 1- to 2-year age group, remained high, and finally reached 100% by age 40. The geometric mean titer (GMT) of EBNA-2 IgG reached a plateau in the 5- to 9- and 10- to 14-year-old groups and remained elevated in the older age groups (15 to 29 and ≥40 years). The GMT of EBNA-1 IgGs increased to a plateau in the 1- to 2-year-old group and remained unchanged in the older age groups. The GMT of EBNA/Raji IgGs also reached a plateau in the 1- to 2-year-old group, remained level throughout the 3- to 14-year age groups, and decreased in the 15- to 29-year-olds. EBNA-2 IgGs emerged earlier than EBNA-1 IgGs in 8 of 10 patients with infectious mononucleosis, who were between 1 and 27 years old, and declined with time in three of eight cases. These results suggest that EBNA-2 IgG antibodies evoked in young children by asymptomatic primary EBV infections remain elevated throughout life, probably because of reactivation of latent and/or exogenous EBV superinfection.
PMCID: PMC321344  PMID: 14715558

Results 1-25 (871747)